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Abstract— In modern taxi networks, large amounts of taxi
occupancy status and location data are collected from networked
in-vehicle sensors in realtime. They provide knowledge of system
models on passenger demand and mobility patterns for efficient
taxi dispatch and coordination strategies. Such approaches face
new challenges: how to deal with uncertainties of predicted
customer demand while fulfilling the system’s performance
requirements, including minimizing taxis’ total idle mileage and
maintaining service fairness across the whole city; how to formu-
late a computationally tractable problem. To address this prob-
lem, we develop a data-driven robust taxi dispatch framework
to consider spatial-temporally correlated demand uncertainties.
The robust vehicle dispatch problem we formulate is concave
in the uncertain demand and convex in the decision variables.
Uncertainty sets of random demand vectors are constructed from
data based on theories in hypothesis testing, and provide a desired
probabilistic guarantee level for the performance of robust
taxi dispatch solutions. We prove equivalent computationally
tractable forms of the robust dispatch problem using the minimax
theorem and strong duality. Evaluations on four years of taxi trip
data for New York City show that by selecting a probabilistic
guarantee level at 75%, the average demand–supply ratio error is
reduced by 31.7%, and the average total idle driving distance is
reduced by 10.13% or about 20 million miles annually, compared
with nonrobust dispatch solutions.
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I. INTRODUCTION

MODERN transportation systems are equipped with var-
ious sensing technologies for passenger and vehicle

tracking, such as radio frequency identification and global
positioning system (GPS). Sensing data collected from trans-
portation systems provides us opportunities for understanding
spatial-temporal patterns of passenger demand. Methods of
predicting taxi-passenger demand [22], [28], travel time [3],
[15], [27], and traveling speed [2], [13] according to traffic
monitoring data have been developed.

Based on such rich spatial-temporal information about pas-
senger mobility patterns and demands, many controls and
coordination solutions have been designed for intelligent trans-
portation systems. Robotic mobility-on-demand systems that
minimize the number of rebalancing trips [24], [30], and smart
parking systems that allocates resource based on a driver’s
cost function [14] have been proposed. Dispatch algorithms
that aim to minimize customers’ waiting time [17], [26] or to
reduce cruising mile [29] have been developed. In our previous
work [20], [21], we design a receding horizon control frame-
work that incorporates predicted demand model and real-time
sensing data. Considering future demand when making, the
current dispatch decisions help to reduce autonomous vehicle
balancing costs [30] and taxis’ total idle distance [20], [21].
Strategies for resource allocation depend on the model of
demand in general, and the knowledge and assumptions about
the demand affect the performance of the supply providing
approaches [9], [23]. These works rely on precise passenger-
demand models to make dispatch decisions.

However, passenger-demand models have their intrinsic
model uncertainties that result from many factors, such as
weather, passenger working schedule, and city events. Algo-
rithms that do not consider these uncertainties can lead to inef-
ficient dispatch services, resulting in imbalanced workloads,
and increased taxi idle mileage. Although robust optimization
aims to minimize the worst case cost under all possible random
parameters, it sacrifices average system performances [1]. For
a taxi dispatch system, it is essential to address the tradeoff
between the worst case and the average dispatch costs under
uncertain demand. A promising yet challenging approach
is a robust dispatch framework with an uncertain demand
model, called an uncertainty set, that captures spatial-temporal
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correlations of demand uncertainties and the robust optimal
solution under this set provides a probabilistic guarantee for
the dispatch cost [as defined in problem (12)].

In this paper, we consider two aspects of a robust vehicle
dispatch model given a taxi-operational records data set:
1) how to formulate a robust resource allocation problem that
dispatches vacant vehicles toward predicted uncertain demand
and 2) how to construct spatial-temporally correlated uncertain
demand sets for this robust resource allocation problem with-
out sacrificing too much average performance of the system.
We first develop the objective and constraints of a robust
dispatch problem considering spatial-temporally correlated
demand uncertainties. The objective of a system-level optimal
dispatch solution is balancing workload of taxis in each region
of the entire city with minimum total current and expected
future idle cruising distance. We define an approximation of
the balanced vehicle objective in this paper, such that the
robust vehicle dispatch problem is concave of the uncertain
demand and convex of the decision variables. We then design
a data-driven algorithm for constructing uncertainty demand
sets without assumptions about the true model of the demand
vector. The constructing algorithm is based on hypothesis
testing theories [6], [11], [25], however, how to apply these
theories for spatial-temporally correlated transportation data
and uncertainty sets of a robust vehicle resource allocation
problem have not been explored before. To the best of our
knowledge, this is the first work to design a robust vehicle
dispatch model that provides a desired probabilistic guarantee
using predictable and realistic demand uncertainty sets.

Furthermore, we explicitly design an algorithm to build
demand uncertainty set from data according to different prob-
abilistic guarantee level for the cost. With two types of uncer-
tainty sets—box type and second-order-cone (SOC) type—we
prove equivalent computationally tractable forms of the robust
dispatch problem under these uncertainty demand models via
the minimax theorem and the strong duality theorem. The
robust dispatch problem formulated in this paper is convex
over the decision variables and concave over the constructed
uncertain sets with decision variables on the denominators.
This form is not the standard form [i.e., linear programming
(LP) or semidefinite programming (SDP) problems] that has
already been covered by previous works [4], [6], [10]. With
proofs shown in this paper, both system performance and com-
putational tractability are guaranteed under spatial-temporal
demand uncertainties. The average performance of the robust
taxi dispatch solutions with SOC type of uncertain demand
set is better compared with that of the box (range) type of
uncertainty set in the evaluations based on data. Hence, it is
critical to use a more complex type of uncertainty set, the SOC
type, and the corresponding robust dispatch model we design
in this paper. The contributions of this paper are as follows.

1) We develop a robust optimization model for taxi dispatch
systems under spatial-temporally correlated uncertain-
ties of predicted demand, and define an approximation
of the balanced vehicle objective. The robust opti-
mization problem of approximately balancing vacant
taxis with least total idle distance is concave of the
uncertain demand, convex of the decision variables,

Fig. 1. Prototype of the taxi dispatch system.

and computationally tractable under multiple types of
uncertainties.

2) We design a data-driven algorithm to construct uncer-
tainty sets that provide a desired level of probabilistic
guarantee for the robust taxi dispatch solutions.

3) We prove that there exist equivalent computationally
tractable convex optimization forms for the robust dis-
patch problem with both polytope and SOC types of
uncertainty sets constructed from data.

4) Evaluations on four years of taxi trip data in New York
City (NYC) show that the SOC type of uncertain set
provides a smaller average dispatch cost than the poly-
tope type. The average demand–supply ratio mismatch is
reduced by 31.7%, and the average total idle distance is
reduced by 10.13% or about 20 million miles annually
with robust dispatch solutions under the SOC type of
uncertainty set.

The rest of this paper is organized as follows. The taxi
dispatch problem is described and formulated as a robust
optimization problem given a closed and convex uncertainty
set in Section II. We design an algorithm for constructing
uncertain demand sets based on taxi operational records data
in Section III. Equivalent computationally tractable forms of
the robust taxi dispatch problem given different forms of
uncertainty sets are proved in Section IV. Evaluation results
based on a real data set are shown in Section V. Concluding
remarks are provided in Section VI.

II. PROBLEM FORMULATION

The goal of taxi dispatch is to direct vacant taxis toward
current and predicted future requests with a minimum total
idle mileage. There are two objectives. One is sending more
taxis for more requests to reduce mismatch between supply
and demand across all regions in the city. The other is to
reduce the total idle driving distance for picking up passengers
in order to save cost. Involving predicted future demand when
making current decisions benefits to increasing total profits,
since drivers are able to travel to regions with better chances
to pick up future passengers. In this section, we formulate
a taxi dispatch problem with uncertainties in the predicted
spatial-temporal patterns of demand. A typical monitoring and
dispatch infrastructure is shown in Fig. 1. The dispatch center
periodically collects and stores real-time information such as
GPS location, occupancy status, and road conditions; dispatch
solutions are sent to taxis via cellular radio.

A. Problem Description
For computational efficiency, we assume that the entire city

is divided into n regions, and time of one day is discretized to
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time slots indexed by t = 1, 2, . . . , K . Taxi dispatch decision
is calculated in a receding horizon process, since considering
future demand when making the current dispatch decisions
helps to reduce resource allocating costs [30] and taxis’ total
idle distance [20]. At time t , we consider the effects of current
decision to the following (t +1, . . . , t +τ −1) time slots. Only
the dispatch solution for time t is implemented and solutions
for remaining time slots are not materialized. When the time
horizon rolls forward by one step from t to (t+1), information
about vehicle locations and occupancy status are observed and
updated, and we calculate a new dispatch solution for (t + 1).

