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Abstract—In this paper we study the following problem: given
a set of m sensors that collectively cover a set of n target points
with heterogeneous coverage requirements (target j needs to be
covered every fj slots), how to schedule the sensor duty cycles
such that all coverage requirements are satisfied and the maxi-
mum number of sensors turned on at any time slot is minimized.
The problem models varied real-world applications in which
sensing tasks exhibit high discrepancy in coverage requirements –
critical locations often need to be covered much more frequently.
We provide multiple algorithms with best approximation ratio
of O(logn + logm) for the maximum number of sensors to
turn on, and bi-criteria algorithm with (α, β)-approximation
factors with high probability, where the number of sensors turned
on is an α = O( δ(log(n)+log(m))

β
)-approximation of the optimal

(satisfying all requirements) and the coverage requirement is a
β-approximation; δ is the approximation ratio achievable in an
appropriate instance of set multi-cover. When the sensor coverage
exhibits extra geometric properties, the approximation ratios can
be further improved. We also evaluated our algorithms via sim-
ulations and experiments on a camera testbed. The performance
improvement (energy saving) is substantial compared to turning
on all sensors all the time, or a random scheduling baseline.

I. INTRODUCTION

Sensor deployment and scheduling has been a fundamental
problem for sensor network applications. The complexity of
the problem comes from the variety of sensing modalities
and sensor coverage ranges (ranging from omnidirectional
disk coverage [22] to line-of-sight visibility coverage [23],
[31]), the application coverage requirement (full/blanket cov-
erage [5], [33], full-view coverage [38], k-coverage [42], bar-
rier coverage [32], etc), and networking requirement (sensors
remain connected by wireless radio [5], [23]). A substantial
amount of work has been invested on the many variations of
this problem in the past few years [16], [36].

In this work, we assume that the sensor deployment problem
has been solved and a near optimal set of sensors have been
placed to provide full coverage of the target locations. We
instead look at the optimal duty cycle scheduling of the
sensors. We may need a large number of sensors to provide
full coverage — but it is possible that many sensors may
simultaneously cover the same target, exhibiting a high level

of redundancy in the system. Many sensors, such as cameras,
may consume a large amount of energy to operate, or require
a large amount of bandwidth to upload data. Thus efficient
scheduling of the operations of such sensors can result in
significant energy/communication bandwidth savings. Second,
in many monitoring applications the target locations may
require different levels of quality of service. In a building
monitoring scenario for safety applications, certain locations
(high activity areas) such as entrances to the building typically
require continuous or highly frequent monitoring while other
locations such as individual offices may only need to be
checked once in a while as activity levels are low. This
heterogeneity in service quality also provides an opportunity
to schedule the sensors in a resource efficient way without
hurting the overall application. This combined with the joint
sensing/coverage features can provide opportunities for a smart
scheduling to save substantially in energy/operational costs.
See Figure 1 for an example.

Fig. 1: An example of n + 1 target points (shown as crosses) and
n sensor nodes (shown as solid disks) with line-of-sight coverage.
n sensors are needed to ensure full coverage of the targets. Suppose
that the n targets on top each need to be covered once in every n slots
(with f = n) while the bottom target needs to be covered every slot
(with f = 1). Alternatively turning on each of the n sensors would
suffice, with savings of n times the energy consumption compared
to keeping all sensors on all the time.

We formulate our problem in the following manner. We are
given a set of m sensors and n targets, where each sensor i
covers a subset of targets Si. Further, we assume that time is
slotted and in each time slot one may turn on only a subset
of sensors. Each target location j has a minimum coverage
requirement – it must be covered at least once for every fj



slots. These fj’s can vary significantly. The problem asks to
minimize the maximum number of sensors turned on at any
time slot such that all the coverage requirements are satisfied.

In a closely related work by Liu et al. [27] a budget of k
sensors per slot is given, and the goal is to find a duty cycle
schedule so that all target points are monitored sufficiently
frequently. They considered two optimization objectives. The
first is to minimize the maximum amount of time that any
target point remains unseen (called the min-max version), and
the second is to minimize the average time that any target point
remains unseen (called the min-average version). They show
for the min-max version, that if the sensor set is a minimal
cover for the domain then the round robin schedule with each
time slot having dm/ke different sensors active is an optimal
schedule, otherwise they can find an O(log n) approximation
with a periodic schedule of an approximate set cover solution.
For the min-average variant they show how to produce a
schedule which serves as a (2 + ε)α-approximation where
α = O(1) if k ≥ logm/ log logm and α = logm/ log logm
otherwise.

The most significant difference in our problem formulation
as compared to both the min-max and min-average version
is that we strictly enforce the coverage quality requirement,
which can be highly heterogeneous for different target lo-
cations. This is crucial for real-time applications with hard
constraints on the coverage guarantee.

