
Ofer Strichman
Rachel Tzoref-Brill (Eds.)

 123

LN
CS

 1
06

29

13th International Haifa Verification Conference, HVC 2017
Haifa, Israel, November 13–15, 2017
Proceedings

Hardware and Software:
Verification and Testing

Lecture Notes in Computer Science 10629

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Ofer Strichman • Rachel Tzoref-Brill (Eds.)

Hardware and Software:
Verification and Testing
13th International
Haifa Verification Conference, HVC 2017
Haifa, Israel, November 13–15, 2017
Proceedings

123

Editors
Ofer Strichman
Technion - Israel Institute of Technology
Haifa
Israel

Rachel Tzoref-Brill
IBM Research Lab
Haifa
Israel

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-70388-6 ISBN 978-3-319-70389-3 (eBook)
https://doi.org/10.1007/978-3-319-70389-3

Library of Congress Control Number: 2017959620

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

These are the conference proceedings of the 13th Haifa Verification Conference
(HVC), held on the IBM Research campus in Haifa (HRL), Israel, during November
13–15, 2017. HVC is an annual conference dedicated to advancing the state of the art
in verification and testing. The conference provides a forum for researchers and
practitioners from academia and industry to share their work, exchange ideas, and
discuss the future directions of testing and verification for hardware, software, and
complex hybrid systems. It is also an opportunity to view tool demos that are related to
the scope of the conference.

The first day of HVC 2017 was dedicated to tutorials. The conference itself was
shortened to two days this year, which improved the acceptance ratio and raised the
overall quality. This year, 34 full papers were submitted, out of which 13 were
accepted. Further, six tool papers were submitted, out of which five were accepted, and
five posters were submitted, out of which four were accepted.

Each of the papers and posters was reviewed by three Program Committee members
or sub-reviewers of their choice. The reviewing process included a discussion between
the reviewers and an attempt to reach a consensus. The posters and tool demos were
presented in a dedicated session in the lobby of IBM-HRL.

In addition to the aforementioned papers, HVC 2017 hosted several high-quality
keynote talks: Prof. Eli Ben-Sasson from the Technion in Haifa, Prof. Dino Distefano
from Queen Mary University of London, Prof. Subhasish Mitra from Stanford
University in California, and finally Kedar Namjoshi from Nokia Bell Labs in
New Jersey.

The conference also held the annual HVC award ceremony. The award was given to
Prof. Cristian Cadar from Imperial College in London for “his contributions to dynamic
symbolic execution and the KLEE symbolic execution infrastructure” and more gen-
erally for “his outstanding contributions to program verification, bug finding, test
generation and, more generally, to software reliability.” The members of the HVC
Award Committee were:

Andrey Rybalchenko, Chair (Microsoft Research), Hana Chockler (King’s College
London), Kerstin Eder (University of Bristol), Marta Kwiatkowska (University of
Oxford), and Leonardo Mariani (University of Milano-Bicocca). We thank them all.

HVC 2017 received sponsorship from IBM, Cadence Design Systems, Mellanox
Technologies, Qualcomm, and Annapurna. Many thanks to all of them.

We would like to extend our appreciation and sincere thanks to the local organi-
zation team from IBM Research Haifa Laboratory: Revivit Yankovich, the local
coordinator, Tali Rabetti, the publicity chair, Tom Kolan, the tutorials chair, Niva
Bar-Shimon, the Web master, and the Organizing Committee, which consisted of Eli
Arbel, Laurent Fournier, Sharon Keidar-Barner, Moshe Levinger, Karen Yorav, and
Avi Ziv.

We thank the Program Committee and the sub-reviewers that joined them in
selecting such high-quality articles for the HVC program. We also thank IBM-HRL for
hosting the conference without any registration fees, including the facility and the
meals, and providing administrative support before, during, and after the conference.
Let us not forget to thank our sponsors, Mellanox and Cadence, and the fabulous
conference management system EasyChair, which made our life as conference chairs
so simple.

Finally, we thank the participants for coming and engaging in fruitful discussions
— we hope to see you next year as well!

September 2017 Ofer Strichman, Program Chair
Rachel Tzoref-Brill, General Chair

VI Preface

Organization

Program Committee

Nikolaj Bjorner Microsoft Research, USA
Hana Chockler King’s College London, UK
Alessandro Cimatti FBK-IRST, Italy
Rayna Dimitrova UT Austin, USA
Adrian Evans iRoC Technologies, France
Franco Fummi University of Verona, Italy
Alberto Griggio FBK-IRST, Italy
Alan J. Hu University of British Columbia, Canada
Warren Hunt University of Texas, USA
Alexander Ivrii IBM, Israel
Laura Kovacs Vienna University of Technology, Austria
Akash Lal Microsoft Research, India
Annalisa Massini Sapienza University of Rome, Italy
Ziv Nevo IBM Haifa Research Lab, Israel
Shaz Qadeer Microsoft, USA
Martina Seidl Johannes Kepler University Linz, Austria
Natasha Sharygina Università della Svizzera italiana (USI Lugano, Switzerland)
Carsten Sinz Karlsruhe Institute of Technology (KIT), Germany
Ofer Strichman Technion, Israel
Mattias Ulbrich Karlsruhe Institute of Technology, Germany
Willem Visser Stellenbosch University, South Africa
Greta Yorsh Queen Mary University of London, UK

Additional Reviewers

Arbel, Eli
Asadi, Sepideh
Bayless, Sam
Botha, Heila
Desai, Ankush
Fedyukovich, Grigory
Herda, Mihai
Hyvärinen, Antti
Jangda, Abhinav
Kilhamn, Jonatan
Koyfman, Anatoly
Maiya, Pallavi
Mancini, Toni

Marescotti, Matteo
Mari, Federico
Melatti, Igor
Morad, Ronny
Roveri, Marco
Santhiar, Anirudh
Sumners, Rob
Tonetta, Stefano
Tronci, Enrico
Tzevelekos, Nikos
Veksler, Tatyana
Weigl, Alexander

Tutorials

SeaHorn: Software Model Checking
with SMT and AI

Arie Gurfinkel

Abstract. Software Model Checking (SMC) is one of the most effective auto-
mated program verification techniques available today. SMC is applicable to a
large range of programs and properties and is capable of producing both
counterexamples (i.e., program executions that show how the property is vio-
lated by the program) and certificates (i.e., inductive proofs that justify how the
property is satisfied in all program executions). In this tutorial, I will demon-
strate a Software Model Checker SeaHorn, currently developed in a collabo-
ration between University of Waterloo and SRI International. SeaHorn provides
a verification environment build on top of LLVM – an industrial compiler
infrastructure. SeaHorn combines traditional and advanced Software Model
Checking algorithms based on Satisfiability Modulo Theory (SMT) with
Abstract Interpretation and many unique abstract domains. While being
state-of-the-art SMC, SeaHorn provides infrastructure for conducting research in
automated program analysis.

Combinatorial Security Testing: Quo Vandis?

Dimitris E. Simos

Abstract. Combinatorial methods have attracted attention as a means of pro-
viding strong assurance at reduced cost, but when are these methods practical
and cost-effective? This tutorial comprises of two parts. The first introductory
part will briefly explain the background, process, and tools available for com-
binatorial testing, with illustrations from industry experience with the method.

The main part, explains combinatorial testing-based techniques for effective
security testing of software components and large-scale software systems. It will
develop quality assurance and effective re-verification for security testing of web
applications and security testing of operating systems. It will further address
how combinatorial testing can be applied to ensure proper error-handling of
network security protocols and provide the theoretical guarantees for exciting
Trojans injected in cryptographic hardware. Procedures and techniques, as well
as workaround will be presented and captured as guidelines for a broader
audience. The tutorial is concluded with our vision for combinatorial security
testing together with some current open research problems.

Machine Learning in Practice - How to Build
and Deploy ML Projects

Litan Ilany

Abstract. Machine Learning projects have already shown significant value in
variety of areas, including design and validation fields.

However, in practice, the process of bringing a valuable ML project into
production can come across many hurdles, thus It is extremely difficult to truly
embed them in the core processes of the organization. In this tutorial we will
present some best practices in working on ML projects, deploying them in core
processes, and maximizing the value they create.

We will focus on CRISP-DM methodology, Agile ML development process
and others topics, as well as present some examples from projects conducted for
Intels validation teams.

Invited Talks

Self-Certifying and Secure Compilation

Kedar S. Namjoshi

Bell Labs, Nokia
kedar.namjoshi@nokia-bell-labs.com

Abstract. An optimizing compiler improves the performance of a program by
modifying its instructions, control flow, and data representations. How can one
be sure that such changes are implemented correctly? Testing is difficult, as it
requires producing programs as test data. A mechanized correctness proof is
infeasible for a production compiler such as GCC or LLVM. This talk explores a
third alternative, self-certification, where a compiler generates a proof of cor-
rectness with each compilation run. As the compiler is untrusted, generated
proofs have to be independently validated by automated methods. I will lay out
the theoretical basis behind this technique, discuss why proof generation and
proof checking are feasible in practice, and sketch our implementation for the
LLVM compiler. A compiler transformation may be correct and yet be insecure.
The possibility of an information leak being silently introduced during compi-
lation is troubling, as such leaks can be hard to detect. I will present a notion of
secure compilation, show that some commonly applied optimizations can be
insecure, and describe how they may be secured. The end goal is fully verified
and secure compilation: through-out the talk, I will highlight important imple-
mentation challenges and intriguing open questions.

QED and Symbolic QED: Dramatic
Improvements in Pre-silicon and Post-silicon

Validation of Digital Systems

Subhasish Mitra

Abstract. Ensuring the correctness of integrated circuits (ICs) is essential for
ensuring correctness, safety and security of electronic systems we rely on. As
ICs continue to grow in size and complexity, the cost and effort required to
validate them are growing at an unsustainable rate. To make matters worse,
difficult bugs escape into post-silicon and even production systems.

We present the Quick Error Detection (QED) technique which targets post-silicon
validation and debug challenges. QED drastically reduces error detection latency, the
time elapsed between the occurrence of an error caused by a bug and its manifestation
as an observable failure. Inspired by QED, we also present Symbolic QED which
combines QED principles with a formal engine to detect and localize bugs during both
pre- and post-silicon validation.

Experimental results collected from several commercial designs as well as hard-
ware platforms demonstrate the effectiveness and practicality of QED and Symbolic
QED:

1. For billion transistor-scale industrial multi-core IC designs, Symbolic QED detects
and localizes difficult logic design bugs (that may escape traditional
simulation-based pre-silicon verification) automatically (without requiring
design-specific assertions or properties) in only a few hours (*3 hours on average)
during pre-silicon verification. In contrast, traditional model checking generally
requires specially-crafted design-specific properties and cannot scale to large
designs.

2. Results from multiple commercial hardware platforms show that QED improves
error detection latencies of post-silicon validation tests by up to 9 orders of mag-
nitude, from billions of clock cycles to very few clock cycles. QED also improves
bug coverage during post-silicon validation 4-fold.

3. With drastically improved error detection latencies, QED (together with a formal
engine) automatically localizes logic and electrical bugs in billion transistor-scale
designs during post-silicon debug. For example, we can now automatically narrow
the locations of electrical bugs to a handful of candidate flip-flops (18 flip-flops on
average for a design with 1 Million flip-flops) in only a few hours (9 hours on
average). In contrast, traditional post-silicon debug techniques might take weeks (or
even months) of manual work.

QED and Symbolic QED are effective for logic design bugs and electrical bugs
inside processor cores, hardware accelerators, and uncore components such as cache
controllers, memory controllers and interconnection networks. QED-based validation
and debug techniques have been successfully used in industry.

Joint with Prof. Clark Barrett (Stanford), Prof. Deming Chen (UIUC), several
graduate students and industrial collaborators.

QED and Symbolic QED: Dramatic Improvements XIX

Scalable, Transparent and Post-quantum
Secure Computational Integrity,

with applications to Crypto-Currencies

Eli Ben-Sasson

Abstract. Scalable Zero Knowledge (ZK) are currently used to enhance privacy
and fungibility in the ZCash cryptocurrency, and could potentially be used to
solve Bitcoin’s scalability problems.

This talk describes recent progress towards, and applications of, *transpar-
ent* zero knowledge proofs, whose setup requires only a public random string.

Joint work with Iddo Bentov, Ynon Horesh and Michael Riabzev.

Contents

Full Papers

A Framework for Asynchronous Circuit Modeling and Verification
in ACL2 . 3

Cuong Chau, Warren A. Hunt Jr., Marly Roncken,
and Ivan Sutherland

Modeling Undefined Behaviour Semantics for Checking Equivalence
Across Compiler Optimizations. 19

Manjeet Dahiya and Sorav Bansal

Deferrability Analysis for JavaScript . 35
Johannes Kloos, Rupak Majumdar, and Frank McCabe

A Verifier of Directed Acyclic Graphs for Model Checking
with Memory Consistency Models . 51

Tatsuya Abe

Trace-based Analysis of Memory Corruption Malware Attacks 67
Zhixing Xu, Aarti Gupta, and Sharad Malik

Trace-Based Run-Time Analysis of Message-Passing Go Programs 83
Martin Sulzmann and Kai Stadtmüller

Software Verification: Testing vs. Model Checking: A Comparative
Evaluation of the State of the Art . 99

Dirk Beyer and Thomas Lemberger

A Supervisory Control Algorithm Based
on Property-Directed Reachability . 115

Koen Claessen, Jonatan Kilhamn, Laura Kovács,
and Bengt Lennartson

SMT-based Synthesis of Safe and Robust PID Controllers
for Stochastic Hybrid Systems . 131

Fedor Shmarov, Nicola Paoletti, Ezio Bartocci, Shan Lin,
Scott A. Smolka, and Paolo Zuliani

A Symbolic Approach to Safety LTL Synthesis . 147
Shufang Zhu, Lucas M. Tabajara, Jianwen Li, Geguang Pu,
and Moshe Y. Vardi

http://dx.doi.org/10.1007/978-3-319-70389-3_1
http://dx.doi.org/10.1007/978-3-319-70389-3_1
http://dx.doi.org/10.1007/978-3-319-70389-3_2
http://dx.doi.org/10.1007/978-3-319-70389-3_2
http://dx.doi.org/10.1007/978-3-319-70389-3_3
http://dx.doi.org/10.1007/978-3-319-70389-3_4
http://dx.doi.org/10.1007/978-3-319-70389-3_4
http://dx.doi.org/10.1007/978-3-319-70389-3_5
http://dx.doi.org/10.1007/978-3-319-70389-3_6
http://dx.doi.org/10.1007/978-3-319-70389-3_7
http://dx.doi.org/10.1007/978-3-319-70389-3_7
http://dx.doi.org/10.1007/978-3-319-70389-3_8
http://dx.doi.org/10.1007/978-3-319-70389-3_8
http://dx.doi.org/10.1007/978-3-319-70389-3_9
http://dx.doi.org/10.1007/978-3-319-70389-3_9
http://dx.doi.org/10.1007/978-3-319-70389-3_10

An Interaction Concept for Program Verification Systems
with Explicit Proof Object . 163

Bernhard Beckert, Sarah Grebing, and Mattias Ulbrich

PRuning Through Satisfaction . 179
Marijn J.H. Heule, Benjamin Kiesl, Martina Seidl, and Armin Biere

LRA Interpolants from No Man’s Land . 195
Leonardo Alt, Antti E.J. Hyvärinen, and Natasha Sharygina

Tool Papers

ACAT: A Novel Machine-Learning-Based Tool for Automating
Android Application Testing. 213

Ariel Rosenfeld, Odaya Kardashov, and Orel Zang

MicroTESK: Specification-Based Tool for Constructing Test
Program Generators. 217

Mikhail Chupilko, Alexander Kamkin, Artem Kotsynyak,
and Andrei Tatarnikov

Embedded Functions for Test Design Automation . 221
George B. Sherwood

KERIS: A CT Tool of the Linux Kernel with Dynamic Memory
Analysis Capabilities . 225

Bernhard Garn, Fabian Würfl, and Dimitris E. Simos

RATCOP: Relational Analysis Tool for Concurrent Programs. 229
Suvam Mukherjee, Oded Padon, Sharon Shoham, Deepak D’Souza,
and Noam Rinetzky

Posters

More Adaptive Does not Imply Less Safe (with Formal Verification) 237
Luca Pulina and Armando Tacchella

APSL: A Light Weight Testing Tool for Protocols
with Complex Messages . 241

Tom Tervoort and I.S.W.B. Prasetya

Towards Verification of Robot Design for Self-localization 245
Ryo Watanabe, Kozo Okano, and Toshifusa Sekizawa

Probabilistic Model of Control-Flow Altering Based Malicious Attacks:
(Poster Submission). 249

Sergey Frenkel

Author Index . 253

XXII Contents

http://dx.doi.org/10.1007/978-3-319-70389-3_11
http://dx.doi.org/10.1007/978-3-319-70389-3_11
http://dx.doi.org/10.1007/978-3-319-70389-3_12
http://dx.doi.org/10.1007/978-3-319-70389-3_13
http://dx.doi.org/10.1007/978-3-319-70389-3_14
http://dx.doi.org/10.1007/978-3-319-70389-3_14
http://dx.doi.org/10.1007/978-3-319-70389-3_15
http://dx.doi.org/10.1007/978-3-319-70389-3_15
http://dx.doi.org/10.1007/978-3-319-70389-3_16
http://dx.doi.org/10.1007/978-3-319-70389-3_17
http://dx.doi.org/10.1007/978-3-319-70389-3_17
http://dx.doi.org/10.1007/978-3-319-70389-3_18
http://dx.doi.org/10.1007/978-3-319-70389-3_19
http://dx.doi.org/10.1007/978-3-319-70389-3_20
http://dx.doi.org/10.1007/978-3-319-70389-3_20
http://dx.doi.org/10.1007/978-3-319-70389-3_21
http://dx.doi.org/10.1007/978-3-319-70389-3_22
http://dx.doi.org/10.1007/978-3-319-70389-3_22

Full Papers

A Framework for Asynchronous Circuit
Modeling and Verification in ACL2

Cuong Chau1, Warren A. Hunt, Jr.1, Marly Roncken2, and Ivan Sutherland2

1 Department of Computer Science
The University of Texas at Austin

Austin, TX, USA

2 Maseeh College of Engineering and Computer Science
Portland State University

Portland, OR, USA

{ckcuong,hunt}@cs.utexas.edu, marly.roncken@gmail.com, ivans@cecs.pdx.edu

Abstract. Formal verification of asynchronous circuits is known to be
challenging due to highly non-deterministic behavior exhibited in these
systems. One of the main challenges is that it is very difficult to come
up with a systematic approach to establishing invariance properties,
which are crucial in proving the correctness of circuit behavior. Non-
determinism also results in asynchronous circuits having a complex state
space, and hence makes the verification task much more difficult than
in synchronous circuits. To ease the verification task by reducing non-
determinism, and consequently reducing the complexity of the set of ex-
ecution paths, we impose design restrictions to prevent communication
between a module M and other modules while computations are still
taking place that are internal to M . These restrictions enable our veri-
fication framework to verify loop invariants efficiently via induction and
subsequently verify the functional correctness of asynchronous circuit
designs. We apply a link-joint paradigm to model asynchronous circuits.
Our framework applies a hierarchical verification approach to support
scalability. We demonstrate our framework by modeling and verifying
the functional correctness of a 32-bit asynchronous serial adder.

Keywords: asynchronous circuit modeling, asynchronous circuit veri-
fication, non-deterministic behavior, hierarchical verification, link-joint
model, mechanical theorem proving, self-timed serial adder

1 Introduction

Asynchronous (or self-timed) circuits have shown their potential advantages over
synchronous (or clock-driven) circuits for low power consumption, high operat-
ing speed, low electromagnetic interference, elimination of clock skew problems,
better composability and modularity in large systems, etc [10,15]. Nonetheless,
the asynchronous paradigm exposes great challenges in both design and verifica-
tion that are not found in the clocked paradigm. It is still a daunting challenge
© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 3–18, 2017.
https://doi.org/10.1007/978-3-319-70389-3_1

to verify the correctness of asynchronous systems at large scale, mainly due to
the high degree of non-determinism for event ordering inherent in such systems.
Since verification is a critical component of any complex digital design, scalable
methods for asynchronous system verification are highly desirable.