We define rk
j ≥ 0 as the number of total requests within

region j during time k, and τ is the model predicting time
horizon. We relax the integer constraint of rk

j ∈ N to positive
real, since the integer constraint will make the robust dispatch
problem in this section not computationally tractable. The total
number of requests at region j may have similar patterns as its
neighbors, for instance, during busy hours, several downtown
regions may all have peak demand. Meanwhile, demand during
several consecutive time slots rk , k = 1, . . . , τ are temporally
correlated. Typically, it is difficult to predict a deterministic
value of passenger demand of a region during specific time.
We define the spatial-temporally correlated uncertain demand
by one closed and convex, or compact set � as

rc = [
(r1)T , (r2)T , · · · , (r τ )T

]T ∈ � ⊂ R
τn+ .

Where rc is called the concatenated demand vector, (rk)T

means the transpose of rk . The closed, bounded, and convex
form of � depends on the method to construct the uncertainty
set, which we will describe in detail in Section III. Since rc

depends on rk , and rk is one component of rc, the uncertainty
set for demand rk at time k is defined as a closed, convex set
�k , and a projection of �

�k := {rk |∃r1, . . . , rk−1, rk+1, . . . , r τ , s.t. rc ∈ �}.
Note that the projection of a convex set onto some of its
coordinates are also convex [8, Ch. 2.3.2].

A robust dispatch model that decides the amount of vacant
taxis sent between each node pair according to the demand at
each node and practical constraints is described in a network
flow model of Fig. 2. The edge weight of the graph represents
the distance between two regions. Specifically, each region
has an initial number of vacant taxis provided by real-time
sensing information and an uncertain predicted demand. We
define a nonnegative decision variable matrix Xk ∈ R

n×n+ ,
Xk

i j ≥ 0, where Xk
i j is the number of vehicles dispatched from

region i to j . We relax the integer constraint of Xk
i j ∈ N to a

nonnegative real constraint, since mixed integer programming
is not computationally tractable with uncertain parameters.
Every time when making a resource allocation decision by
solving the following robust optimization problem:
min
X1

max
r1∈�1

min
X2

max
r2∈�2

. . . min
Xτ

max
rτ ∈�τ

J =
τ∑

k=1

(JD(Xk) + β JE (Xk , rk)) s.t. Xk ∈ Dc (1)

where JD is a convex cost function for allocating resources,
JE is a function concave in rk and convex in Xk that measures

Fig. 2. Network flow model of the robust taxi dispatch problem. A circle
represents a region with region ID 1, 2, 3, and 4. We omit the superscript of
time k since every parameter is for one time slot only. Uncertain demand is
denoted by ri , Li is the original number of vacant taxis before dispatch at
region i , and Xi j is a dispatch solution that sending the number of vacant
taxis from region i to j with the distance Wi j .

the service fairness of the resource allocating strategy, and Dc

is a convex domain of the decision variables that describes the
constraints. We define specific formulations of the objective
and constraint functions in the rest of this section.

B. Robust Taxi Dispatch Problem Formulation

1) Estimated Cross-Region Idle Driving Distance: When
traversing from region i to j , taxi drivers take the cost of
cruising on the road without picking up a passenger till the
target region. Hence, we consider to minimize this kind of idle
driving distance while dispatching taxis. We define the weight
matrix of the network in Fig. 2 as W ∈ R

n×n , where Wij is
the distance between region i and j . The across-region idle
driving cost according to Xk is

JD(Xk) =
n∑

i=1

n∑

j=1

Xk
i j Wi j . (2)

We assume that the region division method is time-invariant
in this paper, and W is a constant matrix for the optimization
problem formulation – for instance, the value of Wij represents
the length of the shortest path on streets from the center of
region i to the center of region j .1

The distance every taxi can drive should be bounded by a
threshold parameter mk ∈ R

+ during limited time

Xk
i j = 0 if Wij > mk

which is equivalent to

Xk
i j ≥ 0, Xk

i j Wi j ≤ mk Xk
i j , ∀i, j ∈ {1, . . . , n}. (3)

To explain this, assume the constraint (3) holds. If Wij > mk

and Xk
i j > 0, we have Xk

i j Wi j > mk Xk
i j , which contradicts

to (3). The threshold mk is related to the length of time slot and
traffic conditions on streets. For instance, with an estimated
average speed of cars in one city during time k = 1, . . . , τ ,
and idle driving time to reach a dispatched region is required
to be less than 10 min, then the value of mk should be the
distance one taxi can drive during 10 min with the current
average speed on road.

1For control algorithms with a dynamic region division method, the distance
matrix can be generalized to a time-dependent matrix Wk as well.
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2) Metric of Serving Quality: We design the metric of
service quality as a function JE (Xk , rk) concave in rk and
convex in Xk in this paper for computational efficiency [4].
Besides vacant taxis traverse to region j according to matrix
Xk , we define Lk

j ∈ R+ as the number of vacant taxis at region
j before dispatching at the beginning of time k, and L1 ∈ R

n+
is provided by real-time sensing information. We assume that
the total number of vacant taxis is greater than the number
of regions, i.e., Nk ≥ n, and each region should have at least
one vacant taxi after dispatch. Then the total number of vacant
taxis at region i during time k satisfies that

n∑

j=1

Xk
j i −

n∑

j=1

Xk
i j + Lk

i > 0 (4)

n∑

i=1

⎛

⎝
n∑

j=1

Xk
j i −

n∑

j=1

Xk
i j + Lk

i

⎞

⎠ =
n∑

i=1

Lk
i = Nk . (5)

One service metric is fairness, or that the demand–supply
ratio of each region equals to that of the whole city. A bal-
anced distribution of vacant taxis is an indication of good
system performance from the perspective that a customer’s
expected waiting time is short as shown by a queuing theo-
retic model [30]. Meanwhile, a balanced demand–supply ratio
means that regions with less demand will get less resources,
and idle driving distance will be reduced in regions with more
supply than demand, if we preallocate possible redundant sup-
ply to those regions in need. We aim to minimize the mismatch
value or the total difference between local region demand–
supply ratio and the global demand–supply ratio of the whole
city, similarly as the objective defined in [20] and [21]

τ∑

k=1

n∑

i=1

∣
∣
∣
∣∣

rk
i∑n

j=1 Xk
j i −∑n

j=1 Xk
i j + Lk

i

−
∑n

j=1 rk
j

Nk

∣
∣
∣
∣∣
. (6)

However, the function (6) is not concave in rk for any Xk .
It is worth noting that we need a function JE (Xk, rk) concave
in rk for any Xk , and convex in Xk for any rk , to make sure
the robust optimization problem is computationally tractable.
Hence, we define

JE (Xk, rk) =
n∑

i=1

rk
i(∑n

j=1 Xk
j i −∑n

j=1 Xk
i j + Lk

i

)α , α>0

(7)

as a service fairness metric to minimize. This is because
we approximately minimize (6) by minimizing (7) under the
constraints (4) and (5) with an α value chosen according to
the desired approximation level, and the following Lemma
explains this approximation.

Lemma 1: Given deterministic demand vectors (r1, . . . , r τ )
and an initial number of vacant vehicles before dispatch
(L1, . . . , Lτ ) that satisfy rk

i ≥ 1, Lk
i ≥ 0,

∑n
i=1 Lk

i = Nk , for
any ε0 > 0, any i ∈ {1, . . . , n}, k = 1, . . . , τ , there exists an
α > 0, such that the optimal solution (Xk)∗ by minimizing (7)

under constraints (4) and (5) satisfies

τ∑

k=1

n∑

i=1

∣∣
∣
∣
∣

rk
i∑n

j=1(Xk
j i)

∗ −∑n
j=1(Xk

i j )
∗+Lk

i

−
∑n

j=1 rk
j

Nk

∣∣
∣
∣
∣
<nτε0.

(8)

Proof: See Appendix A.
According to the proof, we can always choose α to be

small enough (or close enough to 0) in order to obtain a
desired level of approximation ε0. Hence, in the experiments
of Section V, we numerically choose α = 0.1 based on
simulation results. Therefore, with function (7), we map the
objective of balancing supply according to demand across
every region in the city to a computationally tractable function
that concave in the uncertain parameters and convex in the
decision variables for a robust optimization problem.