Our Results. We provide three algorithms for the joint duty
cycle scheduling problem. First we show that restricting our
solution to the family of periodic schedules can only suffer by
a factor of two, and that finding the optimal periodic schedule
is NP-hard. On the positive side, we have three different
algorithms with different design ideas/approximation ratios.
• A combinatorial O(log n+ logm)-approximation.
• An O

(
γ log( fmax

fmin
)
)

-approximation in geometric in-
stances where γ is the best approximation ratio achievable
in the corresponding geometric set cover problem and
fmax (fmin) is the largest (smallest) window size among
all coverage requirements.

• An O(γ logm)-approximation to the dual problem in
geometric settings.

• An (α = O( δ(logn+logm)
β ), β) bi-criteria approximation

algorithm where α is an approximation to the optimal
number of sensors required to maintain full coverage, and
β is the approximation to the coverage requirement. In
this case δ is the best approximation achievable for the
set multi-cover problem.

In simulations we observe that the three algorithms have
their unique strength strength under different scenarios. If
the frequency requirements follow a uniform distribution the
combinatorial algorithm needs only 60% of sensors active
compared to baseline random schedule. On the other hand, the
geometric algorithm beats others and has only 36% of sensors
active when the frequency requirements follow an exponential
distribution. Experiments on a camera testbed verify the energy
saving of our scheduling algorithms.

II. RELATED WORK

Our version of the duty cycle problem arises as a com-
bination of a set multi-cover and a scheduling problem in
sensor networks. In the set multi-cover problem one is given a
universe U of n elements (with multiplicity) and a collection
S of subsets of U and is asked to find a minimum cardinality
sub-collection C ⊆ S which covers U (with, at least, the
appropriate multiplicity for each element). This problem is
clearly a generalization of set cover which has been shown
NP-Hard and can’t be approximated to within a factor of
(1 − ε) lnn), ∀ε > 0, unless NP ⊆ DTIME(nO(log logn)),
by Feige [13]. Better approximations can be obtained in
special cases. For example, [10] show a O(log |OPT |) approx-
imation when the set system has a constant VC dimension. The
same approximation can be obtained for the set multi-cover
problem [12]. For covering points by half-spaces in 3D, an
O(1)-approximation is possible [12]. Bansal et al. [7] showed
a randomized O(1)-approximation algorithm for the weighted
geometric set multi-cover problem when the covering objects
have linear union complexity. The set multi-cover problem
using disks as sets has a constant factor approximation [8],
[1], [9], as well as a QPTAS [6]. Altinel et al. [4] show that,
for targets with uniform coverage requirements and sensor
locations chosen from a regular grid with some density d, an
algorithm with a (6π, f(d)) bi-criteria approximation which
uses at most 6π times as many sensors from the regular grid
coordinates as the optimal solution and covers at least f(d)
percent of the total area where f(d) is a function based on the
density chosen for the grid.

Given a fixed placement of sensors, the problem of schedul-
ing these sensors to collaboratively cover the domain has been
studied in the line of sight model [28], [19]. In visual sensor
networks Munishwar et al. [30] study the problem of finding
an angle of view for each camera to maximize the number of
target points covered. They give an exact centralized algorithm
which is suitable to run on small sized networks, as well
as a decentralized heuristic for larger networks with a 1/2-
approximation guarantee.

The problem of near-optimal placement of sensors given
a duty cycle schedule in order to obtain certain coverage
requirements has been studied in [25], [23], [41]. Most of
these heuristics are validated via numerical experiments.

One related paper by Feinberg et al. [14] studies a schedul-
ing problem called the generalized pinwheel problem for a
single server and a set of recurring jobs. Each job has a dura-
tion and a maximum allowable time between two consecutive
runs. Authors show necessary conditions for the feasibility of
the problem and present an exact algorithm (with exponential
running time) based on dynamic programming as well as
several heuristic approximations as the problem is NP-hard.

There is a huge literature on duty cycle scheduling in sensor
networks. See [37] for a survey. The duty cycle problem has
been studied in communication networks and energy manage-
ment systems [34], [39], [18], [21]. Yoo et al. [40] study
the problem of scheduling sensors with energy harvesting



capabilities based on the amount of remaining energy in
the system, while Jaleel et al. [24] propose a probabilistic
deployment algorithm based on a Poisson process and give
upper bounds on the probability of coverage based on the
energy decay function and spatial distribution of sensors over
the network. These algorithms are largely non-collaborative,
meaning that they don’t take into account the overlapping
coverage ranges.

Several approaches to the duty cycle scheduling problem
using integer linear programming (ILP) have also been ex-
plored. Meguerdichian et al. [29] solve the natural set cover
ILP to find a minimum 0/1 set cover of the targets. They
also consider a sensing intensity model, where the intensity of
coverage of a particular target is a function of the active sensor
quality and its distance to the target. They show how to find a
minimum cover which maintains an average sensing intensity
for each target, and show how to find a maximum number of
such coverings to get a redundant set which can be scheduled
alternatively to minimize energy consumption. Chakrabarty et
al. [11] show how to use ILP to find the minimum cover of
sensors from a regular grid of positions for coverage as well
as target localization in the network. Gu et al. [17] show how
a column generation approach to solving the associated ILP
can be used to find a minimum cover even for heterogenous
coverage requirements of the targets. Although ILP methods
can solve these problems exactly, they are often only feasible
for modest problem sizes, as the class of problems are still
NP-Complete.

