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Abstract—On-street parking is an essential component of
parking infrastructure for smart cities, which allows users to park
near their destinations for short term. However, due to limited
capacity, saturated on-street parking becomes a serious and
widespread problem for urban transportation systems. Greedily
searching for an on-street parking spot in a saturated area is often
a frustrating task for drivers, and cruising for vacant parking
spots results in additional delays and impaired local circulation.
With the recent development of networked smart parking me-
ter, real-time city-wide on-street parking information becomes
available for more efficient parking management. In this paper,
we design an online parking guidance system that recommends
parking spots in real-time based on the parking availability
prediction. With a receding horizon optimization framework,
our solution minimizes the user’s driving and walking cost by
adapting the spatiotemporally dynamic supply and demand in
the local area, significantly reducing parking competitions in a
timely manner. We implement and evaluate our solution with
a dataset of 13,503,655 parking records collected from 5228 in-
ground sensors distributed in the Australian city Melbourne. The
evaluation results show that our approach achieves up to 63.8%
delay reduction compared with existing solutions.
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I. INTRODUCTION

As urban population continued to grow in the last few
decades, increasing urban traffic imposes significant chal-
lenges on the transportation system infrastructure in smart
cities, such as managing accidents, traffic congestion, and
parking difficulties [1]. For example, people who drive to
the city usually need to find parking spots close to their
destinations. Since on-street parking is low-cost and available
widely across the city, it is preferred over other central garage
facilities. However, searching for available parking space on
street is a very challenging task. To know the spot availability
at a road segment, a driver needs to drive around that specific
location. It is estimated that searching for a parking spot
creates additional delays and impairs local circulation. One
study reveals that an average of 30% of the traffic in busy
areas is caused by vehicles cruising for vacant parking spots
[2]. In central areas of large cities cruising may account for
more than 10% of the local circulation as drivers can spend
20 minutes looking for a parking spot [3].

Smart parking meters have been deployed in metropolitans,
such as San Francisco and Melbourne, they can sense the occu-
pancy status of the spots and report real-time availability infor-
mation via network infrastructure. However, uncertainty of the

time-sensitive occupancy information grows significantly as
the distance between a user and his/her destination increases.
As a result, multiple vehicles may aggressively seek for a
limited number of spots at the same location, which exacerbate
the intrinsic competition among users. Such uncoordinated
driving behavior escalates local congestion and introduces
extra cruising time for those vehicles that arrive late. There
are a large number of research works on different aspects
of intelligent parking systems in the last few years, which
include occupancy detection [4], [5], system development [6],
and shared service design [7]. Some research works present
parking assignment algorithms [8], [9], [10], [11], which
rely on reservation-based solution designed for controlled
off-street parking facilities. However, these reservation-based
solutions do not work for on-street parking, because there is
no mechanism to enforce reservation. Moreover, these works
don’t address the uncertain demand introduced by external
users that competes with system users for parking spots.

In fact, historical parking meter dataset offers rich spa-
tiotemporal information about parking demand in metropolitan
areas, which allows us to learn availability patterns and predict
probabilities of parking occupancy of each road segment at
different times of the day. Researchers have been able to
predict parking occupancy rate by different machine learning
methods, such as regression tree and neural network [12], [13].
On the other hand, Global Positioning System (GPS) systems
also provides real-time location and mobility of each modern
vehicle. Such real-time information provides opportunities
to improve the efficiency of parking coordination. In this
paper, we consider the following problem: optimizing for
drivers’ anticipated future cruising time to search for spots
and walking time required to reach their destinations, while
fulfilling current, local parking demand. To address this prob-
lem, we take a receding horizon approach to adaptively adjust
parking recommendations for users based on their current and
predicted travel progress and the parking occupancy status.
By predicting and adapting to parking demand changes, our
solution effectively resolves user competition in a distributed
manner.

There are a few papers on on-street parking, most of them
employ a game-theoretical approach [14], [15]. These works
provide valuable insights to the nature of the problem, but such
solutions are difficult to apply in reality. Different from these
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Fig. 1. The framework of the real-time on-street parking guidance system

designs, we employ a simple and practical framework based on
prediction and real-time parking data and traffic data, which
effectively coordinate incoming vehicles and reduce parking
competition during rush hours. In [16], authors consider a
probability of successful parking within a certain distance from
the current location, and apply Traveling Salesman Tour (TSP)
to search for parking spots. Our solution is different since we
consider competition among multiple drivers and minimizing
multiple objectives: both driving and walking time of the users.

The contributions of this work are as follows,
• To the best of our knowledge, this is the first study

on on-street parking management using receding horizon
optimization with real-time large-scale data. We design a
generic framework that considers both current and future
parking spot availability, minimizing users’ driving and
walking time under practical constraints.

