
DepSys: Dependency Aware Integration of Cyber-Physical
Systems for Smart Homes

Sirajum Munir
Department of Computer Science,

University of Virginia
Charlottesville, VA, USA
munir@cs.virginia.edu

John A. Stankovic
Department of Computer Science,

University of Virginia
Charlottesville, VA, USA

stankovic@cs.virginia.edu

ABSTRACT
As sensor and actuator networks mature, they become
a core utility of smart homes like electricity and water
and enable the running of many CPS applications. Like
other Cyber-Physical Systems (CPSs), when a number
of applications share physical world entities, it raises
many systems of systems interdependency problems. Su-
ch problems arise in the cyber part mainly because each
application has assumptions on the physical world en-
tities without knowing how other applications work. In
this work, we propose DepSys, a utility sensing and
actuation infrastructure for smart homes that provides
comprehensive strategies to specify, detect, and resolve
conflicts in a home setting. Based on real home data,
we demonstrate the severity of conflicts when multiple
CPSs are integrated and the significant ability of detect-
ing and resolving such conflicts using DepSys.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-
neous; C.3 [Special-Purpose and Application-Based
Systems]: Real-time and Embedded Systems

General Terms
Algorithms, Measurement, Experimentation

Keywords
Dependency, Control, Conflict Detection, Conflict Res-
olution

1. INTRODUCTION
One vision for Cyber-Physical Systems (CPSs) in home

environments is that an underlying sensor and actuator

network will act as a utility similar to electricity and wa-
ter. Then, different CPS applications in domains such
as health, security, entertainment, and energy can be
installed on this utility. While each CPS application
must solve its own problems, the sharing of a sensor
and actuator utility across multiple simultaneously run-
ning applications can result in many systems-of-systems
interference problems, especially with the actuators. In-
terferences arise from many issues, but primarily when
the cyber depends on assumptions about the environ-
ment, the hardware platform, requirements, naming,
control and various device semantics. Previous work, in
general, has considered relatively simple dependencies
related to numbers and types of parameters, versions of
underlying operating systems, and availability of correct
underlying hardware. This paper presents a design of a
utility sensing and actuation infrastructure for a smart
home that can run many CPS apps in many domains.
It evaluates the design by using emulated apps and real
in-home data. The full implementation of DepSys is
future work.

It has been hypothesized that integrating systems in
a smart home will have innumerable advantages. For
example, let’s assume that we integrate the systems re-
sponsible for energy management and home health care.
Such integration will allow the energy management sys-
tem to adjust room temperature depending on the phys-
iological status of the residents as detected by the home
health care system. Also, integration will avoid negative
consequences. For example, the integrated system will
not turn off medical appliances to save energy while they
are being used as suggested by the home health care sys-
tem. In addition to these advantages, all the systems
can share sensors and actuators, which will reduce cost
of deployment, improve aesthetics of the rooms, and re-
duce channel contention.

However, integrating multiple systems is very chal-
lenging as each individual system has its own assump-
tions and strategies to control physical world variables
without much knowledge of the other systems, which

ICCPS'14, April 14-17, 2014, Berlin, Germany

978-1-4799-4930-4/14/$31.00 ©2014 IEEE 127

leads to conflicts when these systems are integrated with-
out careful consideration.

In this work, we propose a design for a framework
named DepSys that integrates various systems in a home
by considering a comprehensive spectrum of dependen-
cies and treating each system as an app. The integrated
system, DepSys, is a Cyber-Physical System by its own
nature, as sensing, communication, computation, and
control are all present in the DepSys design. Individual
systems use sensors for detecting environmental param-
eters and behaviors of the residents. Each system com-
municates with its sensors and actuators and performs
computations for taking appropriate control decisions
to actuate on the physical world entities, e.g., lights,
HVAC, fire alarm, doors, windows, and computers.

This work has three major research contributions. Fir-
st, to the best of our knowledge, DepSys provides the
most comprehensive strategies to specify, detect, and
resolve conflicts in a home setting by addressing a spec-
trum of dependencies including requirements, name, and
control dependencies. In addition, DepSys handles the
case when app developers fail to specify dependencies.
Second, DepSys automatically resolves control conflicts
of sensors and offers a strategy for resolving control con-
flicts of actuators that reduces the cognitive burden of
the users and allows apps to be run in a more flexible
way than the state of the art solution. Also, DepSys can
detect conflict across devices by considering their impact
on the environment, e.g., one app is running a humid-
ifier and another app is running a dehumidifier at the
same time, which state of the art solutions can’t detect.
Third, by using 34 days of data from a real home and
using 35 apps from various categories, including energy,
health, security, and entertainment, we demonstrate the
severity of conflicts when multiple CPSs are integrated
in a home setting and the significant ability of detecting
and resolving such conflicts using the DepSys concepts.

2. RELATED WORK
Integrating systems in a home depends on the ar-

chitecture of system integration. There have been a
few architectures proposed for homes, including Alarm-
Net[20], Empath [12], and HomeOS [13]. We use an
app based architecture for the integrated system of the
home, motivated by their use in smart phones and Home-
OS [13]. Although the DepSys architecture is similar to
HomeOS, it has additional features for comprehensive
dependency detection and resolution across apps.

Many commercial home automation and security sys-
tems [5] [7] [3] [2] are available on the market that in-
tegrate multiple devices in the home. However, these
systems are usually monolithic, come with a fixed set of
apps designed not to conflict with each other, and are
not extensible for external app developers. Those that

are extensible do not have sophisticated conflict reso-
lution mechanism as found in DepSys. For example,
HomeOS [13] provides a PC-like abstraction for tech-
nologies in the home and gives users a management in-
terface designed for home environments. HomeOS uses
app priority to resolve conflicts. Here is a simple ex-
ample that shows that just priority is not enough for
accurate actuation on appliances. Assume that a se-
curity app turns on light L1 at 8 PM and turns it off
at 9 PM to discourage burglary. An energy app turns
on lights when motion is detected and turns off lights
when there is no motion for 10 minutes. If we set higher
priority to the security app, then it is possible that it
will turn off lights at 9 PM although there are people
moving around. On the other hand, if we have higher
priority to the energy app, then the energy app may
turn off light L1 at 8:10 PM after detecting no motion.
Our solution requires the app developers to specify ad-
ditional metadata called emphasis, which allows DepSys
to detect and resolve such conflicts more accurately.