The number of initial vacant taxis Lk+1
j depends on the

number of vacant taxis at each region after dispatch during
time k and the mobility patterns of passengers during time k,
while we do not directly control the latter. We define Pk

i j as
the probability that a taxi traverses from region i to j and
turns vacant again (after one or several drop-off events) at the
beginning of time (k+1), provided it is vacant at the beginning
of k. Methods of getting Pk

i j based on data include but not
limited to modeling trip patterns of taxis [21] and autonomous
mobility on demand systems [30]. Then, the number of vacant
taxis within each region j by the end of time k satisfies

(Lk+1)T = (
1T

n Xk − (Xk1n)
T + (Lk)T )Pk . (9)

3) Weighted-Sum Objective Function: Since there exists a
tradeoff between two objectives, we define a weighted-sum
with parameter β > 0 of the two objectives JD(Xk) defined
in (2) and JE (Xk , rk) defined in (7) as the objective function.
Let X1:τ and L2:τ represent decision variables (X1, . . . , X τ )
and (L2, . . . , Lτ ). Without considering model uncertainties
corresponding to rk , a convex optimization form of taxi
dispatch problem is

min
X1:τ ,L2:τ

J =
τ∑

k=1

(JD(Xk) + β JE (Xk, rk))

s.t. (3), (4), (9). (10)

4) Robust Taxi Dispatch Problem Formulation: We aim to
find out a dispatch solution robust to an uncertain demand
model in this paper. For time k = 1, . . . , τ , uncertain demand
rk only affects the dispatch solutions of time (k, k +1, . . . , τ ),
and dispatch solution at k + τ is related to uncertain demand
at (k +1, . . . , τ ), similar to the multistage robust optimization
problem in [7]. However, the control laws considered in [7]
are polynomial in past-observed uncertainties; in this paper,
we do not restrict the decision variables to be any forms of
previous-observed uncertain demands. The dispatch decisions
are numerical optimal solution of a robust optimization prob-
lem. With a list of parameters and variables shown in Table I,
considering both the current and future dispatch costs when
making the current decisions, we define a robust taxi dispatch
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TABLE I

PARAMETERS AND VARIABLES OF TAXI DISPATCH PROBLEM (11)

problem as the following:
min
X1

max
r1∈�1

min
X2,L2

max
r2∈�2

. . . min
Xτ ,Lτ

max
rτ ∈�τ

J =
τ∑

k=1

n∑

i=1

⎛

⎜
⎝

n∑

j=1

Xk
i j Wi j + βrk

i(∑n
j=1 Xk

j i −
∑n

j=1 Xk
i j +Lk

i

)α

⎞

⎟
⎠

s.t. (Lk+1)T = (1T
n Xk − (Xk1n)

T + (Lk)T )Pk ,

1T
n Xk − (Xk1n)

T + (Lk)T ≥ 1T
n ,

Xk
i j Wi j ≤ m Xk

i j ,

Xk
i j ≥ 0, i, j ∈ {1, 2, . . . , n}. (11)

After getting an optimal solution (X1)∗ of (11), we adjust
the solution by rounding methods to get an integer number of
taxis to be dispatched toward corresponding regions. It does
not affect the optimality of the result much in practice, since
the objective or cost function is related to the demand–supply
ratio of each region. A feasible integer solution of (11) always
exists, since Xk

i j = 0, ∀i, j, k is feasible. Although we cannot
provide any theoretical guarantee on the suboptimality of the
rounded integer solution, in the numerical experiments the
costs under integer solution after rounding and the original
real value optimal solution are comparable.

III. ALGORITHM FOR CONSTRUCTING

UNCERTAIN DEMAND SETS

With many factors affecting taxi demand during different
time within different areas of a city, explicitly describing the
model is a strict requirement and errors of the model will
affect the performance of dispatch frameworks. Considering
the future demand and demand uncertainties, benefits for
minimizing the worst case demand–supply ratio mismatch
error and idle distance [20], [21]. It is then essential to
construct a model that captures the spatial-temporal demand
uncertainties and provides a probabilistic guarantee about
the vehicle resource allocation cost. We construct demand
uncertainty sets via Algorithm 1—getting a sample set of
rc from the original data set and partition the sample set,

bootstrapping a threshold for the test statistics according to
the requirement of the probability guarantee, and calculating
the model of uncertainty sets based on the thresholds.

A. Uncertainty Set With Probabilistic Guarantee

For convenience, we concisely denote all the variables of
the taxi dispatch problem as x . Assume that we do not have
knowledge about the true distribution P

∗(rc) of the random
demand vector rc. With the objective function J (rc, x) of
problem (11), the probabilistic guarantee for the event that
the true dispatch cost being smaller than the optimal dispatch
cost is defined as the following chance constrained problem:

min
x

M

s.t. Prc∼P∗(rc)( f (rc, x) = J (rc, x) − M ≤ 0) ≥ 1 − ε. (12)

The constraint f and objective function J are concave in rc for
any x , and convex in x for any rc. Without loss of generality
about the objective and constraint functions, equivalently we
aim to find solutions for

min
x

J (rc, x)

s.t. Prc∼P∗(rc)( f (rc, x) ≤ 0) ≥ 1 − ε. (13)

When it is difficult to explicitly estimate P
∗(rc), we solve the

following robust problem such that its optimal solutions satisfy
the probabilistic guarantee requirement for (13):

min
x

max
rc∼�

J (rc, x), s.t. f (rc, x) ≤ 0. (14)

Then rc of problem (14) can be any vector in the uncertainty
set � instead of a random vector in (13). The uncertainty
set that keeps the optimal solution of (14) satisfying the
constraints of problem (13) is defined as the following.

Problem 1: Construct an uncertainty set �, rc ∈ �, given
0 < ε < 1 and samples of random vectors rc, such that

(P1). The robust constraint (14) is computationally tractable.
(P2). The set � implies a probabilistic guarantee for the true

distribution P
∗(rc) of a random vector rc at level ε, that is, for
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Fig. 3. Intuition for partitioning the whole data set. When the data set
includes data from three distributions P1, P2, P3, without prior knowledge,
we can build a larger uncertainty set that describes the range of all samples
in the data set. The problem is that the uncertainty set is not accurate enough.

any optimal solution x∗ ∈ R
k and for any function f (rc, x)

concave in rc, we have the implication as follows:

If f (rc, x∗) ≤ 0, for ∀rc ∈ �

then P
∗
rc∼P∗(rc)

( f (rc, x∗) ≤ 0) ≥ 1 − ε. (15)

The given probabilistic guarantee level ε is related to the
degree of conservativeness of the robust optimization problem.

B. Aggregating Demand and Partition the Sample Set

Every τ discretized time slots of demand (r t , . . . , r t+τ ) are
concatenated to a vector rc(t). The first step is to transform the
original taxi operational data to a data set of sampled vector
r̃c(d, t) of different dates d for each index t . For instance,
assume we choose the length of each time slot as 1 h, and
the data set records all trip information of taxis during each
day. According to the start time and GPS coordinate of each
pick-up event, we aggregate the total number of pick up events
during 1 h at each region to get samples r̃c(d, t).

It is always possible to describe the support of the distri-
bution of all samples contained in the data set even they do
not follow the same distribution, as explained in Fig. 3. When
there is prior knowledge or categorical information to partition
the data set into several subsets, we get a more accurate
uncertainty set for each subdata set to provide the same
probabilistic guarantee level compared with the uncertainty set
from the entire data set. Clustering algorithms with categorical
information [16] is applicable for data set partition when
information besides pick-up events is available, such as week-
days/weekends and weather or traffic conditions. It is worth
noting that if the uncertainty sets are built for a categorical
information set I = {I1,I2, . . . }, then for the robust dispatch
problems, we require the same set of categories is available
in realtime, hence we apply the uncertainty set of I1 to find
solutions when the current situation is considered as I1.

C. Uncertainty Modeling

The basic idea to define an uncertainty set is to find a thresh-
old for a hypothesis testing that is acceptable with respect to
the given data set and a required probabilistic guarantee level,
and the formula of an uncertainty set is related to the threshold
value of an acceptable hypothesis testing. Given the original
data, the null hypothesis H0, αh , and the test statistics T ,
we need to find a threshold that accepts H0 at significance

value αh for each subset of sampled demand vectors. Since we
do not assume that the marginal distribution for every element
of vector rc is independent with each other, we apply two
models without any assumptions about the true distribution
P

∗(rc) in the robust optimization literature [6], [11], [25] on
the spatial-temporally correlated demand data.

1) Box Type of Uncertainty Demand Sets Built From
Marginal Samples: One intuitive description about a ran-
dom vector is to define a range for each element. For
instance, consider the following multivariate hypothesis holds
simultaneously for i = 1, 2, . . . , τn with given thresholds
q̄i,0, q

i,0
∈ R [11]:

H0,i : inf
{

t : P(rc,i ≤ t) ≥ 1 − ε

τn

}
≥ q̄i,0

inf
{

t : P(−rc,i ≤ t) ≥ 1 − ε

τn

}
≥ −q

i,0
. (16)

Assume that we have NB random samples for each
component rc,i of rc, ordered in increasing value as
r (1)

c,i , r (2)
c,i , . . . , r (NB )

c,i no matter what is the original sampling
order. We define the index s by

s =min

⎧
⎨

⎩
k ∈ N :

NB∑

j=k

(
NB

j

)( ε

τn

)NB− j (
1− ε

τn

) j ≤ αh

2τn

⎫
⎬

⎭

(17)

and let s = NB + 1 if the corresponding set is empty. The test
H0 is rejected if r (s)

c,i ≥ q̄i,0 or − r (NB−s+1)
c,i ≥ −q

i,0
. To con-

struct an uncertainty set, we need an accepted hypothesis test.
Hence, we set q̄i,0 = r (s)

c,i and q
i,0

= r (NB −s+1)
c,i . The following

uncertainty set is then applied in this paper based on the range
hypothesis testing (16).