• We formulate the multi-user on-street parking problem
and show its NP-hardness.

• To deal with demand uncertainty caused by competition
of external users, our framework incorporates demand
prediction based on historical datasets into real-time
coordination, which is essential for accurate and efficient
parking coordination.

• We implement and evaluate our solution with a dataset
in the Australian city Melbourne with 13,503,655 parking
records collected from 5228 in-ground sensors distributed
around 328 street segments in 27 areas across the central
business district. The evaluation results show that our
approach achieves up to 63.8% delay reduction compared
with existing solutions.

II. DESIGN OVERVIEW

Fig. 1 shows the framework of our on-street parking guid-
ance system. A user uses the parking guidance mobile app
to send a parking request with the current location and the
destination to the cloud center. The cloud server maintains
a list of all user requests and updates the real-time parking
space status. The server also estimates the users’ arrival time
and runs the recommendation algorithm based on the parking
availability prediction model. At each decision point, a parking
recommendation sequence of road segments is sent back to
the user. The user then follows the sequence to travel through
corresponding road segments to search for parking.

Fig. 2. Receding horizon optimization of multi-user on-street parking

A. Assumptions

We make two practical assumptions in this work: (i) not all
drivers searching for on-street parking use our system; (ii) our
system may change users’ parking behavior.

According to the assumption (i), users will compete with
some “external drivers” that search for parking but do not use
our parking guidance system. And due to the assumption (ii),
the parking availability prediction should depend on both the
historical patterns and the real-time sensing data.

For simplicity, the parking cost is defined as the combination
of two components: a) driving time cost: the cost generated
by driving from current location to the parking location; b)
walking time cost: the cost generated by walking from the
parking location to the destination. Note that our cost function
is not exclusive, other factors including price, time restrictions,
etc can be included as objectives in the same framework.

Therefore, the principle of our on-street parking guidance
system is to recommend a sequence of on-street parking spaces
to the driver, which balances the driving cost and walking cost
according to our prediction of parking availability. Intuitively,
drivers always tend to search the street nearest to their desti-
nations. The greedy algorithm are suboptimal especially when
the destination is in crowded areas and it is difficult to find
vacant parking spots. As a result, the driver has to cruise longer
for a vacant parking spot, introducing extra traveling time and
walking time.

The basic idea of the on-street parking guidance is il-
lustrated in Figure 2. Specifically, there are six street seg-
ments for on-street parking near the destination, denoted
by s1, s2, . . . , s6. After the user submits a query request, a
recommendation sequence will be sent to him. During his
trip to the destination, the recommendation sequence will be
updated at each decision point (e.g., every 5 minutes). In the
example of Figure 2, the latest update for user u1 is [s1, s6, s4].
If following the guidance, u1 will search s1 first, and then go
to s6 if s1 is occupied. Unlike the greedy algorithm which
retains proximity as a high priority, the parking guidance
system reduces total cost which includes both driving cost
and walking cost.

Suppose there is another user u2 searching for parking in



the same destination area as u1, as shown in Fig. 2, then
the competition between users will occur if the system serves
users separately. To resolve conflict, we dynamically update
the estimated arrival time of the users at the parking spots
and recommend a spot to the user who arrives first. For a
smart parking system, assigning a parking spot to the “first-
arrived” user can avoid the conflict and reduce the waste of
parking resources. For example, suppose s1 is recommended
to both u1 and u2 as the first option. If there is only one
vacant parking spot in s1, it will cause competition between
u1 and u2. If u2 is estimated to arrive earlier than u1, then
s1 will still be recommended to u2 while u1 may receive
a new recommendation at the next decision point. Suppose
u2 has a traffic congestion afterwards and is estimated to
arrive later than u1, then the recommendation will be updated
correspondingly. In that way, the multi-user competition is
resolved and the on-street parking spots are fully utilized.

III. MATHEMATICAL MODEL

A. Problem Statement

Suppose there are a set of users U = {ui|i = 1, . . . , N}
who are searching for on-street parking, and a set of street
segments S = {sj |j = 1, . . . ,M} each has a fixed number
of spots for parking. li(k) denotes the location of ui at the
kth decision point, and hj(k) describes the number of vacant
parking spots of sj at the kth decision point.

At the kth decision point, we denote by Γ(k) a set of streets
with available parking spots.