Our effort is complementary to the work introduced by Park et al. [11] to vali-
date timing constraints for delay-insensitive handshake components. The authors
used model-checking to perform timing verification on handshake components,
to validate the correctness of local communication or handshake protocols with
respect to delays in gates and wires. Our approach relies on such analysis to jus-
tify our abstraction of self-timed circuits to finite-state-machine representations
of networks of communication channels, thus ignoring circuit-level timing con-
straints. Using the ACL2 theorem-proving system [7], we present a framework
for specifying and verifying the functional correctness of those networks.

Our work focuses on developing scalable methods for reasoning about the
functional correctness of self-timed systems. Our approach applies induction
reasoning to establishing loop invariants of self-timed systems. We use the DE
(Dual-Eval) system [3], which is built using the ACL2 theorem-proving system,
to specify and verify self-timed circuit designs. DE is a formal hardware descrip-
tion language that permits the hierarchical definition of finite-state machines.
It has shown its capabilities to specify and verify synchronous microprocessor
designs [1,4]. A key feature of the DE system is that it supports hierarchical
verification, which is critical in verifying the correctness of circuit behavior at
large scale. It also provides a library of verified hardware circuit generators that
can be used to build and analyze more complex hardware systems [1].

We use DE to model self-timed circuits as networks of communication and
computation primitives that operate with each other locally via the link-joint
model proposed by Roncken et al. [13], a universal model for various self-timed
circuit families. To our knowledge, we are the first to model self-timed circuits us-
ing the link-joint model in a theorem-proving system. We also develop a method
for verifying functional properties of self-timed circuits constructed via the link-
joint model.

We model the non-determinism of self-timed circuit behavior by consulting
an oracle field — an external field we inject into the circuit model. The chal-
lenge in reasoning about the correctness of non-deterministic systems is that
their state space is not only large as compared to synchronous systems, but
also ill-structured in such a way that computing invariants in those systems
becomes highly complicated. Since invariants are crucial properties for proving
the correctness of circuit behavior, we are interested in developing a method
for computing invariants of self-timed circuits systematically, thus ultimately
making the verification of these systems tractable. Our approach attempts to
reduce non-determinism, consequently reducing the complexity of the set of exe-
cution paths, by imposing design restrictions to prevent communication between
a module M and other modules while computations are still taking place that
are internal to M . These design restrictions enable our verification approach to
verify loop invariants efficiently via induction and subsequently verify the func-

4 C. Chau et al.

tional correctness of self-timed circuit designs. We demonstrate our framework
by modeling and verifying the functional correctness of a 32-bit self-timed serial
adder 3. This provides a significant first step towards the formal verification of
arbitrary asynchronous designs.

The rest of the paper is organized as follows. Related work is given in Sec-
tion 2. An overview of the DE system is presented in Section 3. Section 4
describes our self-timed circuit modeling and verification approach. Section 5
demonstrates our approach by describing our modeling and verification of a
32-bit self-timed serial adder. Possible future work and concluding remarks are
given in Sections 6 and 7, respectively.

2 Related Work

Asynchronous circuit verification is an active research area in the hardware com-
munity. Many efforts in this area have focused on verifying properties of asyn-
chronous circuits by applying timing verification techniques [6,8,9,11]. Park et
al. [11] presented their framework, called ARCtimer, for modeling, generating,
verifying, and enforcing timing constraints for individual delay-insensitive hand-
shake components. ARCtimer uses the general-purpose model checker NuSMV
to perform timing verification of handshake components. The authors’ main goal
was to verify that the network of logic gates and wires and their delays meet the
component’s communication protocol specification. Our goal is complementary:
to verify that the network of handshake components and their protocols meets
its functional specification, while ignoring circuit-level timing constraints that
can be handled by tools like ARCtimer.

Verbeek and Schmaltz [17] formalized and verified with the ACL2 theorem
prover blocking (not transmitting data) and idle (not receiving data) conditions
over delay-insensitive primitives in the Click library. These conditions were then
used to derive SAT/SMT instances from asynchronous circuits built out of these
primitives for checking deadlock freedom in those circuits. While our approach
also uses ACL2 to model and verify self-timed circuits, we verify the functional
correctness of self-timed circuit models.

Clarke and Mishra [2] employed model checking to automatically verify some
safety and liveness properties of a self-timed FIFO queue element specified
in Computation Tree Logic (CTL). The authors also presented a hierarchical
method for verifying large and complex circuits. Nevertheless, their approach
imposed an unrealistic assumption on self-timed circuits that each gate has one
unit delay. Our approach, on the other hand, does not restrict gate delays except
that they are finite.

Other previous work on asynchronous circuit verification attempted to re-
duce non-determinism by adding restrictions to circuit designs, as presented by
Srinivasan and Katti [16] and Wijayasekara et al. [18]. Srinivasan and Katti [16]

3 The source code for this work is available at https://github.com/acl2/acl2/tree/
master/books/projects/async/serial-adder

A Framework for Asynchronous Circuit Modeling 5

applied a refinement-based method for verifying safety properties of desynchro-
nized pipelined circuits, while Wijayasekara et al. [18] applied the same method
for verifying the functional equivalence of NULL Convention Logic (NCL) cir-
cuits against their synchronous counterparts. While their verification frameworks
are highly automated by using decision procedures, both provided quite limited
scalability and no liveness properties were verified. Although we also impose de-
sign restrictions to reduce non-determinism, our approach is capable of verifying
liveness properties as described in Section 5 in our account of the verification of
a 32-bit self-timed serial adder. Our approach exploits hierarchical verification
and induction reasoning to support scalability.

3 The DE System

DE is a formal occurrence-oriented hardware description language developed in
ACL2 for describing Mealy machines [3]. It has been shown to be a valuable
tool in formal specification and verification of hardware designs [14,5]. The op-
erational semantics for the DE language is implemented as an output “wire”
evaluator, se, and a state evaluator, de. The se function evaluates a module
and returns its outputs as a function of its inputs and its current state. The de

function evaluates a module and returns its next state; this state will be struc-
turally identical to the module’s current state, but with updated values. The
interested reader may refer to Hunt’s paper [3] for details about the se and de

functions.
In synchronous circuits, storage elements update their values simultaneously

at every global clock tick, where the clock rate is fixed. Hence the duration
represented by two consecutive de evaluations of a synchronous module is fixed
and exactly one clock cycle. In self-timed circuits, however, storage elements
update their values whenever their local communication conditions are met; and
hence the duration represented by two consecutive de evaluations of a self-timed
module varies.

A
B

Carry

Sum

Half-Adder

A

B

Carry

Sum

Half-Adder

A

B

Carry

Sum

A

B

C

Carry1

Sum1 Carry2

Carry

Sum

Fig. 1. Half-adder (left) and full-adder (right)

A DE description is an ACL2 constant containing an ordered list of modules,
which we call a netlist. Each module consists of five elements in the following
order: a netlist-unique module name, inputs, outputs, internal states represented
by a list of occurrence names identifying those occurrences that contain state-
holding devices, and occurrences. Each occurrence consists of four elements in

6 C. Chau et al.

the following order: a module-unique occurrence name, outputs, a reference to a
primitive or defined module, and inputs. For instance, the DE descriptions of the
half-adder and full-adder netlists shown in Figure 1 are described below. Note
that these adders are purely combinational-logic circuits; they do not contain
any internal state.

(defconst *half-adder*
’((half-adder

(a b)
(sum carry)
() ;; No internal state
((g0 (sum) xor (a b))
(g1 (carry) and (a b))))))

(defconst *full-adder*
(cons ’(full-adder

(c a b)
(sum carry)
() ;; No internal state
((t0 (sum1 carry1) half-adder (a b))
(t1 (sum carry2) half-adder (sum1 c))
(t2 (carry) or (carry1 carry2))))

half-adder))

A key feature of the DE system is that it supports hierarchical verification,
which is critical in verifying the correctness of large circuit descriptions. The idea
is to verify the correctness of a larger module by composing verified submodules
without delving into details about the submodules. More specifically, each time
a module is specified, we prove a value lemma specifying the module’s outputs
and a state lemma specifying the module’s next state. If a module does not
have an internal state (purely combinational), only the value lemma need be
proven. These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any details about
the submodules. Such an approach can scale to very large systems, as has been
shown on contemporary x86 designs at Centaur Technology [14]. We refer the
interested reader to Hunt’s paper [3] for an example of the value lemma of the
full-adder mentioned above.

4 Modeling and Verification Approach

We model self-timed circuits by (1) adding local signaling to state-holding de-
vices, (2) establishing local communication protocols, and (3) employing an ora-
cle, which we call a collection of go signals, for modeling non-deterministic circuit
behavior due to variable delays in wires and gates. The details of our modeling
approach are described below.

In the clock-driven design paradigm, state-holding devices are all governed
by a global clock signal such that their internal states are updated at the same
time when the clock “ticks”, which is simulated by a de evaluation in the DE
system. There is no such global clock signal in the self-timed design paradigm.

A Framework for Asynchronous Circuit Modeling 7

D0d0-in

S0. S R /

full fullin

Combinational
Logic

fire

s0-act

drain

s1-act

D1 d1-out

S1. S R /

full

fill

fullout

JointLink Link

L0 L1

GO

Fig. 2. Simple self-timed communication circuit using the link-joint model from Ron-
cken et al. [13]

Thus, when a self-timed circuit is simulated by a de evaluation, its state-holding
elements will update their states based on their inputs.

For establishing local communication protocols, we model the link-joint model
introduced by Roncken et al. [13]. Our rationale for formalizing this model is the
authors’ demonstration that it is a universal communication model for various
circuit families. In this model, links are communication channels in which data
and full/empty states are stored, while joints are handshake components that
implement flow control and data operations. Roughly speaking, joints are the
meeting points for links to coordinate states and exchange data. Figure 2 shows
an example of a simple self-timed communication circuit using the link-joint
model. This circuit consists of a joint associated with an incoming link L0 and
an outgoing link L1. In general, a joint can have several incoming and outgoing
links connected to it, as depicted in Figure 3.

Links receive fill or drain commands from and report their full/empty states
and data to their connected joints. A full link carries valid data, while an empty
link carries data that are no longer or not yet valid. When a link receives a fill
command, it changes its state to full. A link will change to the empty state if it
receives a drain command. We use a set-reset (SR) latch to model the full/empty
state of a link, as illustrated by the lower box in each link shown in Figure 2 4.
The interested reader may refer to Roncken et al.’s paper [13] for other options
of link control circuitry.

Joints receive the full/empty states of their links and issue the fill and drain
commands when their communication conditions are satisfied. The control logic
of a joint is an AND function of the conditions necessary for it to act. To enable a
joint-action, all incoming links of a joint must be full and all outgoing links must

4 Using SR latches in this manner requires an implementation to assure sufficient delay
in the AND function to prevent overlap in the S and R inputs. This is handled at
the circuit level by Park et al. [11].

8 C. Chau et al.

be empty (see the AND gates in Figures 2 and 3). Due to arbitrary delays in wires
and gates, enabled joints may fire in any order. We model the non-deterministic
circuit behavior by associating each joint with a so-called go signal as an extra
input to the AND function in the control logic of that joint. The value of the go
signal will indicate whether the corresponding joint will fire when it is enabled.
The idea of using go signals to model non-determinism was presented in a paper
by Roncken et al. [12]. In our framework, when applying the de function that
computes the next state of a self-timed circuit, only enabled joints with high
values of the go signals will fire. When a joint fires, the following three actions
will be executed in parallel 5:

– transfer data computed from the incoming links to the outgoing links,
– fill the outgoing links, make them full,
– drain the incoming links, make them empty.

Below is our DE description of the self-timed module shown in Figure 2,
where D0 and D1 are one-bit latches, and the combinational logic (Comb. Logic)
representing the data operation of the joint is simply a one-bit buffer. This
module contains state-holding devices S0, D0, S1, and D1.

’(link-joint
(s0-act s1-act d0-in go)
(d1-out)
(s0 d0 s1 d1) ;; Internal states
(;; Link L0
(s0 (s0-status) sr (s0-act fire))
(d0 (d0-out d0-out-) latch (s0-act d0-in))
;; Link L1
(s1 (s1-status) sr (fire s1-act))
(d1 (d1-out d1-out-) latch (fire d1-in))
;; Joint
(j (fire) joint-cntl (s0-status s1-status go))
(h (d1-in) buffer (d0-out))))

We consider all possible interleavings of the go signals’ values when reasoning
about the correctness of circuit behavior. The only requirement is that when
applying the de function to compute the next state of a module, the go signals
are high for at least one enabled joint (if any such joint exists). We call this
restriction the single-step-progress requirement.

Our framework exploits a hierarchical verification approach to formalizing
single transitions of circuit behavior (simulated by se and de functions), as
described in Section 3. The verification process at the module level requires
us to show how several asynchronous blocks can be interconnected to provide
provably correct, higher level functions. Our framework currently treats modules

5 The work done by Park et al. [11] used ARCtimer to generate and validate timing
constraints in joints. Their framework added sufficient delay to the control logic of
each joint to guarantee that the clock pulse is wide enough for the three mentioned
actions to be properly executed when the joint fires. Our work assumes that we have
a valid circuit that satisfies necessary circuit-level timing constraints, as guaranteed
by ARCtimer.

A Framework for Asynchronous Circuit Modeling 9

fullin0...

fullinm

...

GO

fullout0...

fulloutn

...

drain0 ...
drainm

fill0...
filln

Comb. Logic

Din0
...

Dinm

Dout0
...

Doutn

Fig. 3. Sketch of a joint with m incoming and n outgoing links [13]

as “complex” links that communicate with each other via local communication
protocols. Hence, self-timed modules report both data and communication states
to the joints connecting those modules. In the future, we plan to explore a notion
of modules being treated as “complex” joints 6.

The communication state of a self-timed module is more complicated than
that of a primitive link in the sense that it can be ready to send and receive data
at the same time, or “not ready” to communicate with its connected modules.
For this reason, self-timed modules use separate incoming and outgoing com-
munication signals, whereas primitive links only need one full/empty signal for
both incoming and outgoing communications. For example, the ready-in- (active
low) and ready-out (active high) output signals of the module in Figure 4 are
both active at the same time when the two links on the left side are empty and
the three links on the right side are full. This module is in the not-ready state
when the two links on the left side are full and the three links on the right side
are empty.

In arbitrarily non-deterministic systems, the state space may not exhibit a
clear structure for computing invariants effectively. Verification of such systems
may require exploring the entire state space. To simplify the verification task by
reducing non-determinism, and consequently reducing the complexity of the set
of execution paths, we impose restrictions on circuit designs such that a module
is ready to communicate with other modules only when it finishes all of its

6 We choose to model modules as links for the purpose of storage-free connections
between modules, since they are connected via storage-free joints in this setting.
However, this modeling does not keep to the spirit of the link-joint paradigm in
which computation is supposed to be done entirely in joints and links serve only to
store data [13].

10 C. Chau et al.

D0

S0

D1

S1

Comb. Logic

D2

S2

D3

S3

D4

S4

ready-in- ready-out

Fig. 4. Example of a self-timed module containing one joint with two incoming and
three outgoing primitive links. The flow control of the joint is not shown in the figure
for the sake of simplicity. Note that a self-timed module can contain several links and
joints. We use this simple example for pedagogical purposes.

internal operations and becomes quiescent. By adding these restrictions, the state
space is not only reduced but, more importantly, it also exhibits a structure for
establishing loop invariants efficiently via induction. These restrictions guarantee
that every module will reach a fixed point before it can communicate with other
modules, and thus enable our framework to establish invariants and subsequently
verify the functional correctness of circuit designs.

5 32-Bit Self-Timed Serial Adder Verification

In this section we demonstrate our framework by describing our modeling and
verification of a 32-bit self-timed serial adder. This relatively simple example is
sufficiently complex to demonstrate the generality of our approach. First let us
introduce the shift register concept, which is used in constructing a serial adder.
A shift register is a state-holding device that shifts in the data present at its
input and shifts out the least significant bit (LSB) in the bit-vector whenever the
register’s advance (“clock”) input transitions from low to high. Shift registers
can have both parallel (bit-vector) and serial (single-bit) inputs and outputs.
Figure 5 illustrates an example of a serial-in, serial-out, and parallel-out n-bit
shift register. The figure shows that the shift register outputs both the LSB
(serial-out) and the entire n-bit vector (parallel-out), but it only accepts single-
bit inputs (serial-in). When the write/shift signal is high, the value of Shift-Reg
will be shifted right by one position and the bit-in will be stored in Shift-Reg at
the most-significant-bit (MSB) position.

A Framework for Asynchronous Circuit Modeling 11

Shift-Reg

n �

bit-in

write/shift

bit-out (LSB)

n-bit vector

Fig. 5. Serial-in, serial-out, and parallel-out n-bit shift register

Table 1. 4-bit serial addition example. The bit-in is 0 for both shift registers A and B
in this example.

A B S si ci+1

1010 0011 1xxx 1 0

0101 0001 01xx 0 1

0010 0000 101x 1 0

0001 0000 1101 1 0

A serial adder is a digital circuit that performs binary addition via bit addi-
tions, from the LSB to MSB, one at a time. Bit additions are performed using a
1-bit full-adder to generate a sum bit and a carry bit, and two input operands
and the accumulated sum are stored in the shift registers. Table 1 shows a 4-bit
serial addition example.

We construct a 32-bit self-timed serial adder using the link-joint model, i.e.,
the communications between state-holding elements in the circuit are established
via the link-joint model. Figure 6 shows the datapath of a 32-bit self-timed serial
adder; the control path is elided for the sake of simplicity 7. In terms of the link-
joint model, the figure displays only the data operations of the joints (circles)
and the link data (rectangles) 8; it abstracts both the flow control of the joints
and the link states. To model non-determinism, we associate each joint with a
go signal. In Figure 6, we see that the go signals point to the data operations of
their corresponding joints, and we also refer to joints by their go signals’ names.
But note that these go signals are indeed provided as inputs to the AND gates
in the control logic of their corresponding joints, which are omitted from the
figure. The roles of the storage elements (the rectangles in Figure 6) used in the
serial adder are described below.

– Two 32-bit input operands are stored in Shift-Reg0 and Shift-Reg1, and the
32-bit sum is stored in Shift-Reg2. The final 33-bit sum (including the carry-
out) is stored in the regular register Result.

7 The dotted lines emanating from the Done- latch represent the fact that the output
of Done- is used in the control path, not in the datapath.

8 Our approach currently declares shift registers as primitive state-holding devices and
uses them to store link data. In the future, we plan to be faithful to the link-joint
methodology by replacing the shift registers by links and joints.

12 C. Chau et al.

Shift-Reg0
0 1

�
1
�

Shift-Reg1
0 1

�
1
�

Ci

1
�

A
1
�

B

1

�

+

Co

1
�

S

1

�

1
�

1
�

1
�

1
�

1
�

Shift-Reg2

32
�

App

33�

Result+1
5�

1
�

1
�

Cntl-State

5�

Cntl-State’
5
� Done-

015
�

go-a

go-b

go-buf-cntl

go-cntl

go-add

go-carry

go-s

go-result

M1

M2

M3

Full

Full

Full

Full Full

Buffer App Append the carry-out to the final sum

Fig. 6. Data flow of a 32-bit self-timed serial adder, M3. Circles represent joints, rect-
angles represent links.

– Cntl-State and Cntl-State’ are 5-bit registers that hold the current and next
control states of the serial adder, respectively. The current control state acts
as a counter that counts the number of times the bit addition has been
executed. Since the adder performs 32-bit additions, the control states are 5
bits long.