Proposition 1 ([6], [11]): If s defined by (17) satisfies that
NB − s + 1 < s, then, with probability at least 1 − αh over
the sample, the set

UM
ε (rc) = {

rc ≥ 0|r (NB−s+1)
c,i ≤ rc,i ≤ r (s)

c,i

}
(18)

implies a probabilistic guarantee for P
∗(rc) at level ε.

2) SOC Type of Uncertainty Set Motivated by Moment
Hypothesis Testing: It is not easy to tell directly from the
uncertainty set (18) when the range of one component changes
how will others be affected. To directly show the spatial-
temporal correlations of the demand, we also apply hypothesis
testing related to both the first and second moments of the true
distribution P

∗(rc) of the random vector [25]

H0 : E
P

∗ [rc] = r0 and E
P

∗[
rcr T

c

]− E
P

∗ [rc]EP
∗[

r T
c

] = �0

(19)

where r0 and �0 are the (unknown) true mean and covariance
of rc, E

P
∗ [rc] and E

P
∗ [rcr T

c ] are the estimated mean and
covariance from data. Without knowledge of r0 and �0,
H0 is rejected when the difference among the estimation of
mean or covariance according to multiple times of samples
is greater than the threshold, i.e., ‖E

P[r̃c] − r̂c‖2 > �B
1 or

‖E
P[r̃cr̃ T

c ] − E
P[r̃c]EP[r̃ T

c ] − �̂‖F > �B
2 , where E

P[r̃] is the
estimated mean value of one experiment, r̂c and �̂ are the
estimated mean and covariance from multiple experiments,
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Algorithm 1 Constructing Uncertain Demand Sets

�B
1 and �B

2 are the thresholds. The remaining problem is
then to find the values of the thresholds such that hypothesis
testing (19) holds given the data set. The uncertainty set
derived based on the moment hypothesis testing is defined
in the following proposition.

Proposition 2 ([6], [25]): With probability at least 1 − αh

with respect to the sampling, the following uncertainty set
UCS

ε (rc) implies a probabilistic guarantee level of ε for P
∗(rc):

UCS
ε (rc) =

{

c ≥ 0|rc = r̂c + y + CT w : ∃y, w ∈ R
nτ

s.t. ‖y‖2 ≤ �B
1 , ‖w‖2 ≤

√
1 − ε

ε

}

(20)

where CT C = �̂ + �B
2 I is a Cholesky decomposition.

When one component of rc increases or decreases, we have
an intuition how it affects the value of other components of
rc by the expression (20).

D. Algorithm

With a threshold of the test statistics calculated via the
given data set, we then apply the formula (18) for constructing
a box type of uncertainty set, and the formula (20) for
an SOC type of uncertainty set, respectively. The following
Algorithm 1 describes the complete process for constructing
uncertain demand sets based on the original data set.

We do not restrict the method of estimating mean r̂c(t, Ip)

and covariance �̂(t, Ip) matrices of a subset S(t, Ip) in

step 2, and bootstrap is one method. For step 2.(2), the
process for the box type of uncertainty sets is: calculate
index s that satisfies (17) with the given ε, sort each com-
ponent of sampled vectors rc(dl, t, Ip), and get the order
statistics r (NB−s+1)

c,i ( j, t, Ip), r (s)
c,i ( j, t, Ip) of the j th sample

set S j (t, Ip). For the SOC type, we calculate the mean and
covariance of the samples of the vector according to the subset
S j (t, Ip) as r̂c( j, t, Ip) and �̂( j, t, Ip), respectively.

In step 2.(3), the αh level thresholds for the box type of
uncertainty sets are the �NB(1 − αh)�th largest value of the
upper bound r (s)

c,i ( j, t, Ip) and the �NBαh�th largest value of

the lower bound r (NB−s+1)
c,i ( j, t, Ip) for the i th component.

For the SOC type of uncertainty sets, we calculate the mean
and covariance of rc(t, Ip) for the NB times bootstrap as
r̂c(t, Ip) and �̂(t, Ip), and get �1( j, t, Ip) = ‖r̂c( j, t, Ip) −
r̂c(t, Ip)‖2, �2( j, t, Ip) = ‖�̂( j, t, Ip) − �̂(t, Ip)‖2. Denote
the �NB(1 − αh)�th largest value of �1( j, t, Ip) and
�2( j, t, Ip)as �B

1 (t, Ip) and �B
2 (t, Ip), respectively.

In summary, to construct a spatial-temporal uncertain
demand model for problem (11), in this section, we consider
the taxi operational record of each day as one independent
and identically distributed (i.i.d.) sample for the concatenated
demand vector rc. By partitioning the entire data set to several
subsets according to categorical information such as weekdays
and weekends, we are able to build uncertainty sets for each
subset of data without additional assumptions about the true
distribution of the spatial-temporal demand profile. Then we
design Algorithm 1 to construct a box type and an SOC
type of uncertainty sets based on data that provide a desired
probabilistic guarantee of robust solutions.

IV. COMPUTATIONALLY TRACTABLE FORMULATIONS

We build equivalent computationally tractable formulations
of problem (11) with different definitions of uncertain sets
calculated by Algorithm 1 in this section. Hence, the robust
taxi dispatch problem considered in this paper can be solved
efficiently. Computational tractability of a robust LP prob-
lem for ellipsoid uncertainty sets is discussed in [4]. The
process is to reformulate constraints of the original problem
to its equivalent convex constraints that must hold given
the uncertainty set. The objective function of problem (11)
is concave of the uncertain parameters rk , convex of the
decision variables Xk, Lk with the decision variables on the
denominators, not standard forms of LP or SDP problems that
already covered by previous works [4], [6]. Hence, we prove
one equivalent computationally tractable form of problem (11)
for each uncertainty set constructed in Section III.

Only the JE components of objective functions in (11)
include uncertain parameters, and the decision variables of
the function are in the denominator of the function JE . The
box-type uncertainty set defined as (18) is a special form
of polytope; hence, we first prove an equivalent standard
form of convex optimization problem for (11) for a polytope
uncertainty set as the following.

Theorem 1 (Next Step Dispatch): If the uncertainty set of
problem (11) when τ = 1 is defined as the nonempty polytope
� := {r ≥ 0, Ar ≤ b}, and we omit the superscripts k
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for variables and parameters without confusion. Then prob-
lem (11) with τ = 1 is equivalent to the following convex
optimization problem:

min
X≥0,λ≥0

n∑

i=1

n∑

j=1

Xij Wij + bT λ

s.t. AT λ − β

⎡

⎢⎢
⎢
⎢
⎣

1(∑n
j=1 X j1−∑n

j=1 X1 j +L1

)α

...
1(∑n

j=1 X jn−∑n
j=1 Xnj +Ln

)α

⎤

⎥⎥
⎥
⎥
⎦

≥ 0

1T
n X − X1n + LT ≥ 1,

Xij Wij ≤ m Xij ,

Xij ≥ 0, ∀i, j ∈ {1, . . . , n}. (21)

�
Proof: See Appendix B.

To directly use the demand uncertainty set that describes the
spatial-temporal correlation of (r1, . . . , r τ ) like (18) and (20)
for the concatenated demand rc in problem (11), we first
consider to group the maximization over each rk together to
save the process of projection rc ∈ � for individual rk ∈ �k .
Furthermore, we can find the dual (a minimizing problem)
of the maximizing cost problem over rc ∈ �, and then
numerically efficiently solve (11) that minimizes the total cost
during time (1, 2, . . . , τ ) under uncertain demand rc. Hence,
we first prove that the minimax equality holds for the maximin
problem over each pair of k and k + 1 for problem (11),
and (11) is equivalent to the robust optimization problem
shown in the following lemma.

Lemma 2 (Minimax Equality): Given the assumption that
the definition of the uncertainty sets rc ∈ � and rk ∈ �k is
compact (closed and convex), the robust dispatch problem (11)
is equivalent to the following robust dispatch problem:

min
X1:τ ,L2:τ

max
rc∈�

J =
τ∑

k=1

(JD(Xk) + β JE (Xk, rk))

s.t. constraints of (11), k = 1, . . . , τ. (22)

�
Proof: See Appendix C.

For the robust optimization problem (11), the computa-
tionally tractable convex form depends on the definition of
uncertainty sets.When conditions of Lemma 2 hold, equivalent
convex optimization forms of problem (11) are derived based
on problem (22). For a multistage robust optimization problem
that restricts the near-optimal control input of linear dynamical
systems to be a certain degree of polynomial of previous-
observed uncertainties, an approximated SDP method for
calculating the time dependent control input is proposed in [7].
The method does not require minimax equality holds for the
robust optimal control problem.

The box-type uncertainty set (18) is a special form of
polytope that the uncertain demand model during different
time of a day is described separately. The process of converting
problem (11) to an equivalent computationally tractable con-
vex form is similar to that of the one-stage robust optimization
problem. The result is described as the following lemma.