Γ(k) = {sj : hj(k) > 0, j = 1, . . . ,M}
Let Wi denote the upper bound of walking distance accepted

by ui from the parking location to the destination, and wij is
the walking distance if user ui parks at street sj . Define Ωi(k)
as a set of feasible candidate streets for user ui,

Ωi(k) = {sj : wij < Wi, sj ∈ Γ(k)}
The binary control variable at kth decision point is defined

as:
xij(k) =

{
1, if street sj is assigned to user ui
0, otherwise

If street sj is assigned to user ui, define the cost at kth
decision point as cij(li(k)) which depends on the current
location of ui.

The parking problem is thus formulated as a dynamic
assignment problem which assigns streets to users over time.
The reasons are: 1) The decisions will be changed as real-time
traffic and occupancy status change, as well as other factors
which influence the cost. 2) The next locations should be
provided if recommended parking location has been occupied.

The objective function is to minimize the total cost over T
time slots by allocating streets to users. The constraints are:
(i) At most one street can be assigned to a user at any decision
point; (ii) One street may be assigned to multiple users, while
the number of users cannot exceed its capacity.

min
x

T∑
k=1

∑
ui∈U

∑
sj∈Ωi(k)

cij(li(k)) · xij(k)

s. t.
∑

sj∈Ωi(k)

xij(k) = 1 ∀ui ∈ U, k∑
ui∈U

xij(k) ≤ hj(k) ∀sj ∈ Γ(k), k

fi(li(k), xi(k)) = li(k + 1) ∀ui ∈ U, k
xij(k) ∈ {0, 1} ∀ui ∈ U, sj ∈ S, k

(1)

The location of user ui at the beginning of the (k+1)th time
period is given by a function fi(li(k), xi(k)) which depends
on the previous location and the assignment decision.
B. Computational Complexity

Even if the location (state) dynamics is constant (i.e.
li+1(k) = fi(li(k), xi(k)) = li(k), binary resource allocation
is known to be difficult because of the intrinsic hardness of
integer programming. While the dynamics is not constant in
the parking problem clearly, we observe that the optimization
(1) is equivalent to the dynamic resource allocation (DRA)
problem [17] in the sense that our problem is to allocate M
streets (resources) to N users (activities) over T time periods:

At the beginning of the kth time period, the state of each
user is the current location. And for each user ui, a task ai(k)
is selected from the set A = {1, 2, . . . ,M}. Let ai(k) = j
represents street sj is assigned to ui in the kth time period.
During the kth time period, it generates cost ci(li(k), ai(k))
according to the current state and the assignment, and con-
sumes resource rij(ai(k)).

rij(ai(k)) =

{
1 if ai,k = j
0 otherwise

The object is to minimize the total cost over T time periods.

min
a

T∑
k=1

∑
ui∈U

ci(li(k), ai(k))

s. t.
∑
ui∈U

rij(ai(k)) ≤ hj(k) ∀j, k

fi(li(k), ai(k)) = li(k + 1) ∀i, k

(2)

The decision variables are the actions ai(k) which represents
the assignment solution of kth time period. It is demonstrated
that problem (2) is equivalent to problem (1).

If we define
c′i(li(k), ai(k)) =

1

ci(li(k), ai(k))
then problem (2) can be rewritten as

max
a

T∑
k=1

∑
ui∈U

c′i(li(k), ai(k))

s. t. constraints of problem (2).

(3)

which is a standard form of DRA problem.
Without any additional assumption on the structure of the

problem, DRA is even NP -hard to approximate within any
constant factor through the reduction from a package integer
problem to a DRA problem [17].

C. Challenges
The stochastic nature of a real parking application is more

difficult than the rather deterministic assignment problem
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Fig. 3. Average on-street parking utilization on Weekday and Weekend

described above, because in the real scenario, the cost function
depends not on the current parking availability but also the
future parking information. Therefore, we will first discuss
how we predict future parking availability and then will
discuss the system design to give a parking recommendation
sequence to a single user, and how the approach can be
extended to avoid multi-user competition.

IV. PARKING AVAILABILITY PREDICTION

A. Data Description

The data used in this paper is collected from Melbourne
Parking Events 2014 data set [18]. The City of Melbourne has
installed around 5228 in-ground sensors distributed around 328
street segments in 27 areas across the central business district.

In the data set, a record for each parking event includes:
arrival time, departure time, bay ID, area ID, street ID,
between street 1, between street 2, which gives a duration
of occupancy for one specific parking spot. In this paper we
focus on parking street segments instead of individual parking
spots, therefore parking availability data is usually aggregated
for a street segment. The utilization rate of a street segment
si at time t can be measured by

ri(t) =
oi(t)

Ni
(4)

where oi(t) is the number of occupied parking spots of si at
time t, Ni is the total number of parking spots of si.