III. JOINT DUTY CYCLE SCHEDULING

Given a set of m sensors S and a set of n targets U to
monitor, sensor i covers a subset of targets Si ⊆ U . For each
target j, we are given the coverage requirement as the window
size fj such that for any time window of length fj target j is
covered at least once. Time is slotted and at any time slot we
wish to only turn on a subset of the sensors. The problem is
to design a duty cycle schedule such that all targets meet their
coverage frequency requirement and the maximum number of
sensors turned on at any time slot (which is referred to by k)
is minimized.

This problem is clearly NP-hard as set cover is a special case
– when fi = 1 for all i. Before we describe approximation
algorithms for this problem. We first present a few important
observations on periodicity of the optimal schedule.

It is not clear that an optimal schedule will be periodic,
but here we show that if we restrict ourselves to periodic
schedules with a sufficiently large period, such schedule is
within a constant factor 2 of the optimal schedule. Moreover,
we may force the period to be no greater than m, if we turn on
only one extra sensor in every time slot on top of any periodic
schedule.

We can model a schedule F as a set of computable functions
F = {F1, . . . , Fm} where each Fi : IN→ {true, false} speci-
fies if sensor i is to be turned on at time t, i.e., Fi(t) = true iff
sensor i is turned on at time t for any t ∈ IN. Such a schedule
is periodic with period T , if each Fi is a periodic function of

t with period T , i.e., Fi(t+T ) = Fi(t) for each i = 1, . . . ,m
and any t ∈ IN.

Let Fopt denote the optimal schedule and FTopt denote the
optimal schedule with period T . For any schedule F let k(F)
denote the maximum number of sensors turned on at any time
slot, called the cost of the schedule:

k(F) = max
t∈IN
|{i : Fi(t) = true}|

Let fmax = maxj=1...n fj be the largest window size. We have
the following lemmas. Omitted proofs of this section can be
found in Appendix A.

Lemma 3.1. For any T ≥ fmax, k(FTopt) ≤ 2k(Fopt).

From the above lemma, we can focus on finding a periodic
schedule with period T = fmax such that we only lose an
approximation factor of two in the cost. But fmax can still
be fairly large, e.g., exponential in m or n. The lemma below
shows we can assume the period is m (the number of sensors),
at the cost of turning on only one more sensor in each slot,
on top of any periodic schedule of period of fmax.

Lemma 3.2. k(Fmopt) ≤ 2k(Fopt) + 1.

Proof: Separate the targets U based on their minimum win-
dow size into two sets U ′,U ′′ where U ′ = {j : fj ≤ m}
and U ′′ = {j : fj > m}. Let Fopt be the optimal
schedule for U and F ′opt be the optimal schedule for U ′.
Obviously, k(F ′opt) ≤ k(Fopt). From Lemma 3.1, we know
that k(F ′mopt) ≤ 2k(F ′opt).

To cover U ′′, we can turn on one extra sensor in each
time slot by simply doing round robin on the m sensors. This
suffices to cover all targets in U ′′ with window size greater
than m. In fact, these targets are covered more frequently.

Put together, the new schedule has period of m and cost at
most 2k(Fopt) + 1. �

Therefore, in the rest of the paper we will assume without
loss of generality that fmax ≤ m and will focus on periodic
schedules with period at most m. This restriction only induces
a constant factor.

IV. COMBINATORIAL ALGORITHM

In this section, we construct a periodic schedule Fm of
period length m. The algorithm is for the purely combinatorial
setting, i.e., the set of targets covered by a sensor can be
arbitrary. We do not make any assumptions on sensing range
and the result applies in the most general setting.

The main challenge lies in how to extend the concept
of coverage to the temporal domain. For each target j, we
partition one cycle of m slots into m/bfj/2c intervals of b fj2 c
time slots each. For each interval b, introduce a new element
ej,b which represents the target in the time frame b. The total
number of elements is

∑n
j=1

m
bfj/2c = O(nm). Let E be the

universe of these new elements.
Sensors are place in the m slots to create a periodic schedule
Fm. If a sensor i is placed in slot of time frame b, and i
covers target j, we say the element ej,b is covered. Then,



if our schedule covers all target j’s corresponding elements
{ej,b : b ∈ [1, . . . , m

bfj/2c ]}, it is clear that j is covered at least
once in every window of size fj – since every such window
will fully contain at least one interval.