There has been several works on running concurrent
applications in sensor networks [15] [14] [9] [21] [17], but
these works have limitations in resolving conflicting ap-
plication requirements. For example, TinyCubus [15]
offers a framework for running concurrent applications
per network. However, a single sensor cannot be used
by multiple applications at the same time. Melete [21]
enables execution of concurrent applications on a sin-
gle sensor node by hosting a virtual machine at node
level. However, it ignores the problem of conflicting ap-
plication requirements. PhysicalNet [18] [19] provides a
generic paradigm for managing and programming world-
wide distributed heterogeneous sensor and actuator re-
sources. It uses resolvers to resolve conflicts. A resolver
is a Java method that takes into account access rights,
priority etc. to resolve conflicts. Owners can select
resolvers from the library of PhysicalNet or they can
implement their own resolvers. Comparing with these
solutions, DepSys offers more fine grained dependency
detection and resolution that these solutions cannot pro-
vide, e.g., conflict detection across appliances and dif-
ferentiating false conflicts from true conflicts by consid-
ering device semantics.

3. SYSTEM ARCHITECTURE
Being motivated by the app based architecture in smart

phones, we create a similar paradigm for smart homes.
However, such a paradigm is more challenging for smart
homes than for smart phones for several reasons. First,
in a smart phone, the user usually interacts with one
app at a time and that app usually gets the highest
priority in resolving conflicts. However, in a home, mul-
tiple applications may be running simultaneously and it
is not easy to decide how to resolve conflicts. Second,

ICCPS'14, April 14-17, 2014, Berlin, Germany

128

smart homes have a lot more sensors and actuators than
smart phones raising the severity of device level conflicts
and device heterogeneity issues. Although an app based
architecture for the home is not a completely novel con-
cept as HomeOS [13] uses a similar architecture and
addresses some device heterogeneity issues, but state of
the art solutions lack capability in detecting and resolv-
ing conflicts that DepSys offers.

The DepSys system architecture is shown in Figure
1. App developers specify dependency information as
meta data within their apps and their apps are put
in an app store. Users can choose and install apps
from the app store. DepSys uses the meta-data to de-
tect and resolve conflicts at app installation time and
at run-time. DepSys provides a platform for running
the installed apps where apps are run at the top layer.
Sensors (S1, S2, S3) and actuators (A1, A2) deployed
in the home can be plugged into the system and the
Device Plugins layer contains the device drivers1. We
consider humans as sensors as they can specify their
preferences and change app parameters. Before run-
ning an app, DepSys-Static Check (DepSys-SC) checks
whether the deployment in the house satisfies the app re-
quirement using two modules: HomeTree and Require-
ment Dependency Checker (RDP). HomeTree contains
the positions of the deployed sensors and actuators of
the house and RDP checks whether an app can be run
for the current deployment of the house. The Preference
Learning Module (PLM) learns user preferences and al-
lows users to choose a policy. DepSys-Runtime Check
(DepSys-RC) contains three modules: Actuator Con-
trol Dependency Resolver (ACDR), Sensor Control De-
pendency Resolver (SCDR), and Missing Dependency
Checker (MDC). ACDR and SCDR resolve control de-
pendencies of the actuators and the sensors, respec-
tively, using user preferences and policies specified in
the PLM. The MDC addresses the missing dependency
problem, i.e., when the app developer does not specify
a dependency that actually exists.

4. SPECTRUM OF DEPENDENCIES
In order to develop an app based paradigm for smart

homes, we need to address a spectrum of dependencies.
The dependencies we are listing in this section are not
unheard of, but these dependencies must be addressed
for the app based paradigm and the mechanisms to ad-
dress some of the dependencies are novel. We clearly
articulate the novelty when describing dependency ad-
dressing mechanism in the following sections. Note that
our list of dependencies may not be complete. However,
it is extensible. The dependencies are:
1. Requirement Dependency: It can be of 2 types:
1
The role of the Device Plugins layer is similar to that of the Device

connectivity and the Device functionality layers of HomeOS.

Figure 1: DepSys System architecture.

a. Requirements of the app: It addresses the re-
quirement of an app to figure out if the app can be run
in the house, e.g., App1 may require that there has to be
at least one motion sensor in every room or the acoustic
sensor sampling rate has to be at least 4 KHz.

b. Requirements of the available resources (sen-
sors/actuators): These are specified in DepSys and
configured by the user/deployer. For example, the acous-
tic sensor AC1 has to last for 15 days with the current
available energy.
2. Name dependency: Name dependency needs to
be addressed so that app requirement can be compared
with a resource availability description to determine if
an app can be installed and run in a particular deploy-
ment setting. Also, it is important for comparing across
apps to determine whether the apps may conflict with
each other or not.
3. Control dependency for the sensors: It arises
when multiple apps want to control a sensor in different
ways. For example, App3 wants acoustic sensor AC1 ’s
data at a rate that violates resource requirements in 1
(b), or App1 wants accelerometer ACC1 ’s data at 50
Hz, whereas App2 wants it at 100 Hz.
4. Control dependency for the actuators: It arises
when multiple apps want to control an actuator or mul-
tiple actuators in a conflicting way. For example, App1
detects depression and wants to turn on light L1, whereas
App2 wants to turn it off to save energy. Similarly, App3
wants to run a humidifier and App4 wants to run a de-
humidifier at the same time.
5. Missing Dependency: It arises when app devel-
opers forget to specify the dependency information of
their apps. For example, App1 forgets to specify its de-
pendency on light L1 in its meta data, but at runtime
it tries to control L1.
6. App interdependency: It arises when one app
(dependent app) relies on another app (independent app).
For example, App1 announces residents’ locations, i.e.
localization information and some other apps listen to

ICCPS'14, April 14-17, 2014, Berlin, Germany

129

the announcement and use this information to take ac-
tion. If the independent app makes an error, the error
may propagate and affect all the dependent apps and
may cause a lot of conflicts in the system. Since Dep-
Sys doesn’t know the internal logic of any app, it is ex-
tremely difficult for DepSys to detect such conflicts and
that’s why we do not address such dependency in this
work. However, we address the other 5 dependencies.

4.1 Addressing Requirement Dependency
DepSys requires app developers to specify the require-

ment of each app in a manifest file written in XML. The
reason for using XML is because it is simple, exten-
sible, self-descriptive, and human-readable. Although
describing app requirements in an XML file is not a
novel idea, our novelty lies in determining the appropri-
ate tags for a home setting and the design and use of a
HomeTree (see later) for app compatibility checking. As
an example, an energy management app that needs at
least one motion sensor in all the rooms and at least one
contact sensor on all the windows and doors describes
its requirement as follows:
<requirement>
<device>
<device_type> X10_motion_sensor </device_type>
<position> NULL </position>
<container> room </container>
<container_selection> all </container_selection>
<device_count> at_least_1 </device_count>
<level> strict </level>

</device>
<device>
<device_type> X10_contact_sensor </device_type>
<position> NULL </position>
<container> window, door </container>
<container_selection> all </container_selection>
<device_count> at_least_1 </device_count>
<level> loose </level>

</device>
</requirement>

Requirements can be either strict or loose. The mo-
tion sensor requirement is strict, which means that the
app will not work without the motion sensors. But the
contact sensor requirement is loose, which means that
the app will work better with the contact sensors. How-
ever, it will still work without the contact sensors.