– The output of the Done- latch indicates whether the circuit will write the
final 33-bit result into the Result register when the corresponding commu-
nication is ready, or the circuit keeps updating the current control state
Cntl-State.

– Latches A and B contain two 1-bit operands for the full-adder; latch Ci

contains the carry-in. The 1-bit sum and the carry-out produced from the
full-adder are stored in latches S and Co, respectively.

We prove that the self-timed serial adder indeed performs the addition under
an appropriate initial condition. Initially, Shift-Reg0, Shift-Reg1, Ci, Cntl-State’,
and Done- are full; other state-holding elements are empty. The initial values
stored in Shift-Reg0, Shift-Reg1, and Ci represent two 32-bit input operands and
the carry-in, respectively. The initial value of Cntl-State’ is the zero vector, and
the initial value of Done- is high (or 1). We prove that Result eventually becomes

A Framework for Asynchronous Circuit Modeling 13

full and its value at that point is the sum of the two 32-bit input operands and
the carry-in.

Our approach applies the hierarchical verification method as described in
Section 3 to verifying the correctness of the self-timed serial adder. Specifically,
we first construct module M1 that performs bit additions using a 1-bit full-
adder (the innermost dashed-line box in Figure 6). We place a constraint when
constructing M1 so that its ready-out signal is active (i.e., ready to send data) if
the condition

(
full(S) ∧ full(Ci)

)
is satisfied, and its ready-in- signal is active

(i.e., ready to receive data) if the condition
(
(empty(A)∨ empty(B))∧full(Ci)

)
is satisfied. This constraint guarantees that M1 is ready to communicate with
other modules only when it is quiescent. For example, consider the scenario when
A and B and Ci are empty, S and Co are full. Since the ready-out condition for
M1 is not satisfied, the joint associated with the go-s signal (henceforth, we
refer to this joint simply as go-s) is not ready to act even if Shift-Reg2 is empty.
Likewise, neither go-a nor go-b is ready to act even if Shift-Reg0 and Shift-Reg1
are full, since the ready-in- condition for M1 is not satisfied. Note that M1 is
still active in this case; it is not quiescent because go-carry is now ready to act.

After constructing module M1, we prove an se value lemma and a de state
lemma for this module. We then move on to construct module M2 that performs
serial additions without control states (the middle dashed-line box in Figure 6).
We also place a constraint on M2’s design to guarantee that M2 is ready to
communicate with other modules only when it is quiescent: its ready-out signal
is active when full(Shift-Reg2) is satisfied, and its ready-in- signal is active when(
empty(Shift-Reg0)∧empty(Shift-Reg1)∧full(Shift-Reg2)

)
is satisfied. Since M2

contains M1 as a submodule, the two lemmas we already proved for M1 are used
in proving the value and state lemmas for M2, without knowing any further
details about M1. These two lemmas about M2 are then used in proving the
value and state lemmas for circuit M3, i.e., the serial adder with control states.

A key step in our verification of the self-timed serial adder is to establish the
loop invariant of this circuit model via induction. Given the initial state of the
circuit as mentioned earlier, we prove that the full/empty state of every link in
this circuit is preserved after each iteration of the circuit execution, as long as the
value of Done- before each iteration is 1. Each iteration performs one bit-addition
and the orders of operations to be executed in one iteration are displayed by the
dependency paths of the go signals in Figure 7. Each relation goi → goj shown in
this figure indicates that goj will not be ready if goi is not executed. For instance,
the two arrows from go-a and go-b to go-add indicate that go-add is ready only
if go-a and go-b were executed. At the initial state, only go-a, go-b, and go-buf-
cntl are ready to act: go-a is ready because Shift-Reg0 is full, A is empty, and
M1 is ready to receive data (i.e., the ready-in- condition for M1 is satisfied);
go-b is ready because Shift-Reg1 is full, B is empty, and M1 is ready to receive
data; go-buf-cntl is ready because Cntl-State’ and Done- are full, Cntl-State is
empty, and the value of Done- is 1. Each iteration except the last is finished
when go-cntl is executed (Figure 7(a)). The last iteration (the value of Done-
at the beginning of this iteration is 0) is finished when go-result is executed

14 C. Chau et al.

go-a

go-b

go-add go-carry go-s

go-buf-cntl

go-cntl

(a) When the value of Done- is 1.

go-a

go-b

go-add go-carry go-s go-result

(b) When the value of Done- is 0.

Fig. 7. Dependency paths of the go signals displayed in Figure 6

(Figure 7(b)). Our correctness theorems include the interleaving specification
hypotheses, which consider all possible interleavings of the go signals’ values
conforming to the single-step-progress requirement as well as the dependency
paths in Figure 7. It is easy to check manually that these dependency paths
cover all possible execution paths of M3. We plan to formalize this claim in the
future.

The following two theorems, both proved with ACL2, state correctness of our
self-timed circuit. Theorem 1 (partial correctness) states that given the initial
state st of the serial adder as mentioned previously (Hypothesis 2), and the input
sequence input seq satisfying the interleavings of the go signals specified by the
dependency paths shown in Figure 7 (Hypothesis 4, note that the go signals
are part of the inputs); if the Result register becomes full (Hypothesis 6) after
running the serial adder n de steps from the initial state (Hypothesis 5), then
the value of the Result register at that point is the sum of the two 32-bit input
operands and the carry-in initially stored in two shift registers Shift-Reg0 and
Shift-Reg1, and latch Ci, respectively. Theorem 2 (termination) states that the
Result register will become full if n is large enough (Hypothesis 6’; Hypotheses 1-
5 are the same as in Theorem 1).

In our verification effort, we automate the verification process for the serial
adder by defining macros that help prove automatically the base case of the loop
invariant for all possible execution paths. We prove about 230 supporting lemmas
(not including other supporting lemmas imported from libraries from the ACL2
Community Books) that help discharge automatically proof obligations required
to prove the two main theorems mentioned above. One of the main challenges
in verifying the serial adder is to prove the loop invariant by induction: ACL2
fails to discover automatically the correct induction scheme to prove this loop
invariant. We have to provide an induction scheme to ACL2. In spite of that,

A Framework for Asynchronous Circuit Modeling 15

our induction scheme is general enough to be applied to proving loop invariants
of other self-timed circuits. The verification time of the 32-bit self-timed serial
adder is about 80 seconds on a 2.9 GHz Intel Core i7 processor with 4MB L3
cache and 8GB memory. Since the loop invariant of the serial adder is established
by induction, our proof technique can scale to any size of the adder.

Theorem 1 (Partial correctness).

async serial adder(netlist) ∧ (1)

init state(st) ∧ (2)

(operand size = 32) ∧ (3)

interleavings spec(input seq, operand size) ∧ (4)

(st′ = run(netlist, input seq, st, n)) ∧ (5)

full(result status(st’)) (6)

⇒ (result value(st′) = shift reg 0 value(st) +

shift reg 1 value(st) +

ci value(st))

Theorem 2 (Termination).

async serial adder(netlist) ∧ (1)

init state(st) ∧ (2)

(operand size = 32) ∧ (3)

interleavings spec(input seq, operand size) ∧ (4)

(st′ = run(netlist, input seq, st, n)) ∧ (5)

(n ≥ num steps(input seq, operand size)) (6′)

⇒ full(result status(st′))

6 Future Work

In the future, we plan to prove the partial correctness of the self-timed serial
adder without specifying the interleavings of the go signals’ values. In other
words, we aim to remove Hypothesis 4 from Theorem 1. A possible approach
is that we can use Theorem 1 as a supporting lemma and also prove that for
any interleaving i, there always exists a specified interleaving i′ such that the
orderings of operations when executing the circuit under i and i′ are identical.
From these two lemmas, we can derive the desired partial correctness theorem
that does not specify the interleavings.

For the termination theorem (Theorem 2), simply removing Hypothesis 4
will make the theorem invalid. We need to add a constraint guaranteeing that
delays are bounded in order to prove Theorem 2 without having Hypothesis 4.

We also plan to investigate a notion of modules with joints at the interfaces
instead of links, where two modules are connected by one or more external links.

16 C. Chau et al.

Another possibility for future work is to develop a better compositional reasoning
method that improves scalability when the number of interleavings increases.
The high-level idea is to verify the correctness of a larger module by composing
verified submodules without delving into details about the submodules as well
as the interleavings of their internal operations.

Our existing design restrictions may reduce the performance of self-timed
implementations. Our purpose of imposing these restrictions in the design stage
is to establish loop invariants for iterative circuits. For circuits that have no
feedback loops, we are developing a method for verifying these systems without
imposing the aforementioned restrictions.

7 Conclusion

This paper presents a framework for modeling and verifying self-timed circuits
using the DE system. We model a self-timed system as a network of links com-
municating with each other locally via handshake components, which are called
joints, using the link-joint model. To our knowledge, this is the first time self-
timed circuits are modeled using the link-joint model in a theorem-proving sys-
tem. We also model the non-determinism of event-ordering in self-timed circuits
by associating each joint with an external go signal. In addition, presenting self-
timed modules as complex links is also new in our paper. Another contribution of
our work is our verification procedure to self-timed circuits as described. We show
that the existing DE system already proven to be successful for synchronous cir-
cuits is adaptable for handling self-timed systems by reasoning with go signals
as well as state-holding elements that have their own gating. Our verification
approach is able to establish loop invariants using induction when the circuit
behavior obeys the design restrictions we propose. Hierarchical verification is
essential in our verification method and critical to circuit verification at large
scale.

Acknowledgements

The authors would like to thank Matt Kaufmann for his encouragement, great
discussions and feedback. We also thank Anna Slobodova for her useful comments
and corrections on this paper. This material is based upon work supported by
DARPA under Contract No. FA8650-17-1-7704.

References

1. C. Chau. Extended Abstract: Formal Specification and Verification of the FM9001
Microprocessor Using the DE System. In Proc of the Fourteenth International
Workshop on the ACL2 Theorem Prover and Its Applications (ACL2-2017), pages
112–114, 2017.

2. E. Clarke and B. Mishra. Automatic Verification of Asynchronous Circuits. In
Proc of the Workshop on Logic of Programs, pages 101–115, 1983.

A Framework for Asynchronous Circuit Modeling 17

3. W. Hunt. The DE Language. In M. Kaufmann, P. Manolios, and J S. Moore,
editors, Computer-Aided Reasoning: ACL2 Case Studies, chapter 10, pages 151–
166. Springer US, 2000.

4. W. Hunt and E. Reeber. Applications of the DE2 Language. In Proc of the Sixth
International Workshop on Designing Correct Circuits (DCC-2006), 2006.

5. W. Hunt and S. Swords. Use of the E Language. In Hardware Design and Func-
tional Languages, 2009.

6. P. Joshi, P. Beerel, M. Roncken, and I. Sutherland. Timing Verification of GasP
Asynchronous Circuits: Predicted Delay Variations Observed by Experiment. In
D. Dams, U. Hannemann, and M. Steffen, editors, Lecture Notes in Computer
Science, chapter 17, pages 260–276. Springer Berlin Heidelberg, 2010.

7. M. Kaufmann and J. Moore. ACL2 Home Page. http://www.cs.utexas.edu/

users/moore/acl2/, 2017.
8. H. Kim, P. Beerel, and K. Stevens. Relative Timing Based Verification of Timed

Circuits and Systems. In Proc of the Eighth International Symposium on Asyn-
chronous Circuits and Systems (ASYNC-2002), pages 115–124, 2002.

9. A. Kondratyev, L. Neukom, O. Roig, A. Taubin, and K. Fant. Checking Delay-
Insensitivity: 104 Gates and Beyond. In Proc of the Eighth International Sympo-
sium on Asynchronous Circuits and Systems (ASYNC-2002), pages 149–157, 2002.

10. C. Myers. Asynchronous Circuit Design. Wiley, 2001.
11. H. Park, A. He, M. Roncken, X. Song, and I. Sutherland. Modular Timing Con-

straints for Delay-Insensitive Systems. Journal of Computer Science and Technol-
ogy, 31(1):77–106, 2016.

12. M. Roncken, C. Cowan, B. Massey, S. Gilla, H. Park, R. Daasch, A. He, Y. Hei,
W. Hunt, X. Song, and I. Sutherland. Beyond Carrying Coal To Newcastle: Dual
Citizen Circuits. In A. Mokhov, editor, This Asynchronous World Essays dedicated
to Alex Yakovlev on the occasion of his 60th birthday, pages 241–261. Newcastle
University, 2016.

13. M. Roncken, S. Gilla, H. Park, N. Jamadagni, C. Cowan, and I. Sutherland. Nat-
uralized Communication and Testing. In Proc of the Twenty First IEEE Interna-
tional Symposium on Asynchronous Circuits and Systems (ASYNC-2015), pages
77–84, 2015.

14. A. Slobodova, J. Davis, S. Swords, and W. Hunt. A Flexible Formal Verification
Framework for Industrial Scale Validation. In Proc of the Ninth ACM/IEEE Inter-
national Conference on Formal Methods and Models for Codesign (MEMOCODE-
2011), pages 89–97, 2011.

15. J. Sparso and S. Furber. Principles of Asynchronous Circuit Design - A Systems
Perspective. Springer US, 2001.

16. S. Srinivasan and R. Katti. Desynchronization: Design for Verification. In Proc
of the Eleventh International Conference on Formal Methods in Computer-Aided
Design (FMCAD-2011), pages 215–222, 2011.

17. F. Verbeek and J. Schmaltz. Verification of Building Blocks for Asynchronous
Circuits. In Proc of the Eleventh International Workshop on the ACL2 Theorem
Prover and Its Applications (ACL2-2013), pages 70–84, 2013.

18. V. Wijayasekara, S. Srinivasan, and S. Smith. Equivalence Verification for NULL
Convention Logic (NCL) Circuits. In Proc of the Thirty Second IEEE International
Conference on Computer Design (ICCD-2014), pages 195–201, 2014.

18 C. Chau et al.

Modeling undefined behaviour semantics for
checking equivalence across compiler

optimizations

Manjeet Dahiya and Sorav Bansal

Indian Institute of Technology Delhi,
{dahiya, sbansal}@cse.iitd.ac.in

Abstract. Previous work on equivalence checking for synthesis and trans-
lation validation has usually verified programs across selected optimiza-
tions, disabling the ones that exploit undefined behaviour. On the other
hand, modern compilers extensively exploit language level undefined
behaviour for optimization. Previous work on equivalence checking for
translation validation and synthesis yields poor results, when such opti-
mizations relying on undefined behaviour are enabled.
We extend previous work on simulation-based equivalence checking, by
adding a framework for reasoning about language level undefined be-
haviour. We implement our ideas in a tool to compare equivalence across
compiler optimizations produced by GCC and LLVM. Testing these com-
piler optimizations on programs taken from the SPEC integer benchmark
suite, we find that modeling undefined behaviour semantics improves suc-
cess rates for equivalence checking by 31 percentage points (from 50%
to 81%) on average, almost uniformly across the two compilers. This
significant difference in success rates confirms the widespread impact of
undefined behaviour on compiler optimization, something that has been
ignored by previous work on equivalence checking. Further, our work
brings insight into the relative significance of the different types of C
undefined behaviour on compiler optimization.

1 Introduction

Programming languages have erroneous conditions in the form of erroneous pro-
gram constructs and erroneous data. Language standards do not impose require-
ments on all such erroneous conditions. The erroneous conditions on which no
requirements have been imposed by the standard, i.e., whose semantics have not
been defined are called undefined behaviour (UB). Since the standard does not
impose any requirements on UB, compilers are permitted to generate code of
their choice in presence of the same. In other words, compilers can assume the
absence of UB in the target program, and are free to produce code without the
checks for UB conditions. Further, they can produce more aggressive optimiza-
tions under such assumptions. For example, the C language standard states that
writing to an array past its size is undefined. Hence, C compiler writers do not
need to check the sanity of the array index during an array access. Moreover,

© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 19–34, 2017.
https://doi.org/10.1007/978-3-319-70389-3_2

aggressive compilers may even remove a sanity check if the same has been added
by the programmer in her C program.

C language contains hundreds of undefined behaviours [14]. All modern com-
pilers like GCC, LLVM and ICC are known to extensively exploit UB while gener-
ating optimized code (we provide some evidence in this paper). Further, previous
work on optimization-unstable code detection [26] reported that 40% of the 8575
C/C++ Debian Wheezy packages they tested, contain unstable code: unstable
code refers to code that may get discarded during optimization due to the pres-
ence of UB. Undefined behaviour is clearly widespread. The need for UB has
also been widely debated. On one hand, many textbook optimizations rely on
UB semantics. For example, consider a simple for loop in C: for (int i=0;
i<=n; ++i). Now if n equals INT MAX, then this loop would never terminate,
and it would be possible for i to be negative inside the loop body (because i
would wrap around after INT MAX). However, several optimizations would like
to depend on the loop termination property, and the loop invariant that i >= 0
inside the loop body. Fortunately, these invariants are valid, because signed inte-
ger overflow is undefined in C (thus yielding the assumption that ++i can never
wrap around, indirectly implying that it is illegal for n to be equal to INT MAX).
On the other hand, programmers are often annoyed by these “counter-intuitive”
optimizations, and some of them go to the extent of disabling certain types
of UB through flags provided by the compiler. For example, the Linux kernel
build process disables signed integer overflow and type based strict aliasing UB
assumptions in GCC [23,24].

Undefined behaviour semantics and their exploitation by compilers for op-
timization means that the compiler verification tools (e.g., translation valida-
tion) must model these semantics for more precise results. Similarly, synthesis
tools and superoptimizers (e.g., [2]) must model such semantics, while com-
paring equivalence of the target program with the candidate synthesized pro-
gram, for better optimization opportunity. An equivalence checking algorithm
results in a false negative, i.e., incorrect equivalence failure if it does not model
the UB. Previous work on simulation-based equivalence checking across com-
piler optimizations has primarily been done in the context of translation vali-
dation [11,17,18,21,25,27] across selected compiler optimizations, disabling the
ones that exploit language level UB. This prior work yields poor results when
equivalence checks are performed across the optimizations that exploit UB. This
paper addresses this issue and makes the following contributions:

– We extend the simulation relation by adding assumptions at each row of the
simulation relation table, to model language level UB semantics. Equivalence
is now computed under these assumptions, i.e., the original program and
the transformed program need to be equivalent only if the corresponding
assumptions are true. If the assumptions are false, the programs are still
considered equivalent even if their implementations diverge. We call this the
extended simulation relation.

20 M. Dahiya and S. Bansal

int A[256];
int sum1 = 0; long* sum2;
void sum(int n) {

int* p = A;
for(int i=1;i<n+1;++i) {

sum1 = sum1 + *p;

*sum2 = *sum2 + *p;
p++;

}
}

Fig. 1: An example function. sum2
is allocated by the caller.

���
���

����	���
�

�����	���
�

�		��	��

������

��

�

�

��

��

���	�
��

(a) Unoptimized

�������
����	��
�����	��

������
�

������
�

��������

���	��

�

�

���

���

���

����

�	�����
��	�����

���

(b) Optimized

Fig. 2: Unoptimized and optimized, abstracted
versions of the program in Fig. 1.

– We discuss the assumptions produced by different types of UB semantics
and experimentally determine the types of UB that are most consequential
to compiler-based optimization.

– To model aliasing based UB, which we find is heavily exploited by compilers
for optimization, we present an algorithm to compute aliasing information at
the IR/assembly level. Computation of aliasing information at the assembly
level is necessary because the programs emitted by the compilers are in
assembly. The aliasing information computed through this algorithm is used
for generating UB assumptions for the extended simulation relation.