Now we are ready to formulate a new set cover problem. We
work with the family V of vectors of dimension m. Each vector
V ∈ V , V =< i1, i2, . . . , im >, corresponds to sensor it being
turned on at time slot t, for 1 ≤ t ≤ m. We choose from this
family V a vector and use it as one layer of the periodic
schedule. Eventually we choose k vectors of V , overlay them
along the temporal domain, to create a schedule with cost of k.
We want to minimize k such that all elements {ej,b : ∀j,∀b}
are covered.

Formally, in this set cover ({S(V ), V ∈ V}, E) problem,
each set in the collection V is a subset of elements that are
covered by the vector V , denoted by S(V ) ⊆ E , V ∈ V . We
wish to choose a minimum number of such vectors, such that
the elements they collectively cover is E .

Lemma 4.1. Fm constructed from the optimal solution C∗
of the set cover Problem ({S(V ), V ∈ V}, E) is a 2-
approximation to Fmopt.

Proof: Fm is the best m-period schedule to cover every
element of E . Clearly any schedule that covers all elements
in E satisfies all the coverage window requirements. This
establishes the correctness of the solution Fm.

For the approximation factor of Fm, note that the optimal
solution Fmopt that satisfies all the coverage window require-
ments, may not cover all elements of E . The latter is a stronger,
sufficient but not necessary condition of the former.

To establish the approximation factor, we take Fmopt and
make it a new schedule Fm/2 by merging the sensors in the
(2t− 1)-th and 2t-th time slot as the sensors turned on in the
t-th time slot in Fm/2, for each 1 ≤ t ≤ m/2. We have two
observations of Fm/2:

• k(Fm/2) = 2k(Fmopt).
• The schedule Fm/2 will have at least one sensor that

covers target j in each window of size bfj/2c, for each
j. Therefore, Fm/2 covers all elements in E . By the
optimality of Fm, we know k(Fm) ≤ k(Fm/2).

Combining the two we have k(Fm) ≤ 2k(Fmopt). �

Running the classical greedy algorithm for set cover on
this new instance ({S(V ), V ∈ V}, E) immediately gives an
O(log n + logm)-approximation. The issue is that there are
exponentially many sets. |V| = mm, since in each time slot
we may have m choices of sensors. Therefore at each step,
we cannot afford to enumerate over all remaining vectors in
V to select the one that covers the maximum number of new
elements of E . However, it turns out that this greedy selection
does not need to be done optimally. [20] shows that if we use
a pseudo-greedy implementation that picks a β-approximate
best set in each step (i.e., we choose a set that covers at least
βh new elements if the best set can cover h new elements),
such pseudo-greedy cover yields a O( 1β ln |E|)-approximation.

Below we show how to do this pseudo-greedy step. In
particular, to find the next vector V ∈ V , we run another
greedy algorithm to gradually fill in the sensors for all the
m slots in vector V . The next sensor we turn on is the one
that covers the maximum number of new elements in E . We
continue this iteration until all slots of V are filled up. The
entire algorithm is summarized in the pseudo code below.

Algorithm 1 Combinatorial Algorithm

Inputs: Universe E
Output: Periodic Schedule Fm

1: C = ∅
2: while not all ej,b ∈ E is covered do
3: k ← k + 1
4: while not all m time slots are used do
5: choose (r, t) pair that covers the most remaining

elements, where sensor r is turned on at an empty
time slot t

6: it ← r
7: end while
8: C = C ∪ S(< i1, ..., im >)
9: end while

10: construct Fm from C

Lemma 4.2. The pseudo-greedy step gives a 1
2 -

approximation, i.e., the number of elements covered is at
least half of the maximum number of elements that can be
covered by the optimal vector V .

Proof: We observe that our problem of finding the best vector
is an instance of Problem (1.5) in Fisher’s analysis [15] with
P = 1. Specifically, our objective can be re-stated as a
matroid-constrained sub-modular maximization:

maxX⊆E{z(X) : X ∈ I,M = (E, I) a matroid,
z(X) sub-modular and non-decreasing,}

where

E = {(i, t) : i ∈ S, t ∈ IN≤m}
I = {A : A ⊆ {{(i1, 1), . . . , (im,m)} : i1, . . . , im ∈ S}}
z(X) = z({(x1, 1), . . . , (xm,m)}) = |S(< x1, . . . , xm >)|

Here E is the set of all possible allocations of individual
time slots to a sensor and I is the collection of all possible
(partial) allocations of m time slots. M is a matroid because
z(·) is a cardinality function which is clearly sub-modular and
non-decreasing. For the hereditary property, if X ⊆ Y and
Y ∈ I , then X ∈ I from our construction of the independent
sets I . For the independent set exchange property, if X,Y ∈ I ,
and |Y | > |X| (so X must be a partial allocation), then we
must be able to find a time slot te allocated in Y but not in
X ((·, te) /∈ X) and assigning that to X is still feasible. So
we have ∃(ie, te) ∈ Y \X,X ∪ (ie, te) ∈ I .