Lemma 3: If the uncertain set for rk, k = 1, . . . , τ
describes each demand vector rk separately as a nonempty
polytope with the form

�k := {rk ≥ 0, Akrk ≤ bk}, k = 1, . . . , τ (23)

problem (11) is equivalent to the following convex optimiza-
tion problem:

min
Xk ,λk,Lk≥0

τ∑

k=1

⎛

⎝
n∑

i

n∑

j

Xk
i j Wi j + bT

k λk

⎞

⎠

s.t. AT
k λk − β

⎡

⎢
⎢⎢
⎢
⎣

1(∑n
j=1 Xk

j1−
∑n

j=1 Xk
1 j +Lk

1

)α

...
1(∑n

j=1 Xk
jn−∑n

j=1 Xk
nj +Lk

n

)α

⎤

⎥
⎥⎥
⎥
⎦

≥ 0

constraints of (11), k = 1, . . . , τ. (24)

�
Proof: See Appendix D1.

For a more general case that the uncertainty sets for
r1, . . . , r τ are temporally correlated, the following theorem
and proof describe the equivalent computationally tractable
convex form of (11).

Theorem 2: When � is defined as the following nonempty
polytope set:
� := {(�1, . . . ,�τ )|A1r1 + · · · + Aτr τ ≤ b, rk ≥ 0} (25)

problem (11) is equivalent to the following convex optimiza-
tion problem:

min
Xk ,Lk ,λ≥0

τ∑

k=1

⎛

⎝
n∑

i

n∑

j

Xk
i j Wi j

⎞

⎠+ bT λ

s.t. AT
k λ − β

⎡

⎢
⎢⎢
⎢
⎣

1(∑n
j=1 Xk

j1−
∑n

j=1 Xk
1 j +Lk

1

)α

...
1(∑n

j=1 Xk
jn−∑n

j=1 Xk
nj +Lk

n

)α

⎤

⎥
⎥⎥
⎥
⎦

≥ 0

constraints of (11), k = 1, . . . , τ. (26)

�
Proof: See Appendix D2.

With an uncertain demand model defined as (20) for
concatenated r1, . . . , r τ , the following theorem derives the
equivalent computationally tractable form of problem (11).

Theorem 3: When the uncertainty set for r1, . . . , r τ is
defined as the SOC form of (20), problem (11) is equivalent
to the following convex optimization problem (27):

min
Xk ,Lk,z

τ∑

k=1

n∑

i

n∑

j

Xk
i j Wi j

+ β

(

r̂ T
c z + �B

1 ‖z‖2 +
√

1

ε
− 1‖Cz‖2

)

s.t. cl(X) ≤ z,

constraints of (11), k = 1, . . . , τ (27)

where cl(X) ∈ R
τn is the concatenation of c(X1), . . . , c(X τ ).

Proof: See Appendix E.
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TABLE II

NYC DATA IN THE EVALUATION SECTION

It is worth noting that any optimal solution for problem (10)
has a special form between any pair of regions (i, q).

Proposition 3: Assume X1∗, . . . , X τ∗ is an optimal solu-
tion of (10), then any Xk∗ satisfies that for any pair of (p, q),
at least one value of the two elements Xk∗

qi and Xk∗
iq is 0.

Proof: We prove by contradiction. Assume that one
optimal solution has the form Xk such that Xk

qi > 0 and
Xk

iq > 0. Without loss of generality, we assume that Xk
qi ≥

Xk
iq , and let

Xk∗
qi = Xk

qi − Xk
iq , Xk∗

iq = 0

other elements of Xk∗ equal to Xk . Then
n∑

j=1

Xk
j i −

n∑

j=1

Xk
i j = Xk

qi − Xk
iq +

∑

j =q

Xk
j i −

∑

j =q

Xk
i j

= Xk∗
qi + 0 +

∑

j =q

Xk∗
j i −

∑

j =q

Xk∗
i j

=
n∑

j=1

Xk∗
j i −

n∑

j=1

Xk∗
i j

n∑

j=1

Xk
j i −

n∑

j=1

Xk
i j + Lk

i =
n∑

j=1

Xk∗
j i −

n∑

j=1

Xk∗
i j + Lk

i .

Hence, we have JE (Xk, rk) = JE (Xk∗, rk). All constraints
are satisfied and Xk∗ is also a feasible solution for (11).

Next, we compare JD(Xk) and JD(Xk∗). With Xk
qi >

Xk
iq > 0, and Xk∗

qi = Xk
qi − Xk

iq ≥ 0, we have

Xk
qi > Xk∗

qi , Xk
qi Wqi + Xk

iq Wiq > Xk∗
qi Wqi + Xk∗

iq Wiq .

Thus the partial cost JD(Xk) > JD(Xk∗), which contra-
dicts with the assumption that Xk is an optimal solution.
To summarize, we show that an optimal solution cannot have
Xk

qi > 0, Xk
iq > 0 at the same time, and at least one of Xk∗

qi
and Xk∗

iq should be 0.
With equivalent convex optimization forms under different

uncertainty sets, robust taxi dispatch problem (11) is compu-
tationally tractable and solved efficiently.

V. DATA-DRIVEN EVALUATIONS

We conduct data-driven evaluations based on four years of
taxi trip data of NYC [12]. A summary of this data set is
shown in Table II. In this data set, every record represents an
individual taxi trip, which includes the GPS coordinators of
pick-up and drop-off locations, and the date and time (with
precision of seconds) of pick-up and drop-off locations. The
dispatch solutions based on different granularities of equal-
area region partitions have been compared in [20], and other
region partition methods are discussed in [18]. In the following

Fig. 4. Map of Manhattan area in NYC.

Fig. 5. Comparison of demand and supply mismatch values defined as (6)
with different solutions for minimizing JE defined in (7) with α in range
(0, 1]. The value of function (6) under an optimal solution of JE is smaller
with an α closer to 0, which means the dispatch solution tends to be more
balanced throughout the entire city.

experiments, we use equal-area grid partition since it is a
baseline, and compare the robust and nonrobust solutions
based on the same region partition method. One partition
example given the map of Manhattan area is shown in Fig. 4,
where we visualize the density of taxi passenger demand
with the data we use for large-scale data-driven evaluations.
The lighter the region, the higher the daily demand density,
and the middle regions typically have higher density than
the uptown and downtown regions. We construct uncertainty
sets according to Algorithm 1, discuss factors that affect
modeling of the uncertainty set, and compare optimal costs
of the robust dispatch formulation (11) and the nonrobust
optimization form (10) in this section.

How Vacant Taxis Are Balanced Across Regions With
Different α Values: Fig. 5 shows mismatch between supply
and demand defined as (6) for different optimal solutions of
minimizing JE defined in (7) for α ∈ (0, 1]. With α closer to
0, the optimal value of (6) is smaller. We choose α = 0.1 for
calculating optimal solutions of (10) and (11) in this section.

A. Box Type of Uncertainty Set

For all box type of uncertainty sets shown in this section
with the model described in Section III-C1, we set the con-
fidence level of hypothesis testings as αh = 10%, bootstrap
time as Nb = 1000, and the number of randomly sampled data
(with replacement) for each time of bootstrap as NB = 10 000.
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Fig. 6. Comparison of box type of uncertainty sets constructed from all
data and those constructed only based on trip records of weekdays. When
keeping all parameters the same, by applying data of weekdays, the range of
uncertainty set for each rc,i is smaller than that based on the whole data set.

Fig. 7. Comparison of box type of uncertainty sets constructed from all data
and uncertainty sets constructed only based on trip records of weekends.

1) Partitioned Data Set Compared With Nonpartitioned
Data Set: We show the effects of partitioning the trip record
data set by weekdays and weekends in Figs. 6 and 7. The
whole city is partitioned into 50 regions, the prediction time
horizon is τ = 4, where one time instant means 1 h, ε = 0.3,
and every rc ∈ R

200×1. Figs. 6 and 7 show the lower and
upper bounds of each region during one time slot of (18).
By applying data of weekdays and weekends separately, the
range [r (s)

c,i , r (NB−s+1)
c,i ] of each component is reduced. To get

a measurement of the uncertainty level, we defined the sum
of range of every component for rc as

U(rc) =
τn∑

i=1

(
r (s)

c,i − r (NB−s+1)
c,i

)
.

For the box type of uncertainty sets, when values of the
dimension of rc, i.e., τn, αh , and ε are fixed, a smaller
U(rc) means a smaller area of the uncertainty set, or a more
accurate model. We denote U(rc) calculated via records of
weekdays and weekends as Uwd (rc) and Uwn(rc), respec-
tively, compared with U(rc) constructed from the com-
plete data set, we have [U(rc) − Uwd (rc)/U(r̂c)] = 52%,
[U(rc) − Uwn(rc)/U(r̂c)] = 28%. This result shows that
when by constructing an uncertainty set for each subset of
partitioned data, we reduce the range of uncertainty sets to
provide the same level of probabilistic guarantee for the robust
dispatch problem. This is because samples contained in each
subset of data do not follow the same distribution and can be
categorized as two clusters.