We test our ideas by comparing equivalence across unoptimized and opti-
mized implementations of programs derived from the SPEC CPU Integer bench-
mark suite. The equivalence tests are performed at function granularity, i.e., an
unoptimized implementation of a C function (treated as the program specifica-
tion) is compared against an optimized implementation of a C function. The
optimized implementations are generated using GCC and LLVM with -O2 flag.
The optimizations enabled by -O2, are commonly enabled by almost all software.
Our overall success rate for equivalence checking across these optimizations is
81%, i.e., we successfully generate an equivalence proof, in the form of a provable
simulation relation, for 81% of the equivalence checks. The success rate drops to
50% if the UB modeling is removed. Our results emphatically confirm the im-
portance of modeling UB for checking equivalence for validation and synthesis
of compiler optimizations.

2 Motivating example

Fig. 1 shows a C program which computes the sum of the first n elements of
a global array A and stores the result in a global variable sum1 and at an address
sum2. We have deliberately used two different types of accumulators (sum1 and

*sum2) and i<n+1 in the for loop, to demonstrate three different types of
C undefined behaviour in the same example. Fig. 2a, 2b show the abstracted

Modeling undefined behaviour semantics 21

unoptimized and optimized versions of the same program compiled by gcc -O0
and -O2 respectively. The original programs are in x86 assembly, and many other
optimizations are present in the optimized version; for exposition and brevity, we
have abstracted them into a C like syntax and only the UB related optimizations
are shown.

The first optimization we discuss through this example, is a peephole op-
timization involving substitution of the check i<n+1 by a faster check i<=n,
avoiding the need to compute n+1. However, as such, the substitution may not
seem correct because the two programs are not equivalent when n=INT MAX. For
n=INT MAX, the loop of unoptimized program takes zero iterations (INT MAX+1
wraps around to a negative number INT MIN), while that of the optimized pro-
gram loops forever (because i will always be ≤INT MAX). Interestingly however,
it is legal and common for C compilers to perform this optimization. This trans-
formation is legal due to the signed integer overflow (SIO) assumption, that
forms a part of the C undefined behaviour semantics. As per this assumption,
signed integer arithmetic shall not1 overflow (i.e., it is an illegal program if it
causes signed integer arithmetic to overflow), and hence, the compiler need not
worry about the case when overflow takes place.

The second interesting optimization in this example is the register alloca-
tion of sum1 and *sum2 to registers r1 and r2 respectively, throughout the
execution of the loop. These registers containing the accumulated sum values,
are written back to their respective memory locations at loop exit. Again, as
such, these transformations may not seem correct: it is possible for the pointer
p, which can belong to [A,A+4*n) to alias with either (or both) of &sum1
and sum2, in which case, the values stored at p may get modified as the loop
executes, making register allocation of sum1 and *sum2 incorrect. It is how-
ever legal (and common) for C compilers to perform such register allocations.
This is due to UB related to the following aliasing assumptions: 1) Type based
strict aliasing assumptions (TBSA): Pointers of different types (e.g., long* and
int*) shall not alias with each other (with the exception of char*). 2) Out-
of-bounds variable access assumptions (OBVA): A program shall not access a
memory location beyond the region of an object (variable). In our example, the
TBSA assumptions guarantee that sum2 (of type long*) and p (of type int*)
cannot alias. Similarly, sum2 cannot alias with &sum1 (of type int*). Further,
the OBVA assumptions guarantee that p cannot point beyond the object A, i.e.,
p must belong to [A, A+4*256). This implies that p cannot alias with &sum1,
as sum1 and A are distinct regions. With these assumptions, it is indeed legal
to register-allocate sum1 and *sum2 throughout the loop execution.

The programs in Fig. 2a, 2b can be shown to be equivalent only if the UB
assumptions are modeled and used in the simulation-based proof. In this pa-
per, we contribute algorithms to model and use these UB assumptions in a
simulation-based proof, and show their effectiveness for computing equivalence
across compiler transformations on a general purpose code. Sec. 3 discusses the
notion of the extended simulation relation that uses undefined behaviour as-

1 Phrasing is taken from the C standard.

22 M. Dahiya and S. Bansal

sumptions to correctly decide equivalence in the presence of UB. Sec. 4 discusses
algorithms to generate these UB assumptions, for use in the extended simulation
relation.

3 Extended simulation relation (with assumptions)

A simulation relation [17, 18] between two programs can be used to establish
equivalence across the two programs. It has been used extensively in previous
work on equivalence checking and translation validation [11, 17, 18, 20, 27]. A
simulation relation is a witness of the equivalence between two programs. Given
a valid simulation relation, proving equivalence is straight-forward; however the
construction of a simulation relation is undecidable in general. We leverage previ-
ous work on automatic construction of a simulation relation across two programs,
where the second program is the compiler-optimized version of the first program.
In addition, we extend previous work to model and use UB assumptions, to allow
equivalence computation in the presence of UB semantics. Equivalence is now
conditional on these assumptions, i.e., the equivalence proof may fail if these
assumptions are discounted.

The relevant assumptions are computed at each program location of the un-
optimized program specification. These assumptions are based on a best-effort
static analysis of the program: for example, if the program involves arithmetic
on a signed integer variable, then the corresponding SIO assumption is inferred
at that program location. Some assumptions can be inferred directly from pro-
gram syntax, while others may require a deeper static analysis. In general, the
sophistication of the static analysis required to infer the undefined behaviour
assumptions, ought to match the sophistication of the analyses used by the op-
timizer. SIO and TBSA assumptions are examples of assumptions that can be
inferred through straight-forward syntactic analysis of the program, while the
OBVA assumptions usually require a deeper alias analysis, the kind used by
modern compilers for optimization. We discuss this latter analysis in Sec. 4. In
this section, we assume that such assumptions are already available at the re-
spective program locations, and we discuss their effect on the required simulation
relation.

Let ProgA be the unoptimized program specification and ProgB be the op-
timized implementation. ProgA specification also includes a map from the pro-
gram locations to the corresponding UB assumptions (Assum). An extended
simulation relation is represented as a table, where each row is a tuple ((LA,
LB), Assum[LA], P) such that LA and LB are program locations in ProgA and
ProgB respectively, Assum[LA] is the set of assumptions in ProgA at location
LA, and P is a set of invariants on the live program variables at locations LA

and LB . A tuple ((LA, LB), Assum[LA], P) represents that the invariants P hold
whenever the two programs are at LA and LB respectively, assuming all the UB
assumptions at all ProgA program locations (Assum) hold.

An extended simulation relation is valid if the invariants at each location pair
are inductively provable from invariants and UB assumptions at the predecessor

Modeling undefined behaviour semantics 23

Location Assumption Invariants (P)

(b0,b0’) True nA = nB , AA = AB ,&sum1A = &sum1B , sum2A =
sum2B ,MA =∆ MB

(b1,b1’) (nA 6= INT MAX) ∧
(&sum1A 6= pA) ∧
(sum2A 6= pA) ∧
(sum2A 6= &sum1A)

sl4(MA,&sum1A) = r1B ,
sl4(MA, sum2A) = r2B , nA = nB , iA = iB ,
AA = AB , pA = pB ,&sum1A = &sum1B ,
sum2A = sum2B ,MA =∆∪{&sum1A,sum2A} MB

(b3,b3’) True MA =∆ MB

Init: nA = nB , AA = AB ,&sum1A = &sum1B , sum2A = sum2B ,MA =∆ MB

Fig. 3: Extended simulation relation for the programs in Fig. 2. (b0, b0’) and (b3, b3’)
are the entry and exit rows respectively. AA and &sum1A are the base addresses of
the globals A and sum1 respectively in ProgA. sl4(M,addr) represents 4 bytes of data
read in memory (M) at address addr. =∆ represents equivalent memory states except
at ∆; ∆ represents the stack region. Init represents equivalence of inputs.

location pairs. Notice that the UB assumptions do not need to be proven. Invari-
ants at the entry location (pair of entry locations of the two programs) represent
the equivalence of program inputs (Init); the base case of this inductive proof.
Finally, if we can thus inductively prove equivalence of the return values at exit
location (pair of exits of the two programs), we have established the programs
to be equivalent. For C functions, the return values include the state of the heap
and global variables. Formally, an extended simulation relation is valid if:

Init⇔ invariants(EntryA,EntryB)

∀
(L

′
A,L

′
B)→(LA,LB)

Assum[L
′

A] ∧ invariants
(L

′
A,L

′
B)
⇒

(L
′
A,L

′
B)→(LA,LB)

invariants(LA,LB)

Here invariants(LA,LB) represents the conjunction of invariants in the extended
simulation relation for the location pair (LA, LB), Init is the input equivalence
condition at the entry of the two programs, L

′

A and L
′

B are predecessors of
LA and LB in programs ProgA and ProgB respectively, and ⇒

(L
′
A,L

′
B)→(LA,LB)

represents implication over the paths L
′

A → LA and L
′

B → LB in programs
ProgA and ProgB respectively.

Fig. 3 shows an extended simulation relation which establishes the equiv-
alence across the programs in Fig. 2a and 2b. The exit row of this extended
simulation relation denotes equivalence of memory states (modulo stack and lo-
cal variables) at exit, representing the equivalence of globals variables {sum1, A}
and values at pointer sum2 and the remaining unused heap. This simulation re-
lation is only provable when the UB assumptions are used in the inductive proof.
For example, without the assumptions, the invariant sl4(MA,&sum1A) = r1B
of the second row is not provable on edge (b1, b1’) → (b1, b1’) (sl4 represents
the memory-read of four bytes; see Fig. 3 caption).

24 M. Dahiya and S. Bansal

Type of undefined behaviour Description

Signed integer overflow (SIO) Signed integer arithmetic cannot overflow

Type based strict aliasing (TBSA) Pointers of different types cannot alias (barring ex-
ceptions like char *)

Dereferenced addresses not null An address that has been dereference cannot be zero

Shift operand bounds If a value X is shifted left/right by another value S,
then S ≥ 0 and S < numbits(X) (numbits(X) is the
number of bits used to represent X)

Type alignment A value X of type T must be aligned to the size of T

No divide by zero The divisor of a division operation cannot be zero

Table 1: Examples of types of C undefined behaviour that can be modeled through
syntactic analysis of the program.

4 Modeling undefined behaviour assumptions

We now discuss how to obtain the UB assumptions for the simulation relation.
We first generate these assumptions on the unoptimized program specification
ProgA, for each location, through static analysis of the program. At the time of
the construction of the simulation relation, for every row (LA, LB), the assump-
tions corresponding to LA are added in the simulation relation. In other words,
the UB assumptions are inferred for the unoptimized program, and used during
the construction and proof of the simulation relation.

The algorithm to infer the UB assumptions, depends on the type of the
UB. For example, the assumptions for many types of UB can be inferred purely
syntactically — see Table 1 for some examples. Such syntactic analysis and
modeling of UB has also been used previously for the verification of manually
written peephole optimizations in LLVM [16].

The OBVA undefined behaviour assumptions are an example of UB that
require a relatively deeper static alias analysis. This is because the production
quality compilers typically implement a similar alias analysis for better optimiza-
tion opportunity. The static alias analysis provides a may-alias relation between
program pointers and program variables. The program variables include all the
global and local variables defined by the programmer. Further, to model aliasing
in heap and stack, we include two special “variables”, called “stack” and “heap”.
Thus, a pointer value in the program may alias with one or more of the user-
defined variables, and/or with the stack/heap2. Based on this analysis, we infer
assumptions indicating that a program pointer must point within the memory
regions belonging to the variables with which it may alias:

aliasing assumptionsp ⇔
∨

v∈{u:may alias(p,u)}

(p ≥ vbegin ∧ p < vend)

2 While a stack is not a part of the program’s language level semantics, it gets intro-
duced by the compiler in the assembly implementation.

Modeling undefined behaviour semantics 25

Here p represents a pointer value, v is a program variable p, and [vbegin, vend)
represents the region of memory occupied by variable v. Further, invariants en-
coding the mutual-disjointness of regions associated with each program variable,
and for the stack and heap, are added through conditions on the respective vbegin
and vend values.

In our running example of Fig. 1, the alias analysis infers that p may alias
with only the array variable A. Further, because A and sum1 are different vari-
ables, their memory regions are mutually disjoint, thus implying that p cannot
alias with sum1.

This alias analysis, to infer the variables with which a program pointer may
alias, is similar to the previous work on alias analysis for assembly code [4]. The
alias analysis need not be precise, but needs to be sound, i.e., the may-alias
relation for a pointer p must be include all variables that a pointer may actually
alias with (over-approximation). We next describe the two analyses used by us
to infer the may-alias relation.

4.1 May-alias analysis

To compute the may-alias relation, we first compute two relations, linearly-
related (lr) and may-depend-on (dep) between program pointers and program
variables (including stack and heap). The lr relation indicates the variable with
which a program pointer is linearly-related, i.e., based-on. In other words, if a
program pointer is at an offset from the address of a program variable then it
is lr with that program variable. For example, a pointer p=v+10 or p=v+i (for
some arbitrary variable i) are both lr with the variable address v. On the other
hand, p=*v is not lr with v (even though p may depend on v, as we discuss
later). In our running example of Fig. 1, p is lr with A. The C type system
guarantees that a pointer may be lr with at most one program variable3. Also,
if a program pointer p is lr with a program variable A, then p may alias with A,
and cannot alias with any other variable (including stack/heap). A pointer can
at most be lr with one variable.

In addition to the lr relation, we compute another relation called “may-
depend-on” dep. This relation indicates the variables on which a program pointer
may depend on, i.e., the variables whose address may potentially influence the
value of this program pointer. If the address of a variable may not influence
the value of a pointer, then that pointer may be assumed to not alias with the
aforementioned variable. Note that lr(p, v) implies dep(p, v).

The may-alias relation between a pointer p and program variable v is com-
puted in terms of the linearly-related and may-depend-on relations as follows:

may alias(p, v)⇔ dep(p, v) ∧
∧

w∈(V−v)

(¬lr(p, w))

3 A violation of this type-system, through type-punning for example, falls into the
realm of UB.

26 M. Dahiya and S. Bansal

Here V is the set of all program variables. In other words, we assume that
a pointer p may alias with a variable v if it may depend on v, and it is not
linearly-related to any other variable w 6= v in V 4.

4.2 Computing linearly-related and may-depend-on relations

Computing both lr and dep relations involves a forward dataflow analysis on the
program’s control flow graph. These relations are initialized at program entry
with conservative assumptions, and they are computed at each intermediate
program location by analyzing transfer functions of the incoming control-flow
edges. In our setting, each program represents a C function body, and the calling
conventions of the compiler are used to initialize the relations at the entry node,
i.e., we assume that the function arguments may depend on any of the global
variables and/or the heap, but are independent of the stack and local variables
of the function. Further, we assume that the function arguments are not lr with
any global variable. Together, these assumptions at program entry specify that
the function arguments may alias with all the program’s global variables and
the heap, but cannot alias with the function’s stack/local variables.

The lr analysis across a control-flow edge involves a simple syntactic analysis
of the expression trees of the transfer function on that edge. This syntactic anal-
ysis involves inference rules of the type: lr(p, v)⇒ lr(p⊕X, v). i.e., if p is known
to be lr with v, then p⊕X (for any expression X that may potentially depend
on other variables w 6= v) is also lr with v. “⊕” represents the addition and
subtraction operators; we further generalize these rules to operations involving
bitwise masking of lower-order bits of a pointer (a common operation in compiled
code). If these inference rules cannot decide a pointer p to be lr with a variable
v, then we conservatively assume that p is not lr with v (over-approximation).
At all internal nodes (except the start node), we initially assume all pointers
to be lr with all variables (>), and refine the relations iteratively till a fixed
point is reached. As discussed earlier, at the start node, we assume that none
of the function arguments are lr with any of the variables. This information on
lr relations flows from the program entry to all intermediate program locations,
through transfer functions. The meet operator for this lr dataflow analysis is
intersection, i.e., a pointer is lr with a variable only if it is lr on all possible
program paths.

Similarly, the dep analysis across a control-flow edge also involves a syntactic
analysis on the expression trees of the corresponding transfer function. The syn-
tactic analysis involves inference rules of the type: dep(p, v)⇒ dep(OP (. . . , p, . . .)
, v). i.e., if p may depend on v, then any value derived from p (through any op-
eration OP that uses p as an argument) may also depend on v. At the entry
node, we conservatively assume that the function arguments may depend on any
of the global variables or on the heap. At all intermediate nodes, we initialize
by assuming that the pointers do not depend on any of the variables (>). At

4 As discussed earlier, the C type system ensures that if p is linearly-related to a
variable w, then p cannot alias with any other variable v 6= w.

Modeling undefined behaviour semantics 27

each iteration, we refine this may-depend-on relation at every node by analyzing
the expression trees of the transfer function of each incoming edge. The meet
operator for the dep relation is union, i.e., a pointer may depend on a variable
if it depends on that variable on any program path.

Unlike compilers, our alias analysis needs to work for assembly code where
pointer arithmetic is much more common. The lr relation is intended to cap-
ture such pointer arithmetic. Also, the modeling of stack is unique to assembly
code. Our algorithm, which over-approximately computes the may-alias relation
through lr and dep relations, is sound and efficient (polynomial in the size of
the program and quite fast in practice), and captures the common patterns in
compiled code. A more expensive analysis can potentially yield more precise
may-alias relations.

5 Inferring the simulation relation

Automatic construction of the simulation relation has been well studied in prior
work [5, 11, 17, 18, 20, 27]. Much previous work attempts to first discover a cor-
respondence between program locations across the two programs (correlation
(LA, LB)) in a first pass, and then attempts to find invariants (P) over the
locations in a best-effort second pass. In contrast, our algorithm searches for the
correlation simultaneously with the search for the invariants, resulting in a more
flexible and robust system. We succinctly outline here, our correlation algorithm
to automatically construct a provable simulation; a more detailed discussion is
available in [3].

Our algorithm incrementally constructs a joint transfer function graph (JTFG)
representing the partial simulation relation computed so far. A JTFG is a graph
with nodes and edges. A JTFG node (LA, LB) represents a pair of program nodes
LA and LB (indicating that ProgA is at LA and ProgB is at LB). Similarly, a
JTFG edge (L

′

A, L
′

B) → (LA, LB), represents a pair of transitions L
′

A → LA

and L
′

B → LB in ProgA and ProgB respectively. Thus, a transition across a
JTFG edge encodes transitions in the two programs respectively. Each JTFG
node (LA, LB) contains invariants relating the live variables at locations LA and
LB in the two programs respectively. To model UB, the JTFG nodes further
encode the UB assumptions. Recall that these assumptions have already been
computed through static analysis for locations in ProgA; the assumptions at
location LA in ProgA appear in all JTFG nodes containing LA. Further, for
each JTFG edge, edge conditions (edgecond) of its two individual constituent
program control-flow edges (belonging to ProgA and ProgB resp.) should be
equivalent. An edge condition represents the condition under which that edge is
taken, as a function of the live variables at the source location of that edge.

The algorithm for constructing a JTFG is presented in Algorithm 1. The
JTFG is initialized with a single node, representing the pair of entry locations of
the two programs. The CorrelateEdges() function picks one ProgB edge, say
edgeB , at a time and tries to identify paths in the unoptimized program (ProgA)
that have an equivalent path condition to edgeB ’s edge condition. Several candi-

28 M. Dahiya and S. Bansal

Function CorrelateEdges(jtfg, edgesB)
if edgesB is empty then

return LiveValuesAtExitAreEquivalent(jtfg)
end
edgeB ← RemoveFirst(edgesB)
edgesA ← GetEdgesTillUnroll(ProgA,edgeB ,µ)
foreach edgeA in edgesA do

jtfg’ = AddEdge(jtfg, edgeA, edgeB)
PredicatesGuessAndCheck(jtfg’)
if IsEqualEdgeConditions(jtfg’) ∧ CorrelateEdges(jtfg’, edgesB) then

return true
end

end
return false

Algorithm 1: Algorithm to construct the JTFG (simulation relation). edgesB is a list
of edges in ProgB in depth-first search order. The AddEdge() function returns a new
JTFG jtfg’, formed by adding the edge to the old JTFG jtfg.

date paths are attempted up to an unroll factor µ (GetEdgesTillUnroll()).
All candidate paths must originate from a ProgA location that has already been
correlated with the source location of edgeB . The path condition of a path is
formed by appropriately composing the edge conditions of the edges belonging to
that path. The edge edgeB is chosen in depth-first search order from ProgB , and
also dictates the order of incremental construction of the JTFG. The equivalence
of the edge condition of ProgB with the path condition of ProgA is computed
based on the invariants inferred so far at the already correlated JTFG nodes
(IsEqualEdgeConditions()). These invariants, inferred at each step of the
algorithm, are computed through a Houdini-style [7] guess-and-check procedure.
The guesses are synthesized from a grammar, through syntax-guided synthesis
of invariants [1] (PredicatesGuessAndCheck). The unroll factor µ allows
equivalence computation across transformations involving loop unrolling.