From this observation, we know that our algorithm is equiv-
alent to using greedy heuristic for Problem (1.5) in [15] and
we can directly apply Theorem (2.1) to get an approximation
factor of 1

2 . �



Theorem 4.3. The algorithm has an approximation factor
O(log n+ logm).

From Lemma 4.2, our algorithm picks a β-approximate best
vector with β = 1

2 . Plugging in β = 1
2 into Corollary 2 of [20],

Algorithm 1 is a O(2 ln |E|)-approximation, i.e., O(log n +
logm)-approximation.

V. GEOMETRIC ALGORITHM

The algorithm we discussed so far does not make any
assumptions on the coverage range of the sensors. In many
scenarios the coverage ranges have some geometric properties
which can be leveraged to obtain better approximation ratios.

For example, consider the following problem: among the
sensors in S , choose a minimum number of them to cover all
targets in U . As mentioned, this problem in general cannot be
approximated better than (1 − ε) log n, ∀ε > 0. However, if
the sensor coverage ranges have constant VC-dimension, the
approximation ratio can be improved to O(log |OPT |) where
|OPT | is the number of sets in the optimal solution [10]. If the
sensor coverage ranges are axis-parallel rectangles or disks (of
possibly different radii), the set cover problem can be solved
with approximation of O(log log |OPT |) or O(1) respectively
[3]. If the sensor coverage ranges are unit disks, then a simple
greedy algorithm gives a constant approximation [2] and a
PTAS exists [26]. In the following we denote by γ the best
approximation ratio one can obtain for the particular instance
of geometric set cover.

In this section, we will present a different algorithm that
can benefit from results in geometric set cover problems.

Uniform Window Size. As an appetizer we look at the special
case when all the targets have the same window size in
coverage requirement, i.e., fj = f , for all j. Define the optimal
set cover solution as C∗ ⊆ S that covers all targets. We can
find a geometric set cover solution C with size |C| ≤ γ|C∗|
for the universe U with n targets and γ is the approximation
ratio.

Now we have the following scheduling algorithm: Do round
robin on C with k = d|C|/fe sensors. The period of this
schedule is at most f , which satisfies the coverage frequency
requirement.

We argue that the optimal schedule has to use k∗ ≥
d|C∗|/fe. This is because all the targets must be covered at
least once in one full period, thus the set of sensors that appear
in one full period is a set cover solution, with size at least |C∗|.
Thus in this simple setting we find a sensor scheduling with
approximation ratio of γ.

General Setting. When the targets have different coverage
window sizes fj , we take fmin = minj fj and fmax =
maxj fj . Clearly, turning on d|C|/fmine at each time slot is a
feasible solution and a lower bound is to turn on d|C∗|/fmaxe
sensors.

Now we partition the targets into logR sets, where R =
fmax/fmin, such that in each set Gi the frequencies of the
targets do not differ by more than a factor of 2. Take hi =

minj∈Gi fj and Hi = maxj∈Gi fj . Hi ≤ 2hi. To cover the
set of targets in Gi, let Ci be the set cover solution and C∗i be
the optimal set cover solution. |Ci| ≤ γ|C∗i |, where γ is the
approximation factor in the geometric set cover problem.

For each set Gi, we will use round robin and turn on
ki = d|Ci|/hie sensors at each time slot, which is sufficient to
guarantee that all targets are covered frequently enough. The
total number of sensors we need to turn on is k =

∑
i ki.

Theorem 5.1. The algorithm has an approximation factor
O(γ logR), where R = fmax/fmin.

Proof: Just to cover the group of sensors Gi, we have a lower
bound k∗ ≥ d|C∗i |/Hie. Thus

ki = d|Ci|/hie ≤ γ|C∗i |/hi ≤ 2γ|C∗i |/Hi ≤ 2k∗γ.

There are logR groups. This finishes the proof. �

Discussion. The approximation ratio of this algorithm depends
on R, the ratio of the largest window size and the smallest
window size. Recall that we can assume that fmax is at most
m with only a sacrifice of a factor of 2 in Lemma 4.1,
thus we may assume that logR = O(logm). In the case
when the coverage ranges are disks this approximation ratio
is no worse than that of the combinatorial algorithm. But
when R is much smaller, i.e., this algorithm can be better
than the combinatorial algorithm. We tested a variety of
geometric setting in our simulations and indeed it shows that
in the geometric setting this algorithm starts to outperform the
combinatorial algorithm.

VI. DUAL AND BICRITERIA ALGORITHMS

In this section, we study the tradeoff between coverage
requirement and resource constraints. In the original problem
we fix the coverage frequency requirement and minimize k
(the maximum number of sensors to turn on in a slot). Here
we would like to study two other variations:
• The dual problem: we fix k (the number of sensors one

can turn on in each slot) and minimize the factor β,
by which we stretch the window size of the coverage
requirement. That is, each target j is covered at least
once in every window of size βfj , with β ≥ 1. We denote
this as the β-relaxed coverage requirement. We wish to
minimize β.