For specifying the positions of the sensors, DepSys
uses a novel concept, HomeTree, where the position of
an object is specified in a hierarchical fashion. The home
is a container that contains all the rooms. Each room
itself is a container containing all the objects within
that room. The position NULL in the above example
is because the app doesn’t require placing the motion
sensor in a particular position of the room.

There are cases where an app may need to specify the
position of sensors. For example, in sleep monitoring in
Empath[12], exactly 3 accelerometers need to be placed
in the bed at certain positions: two are at the left and
right of the middle of the bed and one is at the middle
of the top of the bed. To specify such positions and to

require at least 1 Hz sampling rate of the accelerometers,
an app may specify its requirement as follows:
<requirement>
<device>
<device_type> Tri_axis_accelerometer </device_type>
<position> Left_of_middle, right_of_middle,

middle_of_top </position>
<container> bed </container>
<container_selection> any </container_selection>
<device_count> 3 </device_count>
<sampling_rate> 1 Hz </sampling_rate>
<level> strict </level>

</device>
</requirement>

Here, container selection=any means that the app
will work if there is any bed that satisfies the required
sensor deployment. However, if the app wants to ensure
that the bed has to be in the bedroom, and the bed has
to be the master bed, it can specify:
<container_type> master_bed </container_type>
<container_room_type> bedroom </container_room_type>

After placing the sensors, the deployers specify the
HomeTree of the deployment. Requirement Dependency
Checker (RDC) in DepSys traverses the HomeTree and
checks compatibility of sensor deployment with the re-
quirements of the app. If the deployed sensors satisfy
the requirements, the app can be installed and run in
that home. Runtime dependencies are discussed later.

4.2 Addressing Name Dependency
We have two separate design choices to address name

dependencies (c.f. Section 4). Either we create a stan-
dard set of terminologies to describe app requirements
and resource availability and require all the app devel-
opers and deployers to use the same set of terminologies,
or we let the app developers and deployers choose their
own terminologies and use some machine learning tech-
niques to infer if two keywords have the same meaning.
We choose the former option as misclassification may
lead to inaccurate conflict resolution that may threaten
the life of the residents. However, we do realize that an
app developer may misspell a terminology, or may for-
get to specify a requirement. DepSys is smart enough
to detect such a “Missing Dependency” by monitoring
the runtime behavior of the app (c.f. Section 5.3).

4.3 Addressing Sensor Control Dependency
There are sensors for which no control dependency

usually arise and multiple apps can share them if needed,
e.g., X10 motion sensors, weight scale, and contact sen-
sors. However, for some sensors, multiple apps may
want to use them in different ways. For example, two
apps may want to use the same accelerometer at a dif-
ferent rate. State of the art solutions lack the ability to
consider all the three dimensions: app priority, sensor
resource availability constraint, and app requirements.
For example, Android [1] allows apps to choose a rate
from a set of only 4 available rates. PhysicalNet [19] uses

ICCPS'14, April 14-17, 2014, Berlin, Germany

130

priority in resolving rates, but it doesn’t consider sen-
sor resource availability constraints, and rate selection
strategy is not clearly specified in the paper. DepSys of-
fers a novel priority and resource availability con-
straint aware rate adjustment strategy for resolving
such dependency at runtime by considering all the afore-
mentioned 3 dimensions (c.f. Algorithm 1). Although
Algorithm 1 is simple, we describe it to illustrative the
type of resolution that is needed.

Assume that n apps try to access accelerometer AC1
at rates r1, r2, r3, ..., rn with priorities p1, p2, p3, ..., pn.
Priorities are selected before runtime (c.f. Section 5.2).
AC1 may have a constraint on energy, e.g., the user/de-
ployer may configure that it has to last for 30 days with
the current battery. Assume that the maximum rate it
can satisfy with its energy budget is r max. Sensor Con-
trol Dependency Resolver (SCDR) in DepSys-Runtime
Check (DepSys-RC) uses Algorithm 1 to resolve rates.

Algorithm 1 : ResolveRate(r max, rates=[r1, r2, r3,
..., rn], priorities=[p1, p2, p3, ..., pn].)

1: selected rate← r max
2: S ← sort(rates)
3: for i← 1 to n do
4: g ← GCD(S(i), S(i+ 1), ..., S(n))
5: if g < selected rate then
6: selected rate← g
7: break
8: end if
9: end for

10: for i← 1 to n do
11: rri ← floor(S(i)/selected rate) ∗ selected rate
12: end for
13: resolved rates ← sort([rr1, rr2, rr3, ..., rrn])
14: return resolved rates

When an app asks for a particular rate, Algorithm 1
tries to provide the closest rate possible by considering
all the higher priority apps and the constraints on re-
sources. Line 2 of algorithm 1 sorts rates based on the
app priority (rate of the lowest priority app comes first
in S). If GCD of all the rates g is smaller than r max,
then we sample the sensor at a rate g and satisfy all the
apps. Otherwise, we ignore the rate of the lowest prior-
ity app and try to satisfy the remaining higher priority
apps. At line 13 of algorithm 1, we sort the rates in a
way that the rate of the ith app appears at the ith index
of resolved rates. Algorithm 1 returns the closest rate
of each app that DepSys can support.

Sensors may have bandwidth constraints as well. For
example, the above acoustic sensor AC1 may have a
maximum allowed bandwidth of 20 kbps that limits its
maximum rate to r max2. In that case, DepSys con-
siders the minimum of r max and r max2 in line 1 of
Algorithm 1, because that is the maximum allowed rate
of AC1.

4.4 Addressing Actuator Control Dependency
Control dependency of the actuators is different from

that of sensors and resolving it in a wrong way may
cause user dissatisfaction, e.g., turning off light when
it should be on, or may cause even death, e.g., grant-
ing an app’s request to turn off the breathing machine
to save energy while it is being used by another health
app. State of the art solutions, e.g., HomeOS [13] detect
such conflicts when two apps try to access the same de-
vice at the same time and resolve the conflict in favor of
the higher priority app. DepSys goes beyond detecting
such conflicts within a device, as it can detect conflicts
across devices and differentiates false conflicts from true
conflicts by considering the impact of the device on the
environment and device semantics by using novel effect,
emphasis, and condition. DepSys requires app develop-
ers to specify in XML effect, emphasis, and condition
for each actuator that the app wants to control.

4.4.1 Effect

Effect specifies the effect of an app on the environ-
ment when using a particular device. Two apps may be
using completely different devices, but are conflicting
with each other by causing opposite effects. For exam-
ple, App1 may want to run humidifier while App2 is
running dehumidifier. Specifying effect enables the de-
tection of such conflicts. The effect of a device is speci-
fied in the device driver by the driver developers. App
developers may specify effect when the app’s effect is a
subset of the device’s effect specified in the device driver.
If app developers do not specify any effect, then DepSys
considers all effects specified in the device driver, which
can lead to pessimistic conflict detection.