These correlations for each edge (edgeB) are determined recursively to allow
backtracking (see the recursive call to CorrelateEdges()). If at any stage, an
edge (edgeB) cannot be correlated with a path in ProgA, the function returns
with a failure, prompting the caller frame in this recursion stack, to try another
correlation for a previously correlated edge. In theory, this backtracking can
be exponential in the number of edges, but in practice, backtracking is rare,
especially because we prioritize the candidate source paths for correlation, in
increasing order of their unrolling factor. Because most compiler transformations
do not involve unrolling, backtracking is rare in this scenario.

PredicatesGuessAndCheck() synthesizes invariants through the follow-
ing grammar of guessing: G = { ?A ⊕ ?B ,MA =?A∪?B

MB }, where operator
⊕ ∈ {<,>,=,≤,≥} and ?A and ?B represent the program values (represented as
symbolic expressions) appearing in ProgA and ProgB respectively. The guesses
are formed through a Cartesian product of values in ProgA and ProgB using

Modeling undefined behaviour semantics 29

the patterns in G. Our checking procedure is a fixed point computation which
keeps eliminating the unprovable predicates, until only provable predicates re-
main (similar to Houdini). At each step, for each guessed predicate at each node,
we try to prove it from every predecessor node using the current invariants and
assumptions at the predecessor node (as also described in Sec. 3).

For our running example in Fig. 2a, 2b, the JTFG nodes and edges deter-
mined through our algorithm are {(b0,b0’), (b1,b1’), (b3,b3’)} and {(b0,b0’)
→ (b1,b1’), (b1,b1’) → (b1,b1’), (b1,b1’) → (b3,b3’)} respectively. Further, the
algorithm is able to infer the required invariants (shown in the last column of
Fig. 3) to complete the equivalence proof.

6 Implementation and Experiments

To demonstrate the impact of undefined behaviour assumptions on compiler
optimization, we compute equivalence of C functions across unoptimized (-O0)
and optimized (-O2) x86 binaries produced by compiling C programs through
production compilers, GCC and LLVM with and without UB models. We disable
function inlining during compilation, as our prototype implementation cannot
reason about inter-procedural optimizations. Even after disabling inlining, the
average speedup across the compiler optimizations on these programs is 1.72x
over clang-O0. To be able to reconstruct the C-level information, required for
modeling UB and equivalence checking, we enable a few additional flags during
the compilation (namely -g and -reloc) to generate debug information and
relocation headers respectively. We assume that the binaries contain the symbol
table (i.e., are unstripped), which along with relocation headers allow accurate
renaming of memory addresses to global variable symbols. Further the debug
information provides the signature and types of the variables and functions.
Both GCC and LLVM support these compile-time options, and these options
have no impact on the runtime of the executable.

The functions are drawn from four SPEC benchmarks: bzip2 (compres-
sion utility), gzip (compression utility), mcf (combinatorial optimization) and
parser (word processing). The number of global variables in these benchmarks
is 100, 212, 43 and 223 respectively. We compiled each program with both com-
pilers to produce 16 binaries (8 unoptimized and 8 optimized), representing a
total of 1058 pairs of unoptimized and optimized assembly functions (ignoring
the identical glibc functions). Among these pairs, 714 functions had at least
one loop in them (cyclic functions). The average number of assembly LOC and
C-LOC for these functions is 112 and 35 respectively. We ignored the functions
containing floating point operations (14 functions), as our semantic model for
x86 floating point instructions is incomplete.

We performed experiments to demonstrate the significance of the three types
of UB discussed in Sec 2, namely SIO, TBSA, and OBVA assumptions. We esti-
mate the presence of UB based optimizations for each benchmark and compiler
option, by performing the equivalence check twice, for each function, with and
without using the UB assumption. If an equivalence check for a function pair

30 M. Dahiya and S. Bansal

Fig. 4: For every benchmark-compiler option, the first bar shows the success rates
when we model all three UB. The remaining three bars show the success rates when
a particular type of UB among three (TBSA, SIO, OBVA) is not modeled. Each bar
individually shows the contribution to the success rates by cyclic and acyclic functions.

passes with the UB assumption but fails without the assumption, then we as-
sume that the compiler has exploited the respective undefined behaviour towards
optimizing the function. The plot in Fig. 4 shows the success rates for each
compiler and each benchmark for four different cases: the first bar represents
the success rate when all three undefined behaviours are modeled; the second,
third and fourth bars represent the cases when TBSA, SIO and OBVA assump-
tions are not modeled respectively. For SIO and TBSA, we employ the compiler
flags fno-strict-overflow and fno-strict-aliasing to differentially
estimate the impact of these assumptions. These flags enable/disable the SIO
and TBSA assumptions while performing optimizations. If our equivalence check
passes when these assumptions are disabled by the compiler, but fails when these
assumptions are enabled by the compiler, we assume that the compiler is lever-
aging these assumptions for optimization. For OBVA, we simply turn on/off our
alias analysis (Sec. 4) to determine the effect of OBVA assumptions.

The overall average success rates for equivalence checking across the four
cases are 81%, 76%, 77% and 50%. As expected, the success rates are lower when
a certain type of UB is not modeled. The drop in success rates, when a UB is not
modeled with respect to the first bar (where all three types of UB are modeled),
indicates the impact of the respective type of UB on compiler optimization. The
drop in success rates due to non-modeling of OBVA assumptions is 31 percentage
points. In contrast, the drop due to non-modeling of SIO and TBSA assumptions
is only 4 and 5 percentage points respectively. These experiments confirm (a) the
widespread impact of undefined behaviours on compiler optimizations and (b)
throw light on the relative impact of different types of C undefined behaviour
on optimization.

Our experiments also led to the discovery of a bug in GCC-4.1.0 related to
the semantics of fno-strict-aliasing [8]. This flag is used to disable the
optimizations related to TBSA. However, for certain functions, GCC-4.1.0 was
using TBSA assumptions even while compiling with this flag.

Modeling undefined behaviour semantics 31

7 Related Work

Modeling of UB for verification has previously been studied in Alive [16], where
acyclic peephole optimization patterns of the InstCombine pass in LLVM are
verified. These optimizations could potentially involve UB assumptions, and
hence modeling of UB becomes necessary. The typical verification target for
Alive is a few lines of optimization pattern representing a single optimization.
In contrast, our verification targets involve concrete programs (with up to 1000s
of lines) and containing multiple composed compiler optimizations. Alive mod-
els UB involving undefined values, poison values and instruction attributes like
nsw (signed integer overflow), the kind that can be modeled through a simple
syntactic analysis of the LLVM peephole optimization pattern. For example, the
presence of UB attributes like nsw, undef, etc., in the optimization pattern
directly indicates the UB assumptions. Aliasing based UB involving OBVA re-
quires an alias analysis, and Alive did not consider this in their work. Our work
is directed towards studying the common transformations in end-to-end com-
piler optimization, and we find that UB involving OBVA is the most commonly
exploited for optimization in both GCC and LLVM. We believe that our alias
analysis can also benefit Alive interested in capturing aliasing based UB assump-
tions. Another major difference between Alive and our work is that Alive verifies
acyclic optimization patterns, while we generalize the ideas to simulation-based
equivalence across programs containing loops.

Our work overlaps with previous work on detection of unstable code, Stack
[26]. Stack classifies unstable code as the code whose semantics are sensitive
to UB. The underlying assumption of this work is that if an optimizer discard-
s/modifies the (unstable) code due to the presence of UB, the resulting logic
may behave differently from what the programmer intended. While Stack iden-
tifies certain important types of unstable code through static pattern-matching
on LLVM IR, it also leaves out many. Aliasing based UB stands out as an ex-
ample of UB not considered by Stack. It should be straight-forward to extend
Stack by employing an alias analysis similar to our work. Our simulation-based
equivalence proof construction approach is in contrast with the largely syntac-
tic pattern matching approach adopted by Stack. It would be instructive to
study the merits of applying a semantic procedure like ours, to the detection of
unstable code.

Our lr and dep analyses, resemble previous work on alias analysis for ex-
ecutable code by Debray et. al. [4]. The authors of this work noted that alias
analysis for executable code requires reasoning about pointer arithmetic, and
hence proposed special modeling for the add and mult opcodes, as these were
the most commonly encountered opcodes for pointer manipulation on the RISC
architecture they considered. However, because their analysis is syntactic in na-
ture, it introduces imprecisions in common situations involving store and sub-
sequent load of a pointer to/from memory. In such situations where a syntactic
analysis does not provide enough information, the alias information would be
conservatively widened to ⊥ in their approach. Their empirical evaluations re-
flect these imprecisions. Our approach works on de-sugared expressions obtained

32 M. Dahiya and S. Bansal

from machine opcodes, involving standard bitvector and boolean operators. Also,
our memory model allows reasoning about stores followed by loads to identical
locations (without other intervening conflicting stores), thus capturing the com-
mon pattern of pointers getting saved to stack slots for future reference. This
semantic treatment lends robustness to our analysis, and makes it independent
of the underlying machine ISA. In another related work on alias analysis, Fer-
nandez and Espasa [6] attempted to remove the imprecisions discussed in [4], by
sacrificing soundness guarantees. Sacrificing soundness is not acceptable in our
setting. The authors of both these previous works on alias analysis for executable
code were interested in link-time optimizations; unlike us, they do not describe
a model for reasoning about UB using this obtained aliasing information.

Translation validation infrastructure (TVI) [17] verified five IR passes of com-
pilation of gcc-2.91 and Linux-2.2 by GCC. The passes verified were branch
optimization, common-subexpression elimination (CSE), loop unrolling and in-
version, register allocation, and instruction scheduling. Similarly, value-graph
translation validation for LLVM has been performed in at least two independent
efforts [21, 25], albeit only across a known set of nine selected transformations,
namely, dead-code elimination, global value numbering, constant propagation,
loop-invariant code motion, loop deletion, loop unswitching, dead-store elimi-
nation, partial-redundancy elimination, and basic block placement. Neither of
these approaches model UB, or study their significance on compiler optimiza-
tion. Overall, our success rates for equivalence checking are comparable (and
often better) to all these previous efforts, albeit in a much more generalized set-
ting (with almost no assumptions on the transformations that are enabled). To
our knowledge, our experiments are the first to demonstrate the significance of
UB on compiler optimization.

There are more approaches to translation validation and equivalence checking
with different settings and goals (e.g., [5, 9, 10, 12, 13, 15, 19, 20, 22, 27, 28]). All
previous simulation-based equivalence checkers can also be extended with UB
assumptions, to capture a larger set of compiler transformations.

There are hundreds of types of UB in C, and some of them have been bitterly
debated in the past [23, 24]. We believe that this approach to quantifying the
impact of different types of UB on compiler optimization, can bring some insight
and basis for such debates. For example, our limited investigations in this work
indicate the overwhelming relative significance of out-of-bounds variable access
assumptions (for optimization), compared to other types of UB like signed inte-
ger overflow and type based strict aliasing assumptions. We hope that this work
triggers more such studies across a wider variety of UB in future.

References

1. Alur, R., Bodik, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
FMCAD, 2013

2. Bansal, S., Aiken, A.: Automatic generation of peephole superoptimizers. ASPLOS
XII (2006)

Modeling undefined behaviour semantics 33

3. Dahiya, M., Bansal, S.: Black-box equivalence checking across compiler optimiza-
tions. In: APLAS ’17 (2017)

4. Debray, S., Muth, R., Weippert, M.: Alias analysis of executable code. POPL ’98
5. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating re-

gression verification. ASE ’14 (2014)
6. Fernández, M., Espasa, R.: Speculative alias analysis for executable code. PACT

’02
7. Flanagan, C., Leino, K.: Houdini, an annotation assistant for esc/java. In: FME

2001: Formal Methods for Increasing Software Productivity. LNCS (2001)
8. GCC Bugzilla - Bug 68480, https://gcc.gnu.org/bugzilla/show_bug.

cgi?id=68480
9. Hawblitzel, C., Lahiri, S.K., Pawar, K., Hashmi, H., Gokbulut, S., Fernando, L.,

Detlefs, D., Wadsworth, S.: Will you still compile me tomorrow? static cross-version
compiler validation. ESEC/FSE 2013

10. Kanade, A., Sanyal, A., Khedker, U.P.: Validation of gcc optimizers through trace
generation. Softw. Pract. Exper. (2009)

11. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-
ized program equivalence. PLDI ’09 (2009)

12. Lahiri, S., Hawblitzel, C., Kawaguchi, M., Rebelo, H.: Symdiff: A language-agnostic
semantic diff tool for imperative programs. In: CAV ’12 (2012)

13. Lahiri, S., Sinha, R., Hawblitzel, C.: Automatic rootcausing for program equiva-
lence failures in binaries. In: Computer Aided Verification (CAV’15) (2015)

14. Lee, J., Kim, Y., Song, Y., Hur, C.K., Das, S., Majnemer, D., Regehr, J., Lopes,
N.P.: Taming undefined behavior in llvm. PLDI 2017 (2017)

15. Leung, A., Bounov, D., Lerner, S.: C-to-verilog translation validation. In: MEM-
OCODE (2015)

16. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Provably correct peephole
optimizations with alive. PLDI 2015

17. Necula, G.C.: Translation validation for an optimizing compiler. PLDI ’00 (2000)
18. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. TACAS ’98 (1998)
19. Poetzsch-Heffter, A., Gawkowski, M.: Towards proof generating compilers. Elec-

tron. Notes Theor. Comput. Sci. (2005)
20. Sharma, R., Schkufza, E., Churchill, B., Aiken, A.: Data-driven equivalence check-

ing. OOPSLA ’13 (2013)
21. Stepp, M., Tate, R., Lerner, S.: Equality-based translation validator for llvm.

CAV’11 (2011)
22. Strichman, O., Godlin, B.: Regression verification - a practical way to verify pro-

grams. In: Verified Software: Theories, Tools, Experiments, vol. 4171 (2008)
23. Torvalds, L.: https://lkml.org/lkml/2007/5/7/213
24. Torvalds, L.: https://gcc.gnu.org/ml/gcc/2002-01/msg00395.html
25. Tristan, J.B., Govereau, P., Morrisett, G.: Evaluating value-graph translation val-

idation for llvm. PLDI ’11
26. Wang, X., Zeldovich, N., Kaashoek, M.F., Solar-Lezama, A.: Towards optimization-

safe systems. SOSP ’13 (2013)
27. Zaks, A., Pnueli, A.: Covac: Compiler validation by program analysis of the cross-

product. FM ’08 (2008)
28. Zuck, L., Pnueli, A., Fang, Y., Goldberg, B.: Voc: A methodology for the translation

validation of optimizing compilers 9(3) (2003)

34 M. Dahiya and S. Bansal

Deferrability Analysis for JavaScript

Johannes Kloos1, Rupak Majumdar1, and Frank McCabe2

1 MPI-SWS
2 Instart Logic

Abstract. Modern web browsers allow asynchronous loading of
JavaScript scripts in order to speed up parsing a web page. Instead of
blocking until a script has been downloaded and evaluated, the async
and defer tags in a script allow the browser to download the script in
a background task, and either evaluate it as soon as it is available (for
async) or evaluate it in load-order at the end of parsing (for defer). While
asynchronous loading can significantly speed up the time-to-render, i.e.,
the time that passes until the first page elements are displayed on-screen,
the specification for correct loading is complex and the programmer is re-
sponsible for understanding the circumstances under which a script can
be loaded asynchronously in either mode without breaking page func-
tionality. As a result, many complex web applications do not take full
advantage of asynchronous loading. We present an automatic analysis
of web pages which identifies which scripts may be safely deferred, that
is, deferred without any observable behavior on the page. Our analysis
defers a script if every other script that has a transitive read or modi-
fication dependency does not access the DOM. We approximate access
and modification sets using a dynamic analysis. On a corpus of 462 pro-
fessionally developed web pages from Fortune 500 companies, we show
that on average, we can identify two or three scripts to defer (mean;
median: 1). On 18 pages, we find at least 11 deferrable scripts. Deferring
these scripts can have notable impact on time-to-render: in 49 pages, we
could show that the median improvement in time-to-render was at least
100ms, with improvements up to 890ms.

1 Introduction

Modern web applications use sophisticated client-side JavaScript programs and
dynamic HTML to provide a low-latency, feature-rich user experience on the
browser. As the scope and complexity of these applications grow, so do the size
and complexity of the client-side JavaScript used by these applications. Indeed,
web applications download an average of 24 JavaScript files with about 346kB of
compressed JavaScript3. In network-bound settings, such as the mobile web or
some international contexts, optimizing the size and download time of the web
page —which is correlated with user satisfaction— is a key challenge.

One particular difficulty is the loading of JavaScript. The browser standards
provide a complicated specification for parsing an HTML5 page with scripts [28].

3 See http://httparchive.org/trends.php, as of June 2017

© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 35–50, 2017.
https://doi.org/10.1007/978-3-319-70389-3_3

Normally, parsing the page stops while the script is downloaded, and continues
again after the downloaded script has been run. With tens of scripts and thou-
sands of lines of code, this can significantly slow down page rendering. To address
this, HTML5 added “async” and “defer” loading modes. A script marked async
is loaded in parallel with parsing and run as soon as it is loaded. Scripts marked
defer are also loaded in parallel with parsing, but are evaluated only when pars-
ing is complete, in the order in which they were scheduled for download.

The HTML5 specification notes that the exact processing details for script-
loading attributes are non-trivial, and involve a number of aspects of HTML5.
Indeed, online forums such as Stack Overflow contain many discussions on the use
of defer and async tags for page performance, but most end with unchecked rules
of thumb (“make sure there are no dependencies”) and philosophical comments
such as: “[I]t depends upon you and your scripts.”

At the same time, industrial users are interested in having a simple way to
use these attributes. In this paper, we define an automatic deferring transform,
which takes a page and marks some scripts deferred without changing observable
behavior. We start by defining the notion of a safe deferrable set, comprising a set
of scripts on a given page. If all the scripts in this set are loaded using the defer

loading mode, the user visible behavior of the page does not change. To make the
idea of safe deferrable sets usable, we characterize the safe deferrable set using
event traces [23]. In particular, we can use event traces to define a dependency
order between scripts, and the notion of DOM-accessing scripts, which have user-
visible behavior. A safe deferral set is contains no DOM-accessing scripts and is
upward-closed under the dependency order. We also show that if a set contains
only deterministic scripts, it is sufficient to check a single trace to characterize
a safe deferral set, and describe a dynamic analysis based on this criterion.

We evaluate our work by applying JSDefer to a corpus of 462 websites of
Fortune 500 companies. We find that 295 (64%) of these web pages contain
at least one deferrable script, with 65 (14%) containing at least 6 deferrable
scripts. Furthermore, we find that while race conditions and non-determinism
are widespread on web pages, we can easily identify a sufficient number of scripts
that do not participate in races nor have non-deterministic behavior and are thus
candidates for deferral. Finally, actually deferring scripts on these pages shows
reasonable improvement in time-to-render (TTR) for 59 pages, where the median
improvement of time-to-render was 198.5ms, where the median load time of a
page is 3097ms.