• (α, β)-approximation: we turn on at most αk∗ sensors
in each slot such that each target j is covered at least
once in every window of size βfj (β ≥ 1), where k∗ is
the optimal solution for the original problem (when the
coverage window size is fj for target j).

A. The Dual Problem

In the dual problem we look at the case when k is given and
we may not be able to meet the requirements for all targets.
Thus we consider stretching each window size fj by a factor
β and we hope to minimize β.

We use the same partition of targets into groups Gi as in
Section V. Now for a total quota of k sensors to turn on at



each time slot, we give a quota of k/ logR to each group Gi.
The stretch βi beyond the requirement is bounded by

βi ≤
ki

k/ logR
=
ki logR

k
.

Let the stretch factor in the optimal solution be β∗. Consider
only group i, neglecting other targets, and allocate the entire
quota of k sensors for monitoring targets in Gi. This solution
over Gi is no larger than the optimal solution. Thus a lower
bound on the stretch factor over group Gi is a lower bound
for β∗. By this argument we have

β∗ ≥ d|C∗i |/hike.

Re-arrange, we have

β ≤ ki logR

k
≤ |C

∗
i |O(γ logR)

hik
≤ β∗O(γ logR).

Thus, we have the following theorem.

Theorem 6.1. The dual problem, can be approximated within
a factor of O(γ logR) = O(γ logm), where γ is the approxi-
mation ratio of geometric set cover and R = fmax/fmin is the
aspect ratio of the window size.

B. Bicriteria Approximation

For an (α, β)-bi-criteria approximation we relate the duty
cycle scheduling problem to the set multi-cover problem. The
set multi-cover problem is an extension of the set cover
problem. Given a set of targets U , we want to choose a multi-
set C (i.e., a sensor can appear multiple times) with sensors
from S with minimum number of sensors such that target j
must be covered at least rj times. rj is called the coverage
multiplicity. In our case, we choose rj = fmax/fj .

The optimal solution to this set multi-cover problem is
denoted as C∗SMC. We can run essentially the same greedy
algorithm to find a solution to the set multi-cover problem
denoted as CSMC: choose the next sensor i that maximizes
the utility, defined as the number of targets covered by i
among those targets whose coverage multiplicity has not been
met. By [35], we know that |CSMC|/|C∗SMC| ≤ δ, where
δ is the best approximation ratio achievable for a particu-
lar instance of set multi-cover. δ = O(logm) in general,
and in the geometric case [12] show one can obtain a
O(log |OPT |) for set systems with bounded VC-Dimension,
and an O(1)-approximation when covering points in 3D with
half-spaces, and an O(log log log |OPT |)-approximation for
covering points by triangles in the plane.

Lemma 6.2 (Lower Bound on opt). If we require each tar-
get to be covered at least once in every window of size fj ,
in some time slot we need to turn on at least d|C∗SMC|/fmaxe
sensors. That is, k∗ ≥ d|C∗SMC|/fmaxe.

Proof: Consider the optimal schedule that satisfies the cover-
age frequency requirement and consider all the sensors turned
on in a contiguous window of fmax slots, denoted by a multi-
set Y ∗. We know that Y ∗ will cover each target at least

rj = fmax/fj times. Thus Y ∗ is a solution to the set multi-
cover problem. This says that |Y ∗| ≥ |C∗SMC|. By pigeon
hole principle, there is at least one slot in which |Y ∗|/fmax

sensors are turned on. This gives a lower bound on k∗:
k∗ ≥ |Y ∗|/fmax ≥ d|C∗SMC|/fmaxe. �

Now we are ready for the scheduling algorithm that makes
use of the set multi-cover solution CSMC. Define z = |CSMC|.
We take q random permutations πi of CSMC, for i = 1, · · · , q.
For each of the permutation πi, we stretch it (or shrink it) to
fit in a schedule of period fmax:
• If z ≤ fmax, we spread the elements of πi uniformly on
fmax slots. The first element in πi is turned on in each of
the first fmax/z slots, the second element in πi is turned
on in each of the second fmax/z slots and so on.

• If z > fmax, we turn on multiple sensors in one slot. The
first z/fmax elements in πi are turned on in the first slot,
the second z/fmax elements in πi are turned on in the
second slot, and so on.

The schedule created by πi is named Zi. Then we overlay all
q schedules on top of each other to create a schedule Z, in
which we have at most qz/fmax sensors in each time slot.
Now we analyze the approximation factor of this schedule.

Theorem 6.3. The algorithm gives a (qδ, β)-bicriteria approx-
imation with high probability, where qβ = O(log(n) +
log(m)), δ is the approximation ratio for the set multi-cover
problem.

Proof: Let Bj be the number of sensors in CSMC that cover
target j. We know that Bj ≥ fmax/fj by the set multi-cover
problem definition.