We need to make sure all the app developers and de-
vice driver developers use the same terminology for spec-
ifying the effect of their apps. Based on the environmen-
tal conditions that affect human comfort [10], we pro-
pose to use <temperature>, <radiant temperature>,
<humidity>, <air motion>, <odor>, <dust>, <aest
hetics>, <acoustic>, and <light> XML tags. We dif-
ferentiate playing a beep, like an alarm, from playing
music or a continuous sound and suggest to use <beep>
when a small alert will be generated and to use <acous
tic> otherwise.

The text content of these XML tags can be increase,
decrease, and change. For example, App1 may specify:
<device>

<device_name> humidifier </device_name>
<effect>
<humidity> increase </humidity>

</effect>
</device>

On the other hand, App2 may specify:
<device>
<device_name> dehumidifier </device_name>
<effect>
<humidity> decrease </humidity>

</effect>
</device>

ICCPS'14, April 14-17, 2014, Berlin, Germany

131

This XML tag list and the text content of the XML
tags are extensible. By comparing effects of two apps,
DepSys classifies them into one of four categories: (1)
same effect, e.g., two apps want to increase light in-
tensity, (2) opposite effect, e.g., the humidifier and de-
humidifier case stated above, (3) mixed effect, e.g., two
apps want to change room temperature in different ways,
and (4) different effect, e.g., one app wants to increase
sound while another app wants to increase temperature.

When two apps have different effects, they will not
conflict. When two apps have an opposite effect, there
is a chance that they will conflict at runtime. When two
apps have the same effect, or mixed effect, DepSys looks
into emphasis and condition to determine whether these
two apps will conflict or not.

4.4.2 Emphasis

Emphasis is based on the insight that not all control
operations are equally important to an app, and empha-
sis allows an app to specify which device operation is
more important than others. Recall the conflict exam-
ple of the security app and the energy app in Section 2
that demonstrates the limitation of the state of the art
solutions that just use priority to resolve conflicts. For
this particular example, it is important for the security
app to turn on light L1 at 8 PM, but not so important
to turn off light at 9 PM. On the other hand, for the
energy app, it is important to both turn on and turn off
lights. If both apps specify their emphasis in the meta-
data and the security app is set higher priority than the
energy app, then L1 is not turned off at 9 PM as long
as the energy app wants to keep it on. Thus emphasis
allows DepSys to differentiate false conflicts (conflict at
9 PM) from true conflicts (conflict at 8 PM) and resolve
accordingly. True conflicts and false conflicts depend on
device semantics and more examples of these two types
of conflicts are specified in Section 5.3.

App developers specify emphasis in the XML meta-
data of each app for each actuator/device it wants to
control. Similar to effect, we need to make sure all the
apps use the same terminology for specifying emphasis.
Allowed terminologies are based on the allowed opera-
tions specified in the device drivers.

The security app mentioned above specifies its em-
phasis for controlling lights:
<emphasis>
<operation> On() </operation>

</emphasis>

The energy app mentioned above specifies its empha-
sis for controlling lights:
<emphasis>
<operation> On() </operation>
<operation> Off() </operation>

</emphasis>

An app that wants to increase room temperature by
using HVAC after detecting depression may specify:

<emphasis>
<operation> On() </operation>
<operation> ChangeSetpoint(72) </operation>

</emphasis>

72 degrees F is the target setpoint temperature. If
the target setpoint is variable, then the app can use the
VARIABLE keyword, as shown below:
<operation> ChangeSetpoint(VARIABLE) </operation>

When two apps have the same emphasis, then they
are not conflicting with each other, e.g., if two apps’
emphasis is to turn on light L1, then we can turn on
L1 and satisfy both of them. However, if the empha-
sis of two apps is different, e.g., App1’s emphasis is
to turn on L1 while App2’s emphasis is to turn off
L1, then they may be conflicting (also depends on con-
ditions). There may be other cases when two apps’
emphases are different, e.g., when both apps’ empha-
sis is to both turn on and off, or both apps’ empha-
sis is ChangeSetpoint(VARIABLE), or App1’s empha-
sis is ChangeSetpoint(arg1) while App2’s emphasis is
ChangeSetpoint(arg2) and |arg1 - arg2| > T, where T
is a threshold specified in the device driver by the de-
vice driver developers by considering device resolution
and the impact of the threshold in the perception of the
user. It may be configured by the user.

4.4.3 Condition

Two apps are not conflicting if they operate on a de-
vice with a mutually exclusive condition. App devel-
opers specify condition in the XML meta-data of each
app for each actuator/device it wants to control. Apps
may actuate on devices on a variety of conditions and
the conditions can be categorized into two groups: (1)
conditions based on time, e.g., at sunrise, sunset or at
9:00 PM and (2) conditions based on events, e.g., con-
ditions based on (a) actuators, e.g., when the front door
is open, (b) sensors, e.g., when a motion sensor in the
living room fires, (c) activities of daily living, e.g., when
a resident is eating or sleeping, (d) environmental state,
e.g., when there is a flood, fire, or earthquake, or (e)
physiological and psychological status of the residents,
e.g., when someone is depressed or having insomnia. We
only take into account conditions based on time for two
reasons. First, the goal of using condition is to deter-
mine whether the conditions specified by two apps on
a particular device are mutually exclusive or not during
installation time and conditions based on events are usu-
ally not mutually exclusive. For example, almost all the
aforementioned events can take place at the same time,
although the probability is low. Second, even if app de-
velopers specify such a condition, e.g., App1 turns on
lights in the living room when the resident is depressed,
DepSys can not verify whether App1 is obeying such
condition at runtime as DepSys doesn’t know the inter-
nal logic of any app.

ICCPS'14, April 14-17, 2014, Berlin, Germany

132

To specify condition, app developers use the XML
tags: start time, end time, all time, night, day, sunrise,
sunset, dawn, and dusk. The options for text contents
are HH:MM:SS in 24 hour format, begin, end, any, and
duration. Here are some examples:
<start_time> 20:00:00 </start_time>
<end_time> 21:00:00 </end_time>
<night> duration </night>
<sunset> begin </sunset>

The first two lines specify the exact time of operation
(between 8PM to 9PM), the third one specifies that the
device will be used any time during the night, and the
fourth one specifies that the device will be used when
sunset begins. The Temporal Translation Engine (TTE)
module in DepSys converts temporal events, e.g., sun-
set or sunrise to time of day by using the location and
year-long environmental information. The conditions
are compared for determining conflicting apps during
installation time in the DepSys-Static Check module.

5. CONFLICT DETECTION, RESOLUTION,
AND USER ROLE

In this section, we summarize the conflict detection
and resolution strategies of DepSys and the role of the
user for specifying policy.