We summarize the contributions of this paper.

1. We describe a deferrability analysis, which checks which scripts can be
marked as deferred without changing the observable behavior on the page.

2. We provide an extensive evaluation on a large corpus of professionally devel-
oped web sites to show that a significant portion of scripts can be deferred.We
show the potential for improving the load performance for these pages: in
our experiments, the median loading time improvement was 198.5 ms.

36 J. Kloos et al.

2 Background: Loading JavaScript

We briefly recall the WHATWG specification for loading HTML5 documents by
a browser. A browser parses an HTML5 page into a data structure called the
document object model (DOM) before rendering it on the user’s screen. Parsing
the document may require downloading additional content, such as images or
scripts, linked in the document. The browser downloads images asynchronously,
while continuing to parse the document. In contrast, it downloads scripts syn-
chronously by default, making the parser wait for the download, and evaluates
the script before continuing to parse the page. This puts script download and
parsing on the critical path. Since network latency can be quite high (on the
order of tens or hundreds of milliseconds) and script execution time may be
non-negligible, this may cause noticeable delays in page loading. To allow asyn-
chronous loading of scripts, the WHATWG specification ([28], sec. 4.12) allows
two Boolean attributes in a script element, async and defer. In summary, there
are three loading strategies for scripts:

– Synchronous loading. When encountering a script tag with no special at-
tributes, the browser suspends parsing, downloads the script synchronously,
and evaluates it after download is complete. Parsing continues after the eval-
uation of the script.

– Asynchronous loading. When encountering a <script src=". . ."async> tag,
the browser starts an asynchronous download task for the script in the back-
ground but continues parsing the page until the script has been loaded.
Then, parsing is suspended and the script is evaluated before continuing
with parsing.

– Deferred loading. When encountering a <script src=". . ."defer> tag, the
browser starts a download task for the script background but continues pars-
ing the page. Once parsing has finished and the script has been downloaded,
it is evaluated. Moreover, scripts are evaluated in the order that their corre-
sponding script tags were parsed in the HTML, even though a later script
may have finished downloading earlier.

While asynchronous or deferred loading is desirable from a performance per-
spective, it can lead to race conditions, i.e., the output of the page may depend
on the order in which scripts are executed [23]. Consider the following example:

<html><body><script src="http://www.foo.com/script1.js"></script>
<script>if (!script1executed) { alert("Error!"); }</script></body></html>

where script1.js is simply script1executed = true;. As the script is loaded
synchronously, the code has no race (yet): the alert function will never be called.

If we annotate the first script with the async tag, we introduce a race condi-
tion. Depending on how fast the script is loaded, it may get executed before or
after the inline script. In case it gets executed later, an alert will pop up, noting
that the external script has not been loaded yet. Changing the loading mode
to defer does not cause a race, but now the alert always pops up; thus deferred
loading of the script changes the observable behavior from the original version.

Deferrability Analysis for JavaScript 37

Another kind of race condition is incurred by scripts that perform certain
forms of DOM accesses. For instance, consider the following page:

<html><body><script src="http://www.foo.com/script2.js"></script>
Something</body></html>

where script2.js uses the DOM API to check if a tag with id marker exists.
Loaded synchronously, the outcome of this check will always be negative. Asyn-
chronous loading would make it non-deterministic, while deferred loading will
remain deterministic but the check will always be positive.

Our goal is to analyze a web page and add defer tags to scripts, wherever
possible. To ensure we can load scripts safely in a deferred way, we need to make
certain that deferred loading does not introduce races through program variables
or the DOM and does not change the observable behavior. Next, we make this
precise.

3 Deferrability analysis

In the following, suppose we are given a web page with scripts s1, . . . , sn (in
order of appearance). For this exposition, we assume that all the scripts are
loaded synchronously; the extension to pages with mixed loading modes and
inline scripts is straightforward.

On a high level, our goal is to produce a modified version of the page where
some of the scripts are loaded deferred instead of synchronously, but the visi-
ble behavior of the page is the same. Concretely, when loading and displaying
the page, the browser constructs a view of the page by way of building a DOM
tree, containing both the visible elements of the page and the association of
certain event sources (e.g., form fields or onload properties of images) with han-
dler functions. Concretely, the DOM tree is the object graph reachable from
document.root which consists of objects whose type is a subtype of Node; com-
pare [28]. This DOM tree is built in stages, adding nodes to the tree, modifying
subtrees and attaching event handlers. This can be due to parsing an element in
the HTML document, receiving a resource, user interaction, or script execution.

Definition 1. A DOM trace consists of the sequence of DOM trees that are
generated during the parsing of a page. The DOM behavior of a page is the set
of DOM traces that executing this page may generate.

Note that even simple pages may have multiple DOM traces; for instance, if
a page contains multiple images, any of these images can be loaded before the
others, leading to different intermediate views.

Definition 2. For a page p with scripts s1, . . . , sn, and a set D ⊆ {s1, . . . , sn}
let p′ be the page where the members of D are loaded deferred instead of syn-
chronously. We say that D is a safe deferral set if the DOM behavior of p′ is a
subset of the DOM behavior of p.

38 J. Kloos et al.

3.1 Background: Event traces and races in web pages

We recall an event-based semantics of JavaScript [22,23,1] on which we build our
analysis; we follow the simplified presentation from [1]. For a given execution of
a web page, fix a set of events E; each event models one parsing action, user
interaction event or script execution (compare also the event model of HTML
in [28]). Our semantics will be based on the following operations:

– rd(e, x) and wr(e, x): These operations describe that during the execution
of event e ∈ E, some shared object x (which may be a global variable, a
JavaScript object, or some browser object, such as a DOM node) is read
from or written to.

– post(e, e′): This operation states that during the execution of event e ∈ E, a
new event e′ ∈ E is created, to be dispatched later (e.g., by setting a timer
or directly posting to an event queue).

– begin(e) and end(e): These operations function as brackets, describing that
the execution of event e ∈ E starts or ends.

A trace of an event-based program is a sequence of event executions. An
event execution for an event e is a sequence of operations such that the sequence
starts with a begin operation begin(e), the sequence ends with an end operation
end(e), and otherwise consists of operations of the form rd(e, x), wr(e, x), and
post(e, e′) for some event e′ ∈ E. For a trace of a program consisting of event
executions of events e1, e2, . . . , en, by abuse of notation, we write t = e1 . . . ek.

Furthermore, we define a happens-before relation, denoted hb, between the
events of a trace. It is a pre-order (i.e., reflexive, transitive, and anti-symmetric)
and ei hb ej holds in two cases: if there is an operation post(ei, ej) in the trace, or
if ei and ej are events created externally by user interaction and the interaction
creating ei happens before that for ej .

Two events ei and ej are unordered if neither ei hb ej nor ej hb ei. They have
a race if they are unordered, access the same shared object, and at least one
access is a write.

3.2 When is a set of scripts deferrable?

To make the deferrability criterion given above more tractable, we give a suffi-
cient condition in terms of events.We first define several notions on events, cul-
minating in the notion of the dependency order and the DOM-modifying script.
We use these two notions to give the sufficient condition. Consider a page with
scripts s1, . . . , sn. For each script si, there is an event esi which corresponds to
the execution of si. By abuse of notation, we write si for esi .

We say that e posts e′ if post(e, e′) appears in the event execution of e. We
say that e transitively posts e′ if there is a sequence e = e1, . . . , ek = e′, k ≥ 1,
such that for all 1 ≤ i < k, ei posts ei+1; i.e., we take the reflexive-transitive
closure.

Suppose script s transitively posts event e. We call e a near event if, for all
scripts s′, s hb s′ implies e hb s′. Otherwise, we call e a far event. We say that a

Deferrability Analysis for JavaScript 39

script s is DOM-accessing iff there is a near event e such that e reads from or
writes to the DOM.

Now, consider two events ei and ej such that i < j. We say that ei must come
before ej iff both ei and ej access the same object (including variables, DOM
nodes, object fields and other mutable state) and at least one of the accesses
is a write. For two scripts si and sj , i < j, we say that si must come before
sj iff there is a near events ei′ of si and an event ej′ such that sj hb ej′ and
ei′ must come before ej′ . The dependency order si � sj is then defined as the
reflexive-transitive closure of the must-come-before relation.

Theorem 1. Let p be a page with scripts s1, . . . , sn and D ⊆ {s1, . . . , sn}. D is
a safe deferral set if the following two conditions hold:

1. If si ∈ D, then script si is not DOM-accessing in any execution.
2. If si ∈ D and si � sj in any execution, then sj ∈ D.

The proof can be found in the technical report [17]. The gist of the proof is that
all scripts whose behavior is reflected in the DOM trace are not deferred and
hence executed in the same order (even with regard to the rest of the document).
Due to the second condition, each script starts in a state that it could start in
during an execution of the original page, so its behavior with regard to DOM
changes is reflected in the DOM behavior of the original page.

The distinction between near and far events comes from an empirical ob-
servation: when analyzing traces produced by web pages in the wild, script-
posted events clearly separate in these two classes. Near events are created by
the dispatchEvent function, or using the setTimeout function with a delay of less
than 10 milliseconds. On the other hand, far events are event handlers for longer-
term operations (e.g., XMLHttpRequest), animation frame handlers, or created
using setTimeout with a delay of at least 100 milliseconds. There is a noticeable
gap in setTimeout handlers, with delays between 10 and 100 milliseconds being
noticeably absent.

We make use of this observation by treating a script and its near events
as an essentially sequential part of the program, checking the validity of this
assumption by ensuring that the near events are not involved in any races. This
allows us to formulate a final criterion, which can be checked on a single trace:

Theorem 2. Let page p and set D be given as above, and consider a single trace
executing events e1, . . . , en. D is a safe deferral set if the following holds:

1. If e is a near event of s and accesses the DOM, s 6∈ D.
2. If e is involved in a race or has non-deterministic control flow, s hb e and s′

happens before s in program order (including s = s′), then s′ 6∈ D.
3. D is �-upward closed.

The proof can be found in [17]. The key idea of this proof is that all scripts in D
are “deterministic enough,” so the conditions of the previous theorem collapse
to checking a unique trace.

40 J. Kloos et al.

3.3 JSDefer: A dynamic analysis for deferrability

The major obstacle in finding a deferrable set of scripts is the handling of ac-
tual JavaScript code, which cannot be feasibly analyzed statically. This is be-
cause of the dynamic nature of the language and its complex interactions with
browsers, including the heavy use of introspection, eval and similar constructs,
and variations in different browser implementations. In the following, we present
a dynamic analysis for finding a safe deferral set that we call JSDefer.

Assumption: For reasons of tractability, we assume in this paper that no user
interaction occurs before the page is fully loaded. This is because it is well-known
that early user interaction is often not properly handled; compare [1]. Hence, we
assume that early user interaction either does not occur or is handled as in [1].

With this assumption at hand, as reasoned above, we only need to consider
scripts themselves and their near events; we call this the script initialization code.
This part of the code is run during page loading and, empirically is “almost
deterministic”: it does not run unbounded loops and, for the most part, only
exhibits limited use of non-determinism. We provide experimental evidence for
this observation below. We use the second criterion in the previous section above,
aggressively marking potentially non-deterministic scripts.

JSDefer use an instrumented browser from the EventRacer project [23] to
generate a trace, including a happens-before relation. For now, we use a simple,
not entirely sound heuristic to detect non-deterministic behavior: We extended
the instrumentation to also include coarse information about scripts getting
data from non-deterministic and environment-dependent sources, marking three
sources: The random number generator, the current time, and various bits of
browser state. In JSDefer, we check if a given script accesses any of these sources
of non-determinism. We leave the integration of a proper taint-tracking based
non-determinism check (e.g., building on [4]) as future work.

We perform deferrability analysis on the collected trace using Theorem 2.
This calculation computes a safe deferrable set. We then rewrite the top-level
HTML file of the page to add defer attributes to all scripts in the deferrable set.

4 Evaluation

We evaluated JSDefer on the websites of the Fortune 500 companies [10] as a
corpus. To gather deferrability information, we used an instrumented WebKit
browser from the EventRacer project [23] to generate event traces. Out of these
500 pages, we could successfully collect 451 pages; 38 websites timed out, 11
websites returned an error and 2 contained invalid HTML.

In the evaluation, we want to answer five main questions:

1. How much and in what way is defer and async already used?
2. Are our assumptions about determinism justified?
3. How many deferrable scripts can we infer?
4. What kind of scripts are deferrable?
5. Does deferring these scripts gain performance?

Deferrability Analysis for JavaScript 41

Async or defer #pages Async only: Only standard scripts? #pages
Neither 32 Only standard scripts and snippets 256
Defer only 0 Other 148
Async only 404
Both 15
Table 1. Number of pages in the corpus that use async or defer. The sub-classification
of async scripts was done manually, with unclear cases put into “others”.

4.1 How are async and defer used so far?

As a first analysis step, we analyzed if pages were using async and defer annota-
tions already, and in which situations this was the case. The numbers are given
in Table 1.

The first observation from the numbers is that defer is very rarely used, while
there is a significant numbers of users of async. Further analysis shows many
of these asynchronous scripts come from advertising, tracking, web analytics,
and social media integration. For instance, Google Analytics is included in this
way on at least 222 websites4. Another common source is standard frameworks
that include some of their scripts this way. In these cases, the publishers provide
standard HTML snippets to load their scripts, and the standard snippets include
an async annotation. On the other hand, 254 pages include some of their own
scripts using async. In some pages, explicit dependency handling is used to make
scripts capable of asynchronous loading, simulating a defer-style loading process.

4.2 Are our assumptions justified?

The second question is if our assumptions about non-determinism are justified.
We answer it in two parts, first considering the use of non-deterministic functions,
and then looking at race conditions.

Non-determinism: To perform non-determinism analysis, we used a browser
that was instrumented for information flow control. This allowed us to iden-
tify scripts that actually use non-deterministic data in a way that may influence
other scripts, by leaking non-deterministic data or influencing the control flow.
We considered three classes of non-determinism sources:

1. Math.random. For most part, this function is used to generate unique iden-
tifiers, but we found a significant amount of scripts that actually use this
function to simulate stochastic choice.

2. Date.now and relatives. These functions are included since their result de-
pends on the environment. We found that usually, these functions are called
to generate unique identifiers or time stamps, and to calculate time-outs.

4 Many common scripts are available under numerous aliases, so we performed a best-
effort hand count.

42 J. Kloos et al.

Nevertheless, we found examples for which it would not be feasible to auto-
matically detect safety automatically. For instance, we found one page that
had a busy-wait loop in the following style:

var end = Date.now() + timeout; while (Date.now() < end) {}

Automatically detecting that such code can be deferred seems quite difficult.
3. Functions and properties about the current browser state, including window

size, window position and document name. While we treat these as a source
of non-determinism, it would be better to classify them as environment de-
pendent values; we find that in the samples we analyzed, they are not used
in way that would engender non-determinism. Rather, they are used to cal-
culate positions of windows and the like.

As it turns out, many standard libraries make at least some use of non-
determinism. For instance, jQuery and Google’s analytics and advertising li-
braries generate unique identifiers this way.

Additionally, many scripts and libraries have non-deterministic control flow.
We found 1704 cases of scripts with non-deterministic control flow over all the
pages we analyzed. That being said, this list contains a number of duplicates:
In total, at least 546 of these scripts were used one more than one page5. They
form 100 easily-identified groups, the largest of which are Google Analytics (187
instances), jQuery (40 instances) and YouTube (20 instances).

More importantly, we analyzed how many of the scripts we identified as
deferrable have non-deterministic control flow. As it turns out, there was no
overlap between the two sets: Our simple heuristic of scripts calling a source of
non-determinism was sufficient to rule out all non-deterministic scripts.

Race conditions: We additionally analyzed whether non-determinism due to race
conditions played a role. In this case, the findings were, in fact, simple: While
there are numerous race conditions, they all occur between far events. We did
not encounter any race conditions that involved a script or its near events.

One further aspect is that tracing pages does not exercise code in event han-
dlers for user inputs. This may hide additional dependencies and race conditions.
As reasoned above, we assume that no user interaction occurs before the page
is loaded (in particular, after deferred scripts have run). The reasoning for this
was given above; we plan to address this limitation in further work.

4.3 Can we derive deferrability annotations for scripts?

To evaluate the potential of inferring deferrability annotations, we used the anal-
ysis described above to classify the scripts on a given page into five broad classes:

– The script is loaded synchronously and can be deferred,

5 We clustered by URL (dropping all but the last two components of the domain name
and all query parameters), which misses some duplicates

Deferrability Analysis for JavaScript 43

Table 2. Number and percentage of deferrable scripts. The number of deferrable
scripts includes pages with no scripts; for the percentage, we only consider pages with
at least one deferrable script.

deferrable scripts # pages % deferrable scripts # pages
no scripts 11 < 10% 180
0 156 10 − 20% 56
1 86 20 − 30% 37
2 55 30 − 40% 14
3–5 89 40 − 50% 6
6–10 47 50 − 60% 1
more than 10 18 60 − 70% 1

– The script is already loaded with defer or async (no annotation needs to be
inferred here);

– The script is an inline script; in this case, deferring would require to make
the script external, with questionable performance impact;

– The script is not deferrable since it performs DOM writes;
– The script is not deferrable because it is succeeded by a non-deferrable script

in the dependency order.

The general picture is that the number of deferrable scripts highly depends on
the page being analyzed. 295 of all pages contain deferrable scripts, and 209 of all
pages permit deferring multiple scripts. Moreover, on 18 of the pages considered,
at least 11 scripts can be deferred. Among these top pages, most have between
11 and 15 deferrable scripts (4 with 11, 2 with 12, 4 with 13, 5 with 15), while
the top three pages have 16, 17 and 38 deferrable scripts on them; see the left
column of Tab. 2. We also analyzed what percentage of scripts are deferrable on
a given page; discarding the pages that had no deferrable scripts on them, we
get the picture in the right column of Tab. 2.

Further analysis shows that some pages have been hand-optimized quite heav-
ily, so that everything that could conceivably be deferred is already loaded with
defer or async. Conversely, some pages have many scripts that can be deferred.

Many scripts are marked as non-deferrable because of dependencies. In many
cases, these dependencies are hard ordering constraints: For instance, jQuery is
almost never deferrable since later non-deferrable scripts will use the functional-
ity it provides. That being said, we observe some spurious dependencies between
scripts; this indicates room for improvement of the analysis. As an example, con-
sider the jQuery library again. Among other things, it has a function for adding
event handlers to events. Each of these event handlers is assigned a unique iden-
tifier by jQuery. For this, it uses a global variable guid that is incremented each
time an event handler is added; clients treat the ID as an opaque handle. Never-
theless, if multiple scripts attach event handlers in this way, there is a an ordering
constraint between them due to the reads and writes to guid, event though the
scripts may commute with each other.

Looking at the pages with a high number of deferrable scripts, we find that
there are two broad classes that cover many deferrable scripts: “Class defini-

44 J. Kloos et al.

tions”, which create or extend an existing JavaScript object with additional
attributes (this would correspond to class definitions in languages such as Java),
and “poor man’s deferred scripts”, which install an event handler for one of
the events triggered at page load time (load, DOMContentLoaded and jQuery
variants thereof) and only then execute their code.

4.4 Does deferring actually gain performance?

Since we found a significant number of scripts that can actually be deferred, we
also measure how performance and behavior is affected by adding defer annota-
tions. We used a proxy-based setup to present versions of each web page with
and without the additional defer annotations from deferrability analysis to Web-
PageTest [27]. We then measured the time-to-render (i.e., the time from starting
the page load to the first drawing command of the page) for each version of
each page, We choose time-to-render as the relevant metric because the content
delivery industry uses it as the best indicator of the user’s perception of page
speed. This belief is supported by studies, e.g. [11].