For most of the parking spots, the sensors will be turned on
at the start of the operational time (e.g., early morning at 7:30
AM) and turned off at the end of the operational time (e.g.,
night at 6:30 PM). In order to deal with the abnormality, we
only use data from 8:00 AM to 6:00 PM to learn historical
parking patterns and prediction model.
B. Feature Set

Fig. 3 compares the historical pattern of utilization rate
on Monday and Saturday over all the street segments. It
shows that the parking utilization characteristics are different
according to the day of week, both in terms of magnitude and
shape. Fig. 4 shows the correlations between the occupancy
of the same street segment with different time lags (i.e., 10:00
AM and 9:50 AM, 9:40 AM . . .). It suggests a strong temporal
correlation for parking utilization for small time lags. The
correlation coefficients decreases as the time lag increases.

The aim is to predict the utilization rate of one specific
street segment given a specific date and time. Therefore, we
consider the the input as {si, ri[tprev : tnow], t, dow} and the
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Fig. 4. Correlation between the occupancies of one street segment over time

output as r̂i(t) where r̂i(t) is the predicted utilization rate of
street segment si at time t, ri[t1 : t2] is real-time occupancy
status of si between time t1 and t2, tnow is the current time,
tprev is the previous time point ahead of the current time, t is
the predicted time, dow is the day of week.

C. Prediction Model

A number of researches have focused on how to detect
the occupancy state of parking spots in dedicated parking
facilities, and thus proposed various parking availability pre-
diction models [19], [20], [21]. However, the prediction of
parking availability for on-street parking is more difficult than
off-street parking since the variance of on-street parking is
relatively higher. In addition, our guidance system may change
the parking behavior of drivers. Thus, prediction only by
using historical parking patterns is not accurate enough. The
utilization rate data is time series and according to Fig. 4,
there is linear association between lagged observations. This
suggests past observations might predict current observations.
And that motivates us to propose an autoregressive (AR) model
for parking availability with real-time sensing data.

1) AR model w.r.t. utilization rate: For street segment si,
an AR process that depends on k past observations can be
written as

ri(t) = c+

k∑
m=1

ϕmri(t−m) + ε(t) (5)

where ϕ1, . . . , ϕk are the parameters of the model, c is a
constant, and ε(t) is white noise.

Let r̂i(t) be an unbiased estimator of ri(t):
r̂i(t) = E[ri(t)|ri(t−m),m = 1, . . . , k]

= ĉ+

k∑
m=1

ϕ̂mri(t−m)
(6)

where ϕ̂1, . . . , ϕ̂k, ĉ denote the estimated parameters, which
can be learned statistically from historical data. The past
observations ri(t − 1), . . . , ri(t − k) can be obtained from
sensing datasets.

2) AR model w.r.t. utilization rate variation: To deal with
the stochastic issue of on-street parking availability prediction,
reference [20] employed the trending and detrending tech-
niques, which are commonly used in time series analysis for
financial applications. That approach is aimed to separate the
deterministic part of data from the random parts. In [20], the
authors focused on parking areas, which is a group of parking
locations (i.e., street segments). Similarly, the approach can
also be applied to one certain street segment, which is a group
of parking spots.



We define the utilization rate variation of si as
vi(t) = ri(t)− ri(t− 1) (7)

A trend is defined as the moving mean of the data. Thus, the
trend of utilization rate variation is calculated by averaging the
variation of a certain street segment over the past W weeks.
The average variation v̄i(t) for si at time t is obtained from

v̄i(t) =
1

T

W∑
j=0

wj

T−1∑
m=0

vi(t−m− jTw) (8)

where T is the length of the moving window in minutes,
Tw is the length of a week which depends on the choice of
time step, W is the number of weeks in consideration, and
wj(
∑W

j=0 wj = 1) are positive weights to emphasize the data
of most recent weeks.

Then, the utilization rate variation can be decomposed into
two components

vi(t) = v̄i(t) + ṽi(t) (9)
where v̄i(t) is the trend component as defined in (8), and ṽi(t)
is the stochastic component.

Therefore, we can detrend the utilization rate variation with
respect to the variation trends of the corresponding time of day
and day of week, and then extract the stochastic component
of si at time t, which is defined as

ṽi(t) , vi(t)− v̄i(t) (10)
where vi(t) is the real-time utilization rate variation defined
in (7) and v̄i(t) is calculated from (8).

Similarly, let v̂i(t) be an unbiased estimator of ṽi(t), which
can be obtained by the autoregressive model described in (6).