5.1 Dependency Check at Installation Time
Assume that the user has already installed N apps:

App1, App2, App3, ..., AppN . When he tries to install a
new app AppM , DepSys-SC checks for requirement de-
pendencies (c.f. Section 4.1), and if the deployment sat-
isfies app requirement, it performs a dependency check
between AppM and all the N previously installed apps
for actuator control dependency, one pair at a time.
Note that sensor control dependency is addressed and
resolved automatically only at runtime (c.f. Section
4.3). Let’s say DepSys-SC is performing actuator con-
trol dependency checking between AppM and Appi (1≤
i ≤ N) using their XML meta-data. If the two apps
want to use multiple devices, then DepSys-SC does the
following check for every pair of devices, where each pair
consists of 1 device from AppM and 1 device from Appi.

If AppM and Appi are using different devices, then
there is no need to see the emphasis of the two apps.
In this case, the truth table for detecting dependency
conflict is shown in Table 1. It shows that if the con-
ditions are mutually exclusive, or the effect is different
or same, then these two apps are not conflicting. Oth-
erwise, there is a potential chance of conflict between
these two apps.

If AppM and Appi are using same device, then em-
phasis is used in the dependency checking. Then the
truth table for detecting a dependency conflict becomes
like Table 2. It shows that if the conditions are mutually
exclusive, or the apps have the same emphasis, or the

Effect Condition Conflicting?

- Mutually Exclusive No
Same Not Mutually Exclusive No

Opposite Not Mutually Exclusive Yes
Mixed Not Mutually Exclusive Yes

Different - No

Table 1: Truth table for conflict detection

apps have different effects, then they are not conflicting.
Otherwise, they may be conflicting.

Effect Emphasis Condition Conflicting?

- - Mutually Exclusive No
- Same - No

Different - - No
Same Different Not Mutually Exclusive Yes

Opposite Different Not Mutually Exclusive Yes
Mixed Different Not Mutually Exclusive Yes

Table 2: Truth table for conflict detection

Let’s say, DepSys-SC detects that AppM is conflict-
ing with j previously installed apps App1, App2, App3,
..., Appj. To learn the policy of conflict resolution if
these apps conflict at runtime, the Preference Learning
Module (PLM) takes input from the user.

5.2 Role of the user
At the app installation time, when it is determined

that a particular app AppM may conflict with other
apps (c.f. Section 5.1), HomeOS [13] requires the user
to specify app priority and maintain a total order among
the conflicting apps. The Preference Learning Mod-
ule (PLM) of DepSys offers a novel solution called Se-
mantic Aware Multilevel Equivalence Class based Pol-
icy (SAMECP) that reduces the cognitive burden of the
users and allows apps to be run in a more flexible way.

SAMECP categorizes the apps into four groups: en-
ergy, health, security, and entertainment. App develop-
ers specify the group in which their app belongs. By
default, SAMECP maintains a priority across groups
so that health > security > entertainment > energy.
However, the user can change the priority of groups if
needed. If AppM belongs to health and the other con-
flicting apps belong to energy or entertainment group,
then although they are conflicting, their priority is al-
ready established and no user feedback is needed, thus
reducing the cognitive burden.

However, priority needs to be determined between two
apps when they belong to the same group. SAMECP
uses an interesting insight in this case, which is, for
a number of apps installed in a home, it really doesn’t
matter which app takes control as long as it does not
break the semantics of appliance usage. For example,
assume that there are 3 apps installed for playing mu-
sic. App1 plays music based on heart rate, App2 plays
music based on the words in the residents’ speech, and
App3 plays music based on the environment (e.g., rainy,
cloudy, and snowy). It may not matter which app plays

ICCPS'14, April 14-17, 2014, Berlin, Germany

133

Figure 2: Semantic Aware Multilevel Equiva-
lence Class based Policy

music at a particular moment as long as they are not
fighting and the music is not turned on and off over and
over again. This brings up the idea of using equivalence
classes of priorities, where instead of prioritizing each
app by comparing with all other apps within the same
group, a number of equivalence classes of priorities are
created and the user puts an app into its class. It is
called multilevel equivalence class based solution, be-
cause at a higher level there are 4 groups and in a lower
level there are equivalence classes of apps as shown in
Figure 2. There are priorities assigned for each equiva-
lence class, but within a class, apps are not prioritized
and the user specifies the policy about how to decide
which app to run. For this particular example, the user
puts all three apps into a single class and specifies the
policy of selecting these apps, e.g., random selection,
or preference probabilities (60% time App1, 40% time
App2 and App3). Such policies increase the flexibility
of the ways apps are run.

5.3 Runtime Check and Addressing Missing
Dependency

In this section, we describe the runtime conflict detec-
tion and resolution of DepSys by the DepSys-Runtime
Check (DepSys-RC) module. At runtime, when an app
wants to control a device, the request has to go through
DepSys-RC. Sensor Control Dependency Resolver (SCDR)
in DepSys-RC resolves the control dependencies of sen-
sors automatically as described in Section 4.3.

When an app wants to control an actuator at runtime,
the device control request contains effect, emphasis, and
condition. DepSys-RC uses effect and emphasis to cate-
gorize conflicts into true conflicts and false conflicts.
For example, when an app wants to turn on a light that
another app wants to turn off, that is a true conflict.
Similarly, when an app wants to keep a light on while
another app wants to change its light intensity, that is
also a true conflict. However, from table 3, when App#1
wants to turn off light at 9PM, this is an optional off
request. If another app, say App#7 wants to keep it
on at that time, then the conflict at 9 PM is actually a
false conflict.

For HVAC, when an app wants to turn on the HVAC
controller while another app wants to turn it off or wants
to run with a different setpoint, that is a true conflict.
However, when an app wants to turn on an HVAC con-
troller while another app wants to turn it off optionally,
e.g., turn on of App#7 and optional turn off of App#17

from table 3, this is a false conflict. Note that true con-
flicts can happen across devices, e.g., one app is running
a heater and another app is running an AC. Such con-
flicts are detected using effect and not by any sensor.
So, even if there is a time gap between actual conflicts,
e.g., if the heater takes some time to start heating, we
can still detect such a conflict by comparing the effect of
each actuation. When there is a true conflict, the Actu-
ator Control Dependency Resolver (ACDR) in DepSys-
RC takes into account the policy and priority set by the
user in the Preference Learning Module (PLM) and ar-
bitrates actuator/device access accordingly. However, if
there is a false conflict, DepSys just ignores the optional
request regardless of app priority.

App developers may forget to specify a sensor/actu-
ator dependency or requirement, or even misspell the
terminology. But when the app tries to access the sen-
sors and actuators at runtime, such missing dependen-
cies are detected by the Missing Dependency Checker
(MDC) in DepSys-RC. When App1 asks to turn on L1,
the device control request contains effect, emphasis, and
condition. MDC can detect two types of missing depen-
dencies by comparing the device control request with
the XML metadata that the app provided during the
installation time: (1) missing requirement dependency,
e.g., App1 did not specify its requirement to use L1 dur-
ing installation time, but at runtime App1 is trying to
control L1, and (2) missing control dependency of the
actuator, e.g., missing effect, emphasis, and condition.