Now we consider a period of fmax time slots and partition it
into windows of size βfi/2. There are 2fmax/(βfi) windows.
If in each window we have at least one sensor that covers
target j, then target j is covered in every window of size βfi,
which meets the β-relaxed coverage frequency requirement.

By the scheduling algorithm, in each schedule Zi, there
are Bj sensors that are randomly placed in a total of fmax

slots. Counting all q schedules there are qBj sensors. Now
we calculate the probability that a specific window x of length
βfj/2 does not receive a sensor that covers j – we say this
window is not stabbed.

Prob{Window x not stabbed for target j} ≤ (1− βfj
2fmax

)qBj .

Now, consider the probability that all windows are stabbed
for all targets, that is, the β-relaxed coverage requirement is
met. Let µj = 2fmax/fj . Bj ≥ fmax/fj = µj/2.

Prob{β-relaxed coverage requirement}
≥ 1−

∑
j

∑
x Prob{Window x not stabbed for target j}

≥ 1−
∑
j

2fmax

βfj
(1− βfj

2fmax
)qBj

≥ 1−
∑
j
µj

β (1− β
µj
)µjq/2

≥ 1−
∑
j
µj

β (1/e)qβ/2

≥ 1− 2nfmax

β (1/e)qβ/2

≥ 1− 1/n, if qβ = O(log n+ log fmax)



The total number of sensors we turn on is qz/fmax =
q|CSMC|/fmax ≤ qγ|C∗SMC|/fmax ≤ qγk∗, in which the last
inequality comes form the lower bound in Lemma 6.2. There-
fore, this algorithm gives a (qγ, β)-bicriteria approximation
with high probability, where qβ = O(log(n) + log fmax) =
O(log n + logm), γ is the approximation ratio for the set
multi-cover problem. �

VII. SIMULATIONS & EXPERIMENTS

A. Simulations

We compare our algorithms to two baseline algorithms,
Base random, and Base heuristic in geometric simulation.
The baseline algorithms can be divided into two steps. First,
for each target j, generate a periodic schedule with length
fj that satisfies the target frequency requirement. The sen-
sor chosen for each schedule is different: in Base random,
we randomly pick a sensor that covers this target, whereas
Base heuristic, selects the sensor which covers the most
uncovered targets including this one. To avoid congestion in
specific time slots, the schedule of each target randomly starts
between 1 to fj . Second, merge all schedules to create an
overall schedule that satisfies frequency requirements of all
targets.

We randomly generate 1000 targets and 64 sensors for
the simulation. Each target is covered by at least one of the
sensors. Each sensor is located at a point randomly generated
in the plane. A sensor covers a target if the distance between
them is at most one. Each target j gets randomly assigned to
a particular sensor i and the location of the target is then gen-
erated randomly within the unit disk centered at sensor i. We
introduce a parameter δ such that the frequency requirement of
each target is chosen between 1 and 2δ . The values of window
sizes follow two different frequency distributions: uniform or
exponential. In the uniform setting we sample the window
size from 1 to 2δ with uniform probability; in the exponential
setting the probability of choosing a larger window size is
exponentially higher than others. That is, for a specific target
j, g ∈ IN≤δ and

Prob{2g−1 ≤ fj ≤ 2g} = 2g−1 · 2g/
δ∑
1

(2g−1 · 2g).

Figure 2 shows a comparison between the algorithms.
The y-axis represents the average of 50 simulations of the
maximum number of sensors turned on in any time slot (k) in
each setting. We run this experiment for δ = {2, 3, ..., 6}. For
fairness we set β = 1 and q = 8 to ensure coverage with high
probability (where q is the number of random permutations
we overlay) in the bi-criteria algorithm.

Our results show that the combinatorial algorithm performs
the best under a uniform frequency distribution in Figure 2a.
However, if the frequency distribution is exponential, the
geometric algorithm improves the most when the window
size is more skewed to larger values. The reason is that
the geometric algorithm has a smaller hidden constant factor
than the combinatorial one and the effective grouping benefits

(more targets with larger window size are grouped into the
same cluster).

B. Experiment

We have implemented a testbed to evaluate the algorithms.
This testbed has four wireless camera nodes, and each of
them is built based on the off-the-shelf BeagleBone low power
development board. A 3.1 Megapixel Aptina CMOS digital
image sensor MT9T111 and a USB Edimax EW-7811Un Wi-
Fi adapter are plugged into the board. Events are emulated
by an LED. The LED is controlled by a Raspberry Pi 2
development board.

For this experiment we set each time slot to be five seconds.
Our schedule decides which cameras take a picture at each five
seconds. Each LED j is a target and is randomly turned on
for fj slots multiple times. We check whether the cameras
can capture every event. Our testbed is shown in Figure 3.
Camera 1 and 3 cover three targets each, {a, b, c}, and {e, f, g}
respectively, and camera 2 covers {b, c, d, e, f}. Camera 4 only
covers three targets {b, c, d}.