After predicting the utilization rate variation, the estimated
utilization rate of si at time t (i.e., the occupancy probability)
can be obtained as

r̂i(t) = ri(t− 1) + v̄i(t) + v̂i(t) (11)

V. SINGLE-USER ON-STREET PARKING GUIDANCE

For a driver searching for an on-street parking spot, the
request is represented by his current location denoted by
α ∈ R1×2 and destination denoted by δ ∈ R1×2. First, some
candidate street segments will be filtered according to the
user’s preferences, such as walking distance threshold, parking
facility type, parking time and parking fee, etc. Suppose there
are n candidate street segments for on-street parking which
satisfies the user’s preferences. The position of the i-th street
segment is denoted by si ∈ R1×2, i = 1, 2, . . . , n, and the
position matrix for all possible street segments is denoted by
S ∈ Rn×2.

We define the decision vector as Xk = [xk1 , . . . , x
k
n] , with

xki ∈ {0, 1}, i = 1, . . . , n as a binary variable vector, satisfying
that xki = 1 if and only if we recommend the street segment si
to the driver during time slot k. Then the constraint Xk1n =
1, k = 1, . . . , T must be satisfied, since the driver should be
recommended to only one street segment at each time slot,
where 1n is a length n column vector of all 1’s.

A. Driving Cost

One design requirement is to reduce the driving cost.

TABLE I
PARAMETERS AND VARIABLES

Parameters Description
n the number of candidate street segments for parking
S ∈ Rn×2 the position of n street segments
T the length of the recommendation sequence
α ∈ R1×2 the current position of the user
δ ∈ R1×2 the destination of the user
P ∈ Rn×T the occupancy probability of n street segments

for T time slots
λ ∈ [0, 1] the weight factor between the two costs
Xk ∈ {0, 1}1×n recommendation decision at time slot k

Traveling from current location α to the recommended
position will incur a driving time cost associated with the
recommendation decision during the first time slot

d1 = dist(α,X1S) (12)
where dist(x, y) represents the cost from location x to y.

Remark 1. Generally, dist(x, y) is a distance function which
can be defined as anything that represents cost. When real-time
traffic information is available to the system, time duration can
be used as dist(x, y) to deal with extraordinary events such
as road congestion, weather, law, and etc. In real application,
such information can be obtained by open resources such as
Google Maps APIs [22].

To consider the future cruising in the decision, we calculate
the driving cost during time slot k similarly

dk = dist(Xk−1S,XkS), k = 2, . . . , T (13)
But even when the driver arrives at the recommended

street segment, he may find that all parking spots there
are occupied. Therefore, we need a probabilistic estimation
for parking availability. We define the probability that the
street segment si is occupied during time slot k as pki =
P(si is occupied at time slot k) and the probability matrix as
P k = [pk1 , . . . , p

k
n]T .

Remark 2. Previous works have developed multiple ways to
learn parking availability prediction model [19], [20], [21],
[23]. The accuracy of the prediction model will affect the
results of the recommendation solutions. Predicted values of
occupancy information pki depend on the modeling method
of the smart parking system. For instance, if the system only
applies historical parking patterns to learn the prediction
model, pki will not be updated. If the system learns parking
availability prediction by both historical data and real-time
information such as [19], [23], pki will be updated with real-
time sensing data.

The driving cost throughout the time horizon is defined as
the expected total driving distance

cd =

T∑
k=1

(
dk

k−1∏
l=1

P(X lS is occupied at time slot l)
)

=

T∑
k=1

(
dk

k−1∏
l=1

X lP l

) (14)

B. Walking Cost

If the driver successfully parks at time slot k at parking
space XkS, walking distance from there to destination δ is



wk = dist(XkS, δ), k = 1, . . . , T (15)
The walking cost throughout the time horizon is the ex-

pected total walking distance

cw =

T∑
k=1

(
wk × P(XkS is not occupied at time slot k)

×
k−1∏
l=1

P(X lS is occupied at time slot l)
)

=

T∑
k=1

(
wk(1−XkP k)

k−1∏
l=1

X lP l

)
(16)

C. Problem Formulation

The objective function is the combination of both driving
cost and walking cost. However, there exists a trade-off be-
tween those two objectives since the two costs mean different
for the driver. For example, adding one more mile of walking
distance is less acceptable than adding the same amount of
driving distance. Thus, we add a weight parameter λ ∈ [0, 1]
when summing up the costs related to both objectives. All the
parameters and variables are listed in Table I.

min
X

J = λcd + (1− λ)cw

s.t. d1 = dist(α,X1S) (12)

dk = dist(Xk−1S,XkS), k = 2, . . . , T (13)

wk = dist(XkS, δ), k = 1, . . . , T (15)

Xk1n = 1, k = 1, . . . , T

Xk ∈ {0, 1}1×n

(17)