When a missing dependency is detected, DepSys up-
dates the app’s dependency information assuming the
runtime dependency description is accurate and runs
a dependency check by DepSys-SC across all other in-
stalled apps. If a conflict is detected, it may need to get
user feedback to update the policy (c.f. Section 5.2).

6. EVALUATION
Although DepSys addresses a spectrum of dependen-

cies, its main novelty and effectiveness lies in detecting
and resolving control conflicts of sensors and actuators
in a home setting. Among the sensor and actuator con-
trol dependencies, actuator control dependency detec-
tion and resolution is relatively more difficult. Since
Algorithm 1 resolves sensor control dependency in a su-
perior way than state of the art solutions by considering
all the three dimensions (c.f. Section 4.3), we limit the
evaluation of DepSys in detecting and resolving actua-
tor control dependencies.

To evaluate DepSys, we need an app store for the
home. Although there are popular app stores for smart
phones, e.g., Apple app store[4] and Google play[6], the
apps in these app stores are mainly limited to smart
phones and tablets. To the best of our knowledge, there
is no such well-established app store for the home. Hence,

ICCPS'14, April 14-17, 2014, Berlin, Germany

134

ID#App Name Category App Description
1 Discourage Burglar Security It turns on all the lights at 8 PM and turns off all the lights at 9 PM.
2 Door open alert Security It turns on all the lights and plays an alert sound in all the speakers when the front door is open for more than 2 minutes.

It keeps the lights on and alert playing until the door is closed.
3 Door and window open

notification
Security When any door or window is opened, it just plays a 10 second beep sound in the speaker.

4 Sleep time Door and
Window Protection

Security It closes all the windows and doors when someone goes to sleep and keeps them closed until he wakes up.

5 Suspicious activity Re-
porter

Security It turns on all the lights and plays a beep sound in the speaker when suspicious activity is detected by the security
cameras.

6 Smoke alarm Safety It turns on all the lights and plays fire alarm in the fire alarm device when smoke is detected.
7 Home Energy Control Energy It turns on HVAC and light of the occupied rooms based on motion detection. It turns off light, HVAC after 10 minutes

and 30 minutes of no motion detection, respectively.
8 Bedroom TV Manage-

ment
Energy It uses accelerometers in the bed to detect if someone is falling asleep. When that happens, it turns off the TV in the

bedroom.
9 Kitchen Energy Man-

agement
Energy It plays a beep sound for 30 seconds if the stove is on for unusual period of time to make sure someone didn’t forget to

turn it off.
10 Smart HVAC Energy It turns on HVAC by monitoring the GPS coordinates of the residents, e.g., when someone is coming towards home, it

turns on HVAC when he is within 15 miles of the home.
11 Humidifier Control Energy It turns on humidifier when humidity drops below a threshold.
12 Dehumidifier Control Energy It turns on dehumidifier when humidity exceeds a threshold.
13 Budget based HVAC Energy It turns on, turns off HVAC in a way that meets daily energy budget for the HVAC system.
14 Sunset Energy It turns on lights in all the rooms for 5 minutes when the sun is set.
15 Light control during

sleep
Energy It uses accelerometers in the bed to detect if someone is falling asleep. When it happens, it turns off lights of the bedroom.

It keeps the lights off while sleeping and turns them on when he wakes up from bed.
16 Light Mode Energy The app offers different modes of light control. For example, while watching a movie, the residents’ can choose a ’movie

mode’ that lowers light intensity. Other mode options are ’party mode’, ’candle light dinner mode’ etc. The residents
need to select the mode by themselves.

17 Activity based HVAC
control

Energy It monitors Activities of Daily Living (ADLs) and controls HVAC accordingly. For example, if someone is preparing a
meal or eating, it reduces the setpoint of the kitchen by 1 degree F. When someone is sleeping at night, it increases the
bedroom setpoint temperature by 1 degree F at the last hour of the sleep.

18 Mood assistance Health When a depression episode is detected, it turns on lights in the occupied rooms. It keeps the lights on until the resident
goes to sleep or the depression status is improved. It also increases room temperature.

19 Seasonal Affective Dis-
order Control

Health It makes sure that lights in the bedroom are not turned off before 10 PM. It also makes sure that the lights are turned
on no later than 7 AM.

20 Med reminder Health It makes a beep sound in the speaker when it is the time to take medication.
21 Food control Health It flashes light intensity in the kitchen/dining room and plays a beep sound at the nearest speaker for 1 minute if dining

activity exceeds more than an hour.
22 Pollen control Health It keeps the windows closed when there is pollen alert in that area.
23 Wind Blower Weather When it is windy outside, it opens all the windows in the occupied rooms.
24 Charm of rain Weather It flashes light intensity in the occupied rooms and plays thunderstorm sound in the speaker when it rains
25 Weather Alert Weather When someone opens the front door, it plays a beep sound in the speaker if there is a rain or thunderstorm forecast in

that day.
26 Alarm clock Alert It turns on lights of the occupied rooms and plays a beep sound in the speaker for a minute at timeout.
27 Calendar Alert It turns on lights of the occupied rooms and plays a beep sound in the speaker 10 minutes prior to start of an event

specified in Google calendar.
28 Social Networking Alert It plays a beep sound in the speaker when messages are received from friends or supervisors in Facebook and Gmail.
29 Musical Heart Music It plays music in the speaker based on heart rate of the residents.
30 Music of environment Music It plays music in the speaker based on weather conditions, e.g., cloudy, windy, snowfall, rain, shower, thunderstorm,

lightening etc. It also changes light intensity of the occupied rooms to show similar effect.
31 Music for activities Music It plays music in the speaker based on activities of daily living, e.g., entering home, preparing meal, and eating.
32 Basketball Game When this app is played in the computer, it uses the speaker and the lights of the room where the computer is placed.
33 Baseball Game When this app is played in the computer, it uses the speaker and the lights of the room where the computer is placed.
34 Need for Speed Game When this app is played in the computer, it uses the speaker and the lights of the room where the computer is placed.
35 Quake Game When this app is played in the computer, it uses the speaker and the lights of the room where the computer is placed.

Table 3: Our App Store containing 35 apps

we create a number of apps from various categories, in-
cluding energy, health, security, and entertainment that
will serve as our app store. Our app store contains 35
apps as shown in Table 3. The way we create these apps
is by designing them and defining the metadata without
the real implementation. The apps are very represen-
tative of those from papers in literature and app stores
for smart phones. As some of the apps share sensors
and actuators, someone may question the selection of
these apps. Note that it is our goal to allow apps to
share sensors and actuators, and considering 1 million
and 900,000 apps in Android’s and Apple’s app store,
respectively [8], when we have similar number of apps
in an app store for the home, it is not unreasonable to
assume that some apps will share sensors and actuators.
We evaluate DepSys’s conflict detection at installation
time and at runtime separately.