Since our setup did not allow us to interpose on SSL connections, we had
to drop pages that force an upgrade to SSL. In total, out of the 500 pages
considered, 209 force an SSL upgrade. Taking the intersection of the sets of
pages that have deferrable scripts and don’t force an SSL upgrade, we were left
with 169 pages.

We took between 38 and 50 measurements for each case, with a median of
40. The measurements were taken for each page that had at least one deferrable
script and could successfully be rewritten.

The first observation to make is that the load time distribution tends to be
highly non-normal and multi-modal. This can be seen in a few samples of load
time distribution, as shown in Fig. 1. These violin plots visualize an approxima-
tion of the probability distribution of the loading time for each case.

1000 1500 2000

Load time in ms

D
en

si
ty

Top: without JSDefer, bottom: with JSDefer

Load time distribution: www.amphenol.com

2400 2700 3000 3300

Load time in ms

D
en

si
ty

Top: without JSDefer, bottom: with JSDefer

Load time distribution: www.pepsico.com

800 1000 1200

Load time in ms

D
en

si
ty

Top: without JSDefer, bottom: with JSDefer
Load time distribution: www.wnr.com

800 1200 1600 2000

Load time in ms

D
en

si
ty

Top: without JSDefer, bottom: with JSDefer
Load time distribution: www.cummins.com

Fig. 1. Violin plots of load time distributions for some pages, before and after applying
JSDefer. The graphs show a smoothed representation of the sample distribution.

Deferrability Analysis for JavaScript 45

For this reason, we quantify the changes in performance by considering the
median change in time-to-render for each page, meaning we calculate the median
of all the pairwise differences in time-to-render between the modified and the
unmodified version of the page. This statistic is used as a proxy for the likely
change in loading time by applying JSDefer. In the following, we abbreviate the
median change in time-to-render as MCTTR. We additionally use the Mann-
Whitney U test to ensure that we only consider those cases where MCTTR
gives us statistically significant results.

Out of the 169 considered pages, 66 had a statistically significant MCTTR.
The actual median changes are shown in Fig. 2, together with confidence

intervals. The data is also given in Table 3. This table also contains the median
TTR of the original page. Several things are of note here:

1. As promised in the introduction, the median improvement in TTR is 198.5ms
in the examples provided, while their median load time is 3097ms.

2. Most of the pages that pass the significance test have positive MCTTR,
meaning that applying JSDefer provides benefits to time-to-render: For 59
pages, JSDefer had a positive effect, versus 7 pages where it had a negative
effect. (85 versus 14 including SSL pages).

3. 49 of the pages in our sample have an estimated MCTTR of at least
100ms=0.1s. This difference corresponds to clearly perceptible differences
in time-to-render. Even when taking the lower bound of the 95% confidence
interval, 32 of the pages still have this property.

4. For 7 pages, we get a negative MCTTR, corresponding to worse loading
time. This indicates that JSDefer should not be applied blindly.

We tried to analyze the root causes for the worsening of load times. For this,
we used Chrome Developer Tools to generate a time-line of the page load, as
well as a waterfall diagram of resource loading times. The results were mostly
inconclusive; we could observe that the request for loading some scripts on two
of these pages was delayed, and conjecture that we are hitting edge cases in the
browser’s I/O scheduler.

Another observation that can be made by analyzing the violin plots is that
JSDefer sometimes drastically changes the loading time distribution of pages, but
there is no clear pattern. The interested reader may want to see for themselves
by looking at the complete set of plots in the supplementary material.

An interesting factor in the analysis was the influence of pre-loading : For each
resource (including scripts) that is encountered on a page, as soon as the reference
to the script is read (which may well be quite some time before “officially”
parsing the reference), a download task for that resource is started6, so that
many download tasks occur in parallel. This manifests itself in many parallel
downloads, often reducing latency for downloads of scripts and resources. This
eats up most of the performance we could possibly win; preliminary experiments
with pre-loading switched off showed much bigger improvements. Nevertheless,
even in the presence of such pre-loading, we were able to gain performance.

6 Glossing over the issue of connection limits

46 J. Kloos et al.

Table 3. MCTTR values for pages with significant MCTTR, sorted by ascending
MCTTR. All times are given in milliseconds.

Page MCTTR MCTTR 95% confidence interval Median TTR of original page
www.williams.com -452.0 [-698.0,-201.0] 2300.0
www.visteon.com -401.0 [-899.0,-99.0] 6996.0
www.mattel.com -401.0 [-900.0,-1.0] 3995.0
www.statestreet.com -299.0 [-400.0,-100.0] 2596.0
www.fnf.com -201.6 [-500.0,-1.0] 3896.0
www.cbscorporation.com -99.0 [-100.0,0.0] 1296.0
www.wnr.com -98.0 [-100.0,0.0] 895.0
www.lansingtradegroup.com 98.6 [1.0,118.0] 2597.0
www.kiewit.com 99.0 [0.0,101.0] 1096.0
www.emcorgroup.com 99.0 [0.0,201.0] 1696.0
www.dovercorporation.com 99.0 [0.0,100.0] 1896.0
www.domtar.com 99.0 [1.0,100.0] 1896.0
www.eogresources.com 99.0 [0.0,100.0] 1896.0
www.johnsoncontrols.com 99.0 [0.0,101.0] 3296.0
www.altria.com 99.0 [0.0,101.0] 499.0
www.jmsmucker.com 99.0 [0.0,199.0] 996.0
www.itw.com 99.0 [1.0,100.0] 1295.0
www.walgreensbootsalliance.com 100.0 [1.0,101.0] 1096.0
www.bostonscientific.com 100.0 [1.0,101.0] 1297.0
www.apachecorp.com 100.0 [0.0,199.0] 1396.0
www.lifepointhealth.net 100.0 [99.0,100.0] 1396.0
www.marathonoil.com 100.0 [99.0,101.0] 1097.0
www.cstbrands.com 100.0 [99.0,199.0] 1897.0
www.mohawkind.com 101.0 [100.0,200.0] 1496.0
www.delekus.com 101.0 [98.0,200.0] 1795.0
www.stanleyblackanddecker.com 103.0 [100.0,199.0] 1196.0
www.fanniemae.com 112.3 [1.0,296.0] 2999.0
www.citigroup.com 114.0 [99.0,201.0] 1296.0
www.microsoft.com 130.0 [14.0,206.0] 1455.0
www.pultegroupinc.com 139.0 [93.0,219.0] 1120.0
www.mosaicco.com 196.0 [100.0,200.0] 1496.0
www.tysonfoods.com 198.0 [100.0,280.0] 1796.0
www.iheartmedia.com 198.0 [1.0,300.0] 1696.0
www.rrdonnelley.com 199.0 [104.0,201.0] 2097.0
www.raytheon.com 199.0 [0.0,401.0] 1697.0
www.navistar.com 199.6 [53.0,318.0] 2740.0
www.genesishcc.com 200.0 [1.0,399.0] 4497.0
www.chs.net 200.0 [100.0,298.0] 1796.0
www.newellbrands.com 200.0 [100.0,299.0] 1197.0
www.navient.com 200.0 [0.0,304.0] 2597.0
www.ncr.com 200.0 [96.0,300.0] 2096.0
www.sempra.com 200.0 [100.0,300.0] 1696.0
www.univar.com 200.0 [101.0,300.0] 1496.0
www.avoncompany.com 200.0 [100.0,300.0] 1596.0
www.pricelinegroup.com 200.0 [199.0,201.0] 1596.0
www.pacificlife.com 201.0 [100.0,399.0] 3296.0
www.weyerhaeuser.com 242.2 [200.0,300.0] 2497.0
www.techdata.com 298.0 [100.0,303.0] 2296.0
www.tenneco.com 299.0 [200.0,300.0] 1896.0
www.dana.com 299.0 [200.0,300.0] 1496.0
www.cablevision.com 299.0 [298.0,300.0] 2196.0
www.amphenol.com 300.0 [200.0,400.0] 1496.0
www.calpine.com 300.0 [201.0,302.0] 2098.0
www.nov.com 300.0 [103.0,498.0] 3396.0
www.harman.com 303.0 [300.0,400.0] 2195.0
www.burlingtonstores.com 395.0 [200.0,501.0] 4179.0
www.centene.com 398.0 [308.0,412.0] 2306.0
www.cummins.com 398.9 [299.0,496.0] 1695.0
www.markelcorp.com 500.0 [498.0,501.0] 1596.0
www.spectraenergy.com 501.0 [499.0,600.0] 2395.0
www.spiritaero.com 598.0 [499.0,601.0] 1797.0
www.wholefoodsmarket.com 611.7 [412.0,790.0] 2138.0
www.deanfoods.com 700.0 [401.0,3900.0] 3796.0
www.mutualofomaha.com 702.0 [700.0,800.0] 2396.0
www.lkqcorp.com 800.0 [700.0,900.0] 3301.0
www.ppg.com 891.4 [514.0,1299.0] 5096.0

Deferrability Analysis for JavaScript 47

w
w

w
.w

ill
ia

m
s.

co
m

w
w

w
.v

is
te

on
.c

om

w
w

w
.m

at
te

l.c
om

w
w

w
.s

ta
te

st
re

et
.c

om

w
w

w
.fn

f.c
om

w
w

w
.c

bs
co

rp
or

at
io

n.
co

m

w
w

w
.w

nr
.c

om

w
w

w
.la

ns
in

gt
ra

de
gr

ou
p.

co
m

w
w

w
.k

ie
w

it.
co

m

w
w

w
.e

m
co

rg
ro

up
.c

om

w
w

w
.d

ov
er

co
rp

or
a

tio
n.

co
m

w
w

w
.d

om
ta

r.c
om

w
w

w
.e

og
re

so
ur

ce
s.

co
m

w
w

w
.jo

hn
so

nc
on

tr
ol

s.
co

m

w
w

w
.a

ltr
ia

.c
om

w
w

w
.jm

sm
uc

ke
r.c

om

w
w

w
.it

w
.c

om

w
w

w
.w

al
gr

ee
ns

bo
ot

sa
lli

an
ce

.c
om

w
w

w
.b

os
to

ns
ci

en
tif

ic
.c

om

w
w

w
.a

pa
ch

ec
or

p.
co

m

w
w

w
.li

fe
po

in
th

e
al

th
.n

et

w
w

w
.m

ar
at

ho
no

il.
co

m

w
w

w
.c

st
br

an
ds

.c
om

w
w

w
.m

oh
aw

ki
nd

.c
om

w
w

w
.d

el
ek

us
.c

om

w
w

w
.s

ta
nl

ey
bl

ac
ka

nd
de

ck
er

.c
om

w
w

w
.fa

nn
ie

m
ae

.c
om

w
w

w
.c

iti
gr

ou
p.

co
m

w
w

w
.m

ic
ro

so
ft.

co
m

w
w

w
.p

ul
te

gr
ou

pi
nc

.c
om

w
w

w
.m

os
ai

cc
o.

co
m

w
w

w
.ty

so
nf

oo
ds

.c
om

w
w

w
.ih

ea
rt

m
ed

ia
.c

om

w
w

w
.r

rd
on

ne
lle

y.
co

m

w
w

w
.r

ay
th

eo
n.

co
m

w
w

w
.n

av
is

ta
r.c

om

w
w

w
.g

en
es

is
hc

c.
co

m

w
w

w
.c

hs
.n

et

w
w

w
.n

ew
el

lb
ra

nd
s.

co
m

w
w

w
.n

av
ie

nt
.c

om

w
w

w
.n

cr
.c

om

w
w

w
.s

em
pr

a.
co

m

w
w

w
.u

ni
va

r.c
om

w
w

w
.a

vo
nc

om
pa

ny
.c

om

w
w

w
.p

ric
el

in
eg

ro
up

.c
om

w
w

w
.p

ac
ifi

cl
ife

.c
om

w
w

w
.w

ey
er

ha
eu

se
r.c

om

w
w

w
.te

ch
da

ta
.c

om

w
w

w
.te

nn
ec

o.
co

m

w
w

w
.d

an
a.

co
m

w
w

w
.c

ab
le

vi
si

on
.c

om

w
w

w
.a

m
ph

en
ol

.c
om

w
w

w
.c

al
pi

ne
.c

om

w
w

w
.n

ov
.c

om

w
w

w
.h

ar
m

an
.c

om

w
w

w
.b

ur
lin

gt
on

st
or

es
.c

om

w
w

w
.c

en
te

ne
.c

om

w
w

w
.c

um
m

in
s.

co
m

w
w

w
.m

ar
ke

lc
or

p.
co

m

w
w

w
.s

pe
ct

ra
en

er
gy

.c
om

w
w

w
.s

pi
rit

ae
ro

.c
om

w
w

w
.w

ho
le

fo
od

sm
ar

ke
t.c

om

w
w

w
.d

ea
nf

oo
ds

.c
om

w
w

w
.m

ut
ua

lo
fo

m
ah

a.
co

m

w
w

w
.lk

qc
or

p.
co

m

w
w

w
.p

pg
.c

om

-1000.00

-800.00

-600.00

-400.00

-200.00

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

MCTTR

Page

M
C

T
T

R
 in

 m
s

(m
or

e
is

 b
et

te
r)

Fig. 2. MCTTR values for pages with significant MCTTR; Visualization of Table 3.

We also performed some timing analysis of page downloads to understand how
performance is gained or lost, and found that the most important factor is,
indeed, the time spent waiting for scripts to become available. The time saved
by executing scripts later was only a minor factor.

Finally, to judge the impact of the improvements we achieved, we discussed
the results with our industrial collaborator. Instead of considering the MCTTR,
they analyzed the violin plots directly, and they indicated that they consider the
improvement that JSDefer can achieve to be significant.

4.5 Threats to validity

There are some threats to validity due to the set-up of the experiments.

1. External validity, questions 2–5: Websites often provide different versions of
their website for different browsers, or have browser-dependent behavior.

In practice, one would address this by providing different versions of the
website as well. An efficient way of doing this is part of further work.

2. Internal validity, question 5: We could not completely control for network
delays in the testing set-up.

3. Internal validity, question 2: Due to the set-up of the analysis, we could not
ensure that the pages did not change between analysis steps. Thus, in the
non-determinism matching step, we may have missed cases. We did cross-
check on a few samples, but could not do so exhaustively.

48 J. Kloos et al.

5 Related work

Accelerating web page loading: One key ingredient of website performance is
front-end performance: How long does it take to load and display the page,
and how responsive is it? One factor is script loading time [26]. Google’s guide-
lines [12] recommend using async and defer to speed up page loading.

The question of asynchronous JavaScript loading and improving page loading
times in general has lead to various patents, e.g., [19,18,9]; they describe specific
techniques for “do-it-yourself” asynchronous script loading. Only one of them
describes a technique for selecting scripts to load asynchronously, which boils
down to loading all scripts this way.

Apart from asynchronous loading, another technique to improve script load-
ing times is to make the scripts themselves smaller. Besides compression (in-
cluding compiler techniques to optimize the code for size, e.g. [13]), one may
“page out” functions from scripts by replacing function bodies with stubs that,
if called, download the function implementation from the network [20]. Asyn-
chronous loading complements these techniques, as well as the many other tech-
niques to improve load time.
Parallelisation and commutativity: The deferring transform can be seen as a close
relative of transformations employed by parallelizing compilers. In particular,
we can phrase the question of deferrability in terms of commutativity [24,2]: In
Rinard et al.’s work, two functions A and B commute if executing A and then
B gives the same results that executing B and then A gives. In our setting, a
script is deferrable if it does not access the DOM and commutes with all (later)
non-deferrable scripts.

The Bernstein Criteria [3] describe that two program blocks A and B are
parallelizable if A neither reads nor writes memory cells that B writes, and vice
versa. This is used to define the dependency graph that identifies parallelizable
parts of a program; our dependency order is constructed in a similar way.
Semantics analysis of JavaScript and web pages: The semantics of JavaScript
and HTML are complex and unusual; natural-language descriptions can be
found in [7] (JavaScript) and [28] (HTML). There are various formalizations of
JavaScript [14,21,5], and formalizations of fragments of browser behavior, consid-
ering the event mode [6], information flow control [4] and race detection [22,23].

Additional analysis tools exist for JavaScript, including Jalangi2 [25], which
performs a dynamic analysis using source-to-source-translation, and various
static analysis like TAJS [15], JSAI [16] and the type inference engine flow [8].

References

1. Adamsen, C.Q., Møller, A., Karim, R., Sridharan, M., Tip, F., Sen, K.: Repairing
event race errors by controlling nondeterminism. In: ICSE 2017 (2017)

2. Aleen, F., Clark, N.: Commutativity analysis for software parallelization: letting
program transformations see the big picture. In: ASPLOS ’09 (2009)

3. Bernstein, A.J.: Analysis of programs for parallel processing. IEEE Trans. Elec.
Comp. (5), 757–763 (1966)

Deferrability Analysis for JavaScript 49

4. Bichhawat, A., Rajani, V., Garg, D., Hammer, C.: Information flow control in
webkit’s javascript bytecode. In: POST 2014 (2014)

5. Bodin, M., Charguéraud, A., Filaretti, D., Gardner, P., Maffeis, S., Naudziuniene,
D., Schmitt, A., Smith, G.: A trusted mechanised javasript specification. In: POPL
’14 (2014)

6. Bohannon, A., Pierce, B.C.: Featherweight firefox: Formalizing the core of a web
browser. In: WebApps’10 (2010)

7. ECMA International: ECMAScript 2015 Language Specification (2015)
8. Facebook, Inc.: flow: a static type checker for JavaScript, https://flowtype.org
9. FAINBERG, L., Ehrlich, O., Shai, G., Gadish, O., DOBO, A., Berger, O.: Systems

and methods for acceleration and optimization of web pages access by changing
the order of resource loading (Feb 3 2011), https://www.google.com/patents/

US20110029899, US Patent App. 12/848,559
10. Fortune 500 (2016), http://beta.fortune.com/fortune500/
11. Gao, Q., Dey, P., Ahammad, P.: Perceived performance of webpages in the

wild: Insights from large-scale crowdsourcing of above-the-fold QoE (2017),
arXiv:1704.01220

12. Google, Inc.: Remove Render-Blocking JavaScript (Apr 2015), https://

developers.google.com/speed/docs/insights/BlockingJS

13. Google, Inc.: Closure tools (2016), https://developers.google.com/closure/
14. Guha, A., Saftoiu, C., Krishnamurthi, S.: The Essence of JavaScript. In: ECOOP

2010. See also http://arxiv.org/abs/1510.00925

15. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for javascript. In: SAS 09
16. Kashyap, V., Dewey, K., Kuefner, E.A., Wagner, J., Gibbons, K., Sarracino, J.,

Wiedermann, B., Hardekopf, B.: JSAI: a static analysis platform for javascript. In:
FSE-22 (2014)

17. Kloos, J., Majumdar, R., McCabe, F.: Deferrability analysis for JavaScript. Tech.
rep., MPI-SWS (2017), see http://www.mpi-sws.org/~jkloos/jsdefer-tr.pdf

18. Kuhn, B., Marifet, K., Wogulis, J.: Asynchronous loading of scripts in web pages
(Apr 29 2014), https://www.google.com/patents/US8713424

19. Lipton, E., Roy, B., Calvert, S., Gibbs, M., Kothari, N., Harder, M., Reed, D.:
Dynamically loading scripts (Mar 30 2010), https://www.google.com/patents/

US7689665, US Patent 7,689,665
20. Livshits, V.B., Kiciman, E.: Doloto: code splitting for network-bound web 2.0

applications. In: FSE ’08 (2008)
21. Maffeis, S., Mitchell, J.C., Taly, A.: An operational semantics for javascript. In:

APLAS 2008 (2008)
22. Petrov, B., Vechev, M.T., Sridharan, M., Dolby, J.: Race detection for web appli-

cations. In: PLDI 2012 (2012)
23. Raychev, V., Vechev, M.T., Sridharan, M.: Effective race detection for event-driven

programs. In: OOPSLA 2013 (2013)
24. Rinard, M.C., Diniz, P.C.: Commutativity analysis: A new analysis framework for

parallelizing compilers. In: PLDI ’96 (1996)
25. Sen, K., Kalasapur, S., Brutch, T.G., Gibbs, S.: Jalangi: a selective record-replay

and dynamic analysis framework for javascript. In: ESEC/FSE’13 (2013)
26. Souders, S.: High-performance web sites. Commun. ACM 51(12), 36–41 (Dec 2008)
27. Viscomi, R., Davies, A., Duran, M.: Using WebPageTest: Web Performance Testing

for Novices and Power Users. O’Reilly Media, Inc., 1st edn. (2015)
28. WHATWG: HTML – Living Standard (Sep 2016), https://html.spec.whatwg.

org/multipage/

50 J. Kloos et al.

A Verifier of Directed Acyclic Graphs for Model
Checking with Memory Consistency Models

Tatsuya Abe

STAIR Lab, Chiba Institute of Technology
abet@stair.center

Abstract. This paper introduces VeriDAG, a verification tool for di-
rected acyclic graphs that represent concurrent programs under mem-
ory consistency models. VeriDAG has two novel aspects. First, VeriDAG
does not handle concurrent programs directly, but operates on directed
acyclic graphs whose edges denote dependencies between instructions in
the concurrent programs. This provides software model checking under
various memory consistency models by replacing the definitions of edge
connections, whereas many model checkers are specific to certain mem-
ory consistency models. Second, an engine for exploring execution traces
is fully implemented in Haskell with manageable exploration strategies.
In contrast, similar model checkers use external engines such as SMT
solvers and model checkers that ignore relaxed memory consistency mod-
els. Thus, VeriDAG provides a research framework on which we can de-
sign new memory consistency models and apply exploration strategies for
execution traces under memory consistency models. As evidence, this pa-
per compares VeriDAG with an existing model checker, and implements
reordering controls, which are heuristic searches for counterexample de-
tection in directed model checking.