The user will get a parking guidance from the begin-
ning of the trip, and the solution will be updated at every
decision point according to the prediction model. At each
decision point, a sequence of parking locations is provided
as: X1, . . . , XT . If the user cannot find a vacant parking spot
with the recommendation X1, he may follow the next decision
X2. The process of the on-street parking recommendation is
summarized in Algorithm 1.
Remark 3. When integer programming is not efficient enough
for a large-scale user case regarding to the problem size, one
relaxation method is replacing the constraint xki ∈ {0, 1},∀k, i
by 0 ≤ xki ≤ 1 With this approximation, every element of Xk

is not restricted to a binary variable. After getting an optimal
solution Xk of the relaxed form of (17), set the largest value
of Xk to 1, and the others to 0.

VI. MULTI-USER COMPETITION

So far, we have described a system where one single user
is trying to find a vacant parking spot. However, competition
between drivers occurs when multiple users simultaneously
receive an indication of the same parking space.

Since we adopt a probability model to predict parking
availability, the system can be improved by introducing multi-
user information. For user j denoted by uj , the probability
that the i-th street segment si is occupied during time slot k

Algorithm 1 On-street parking recommendation
Inputs: current location α, destination δ, length of sequence

T , update cycle tupdate, weight λ
Initialization: candidate street segments S

1: while user does not successfully park do
2: if time is the beginning of tupdate time slot then
3: update current location α;
4: update occupancy probability P ;
5: solve problem (17);
6: push updated sequence to user if necessary
7: end if
8: end while

Fig. 5. Multi-user competition

is pki (uj), which can be learned by both historical and real-
time data with a feature set mentioned in Section IV.

pki (uj) = P(si is occupied at tpred)

= g(si, ri[tprev : tnow], tpred, dow)

= gi(tpred)

(18)

where g(·) represents the prediction model and the input is
the feature set discussed in Section IV, tpred is the predicted
time that uj arrives at si. We use gi(tpred) to represent the
occupancy probability of si at time tpred learned by prediction
model g(·) for short.

In order to solve the multi-user competition problem, pki (uj)
should be modified with multi-user information when solving
the optimization problem of formulation (1):

pki (uj) = gi(tpred) + σ(uj) (19)
where σ(uj) is the multi-user factor that other users will arrive
at si earlier than uj .

The principle of our approach is to serve the “early-arrived”
user as a priority. At each decision point, the system makes
recommendations to all users. For those who will arrive later,
the recommendation solutions for them include the influence
of those “early-arrived” users to avoid conflict.

For example, if users u1, . . . , um are competing for the same
street segment si, as shown in Fig. 5, and they are estimated to
arrive at si at time tpred u1

, . . . , tpred um
respectively. At the

decision point of u1, when solving problem (17), we need
to get the occupancy probability of si at time tpred u1

. If
there will be n users arriving earlier than u1, then pki (u1)
will be increased by adding the factor that n extra parking
spots of si will be taken before time tpred u1 Thus, a new
recommendation sequence with the lowest cost will be updated
for u1 based on the modified occupancy probability. si will
be recommended to u1 if it is still a good solution for him,
otherwise it will be replaced by another street segment.

To realize such a probability-based approach, a tuple



Algorithm 2 Calculation of multi-user factor
Inputs: user uj , street segment si, predicted time tpred
Output: multi-user factor σ(uj)

1: initialize σ(uj)← 0;
2: for each user uq and uq 6= uj do
3: if uq.street == si and uq.tarrival < tpred then
4: // if there is a user who arrives earlier than uj ,
5: // increase the number of occupied spots by 1
6: σ(uj)← σ(uj) + 1/Ni;
7: end if
8: end for

(street, tarrival) must be maintained for each user when there
is an update, where street is the first street segment in the
recommendation sequence, tarrival is the estimated arrival
time from the user’s current location to street which can be
obtained by server according to real-time traffic.

When calculating the cost function, if si (with total Ni

parking spots) is recommended to uj during time slot k,
the probability pki (uj) will be added by the multi-user factor
σ(uj), which is calculated by Algorithm 2.

VII. DATA-DRIVEN EVALUATIONS
A. Evaluation of Parking Prediction

Mean Square Error (MSE) is used commonly to measure the
prediction accuracy. Consider time series y(t) (t = 1, . . . , n)
together with its predicted series ŷ(t), the MSE is defined as

MSE(y, ŷ) =
1

n

n∑
t=1

(
y(t)− ŷ(t)

)2
(20)

where y(t) and ˆy(t) are actual and predicted utilization rates
respectively, and n is the total number of street segments.

We use the historical data collected in 20 successive Mon-
days, from 06/30/2014 to 11/10/2014. The data of the first 19
days are used for training, and the last day for testing.