6.1 Static Analysis

Figure 3: Static analysis of conflicts among apps

We assume that the sensor/actuator deployment in
the home supports all the requirements of the 35 apps
in Table 3. Before running an app, DepSys-SC per-
forms static analysis at installation time by analyzing
the dependency information specified in the app meta-
data. Figure 3 shows the probability of true conflict
between at least j apps when i apps are installed from

ICCPS'14, April 14-17, 2014, Berlin, Germany

135

Light	
 	 Speaker	
 	 HVAC	
 	 X	

 	

Y	
 	

Figure 4: Floorplan and position of sensors and
actuators

the 35 apps in Table 3. For each value x of the X axis,
we randomly select x apps from the 35 app list 100 times
and compute the probability of true conflict between at
least y apps, where 1 ≤ y ≤ 5 and y ≤ x, and show the
average results in Figure 3. Figure 3 shows that when
someone installs 2 apps from the 35 app list, there is
a 41% probability that these apps will be conflicting.
When someone installs 5 apps there is 92% probability
that at least two apps will be conflicting. When some-
one installs 11 apps, there is a 100% probability that at
least 5 apps will be conflicting. These results show the
severity of conflicts among apps when multiple apps are
installed in a home setting and demonstrate the need
for detecting and resolving conflicts.

6.2 Runtime Analysis
We use a dataset collected from WSU CASAS smart

home project [11] for performing runtime analysis. We
use 34 days of data in our analysis (from November 04,
2010 to December 07, 2010). Two residents were living
in this home in two separate rooms (marked as X and
Y). There were 11 lights. We assume that the home has
3 speakers (one in each individual’s room and one in the
living room) and 10 HVAC controllers. The floorplan
and the position of the sensors and actuators are shown
in Figure 4.

The actual deployment did not have any apps in-
stalled. However, the dataset provides enough infor-
mation in terms of sensor data and ground truth of ac-
tivities of the residents to determine the behavior of
the following 10 apps (App# 1, 2, 3, 7, 14, 15, 17, 19,
21, and 31) in terms of how these apps will control the
lights, HVAC, and speakers of the testbed. For exam-
ple, we know that there were 11 lights in the testbed
and App# 1 will turn on all of these at 8:00 PM and
turn them off at 9:00 PM. We use the location of the
testbed and the date of data collection to determine the
sunset time and thus compute when lights will be on at
sunset by App# 14. We compute when App# 7 turns
on/off HVAC controllers based on motion sensor data.

Figure 5: Number of conflicts at different days

The dataset contains labeled ground truth of activities,
e.g., when the two residents were eating, preparing meal,
entering home, and sleeping. We use this ground truth
of activities to determine when App# 15, 17, 19, 21,
and 31 control lights, HVAC controllers, and speakers.
As no windows were instrumented, we use only door
contact sensors firing to determine when App# 2 and
#3 control lights and speakers. The reason for select-
ing these 10 apps is that we are trying to determine the
behavior of as many apps as possible from our 35 apps
and the dataset allows us to determine the behavior of
only these apps.

6.2.1 Number of run-time conflicts
Figure 5 shows the number of conflicts on different

days when these 10 apps are installed. Each day’s num-
ber of conflicts is broken down between conflicts in lights,
speakers, and HVAC. The true and false conflicts of
these devices are also shown. We see from Figure 5
that more conflicts occur with the lights than with the
speakers and HVAC. No false conflicts are detected on
the speakers. On average 70.71 conflicts take place per
day out of which 11.74 conflicts are false conflicts, which
is 16.60% of the total conflicts.

The number of conflicts depends on the number of
apps installed. We vary the number of installed apps
from 1 to 10. We take 100 samples from the 10 app list
for each value of the X axis and find out the number
of conflicts per day by using the CASAS dataset and
present the average results in Figure 6. The magnitude
of conflicts we see in Figure 6 is really surprising and it
clearly shows that when people install more and more
apps, the number of conflicts rises exponentially. It also
shows that 16.54% conflicts remain false conflicts on av-
erage, which can be a significant number when people
install hundreds of apps.

6.2.2 Conflict resolution capability
In this section, we compare the conflict resolution

capability of DepSys with that of a state of the art
solution, HomeOS [13]. DepSys is more powerful in
resolving conflicts because it considers device seman-

ICCPS'14, April 14-17, 2014, Berlin, Germany

136

Figure 6: Number of conflicts for various number
of apps installed

tics and can separate false conflicts from true conflicts
(c.f. Section 5.3). When two apps conflict at runtime,
HomeOS uses priority to resolve the conflict in favor of
the higher priority app. If the conflict is a true con-
flict and HomeOS can resolve it accurately, DepSys can
also do the same, as users can specify a similar policy
in DepSys. However, if the conflict is a false conflict,
HomeOS can’t recognize it and resolves the conflict in
favor of the higher priority app. But DepSys uses ef-
fect and emphasis to determine whether this operation
is important or optional for the higher priority app (c.f.
Section 5.3). If the operation is optional, DepSys ig-
nores the request of the higher priority app and resolves
it in favor of the lower priority app. We compute the
number of times a priority based system like HomeOS
fails to recognize and resolve such conflicts and as Dep-
Sys can resolve such conflicts accurately, we call such
events additional conflict resolutions of DepSys.

To compute the number of additional conflict resolu-
tions of DepSys per day, we use CASAS dataset and
use the 10 apps (App# 1, 2, 3, 7, 14, 15, 17, 19, 21,
and 31). We assume that security apps have highest
priority, followed by health, entertainment, and energy
apps. More specifically, the priorities of the 10 apps are
1, 2, 3, 10, 9, 4, 8, 5, 6, and 7, respectively, 1 being the
highest priority and 10 being the lowest priority.

Figure 7 shows the number of additional conflict res-
olutions of DepSys per day for this priority scheme for
the 10 apps. The result is broken down into lights and
HVAC. We do not observe any such conflicts in speak-
ers. Although the number of additional conflict resolu-
tions of DepSys per day is 11.74 on average, it can be
as high as 23 in a day, some of which can be potential
discomfortable events. These results show the conflict
resolution capability of DepSys over HomeOS, as none
of such conflicts can be resolved accurately by HomeOS.

6.2.3 App parameter selection
DepSys monitors conflicts among apps and computes

a level of conflict for each app, which is the number of

Figure 7: Additional conflict resolution of Dep-
Sys over HomeOS at different days

times an app experiences true conflict with other apps
per day. If the level of conflict is higher for an app,
it means the app is more conflicting. If the level of
conflict of an app is high, it can be used to suggest
changing some parameters of the app. For example,
App# 7 (Home Energy Control) uses a 10 minute time-
out interval before turning off lights, for which it’s level
of conflict is 55.26. We change the timeout interval of
App# 7 from 5 minutes to 90 minutes and show how it
affects the level of conflict of each app in Figure 8. We
see that the level of conflict of App# 7 decreases from
75.44 to 21.71 when the timeout interval is changed from
5 minutes to 90 minutes. As Figure 8 shows, the level of
conflict can be used to choose appropriate parameters
of an app so that the level of conflict of an app remains
within a bound. It can also be used to detect and isolate
the most conflicting apps.