2) Choose an Appropriate NB for High-Dimensional rc: It
is worth noting that the index s affects the range selection for
every component rc,i ; hence, for different values of αh, ε, τ, n,

TABLE III

VALUE OF INDEX s FOR THE BOX-TYPE UNCERTAINTY SET (17). FOR
LARGE τn, NB NEEDS TO BE LARGE, OR s IS TOO CLOSE TO NB THAT

THE RANGE COVERS VALUES OF ALMOST ALL SAMPLES

TABLE IV

COMPARING THRESHOLDS WITH AND WITHOUT DISCRIMINATING

WEEKDAYS AND WEEKENDS DATA. WHEN �B
1 OR �B

2 IS SMALLER,
THE VOLUME OF THE UNCERTAINTY SET IS SMALLER. HERE

n = 1000, τ = 3, NB = 1000, ε = 0.3, AND αh = 0.2

we should adjust the number of samples N to get an accurate
estimation of the marginal range. As shown in Table III, N
needs to be large enough for a large τn value, or s is too
close to N and the upper and lower bounds r (NB−s+1)

c,i , r (s)
c,i

cover almost the whole range of samples. Hence, the box-type
uncertainty set is not a good choice for large τn value, though
the computational cost of solving problem (26) is smaller than
that of (27) with the same size of τn.

B. SOC Type of Uncertainty Set

The SOC type of uncertainty set is a high-dimensional
convex set that is not able to be plotted. The bootstrapped
thresholds for the hypothesis testing to construct the SOC
uncertainty sets based on partitioned and nonpartitioned data
are summarized in Table IV. Similarly as the box type of
uncertainty sets, when we separate the data set and construct
an uncertainty demand model for weekdays and weekends,
respectively, the sets are smaller compared to the uncertain
demand model for all dates. When α and ε values are fixed,
with smaller �B

1 and �B
2 , the demand model UCS

ε is more
accurate to guarantee that with at least probability 1 − ε,
the constraints of the robust dispatch problems are satisfied.
Numerical results of this conclusion are shown in Table IV.

1) How n and τ Affect the Accuracy of Uncertainty Sets:
For a box type of uncertainty set, when τn is a large value, the
bootstrap sample number NB should be large enough such that
index s is not too close to N . Without a large enough sample
set, we choose to construct an SOC type of uncertainty set
(such as τn = 1000 and NB = 10 000 in Table V). Since
SOC captures more information about the second moment
properties of the random vector compared with the box-type
uncertainty set, some uncorrelated components of rc will be
reflected by the estimated covariance matrix, and the volume
of the uncertainty set will be reduced. We show the value of
�B

1 and �B
2 with different dimensions of rc or τn values in

Table V. When increasing the value of τn, values of �B
1 and

�B
2 are reduced, which means the uncertainty set is smaller.

However, it is not helpful to reduce the granularity of region
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TABLE V

COMPARING THRESHOLDS OF SOC UNCERTAINTY SETS FOR DIFFERENT
DIMENSIONS rc , BY CHANGING EITHER THE REGION PARTITION

NUMBER n OR THE PREDICTION TIME HORIZON τ

partition to a smaller than street level, since we construct the
model for a robust dispatch framework and a too large n is
not computationally efficient for the dispatch algorithm.

C. Compare Robust Solutions With Nonrobust Solutions

In the experiments, the idle geographical distance of one
taxi between a drop-off event and the following pick-up
event is approximated as one norm distance between the 2-D
geographical coordinates (provided as longitude and latitude
values of GPS data in the data set) of the two points.
Then the corresponding idle miles on ground are converted
from the geographical distance according to the geographical
coordinates of NYC. To test the quality of the uncertainty
sets applied in the robust dispatch problems, we use the idea
of cross-validation from machine learning. The data set is
separated as a training set for building the uncertain demand
model, and a testing set for comparing the results of the
dispatch solutions. The customer demand models applied in
the robust and nonrobust optimization problems are different.
For the nonrobust dispatch problem, the demand prediction rk

is a deterministic vector. For instance, in this paper, we use
the average or mean of the bootstrapped value of the training
data set. The nonrobust dispatch solution for each time k is
calculated by solving the convex optimization form of dis-
patch problem formulated in [20] and [21], with deterministic
demand model. For all the experiments, we let β = 10 and
α = 0.1 in problem (11) to calculate the optimal solutions.

In the robust dispatch problem, the penalty function directly
includes the uncertain demand that rk is for violating a
balanced demand–supply ratio requirement. For each testing
data rk , we denote the demand–supply ratio mismatch error
of a dispatch solution as (6). We then compare the value
of (6) of robust dispatch solutions with the SOC type of
uncertainty set constructed in this paper with the value of (6)
of nonrobust solutions of testing samples. The distribution of
values is shown in Fig. 8. The average demand–supply ratio
error is reduced by 31.7% with robust solutions. We compare
the cost distribution of total idle distance in Fig. 9. It shows
that the average total idle distance is reduced by 10.13%.
For all testing, the robust dispatch solutions result in no idle
distance greater than 0.8 × 105, and nonrobust solutions has
48% of samples with idle distance greater than 0.8 × 105.
The cost of robust dispatch (11) is a weighted sum of both
the demand–supply ratio error and estimated total idle driving
distance, and the average cost is reduced by 11.8% with robust
solutions. It is worth noting that the cost is calculated based

Fig. 8. Demand–supply ratio error distribution of the robust optimization
solutions with the SOC type of uncertain demand set (ε = 0.25, or
probabilistic guarantee level 75%) and nonrobust optimization solutions. The
demand–supply ratio error of robust solutions is smaller than that of the
nonrobust solutions that the average demand–supply ratio error is reduced
by 31.7%.

Fig. 9. Total idle distance comparison of robust optimization solutions
with the SOC type of uncertain demand set (ε = 0.25, or probabilistic
guarantee level 75%) and nonrobust optimization solutions. The average total
idle distance is reduced by 10.13%. For all samples used in testing, the
robust dispatch solutions result in no idle distance greater than 0.8 × 105,
and nonrobust solutions has 48% of samples with idle distance greater than
0.8 × 105. The number of total idle distance shown in this figure is the direct
calculation result of the robust dispatch problem, and we convert the number
to an estimated value of corresponding miles in one year, the result is a total
reduction of 20 million miles in NYC.

on the integer vehicle dispatch solution after rounding the
real value optimal solution of (11), and the cost is only 1%
higher than the optimal cost of (11). The performance of
the system is improved when the true demand deviates from
the average historical value considering model uncertainty
information in the robust dispatch process. It is worth noting
that the number of total idle distance shown in this figure is the
direct calculation result of the robust dispatch problem. When
we convert the number to an estimated value of corresponding
miles in one year, the result is a total reduction of 20 million
miles in NYC.

1) Check Whether the Probabilistic Level ε Is Guaranteed:
Theoretically, the optimal solution of the robust dispatch
problems with the uncertainty set should guarantee that with
at least the probability (1 − ε), when the system applies the
robust dispatch solutions, the actual dispatch cost under a
true demand is smaller than the optimal cost of the robust
dispatch problem. Figs. 10 and 11 show the cross-validation
testing result that the probabilistic guarantee level is reached
for both box type and SOC type of uncertainty sets via
solving (26) and (27), respectively. Comparing these two
figures, one key insight is that the robust dispatch solution
with an SOC type uncertainty set provides a tighter bound on
the probabilistic guarantee level that can be reached under the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 10. Percentage of tests that have a smaller true dispatch cost than the
optimal cost of the robust dispatch problem with the box-type uncertainty
set constructed from data. When 1 − ε decreases, the percentage value also
decreases, but always greater than 1 − ε.

Fig. 11. Percentage of tests that have a smaller true dispatch cost than the
optimal cost of the robust dispatch problem with the SOC type of uncertainty
set. When 1 − ε decreases, the percentage value also decreases, but always
greater than 1 − ε. The true percentage value is closer to the value of 1 − ε
compared with the solution given a box-type uncertainty set.

true random demand compared with solutions of the box-type
uncertainty set. It shows the advantage of considering second-
order moment information of the random vector, though the
computational cost is higher to solve problem (27) than to
solve problem (26).

2) How Probabilistic Guarantee Level Affects the Average
Cost: There exists a tradeoff between the probabilistic guar-
antee level and the average cost with respect to a random
vector rc. Selecting a value for ε is case by case, depending on
whether a performance guarantee for the worst case scenario is
more important or the average performance is more important.
For a high probabilistic guarantee level or a large 1 − ε value,
the average cost may not be good enough since we minimize a
worst case that rarely happens in the real world. When (1−ε)
is relatively small, the average cost can also be large since
many possible values of the random vector are not considered.

We compare the optimal cost of robust solutions and the
average cost of empirical tests for two types of uncertainty
sets via solving (26) and (27) in Fig. 12 and 13, respectively.
The optimal cost shows that the result of minimized worst
case scenario for all possible rc included in the uncertainty
set, and the average cost shows the empirical testing cost
when we applying the optimal solution to dispatch taxis under
random testing data of demand rc. The horizontal line shows
the average cost of nonrobust solutions that are not related to ε.
The ε values that provide the best average costs are not exactly
the same for different types of uncertainty sets according to
the experiments. For the box type of uncertainty set in Fig. 12,
ε = 0.3 provides the smallest average experimental cost;
and for SOC type of uncertainty set in Fig. 13, ε = 0.25

Fig. 12. Comparison of the optimal cost of the robust dispatch problem with
box type of uncertainty set and the average cost when applying the robust
solutions for the test subset of sampled rc . When ε = 0.3 the average cost is
the smallest.