Fig. 6 shows the MSE calculated for the predictions made
at 10:30 AM using the data of 11/10/2014. We compare the
performance of three prediction models: (i) historical patterns
without real-time information; (ii) AR model I (AR model
w.r.t. utilization rate); (iii) AR model II (AR model w.r.t.
utilization rate variation).

Since the variance of parking patterns is relatively high even
for the same street segment in different days, prediction only
using historical data is not accurate enough. The prediction
accuracy can be significantly improved by using time series
prediction with real-time sensing data. In that case, the MSE
increases as the prediction horizon grows because of the accu-
mulated error over time. AR model II which uses trending and
detrending techniques has a even higher prediction accuracy,
especially in the short time horizon, which is essential to
applications such as parking routing and last mile navigation.

B. Simulation Setup

We conduct a data-driven simulation based on the Mel-
bourne Parking Events 2014 data set [18] in two areas. Area
A is a business district of Melbourne city, including 13 street
segments and 152 parking spots in total for on-street parking,
while Area B is a market place which has 6 street segments
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Fig. 6. Comparison of prediction errors with different prediction horizons

with 211 parking spots. Both areas have high parking demand
during the day, we chose those areas to demonstrate the
capacity of our solutions.

During the simulation, the real-time occupancy information
is obtained from the data set on the specific date. The initial
locations of users were generated arbitrarily in Melbourne city.
The update period tupdate is set as 5 minutes since the average
time duration that the occupancy status of a street segment is
unchanged is 4.34 minutes according to the analysis of the
data set. The parking availability prediction model is learned
from the dataset of the first 10 months of 2014, and the data
of November is used for testing.

In the evaluation, the time duration is chosen to represent the
distance function dist(x, y), which can be obtained by Google
Maps Distance Matrix API [24], in order to take the real-
time traffic into consideration. Therefore, the total time delay,
which starts from searching for a parking spot to arriving at the
exact destination, should be measured to reflect the approach’s
performance.

Number of searched street segments (ns): the number of
street segments the user has searched before he successfully
finds a vacant parking spot.

Extra Searching Delay (ESD): the searching cost caused
by the failure of the recommendation. Since the user has
searched ns street segments before he finds a vacant parking
spot (i.e., the parking space is in the nsth street segment of
the recommendation sequence), EST is calculated by

ESD =

{
0 if ns = 1∑ns

k=2 t(X
k−1S,XkS) if ns = 2, . . . , T

Walking Delay (WD): the degree of closeness from the
parking location to the destination, which is obtained by

WD = dist(XnsS, δ)

C. Experimental Results

We compare our approach with the state-of-the-art Smart
Parking (SP) algorithm in [11], which is a dynamic resource
allocation algorithm based on price and distance to destination.
Here we assume the price for every parking spot is the same.
For our parking recommendation (PR), we tested the approach
with or without multi-user factor, as multi-user parking rec-
ommendation (MPR) and single-user parking recommendation
(SPR), respectively. We also compare the performance with
different values of parameter λ.

To test the performances of our solutions under high de-
mand, we chose the center of business district (Area A) as
the destination of 20 users. For each method, we did 600
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(a) Performance comparison between our
Parking Recommendation (PR) and the Smart
Parking (SP) algorithm. Parameter λ in PR(λ)
indicates the importance of driving cost.
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(b) Performance comparison in Area A with
different number of users. When there is high
competition, MPR solution which considers
multi-user factor performs better.
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(c) Performance comparison in Area B under
a disruptive event like a concert. Our MPR
solution is robust to volatile disturbance.

Fig. 7. Evaluation Results

experiments (20 for each day) over 1 month (November, 2014)
during the rush hours (between 11:00 AM and 2:00 PM). The
hidden users are automatically introduced by running the data-
driven simulations. Then we calculated their average cost and
number of searched street segments. The experimental results
are shown in Fig. 7(a), the standard deviations are also plotted.

SP vs PR: During non-rush hours, since the vacant parking
spots are sufficient, the greedy algorithm may preform well
when minimizing the walking delay. However, during rush
hours, its performance deteriorates significantly, since those
streets near the destination may be fully occupied. Thus it
causes more extra searching delay and the driver has to search
more street segments.

Influence of λ: The parking recommendation approach has
a weight parameter λ ∈ [0, 1] representing the weight of the
driving cost. A larger λ will reduce the cost of searching
because it tends to find the most possible available place
to park. While the recommended parking location, however,
may be farther to the destination. A smaller λ means the
weight of the driving cost becomes less important, which
returns a solution with a smaller walking delay, but a larger
extra searching delay and more searched street segments. By
properly choosing the parameter λ (e.g. λ = 0.5 in this case),
although the walking delay is more than the greedy algorithm,
the total delay can be significantly reduced by 63.8% and less
streets will be searched using MPR.