Generally, our three algorithms generate schedules with
similar k. However, if we set targets with small window size
(fg equals to 1 and others equal to 2) the bi-criteria algorithm
obtains k = 2, while others obtain k = 3. The reason is
that the geometric algorithm clusters targets with window size
= 1, 2 in the same group. Also, the combinatorial algorithm
requests each target j to be covered within each fj/2 time
slots, which is also every slot. Therefore, they both cover all
targets for each time slot which needs three sensors. On the
other side, bi-criteria algorithm avoid this situation by taking
directly the set multi-cover solution. For this simple setting,
our scheduling algorithms reduce the number of active sensors
in each time slot thus saving energy in the network.

VIII. CONCLUSION

In this paper we propose three algorithms for duty cycle
scheduling of sensors with different design principles. They
leverage properties and structures of the domain to construct
efficient schedules with theoretical bounds while remain sim-
ple enough for implementation. The flexible formulation of
coverage makes it appealing for many different applications
in wireless sensor networks. In future work, we will explore
the extension of this formulation to connectivity and load
balancing.

APPENDIX A
PROOFS FOR SECTION III

Lemma 3.1. For any T ≥ fmax, k(FTopt) ≤ 2k(Fopt).

Proof: Let Fopt denote the optimal schedule, and
F1,opt, . . . , Fn,opt denote the corresponding functions.
We construct functions F1, . . . , Fn each with period T
such that the cost of the corresponding schedule is at
most 2 times that of the optimal schedule specified by
Fopt. Our definition is as follows: For t = 1, . . . , T we
define Fi(t) = Fi,opt(t) ∨ Fi,opt(t + T ). Let FT denote the
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Fig. 2: Performance of algorithms in geometric domain against upper bound of maximum window size (δ). Since every target must be
covered once for every window, a larger window size allows it to be covered less frequently so the maximum number of active sensors in
each time slot is reduced. All algorithms benefit when the targets are required to be covered less frequently.

a

b f

g

c d e

1

2

3

4

Fig. 3: Experiment testbed of covering targets using a camera
network. There are 4 cameras (rectangles) with line-of-sight coverage
and 7 point targets (represented by red crosses).
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Fig. 4: Transforming a computable schedule to a periodic one. The
example has T = 4. The disk, cross etc. represent different sensors,
and their appearance represents the time slot they are scheduled. The
interval [11, 14] corresponds to a target covered by a sensor shown
as a empty box. The corresponding interval [3, 6] is also covered.

corresponding periodic schedule i.e., where we have extended
these functions Fi over the natural numbers periodically, i.e.,
for t ∈ [γT + 1, (γ + 1)T ] we have Fi(t) = Fi(t − γT )
for γ ≥ 1. As we show later this schedule is valid (i.e., it
satisfies the required coverage of the targets). For now, we
show that its cost is at most 2 times the cost of optimal. See

Figure 4 for an illustration of how to construct the periodic
schedule from a given schedule.

For any t in {1, . . . , T}, sensor i is turned on iff it is turned
on in Fopt in either of times t, t + T . Thus the number of
sensors turned on at any point in time is at most the sum of
the number of sensors turned on at time t, t + T which is at
most 2k(Fopt).

Consider now any target j. Let Sj ⊆ IN≤m be the indices
of the sensors covering target j. Consider an interval of length
fj . Since T ≥ fmax ≥ fj such an interval can intersect at most
two of the intervals [1, T ], [T +1, 2T ], . . .. If such an interval
lies inside [γT + 1, (γ + 1)T ] then suppose it extends from
[γT + x, γT + x + fj − 1] where x ≥ 1. Now consider the
corresponding interval [x, x + fj − 1]. Since this interval is
satisfied for target j in the optimal schedule we have that at
least one of the sensors with index in Sj is turned on during
the times [x, x+fj−1]. By definition of F such a sensor will
also be turned on once during the time interval [γT +x, γT +
x+fj−1]. Now, consider an interval that intersects at least two
periods, see Figure 4 for an example. Suppose it extends from
[γT − fj + x, γT + x]. In this case consider the interval [T −
fj+x, T+x] in the optimal schedule. A sensor in Sj is turned
on at least once during this interval. Suppose this was sensor i
turned on during some time in [T − fj +x, T ] then as per the
definition of F it is turned on during the corresponding interval
in F as well. On the other hand, if it was turned on during
[T+1, T+x] then, it will be turned on during [1, x] in F (since
Fi(t) = Fi(t)∨Fi(t+T ) for t in 1, . . . , T ), and by periodicity
also during [T + 1, T + x]. So a sensor in Sj will be turned
on at least once during [T − fj + x, T + x]. By periodicity,
that sensor will be turned on during [γT − fj + x, γT + x].
This proves the validity of our periodic schedule. �
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