Fig. 13. Comparison of the optimal cost of the robust dispatch problem with
SOC type of uncertainty set and the average cost when applying the robust
solutions for the test subset of sampled rc . When ε = 0.25 the average cost
is the smallest.

provides the smallest average cost. The minimum average
cost of an SOC robust dispatch solution is smaller than that
of a box type. It indicates that the second-order moment
information of the random variable should be included for
modeling the uncertainty set and calculating robust dispatch
solutions, though its computational cost is higher.

VI. CONCLUSION

In this paper, we develop a multistage robust optimization
model considering demand model uncertainties in taxi dis-
patch problems. We model spatial-temporal correlations of
the uncertainty demand by partitioning the entire data set
according to categorical information, and applying theories
without assumptions on the true distribution of the random
demand vector. We prove that an equivalent computationally
tractable form exist with the constructed polytope and SOC
types of uncertainty sets, and the robust taxi dispatch solutions
are applicable for a large-scale transportation system. A robust
dispatch formulation that purely minimizes the worst case
cost under all possible demand usually sacrifices the average
system performance. The robust dispatch method we design
allows any probabilistic guarantee level for a minimum cost
solution, considering the tradeoff between the worst case cost
and the average performance. Evaluations show that under the
robust dispatch framework we design, the average demand–
supply ratio mismatch error is reduced by 31.7%, and the
average total idle driving distance is reduced by 10.13% or
about 20 million miles in total in one year. In the future, we
will enhance problem formulation considering more uncertain
characteristics of taxi network model, like traffic conditions.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MIAO et al.: DATA-DRIVEN ROBUST TAXI DISPATCH UNDER DEMAND UNCERTAINTIES 13

APPENDIX

A. Proof of Lemma 1

Proof: We first consider the problem of minimizing∑n
i=1 |(rk

i /
∑n

j=1 Xk
j i −∑n

j=1 Xk
i j + Lk

i ) − (
∑n

j=1 rk
j /Nk)|

for one time slot k
n∑

j=1

Xk
j i −

n∑

j=1

Xk
i j + Lk

i = bk
i , i = 1, . . . , n. (28)

Given a vector Lk that satisfies Lk
i ≥ 0,

∑k
i=1 = Nk , we have∑n

i=1 bk
i = ∑n

i=1 Lk
i = Nk , since balancing vacant vehicles

does not change the total number of vacant vehicles in the
city.

To explain how (7) approximates (6) under constraints (4)
and (5), consider the following problem given rk

1 , . . . , rk
n ,

Nk = c:

minimize
bk

i >0,
∑

i bk
i =c

∑

i

r k
i(

bk
i

)α , c is a constant. (29)

We substitute bk
n = c − bk

1 · · · − bk
n−1 into (29), and

take partial derivatives of
∑

i (r
k
i /(bk

i )
α) over bk

i , i =
1, . . . , n − 1. When the minimum of (7) is achieved,
each partial derivative should be 0, −α(rk

i /(bk)α+1
i ) −

α(−1)(rk
n /(c − bk

1 · · · − bk
n−1)

α+1) = 0, which is equivalent
to (rk

1 /(bk
1)

α+1) = · · · = (rk
n−1/(b

k
n−1)

α+1) = (rk
n /(bk

n)
α+1).

Let (rk
1 /(bk

1)
α+1) = · · · = (rk

n−1/(b
k
n−1)

α+1) =
(rk

n /(bk
n)

α+1) = c0, γ = (1/α + 1), when α > 0, 0 < γ < 1.
Assume that

∑n
i=1 rk

i = a, then
(
rk

1

)γ = bk
1c0, . . . ,

(
rk

n

)γ = bk
nc0

n∑

i=1

(
rk

i

)γ = (
bk

1 + · · · + bk
n

)
c0 = cc0 ⇒ c0 = 1

c

n∑

i=1

n∑

i=1

(
rk

i

)γ

(
rk

i

)γ = bi

c

n∑

j=1

(
rk

j

)γ
,

rk
i

bk
i

=
(
ak

i

)1−γ

c

n∑

j=1

(
rk

j

)γ
.

We would like to prove that for any ε0 > 0, any i ∈ {1, . . . , n},
there exists a 0 < γ < 1, such that

∣
∣
∣
∣∣
∣

(
rk

i

)1−γ

c

n∑

j=1

(
rk

j

)γ − a

c

∣
∣
∣
∣∣
∣
< ε0. (30)

To prove (30), it is worth noting that for any given val-
ues of rk

i ≥ 1, i = 1, . . . , n, c > 0, function fi (γ ) =
[(rk

i )1−γ /c]∑n
j=1(r

k
j )

γ is a continuous function of γ , and
fi (γ = 1) = (a/c) for any i . Then, for any ε0 > 0 and
any (i, k), there exists a δk

i > 0, such that

|γ − 1| < δk
i ⇒

∣
∣
∣
∣
∣
∣

(
rk

i

)1−γ

c

n∑

j=1

(
rk

j

)γ − a

c

∣
∣
∣
∣
∣
∣
< ε0.

Then let δ = min{δ1
1, δ

1
2, . . . , δk

n} (when ε0 is small, δ
indicates a small range, so 0 < δ < 1), then for any γ
in the range 1 − δ < γ < 1, the inequality (30) holds
for all k. Without loss of generality, let γ = 1 − 0.5δ,
α = (2/2 − δ), then the optimal solution of problem (29)
is bk

i = (crk
i /(rk

i )0.5δ
∑n

j=1(r
k
j )

1−0.5δ), i = 1, . . . , n.

It is worth noting that given any values of bk
1 > 0, . . . ,

bk
n > 0, Lk

1 ≥ 0, . . . , Lk
n ≥ 0 that satisfies

∑n
i=1 bk

i =∑n
i=1 Lk

i , the equation set (28) has a feasible solution for
n × n variables of the matrix Xk . This can be checked by
vectorizing matrix Xk to a vector Y k ∈ R

n2
and transforming

equation set (28) to a new equation set of Y k . We get a
homogeneous equation set with n equations and n×n variables
of Y k , which always has a feasible solution. Hence, we plug
in the values of bk

i = (crk
i /(ak

i )0.5δ
∑n

j=1(r
k
j )

1−0.5δ) to (28)
to get values of Xk

i j . When a solution violates the nonnegative
constraint of Xk

i j , just compare the value of Xk
i j and Xk

j i ,
without loss of generality we assume that Xk

i j > Xk
j i , then let

the final feasible solution be (Xk
i j )

′ = Xk
i j − Xk

j i , (Xk
j i )

′ = 0,
the equation set (28) still holds and we have a nonnegative
optimal solution of Xk

i j , Xk
j i that keeps the inequality (8)

hold. It is worth noting that we may have multiple optimal
solutions of Xk

i j by minimizing (7) under constraints (4)
and (5), with α = (2/2 − δ). However, these optimal solutions
will result in different values of the other term (2) about the
total idle distance in the objective function of (11), and only
solutions of problem (7) that also satisfy other constraints such
as (3) can be feasible solutions of problem (11). Hence, we
use (7) as an service fairness metric term of the objective
function for problem (11), and approximately minimize the
difference between local and global demand–supply ratios by
minimizing (7).

It is worth noting that when ε0 is small and γ0 is close to 1,
α is close to 0.

B. Proof of Theorem 1

Proof: To find the equivalent form of the minimax prob-
lem (11) when τ = 1 (here we only have variable X , not
X2, . . . , X τ ), the main step is to find the dual problem of the
maximization over r for any fixed X and L. No constraint
of problem (11) is a function of r , when considering the
maximization problem with variable r and already fixed X
and L, the constraints do not affect the values of r . Hence,
to find the equivalent minimization form of the maximization
problem, we do not include constraints irrelevant to r and only
consider the objective function part. For any fixed X and L,
the maximum part of problem (11) is equivalent to

max
r∈�

JD(X)+β JE (X, r) = JD(X) + cT (X)r

[c(X)]i = β
1

(∑n
j=1 X ji −∑n

j=1 Xij + Li
)α

JD(X) =
∑

i

∑

j

Xi j Wi j . (31)

Here JE (X, r) is affine (also concave) of r for any fixed
value of (X, L), since with (X, L) fixed, function [c(X)]i

also has a fixed value. And JE (X, r) a convex function of
(X, L) for any fixed value of r . The function of power 1

xα

is convex on scalar x > 0 when α > 0 [8, Ch. 3.1.5].
Consider a concatenated matrix [X, L] ∈ R

n×(n+1) with the
last column as vector L ∈ R

n , and a matrix Ai ∈ R
n×(n+1)

with Ai
j i = 1, j = 1, . . . , n, Ai

i j = −1, j = 1, . . . , n,
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Ai
i,(n+1) = 1. Then

∑n
j=1 X ji − ∑n

j=1 Xij + Li =
T r Ai [X, L] = ∑n

i=1
∑n+1

j=1 Ai
i j [X, L]i j , and [c(X)]i =

(1/(Tr Ai [X, L])α) is a composition of function (1/xα) with
affine mapping T r Ai [X, L] : R

n×(n+1) → R+, trace of the
multiplication of matrices [X, L] and Ai . Because compo-
sition with an affine mapping is an operation that preserves
convexity [8, Ch. 3.2.2], [c(X)]i is a convex function of X
and L. Finally, JE (X, r) = ∑n

i=1 βri [c(X)]i , βri ≥ 0 is
a nonnegative weighted sum of convex functions [c(X)]i ,
an operation that preserves convexity [8, Ch. 3.2.1]. Hence,
JE (X, r) is a convex function of X and L.