SPR vs MPR: When there are multiple users using our
parking guidance system for parking guidance in the same
region, then those users may cause competition for the same
parking spot. As demonstrated in Section VI, we improve
our approach by modifying the occupancy probability of one
specific street segment with the multi-user factor. SPR may
recommend to multiple users with the same street segment
that does not have enough vacant parking spots, and then
competition will incur. After the recommended street segment

becomes fully occupied, those who arrive later have to con-
tinue searching, which causes more extra searching distance
and more searched street segments. With MPR approach, the
multi-user information has been incorporated to make deci-
sions, and therefore the influence of multi-user competition
can be eliminated.

We tested the impact of the number of competing users: 5,
10, 15 and 20 users to compare their performances. We set λ =
0.5 for our algorithms. The experimental results are shown
in Fig. 7(b). With a small number of users (e.g., 5 users),
there will be sufficient vacant parking spots for them, so both
approaches perform well. When the number of users increases,
however, the performance of SPR deteriorates significantly,
while the total delay of MPR increases slightly: total delay
reduced by 40.9% with 20 users.

High Competition under Disruptive Events: in this ex-
periment, we simulated a disruptive event, such as a concert,
in Area B, we generated 100 users to drive to this area at
similar time to test the performance of our approach under
high competitions. The experimental results are shown in Fig.
7(c). We can see that MPR consistently achieves better total
delay and searched street segments than SP: the total delay
can be reduced by 47.2% compared with SPR, and 48.7%
compared with SP (with λ = 0.5).

VIII. RELATED WORK

This paper is related to both smart parking systems and
transportation assignment algorithms. We firstly discuss re-
search on smart parking systems. There are a large number
of research works on different aspects of intelligent parking
systems, which include occupancy detection [4], [5], system
development [6], dynamic pricing [20], [25], and even shared
service design [7]. Recently traffic authorities in many cities
have developed Parking Guidance Information (PGI) systems,
which typically employ sensor networks to detect parking
occupancy and provide real-time parking service. However,



most of the current PGI systems only publish the parking
information to drivers directly [26], [9], [27]. A few systems
are able to select an optimal parking space according to
drivers’ preferences and current state information [11], [28],
[29], but drivers may not actually find vacant parking spots
by merely following the one-time recommendation from the
guidance system. Therefore, these existing PGI systems are not
“smart” enough. Our solution provides sequences of parking
recommendations to users dynamically until they find parking.

There are many research on transportation assignment al-
gorithms that aim to allocate parking spots to reduce parking
competition: a scenario when multiple users are looking for
parking in a crowded area. Such parking competition leads
to a phenomenon called “multiple-car-chasing-single-space”,
which may cause severe traffic congestion [25]. To address
this problem, some researchers formulated dynamic resource
allocation problems [25], [30], [11]. Specifically, Basu et al.
[25] presented a travel distance based approach, which is to
assign the parking spot to the nearest user. However, this work
assumes that the nearer driver will arrive earlier, which ignores
the real-time traffic information. Geng et al. [11] adopted
a queueing model which allocates parking spaces to drivers
with reservation. Mouskos et al. [30] formulated a max-min
problem that considers parking rate of a specific parking
lot and the travel time cost to the final destination. These
reservation-based designs are suitable for off-street parking
resources. For on-street parking resources, however, it requires
extra hardware infrastructure and is thus costly to realize in
the citywide traffic system.

There are a few papers on on-street parking employ a
game-theoretical approach [14], [15]. These works provide
valuable insights, but they are difficult to apply in reality.
Different from these designs, by building a spatiotemporal
model of parking distributions with large scale smart meter
data, our receding horizon optimization approach can provide
online parking recommendation to accommodate variations in
traffic and requests with little overhead. In [16], the authors
formulated a specific type of Traveling Salesman Problem.
But this design does not consider the multi-user competition
problem which is essential for on-street parking. Our work
provides sequences of parking recommendation to users and
also addressed the parking competition, matching dynamic
parking demand and supply effectively.

IX. CONCLUSION

In this paper, we design a receding horizon control ap-
proach to coordinate on-street parking behavior of urban users
based on occupancy prediction model and real-time travel
and occupancy data. Our framework incorporates multiple
objectives and balances the parking supply and demand in a
dynamic and distributed manner. This design is not exclusive
to different traffic models and searching algorithms. Trace
driven simulation results show that our approach achieves up
to 63.8% delay reduction compared with existing solutions.
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