7. DISCUSSION
In this work, we advance the state of the art tech-

niques to specify, detect, and resolve a wide range of
conflicts due to dependencies in a smart home. How-
ever, DepSys’s improved capabilities in conflict detec-
tion and resolution comes at the cost of developers’ ef-
forts in specifying additional dependency information.
However, the effort to specify additional dependency in-
formation containing effect, emphasis, and condition is
minimal as the average number of lines per app is 25.17,
considering the 35 apps specified in Table 3. Note that
DepSys also requires addressing requirements and name
dependencies, but the developers need to put similar ef-
fort if they use other state of the art solutions, e.g.,
HomeOS and hence these are not considered an addi-
tional effort for specifying dependency.

There are some limitations in this work. For exam-
ple, DepSys is designed for non-safety critical systems.
The residents can jeopardize their health by choosing an
erroneous policy, e.g., assigning a higher priority to an
energy management app over a health care app that con-
trols the breathing machine. Also, effect only considers

ICCPS'14, April 14-17, 2014, Berlin, Germany

137

Figure 8: Level of conflict for different timeout
intervals of App# 7

the environmental factors that affect human comfort. In
the future, we will consider other impacts, e.g., impacts
on the human body due to medicine or food. That will
enable detecting redundant apps, e.g., a diabetic patient
may install two apps for monitoring glucose level and
administering insulin. As both apps administer insulin
independently, there could be an overdose. Although,
the use of effect allows us to detect such issues, it is
not easy. Multiple apps may administer multiple drugs
that may increase each others’ effects (e.g., using anti-
histamines with alcohol) or may decrease each others’
effects (e.g., using alcohol with caffeine) in the human
body. Some of these effects could be acceptable and in-
tentional, e.g., to reduce self-consciousness, it may be
acceptable to take antihistamines with alcohol.

Although DepSys is designed for smart homes, some
of its principles can be generalized to other application
domains, e.g., industrial process control. An app based
paradigm can be applied to an industrial process con-
trol, where each control loop can be treated as an app.
Multiple apps, i.e., control loops may conflict on a single
actuator or multiple actuators depending on the effect
and emphasis of their actuation. The metadata for spec-
ifying the effect and emphasis needs to be determined
from the application context. An industrial process con-
trol system is usually a closed system, where modules
are usually developed by the same group to work to-
gether. Also, it is usually a rigid system as dependency
checking can be performed during offline static analy-
sis assuming that components will not be added and
removed dynamically. On the other hand, DepSys is
an open system, where different apps are developed by
different external app developers without knowing each
others assumptions and offers dependency checking of a
much more flexible system where apps can be added and
removed dynamically at runtime. CPS systems that ex-
hibit such characteristics will benefit from our solution.

8. CONCLUSIONS
Cyber-Physical Systems in smart homes pose new chal-

lenges for sharing and controlling home physical world

entities due to various types of dependencies. DepSys
aims to address some of these challenges by providing
comprehensive strategies to specify, detect, and resolve
conflicts due to such dependencies. Its design offers an
app based utility sensing and actuation infrastructure
to run many CPS apps in the home. If app developers
build their apps by specifying dependency information
that DepSys requires, it will enable detecting and resolv-
ing a significant amount of conflicts in a home setting.
In the future a full implementation of DepSys is planned
and could be built upon a platform such as HomeOS.

9. ACKNOWLEDGEMENT
This paper has been supported, in part, by NSF grants

CNS-1239483, CNS-1319302, and EFRI-SEED 1038271.

10. REFERENCES
[1] Android. http://www.android.com/.

[2] Leviton Online Store. http://www.levitonproducts.com.

[3] M1 Security and Automation Controls.
http://www.elkproducts.com/m1 controls.html.

[4] Apple app store.
http://www.apple.com/osx/apps/app-store.html.

[5] Control4 Home Automation and Control.
http://www.control4.com.

[6] Google play. http://play.google.com/store?hl=en.

[7] Home Automation Systems. HomeSeer.
http://www.homeseer.com.

[8] http://www.phonearena.com/news/Androids-Google-Play-
beats-App-Store-with-over-1-million-apps-now-officially-
largest id45680.

[9] A. Boulis, C.-C. Han, and M. B. Srivastava. Design and
implementation of a framework for efficient and programmable
sensor networks. In MobiSys, 2003.

[10] V. Bradshaw. The Building Environment: Active and Passive
Control Systems. John Wiley & Sons, Inc., River Street, NJ,
USA, 2006.

[11] D. Cook and M. Schmitter-Edgecombe. Assessing the quality of
activities in a smart environment. Methods of Information in
Medicine, 2009.

[12] R. F. Dickerson, E. I. Gorlin, and J. A. Stankovic. Empath: a
continuous remote emotional health monitoring system for
depressive illness. In WH, 2011.

[13] C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee, S. Saroiu,
and P. Bahl. An operating system for the home. In NSDI, 2012.

[14] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid development and
flexible deployment of adaptive wireless sensor network
applications. In ICDCS, 2005.

[15] P. J. Marrón, A. Lachenmann, D. Minder, J. Hähner, R. Sauter,
and K. Rothermel. TinyCubus: a flexible and adaptive
framework sensor networks. In EWSN, 2005.

[16] S. Nirjon, R. F. Dickerson, Q. Li, P. Asare, J. A. Stankovic,
D. Hong, B. Zhang, X. Jiang, G. Shen, and F. Zhao.
MusicalHeart: a hearty way of listening to music. In SenSys,
2012.

[17] L. Szumel, J. LeBrun, and J. D. Owens. Towards a mobile
agent framework for sensor networks. In EmNets, 2005.

[18] P. A. Vicaire, E. Hoque, Z. Xie, and J. A. Stankovic. Bundle: a
group based programming abstraction for cyber physical
systems. In ICCPS, 2010.

[19] P. A. Vicaire, Z. Xie, E. Hoque, and J. A. Stankovic.
Physicalnet: A generic framework for managing and
programming across pervasive computing networks. In RTAS,
2010.

[20] A. Wood, J. Stankovic, G. Virone, L. Selavo, Z. He, Q. Cao,
T. Doan, Y. Wu, L. Fang, and R. Stoleru. Context-Aware
Wireless Sensor Networks for Assisted Living and Residential
Monitoring. IEEE Network, 22(4):26–33, Jul./Aug. 2008.

[21] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun. Supporting
concurrent applications in wireless sensor networks. In SenSys,
2006.

ICCPS'14, April 14-17, 2014, Berlin, Germany

138