The Lagrangian of problem (31) with the Lagrangian multi-
pliers λ ≥ 0, v ≥ 0 is L(X, r, λ, v) = JD(X)+ bT λ− (AT λ−
c(X)−v)T r, where (AT λ−c(X)−v)T r is a linear function of
r , and the upper bound exists only when AT λ−c(X)−v = 0.
The objective function of the dual problem is

g(X, λ, v) = sup
r∈�

L(X, r, λ, v)

=
{

JD(X) + bT λ if AT λ − c(X) − v = 0

∞ m otherwise.

With v ≥ 0, the constraint AT λ − c(X) − v = 0 is equivalent
to AT λ − c(X) ≥ 0. Strong duality holds for problem
of (31) since it satisfies the refined Slater’s condition for affine
inequality constraints [8, Ch. 5.2.3]—the primal problem is
convex, cT (X)r is affine of r , and by the definition of the
uncertainty set, the nonempty affine inequality constraint of r
is feasible. The primal convex problem is feasible with affine
inequality constraints. The dual problem of (31) is

min
λ≥0

JD(X) + bT λ s.t. AT λ − c(X) ≥ 0. (32)

The minimization problem (32) is the dual problem of (31)
with the same optimal cost for any fixed value of X and L, and
problem (11) is to minimize the same objective JD(X)+ bT λ
also over X (when T = 1, L is the number of initial
empty vehicles at each region measured by GPS data, so
L is a provided parameter in this case. When τ ≥ 2, Lk ,
k = 2, . . . , τ are variables) together with the constraints
about X . The constraint AT − c(X) ≥ 0 is convex of X ,
since [c(X)]i is convex of X for i = 1, . . . , n, and the
constraint of AT − c(X) ≥ 0 is equivalent to n inequal-
ities between convex functions and a scalar 0, which are
convex constraint inequalities. Grouping the minimization
objective and all the constraints of problem (11), we get
problem (21) as the equivalent convex optimization form of
problem (11).

C. Proof of Lemma 2

Proof: Now consider the maximin problem over stage k
and k + 1, 1 ≤ k ≤ τ − 1 of problem (11)

max
rk∈�k

min
Xk+1,Lk+1

J =
τ∑

k=1

(JD(Xk) + β JE (Xk, rk))

s.t. constraints of (11). (33)

The domain of problem (33) satisfies that Xk+1, Lk+1, λ is
compact, and the domain of rk is compact. The objective func-
tion is a closed function convex over Xk+1, Lk+1 and concave
over rk . According to Proposition 2.6.9 with condition (1)
of [5], when the objective and constraint functions are convex
of the decision variables, concave of the uncertain parameters,
and the domain of decision variables and uncertain parameters
are compact, the set of saddle points for the maximin problem
at time k and k + 1, i.e., max

rk∈�k

min
Xk+1,Lk+1

J with the objective

function and constraints of problem (33) is nonempty. The
minimax equality holds for problem (33) at time k and k + 1

max
rk∈�k

min
Xk+1,Lk+1

J = min
Xk+1,Lk+1

max
rk∈�k

J.

Repeat the above proof process from k = τ − 1 backward to
k = 1, we get a minimax form of robust optimization problem

min
X1:τ ,L2:τ

max
r1∈�1,...,rτ ∈�τ

J = min
X1:τ ,L2:τ

max
rc∈�

J .

D. Proof of Lemma 3 and Theorem 2

1) Proof of Lemma 3:
Proof: With the polytope form of uncertainty set (23),

the domain of each rk is closed and convex, i.e., is compact,
and Lemma 2 holds. Considering the maximizing part of
problem (22)

max
r1∈�1,...,rτ ∈�τ

J, s.t. constraints of (11) (34)

the Lagrangian of (34) with multipliers λk ≥ 0, vk ≥ 0 is
L(Xk , rk, λk, vk) = ∑τ

k=1(JD(Xk)+bT
k λk −(AT

k λk −c(Xk)−
vk)T rk). Hence, based on the proof of Theorem 1, we take
partial derivative of the Lagrangian for every rk ∈ �k . The
inequality constraint of rk ∈ �k defined as (23) is affine of
rk and feasible (nonempty), cT (Xk)rk is affine of rk , and
problem (34) is convex with feasible affine inequality con-
straints. Hence, refined Slater’s condition for affine constraints
is satisfied and strong duality holds for problem (34). An
equivalent form of (11) under uncertainty set (23) is defined
as (24).

2) Proof of Theorem 2:
Proof: With uncertain set defined as (25), the domain

of each rk is compact and Lemma 2 holds. We consider
the equivalent problem (22) of (11), and first derive the
Lagrangian of the maximum part of the objective function (22)
with constraint λ ≥ 0, vk ≥ 0

L(Xk , rk, λ, vk )

= bT λ −
τ∑

k=1

((
AT

k λ − c(Xk) − vk
)T

rk − JD(Xk)
)
. (35)

Similarly as the proof of Theorem 1, we take the partial
derivative of (35) over each rk , the objective function of the
dual problem is

sup
rk∈�k

L(Xk , rk, λ, vk ) =
τ∑

k=1

JD(Xk) + bT λ

when AT
k λ − c(Xk) − vk = 0.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MIAO et al.: DATA-DRIVEN ROBUST TAXI DISPATCH UNDER DEMAND UNCERTAINTIES 15

Since the inequality constraint of the uncertainty set defined
as (25) is affine of each rk and feasible (nonempty uncertainty
set), cT (Xk)rk is affine of rk , and problem (34) is convex
with feasible affine inequality constraints, refined Slater’s
condition with affine inequality constraints is satisfied. Then
strong duality holds, problem (26) is a equivalent to the
computationally tractable convex optimization form (11) under
uncertain set (25).

E. Proof of Theorem 3

Proof: Under the definition of uncertainty set (20) for
concatenated rk , the domain of each rk is compact, and
problem (11) is equivalent to (22). We now consider the

dual form for the objective function
τ∑

k=1
JE (Xk, rk) that

relates to rk . By the definition of inner product, we have∑τ
k=1 cT (Xk)rk = cT

l (X)rc, cl(X) = [cT (X1) . . . cT (X τ )]T .
When the uncertainty set of rc is an SOC defined as (20),
problem (22) is equivalent to

min
Xk ,Lk

max
rc≥0

⎛

⎝cT
l (X)rc +

τ∑

k=1

∑

i

∑

j

Xk
i j Wi j

⎞

⎠

s.t. rc = r̂c + y + CT w

‖y‖2 ≤ �B
1 , ‖w‖2 ≤

√
1

ε
− 1

constraints of (11). (36)

We first consider the following minimax problem related to
the uncertainty set:

max
rc≥0

cT
l (X)rc

s.t. rc = r̂c + y + CT w. (37)

The constraints of problem (37) have a feasible solution
rc = r̂c, y = 0 and w = 0, such that ‖y‖2 < �B

1 , ‖w‖2 <
((1/ε) − 1)1/2, and cT

l (X)rc is affine of rc. Hence, Slater’s
condition is satisfied and strong duality holds.

To get the dual form of problem (37), we start from the
following Lagrangian with v ≥ 0, L(X, rc, z, v) = cT

l (X)rc +
zT (r̂c + y +CT w−rc)+vT rc. By taking the partial derivative
of the above Lagrangian over rc, we get the supreme value of
the Lagrangian as

sup
rc

L(X, rc, z, v) =
{

zT (r̂c + y + CT w) if cl(X) ≤ z

∞ o.w.

Then with the norm bound of y and w, we have

sup
‖y‖2≤�B

1 ,‖w‖2≤
√

1
ε −1

(zT (r̂c + y + CT w))

= r̂ T
c z + �B

1 ‖z‖2 +
√

1

ε
− 1‖Cz‖2.

Hence, the objective function of the dual problem for (37) is

g(X, rc, z) = sup
rc∈UCS

ε

L(X, rc, z)

=
⎧
⎨

⎩
r̂ T

c z + �B
1 ‖z‖2 +

√
1

ε
− 1‖Cz‖2, if cl(X)≤ z

∞ o.w.

Together with the objective function JD(Xk) and other
constraints that do not directly involve rc, an equivalent
convex form of (11) given the uncertainty set (20) is shown
as (27).
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