Keywords: Memory consistency model, software model checking, in-
struction dependency, directed acyclic graph, Haskell implementation,
reordering control, heuristic search, counterexample detection

1 Introduction

Relaxed memory consistency models (MCMs) allow instructions and their ef-
fects on computer architectures to be reordered. Because such reordering often
promotes parallel processing on modern multi/many-core architectures, and im-
proves computing performance, relaxed MCMs have been adopted by modern
computer architectures and programming languages. However, reordering is a
burden for programmers because it relaxes the behavior of programs and com-
plicates programming on relaxed MCMs. Therefore, programming on relaxed
MCMs requires supporting procedures such as program verification.

Software model checking is a promising program verification method. Al-
though most conventional model checkers ignore relaxed MCMs, some model
checkers with MCMs have recently been developed [32, 2, 5], and conventional
model checkers also started to support MCMs [35, 1, 31].
© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 51–66, 2017.
https://doi.org/10.1007/978-3-319-70389-3_4

To the best of our knowledge, most of these model checkers use external
tools such as SMT solvers and conventional model checkers that ignore MCMs,
and rely on their engines for exploring execution traces of programs. One reason
for this is that it is very hard to develop model checkers from scratch. Another
reason is that existing tools such as SMT solvers perform well, and exploiting
them by using reduction techniques is reasonable.

Nevertheless, this paper introduces VeriDAG, a new model checker with
MCMs that is fully implemented in Haskell along with an exploration engine.
VeriDAG is developed towards a research framework on which we can propose
new MCMs and apply exploration strategies for execution traces under these
MCMs. VeriDAG is available at https://bitbucket.org/abet/veridag/.

VeriDAG is a testbed on which we can design new MCMs that do not cur-
rently exist. We cannot use most existing model checkers with arbitrary MCMs
because they are specific to certain MCMs. VeriDAG translates C programs or
LLVM IRs into directed acyclic graphs called program graphs [4]. Nodes in a
program graph denote instructions or the effects of instructions, and edges in a
program graph denote dependencies between nodes. VeriDAG takes the depen-
dencies of a program graph as its inputs. Thus, VeriDAG provides a framework
that allows MCM designers to construct new MCMs.

VeriDAG performs well, and is comparable with a existing model checker with
MCMs. The Glasgow Haskell compiler (GHC) has been energetically developed,
and generates executable codes that are comparable with conventional compilers
for imperative programming languages. Also, model checkers with MCMs that
use external tools contain overheads to reduce behavior under MCMs to behavior
under sequential consistency. The challenge in the development of VeriDAG is
to achieve the performance of existing model checkers.

Exploration strategies for execution traces in VeriDAG are manageable. It
does not use external tools such as SMT solvers, and its exploration strategies
are free from any external limitation. In this paper, we implement reordering
controls [6], which are heuristic searches for counterexample detection in directed
model checking, by using the flexibility of its exploration strategies.

The remainder of this paper is organized as follows. In Sect. 2, we explain
MCMs and program graphs that contain the behavior of programs under MCMs.
In Sect. 3, we present the design of VeriDAG, a model checker for program
graphs. In Sect. 4, we explain the implementation of the approaches in VeriDAG.
In Sect. 5, we present a comparison with an existing model checker with MCMs.
In Sect. 6, we implement reordering control to show the flexibility of the explo-
ration strategies in VeriDAG. In Sect. 7, we discuss related work, and in Sect. 8,
we conclude the paper by identifying future researches.

2 Program Graphs: Programs with MCMs

In this section, we explain program graphs introduced in [4], which are repre-
sentations of concurrent programs with MCMs, to motivate a development of a
model checker based on the new notion of program graphs.

52 J. Kloos et al.

Relaxed MCMs allow instructions and their effects to be reordered. For ex-
ample, consider the program (r0 = y; r1 = x) ‖ (x = 1; y = 1) where ; and ‖ are
sequential and parallel compositions, respectively. The variables r0 and r1 are
thread-local variables, and the variables x and y are shared. The assignments
r0 = y and r1 = x load the values of y and x from a shared memory, and the
assignments x = 1 and y = 1 store an immediate value 1 to the shared mem-
ory. All variables are initialized to 0. Under sequential consistency (SC) [19],
which prohibits all reorderings, we can immediately determine that the property
r0 = 1 ⊃ r1 = 1 holds, by examining all cases of the interleaving of instructions.

The same assertion holds under total store ordering (TSO) [8], which only
allows load instructions to overtake store instructions, because the program order
of x = 1 and y = 1 is preserved in its execution. On the other hand, under
partial store ordering (PSO) [8], which allows store instructions to overtake other
store instructions, the assertion does not hold because y = 1 is invoked in the
first thread before x = 1 is invoked in the second thread. Moreover, under
relaxed memory ordering (RMO) [8], which allows reordering of load and store
instructions, the assertion does not hold regardless of execution order of x = 1
and y = 1 in the second thread, because the first thread may not necessarily
invoke r0 = y and r1 = x in the program order. Thus, properties of programs
are sensitive to the MCMs under which the programs run. However, it is tedious
to construct a verification theory for each MCM.

We have previously proposed a notion of program graphs in [4], which are
data structures containing programs and MCMs. By handling program graphs
rather than directly handling programs, we do not have to construct a verification
theory for each MCM.

Our intermediate language consists of declarations of shared variables x, . . .
and basic blocks. A basic block is a sequence of instructions with a label L, and
its last instruction is a jump or return instruction. Distinct basic blocks have
distinct labels. Instructions are defined as follows.

i ::= Alloca r | r = Move t | r = LoadA x | x = StoreA t | FenceA

| XCHG x r | r = CAS x t t | r = Call f t | r = Fork f t | Join r
| Branch ϕ?L :L | NDChoice L :L | Return t | Assert Φ

t ::= v | r | t = t | t < t | t+ t | t− t | · · · .

Term t denotes an expression. Here, r denotes a thread-local variable, v denotes
an immediate value such as a rational number, f denotes a function symbol, and
t0 = t1, t0 < t1, t0 + t1, t0 − t1, . . . denote arithmetic expressions in a standard
manner. We note that t contains no shared variable. In this section, we do not
refer to arrays and pointers in the definition of terms, for simplicity, although
our model checker VeriDAG, which is introduced in Sect. 3, supports them, and
the programs used in the experiments that are conducted in Sect. 5 actually
contain arrays and pointers. As explained in Sect. 3, VeriDAG uses LLVM IRs.
Representations of arrays and pointers in VeriDAG are similar to those in LLVM.

The memory operations Load, Store, and Fence have a set of attributes A
that are used to control reordering of instructions. We next explain attributes so

A Verifier of Directed Acyclic Graphs 53

that we can refer to them when we explain reordering of instructions. A formula
ϕ is a first-order formula consisting only of thread-local variables. A formula Φ
can contain both thread-local and shared variables.

The instructions have the following meanings. The instruction Alloca r de-
notes the allocation of r. The instruction r =Move t denotes the assignment of an
evaluation of a term t to r, which does not affect the other threads. The instruc-
tion r =LoadA x denotes loading x from its own memory and assigning the value
to r. The instruction x = StoreA t denotes storing an evaluation of t to x in its
own memory. The instruction FenceA denotes a memory fence, which guarantees
the preceding memory operations. In fact, Fence instructions themselves do not
access shared variables and are used as separators for the effects of Load/Store
instructions. The attributes A have no effect, and are only used to control the
reordering of instructions. The instruction XCHGxr is an atomic instruction that
denotes exchanging the values of x and r. The instruction r0 = CAS x t0 t1 is also
an atomic instruction that denotes compare-and-swap. That is, if the value of x
is equal to the evaluation of t0, then the evaluation of t1 and 1 (denoting success)
are stored as x and r0, respectively. Otherwise, x is unchanged and 0 (denoting
failure) is stored as r0. The instruction r =Call f t denotes a call of the function
f with the argument t, and the returned value is stored as r. The instruction
r = Fork f t denotes a fork of a thread f with the argument t, with a thread
identifier stored as r. The instruction Join r denotes a join between a thread
and its identifier in r. The instruction Branch ϕ?L0 : L1 is a conditional jump
where the program counter indicates L0 if ϕ holds and L1 otherwise. Note that
ϕ contains no shared values; to jump to L0 or L1 depending on a shared variable
x, it is necessary to perform r = LoadA x first. The instruction NDChoice L0 :L1

denotes a non-deterministic jump to L0 or L1. The instruction Return t returns
a value of t. The instruction AssertΦ is an assertion with no effect, and is used
for program verification.

The formal definition of reordering of instructions in our intermediate lan-
guage is given indirectly through the effects of instructions. By distinguishing
instructions from their effects, we observe that reordering instructions can be
represented naturally. Our definition is operational against the axiomatic defi-
nitions seen in [34, 33].

We define two kinds of operations on instructions Issj i and Eff
j
K i. For

an instruction i, the issue operation Issj i is defined and denotes an intra-
thread effect of the instruction. The superscript j denotes the j-th operation
of instruction i. An instruction may be executed multiple times because our
language contains jump instructions Branch and NDChoice. To take reordering
into account under MCMs, operations have to be distinguished from each other.
An execution trace is defined as a sequence of operations.

For the Store instructions that operate on shared variables, additional oper-
ations are defined. The effect operation Eff

j
K i denotes an inter-thread effect of i.

To identify multiple effects for an instruction, an effect has a set of identifiers K.
For a store instruction i, the effect EffjK i denotes storing to the shared memory
that can be observed by threads K but not another. For example, consider an

54 J. Kloos et al.

execution trace Iss0 i0; Iss0 i1,1; Eff0{0,1,2} i0; Iss0 i1,2 where i0 is x = Store∅ 1,

and i1,k is r=Load∅x on thread k. While r is equal to 0 on thread 1 since Iss0 i1,1
is performed before Eff0{0,1,2} i0, r is equal to 1 on thread 2 since Iss0 i1,2 is

performed after Eff0{0,1,2} i0. A small-step operational semantics was formally

defined in [4], although notation is slight changed.

We next formally define the reordering of instructions. In an execution trace
of a program, issue operations follow the program order. However, this is not
the case for effect operations. For example, assume that a program consisting
of two threads contains i0; i1 on one thread. Each instruction has one effect.
The execution trace Iss0 i0; Iss0 i1; Eff0{0,1} i1; Eff0{0,1} i0 is admissible under
an MCM, which allows the effects of issued instructions to be reordered. The
effects of the last execution trace are reordered, whereas the order between issues
is preserved. Thus, distinguishing the effects from the issuing of instructions
enables a representation of the reordering of instructions.

Some instructions have attributes that are user-defined. Attributes have no
effects themselves, and are used as landmarks when operations are reordered. For
example, the attributes acquire and release are used for reordering under so-
called acquire-release consistency. The effects of the instruction Store with the
attribute release cannot overtake those of preceding instructions, and cannot be
overtaken by those of other Store instructions even under an MCM that allows
such reorderings. The instruction Load with the attribute acquire is similar.
The instruction Fence with an attribute such as L->L or L->S forces the orders
Load/Load and Load/Store, that is, it works as a separator of Load/Load and
Load/Store, respectively.

Nodes in program graphs correspond to instructions or their effects, that is,
operations in this paper. To be precise, nodes have identifiers so that we dis-
tinguish distinct nodes with the same operation. Such identifiers are carefully
designed to not disturb partial order reduction (e.g., see [17]), which is explained
in Sect. 4. However, in this paper, we omit an explanation of identifiers of nodes,
for simplicity. The effects of instructions are separated from the instruction them-
selves. This can represent a delay of the effects of a store instruction because
of the existence of an execution trace that the store instruction invokes on a
thread, whereas its effects may not be reflected in the other threads.

The edges of a program graph denote dependencies between operations. A
key point about program graphs is that the connectivity of edges depends on
MCMs. For example, the nodes denoting the effects of x = 1 and y = 1 are
connected under SC and TSO, while they are not connected under PSO and
RMO. For example, the following left and right program graphs correspond wit
the program introduced at the beginning in this section under TSO and PSO,
respectively,

Iss0 i0

��

Iss0 i2

��

// Eff0{0,1} i2

��
Iss0 i1 Iss0 i3 // Eff0{0,1} i3

Iss0 i0

��

Iss0 i2

��

// Eff0{0,1} i2

Iss0 i1 Iss0 i3 // Eff0{0,1} i3

where i0 ≡ r0 =Load y, i1 ≡ r1 =Load x, i2 ≡ x=Store∅ 1, and i3 ≡ y =Store∅ 1.

A Verifier of Directed Acyclic Graphs 55

The roots of program graphs are nodes that have in-degree zero. Roots denote
executable operations. Reordering is represented by multiple roots, which can
be reordered because they have no dependencies.

Various dependencies can be represented by edges of program graphs. For
example, the acquire-release consistency, which is used by C++11, can be rep-
resented as discussed in [4]. The author would like to note that the definition of
the acquire-release consistency in [4] has slight typographical errors, which can
be easily fixed.

Although program graphs have been formally defined in [4], this definition is
extended and modified in this paper. First, function calls and thread creations
have not been formally defined in [4]. Next, all branch and loop statements are
unfolded in [4] for convenience in constructing concurrent program logic that
agrees with program semantics with MCMs. In developing a model checker in
this paper, branch and loop statements are unfolded the first time that condi-
tional statements are evaluated. Finally, store instructions are extended to have
multiple effects that are identified by multiple threads. This represents the so-
called non-multi-copy atomicity [28] which the IBM POWER adopts, that is, one
thread may observe a memory update while another thread may not observe the
memory update. This extension enables to distinguish the IBM POWER MCM
from SPARC RMO which assumes multi-copy-atomicity.

3 Design

Our model checker VeriDAG consists of the following three parts: (Parse) trans-
lates models written by users into LLVM IRs, (Generate) generates program
graphs from the LLVM IRs in accordance with an input MCM, and (Explore)
performs model checking of program graphs.

One modeling language used in VeriDAG is C. Users model algorithms, pro-
tocols, and so on in C using POSIX threads. The other modeling language is
LLVM IR. The front-end of VeriDAG translates C programs into LLVM IRs.

VeriDAG generates program graphs from a basic block consisting of LLVM
IRs. The nodes of program graphs are generated from the IRs themselves. LLVM
is designed for a framework of compiler constructions, and LLVM contains re-
dundant IRs for model checking with MCMs. To reduce the total number of
nodes, VeriDAG is designed to take optimizations that compound LLVM IRs to
generate nodes of program graphs.

VeriDAG connects nodes in accordance with MCMs. The edges which denote
dependencies based on MCMs as explained in Sect. 2, are defined as a Haskell
function. For example, TSO, which allows load instructions to overtake store
instructions, is defined as follows:

tso x@(Eff _ (Store _ _ _)) y@(Eff _ (Load _ _ _)) = data_depend x y

tso x@(Eff _ (Store _ _ _)) y@(Eff _ ((Store _ _ _)) = prohibited

tso ...

The first line says that the succeeding Load may overtake Store in accordance
with an intrinsic function data_depend in VeriDAG, which denotes whether

56 J. Kloos et al.

there is data dependency between the two instructions of the arguments. Even
under TSO, load instructions cannot always overtake store instructions. For
example, if the load and store instructions read from and write to the same
location, then the load instruction should be prohibited from overtaking the
store instruction. In this sense, the data_depend function is used to define TSO.
On the other hand, reordering of store instructions is always prohibited as seen
in the second line.

The following is a part of a function corresponding to PSO.

pso x@(Eff _ (Store _ _ _)) y@(Eff _ (Load _ _ _)) = data_depend x y

pso x@(Eff _ (Store _ _ _)) y@(Eff _ (Store _ _ _)) = data_depend x y

pso ...

It differs from the tso function by allowing reordering of store instructions.

The main function of VeriDAG is processing program graphs and conduct-
ing stateful model checking. Stateless model checking for TSO, PSO, and the
POWER memory model was proposed in [1, 3]. Although stateless model check-
ing often has better performance than stateful model checking, implementations
of intelligent explorations of execution traces in stateless model checking tend
to be complicated, which motivated the development of VeriDAG as a stateful
model checker.

A local state is defined as a triple of stack, heap, and buffer, or a thread-local
state, a global state such as a shared memory, and a thread-local store buffer.
Each thread has one local state. The reader may wonder why each thread has one
global state that is usually shared by all threads. This is a key point for model
checking with MCMs. The multiple global states formulation allows global states
observed by multiple threads to not immediately coincide.

VeriDAG chooses arbitrarily one root of a program graphs, and executes the
operation attached to the root. The roots which were not chosen (and the pro-
gram graph) are remembered to be used when the exploration backtracks. The
execution of an operation updates a global state. This update is performed in
a standard manner. For example, the execution of a store instruction updates
a store buffer. The effect of a store instruction on a thread removes the oldest
buffered value from the buffer, and updates the heap on the thread. The execu-
tion of a load instruction first tries to see the latest value in the buffer. If such a
value exists, the local stack is updated by the value. Otherwise, the local stack
is updated by the value on the heap.

The chosen root is removed from the program graph. All the nodes to which
there is an edge directed from the root are checked for whether there are any
other edges directed to them. Such a node that has no other edge directed to
it may be a root of the updated program graph. Because a program graph is a
directed acyclic graph, the updated program graph has roots unless it is empty.
If the updated program graph has no root, the exploration backtracks.

When the nodes attached to the POSIX thread join function pthread_join

are removed, the variables for joins are examined to check whether the threads
can be joined.

A Verifier of Directed Acyclic Graphs 57

Criteria for which nodes are new roots of an updated program graph can
be changed by giving a Haskell function as a hook of the function of VeriDAG
that chooses a root. For example, a hook which denotes a criterion that load
instruction nodes are preferably chosen is defined as follows:

hook = f [] []

where f ld ow (nd@(Node _ (Eff _ (Load _ _ _))):nds) = f (nd:ld) ow nds

f ld ow (nd:nds) = f ld (nd:ow) nds

f ld ow [] = (reverse ld)++(reverse ow)

The function hook takes a list of nodes as an argument. Load instructions are
stacked on ld, and the others are stacked on ow. Finally, hook returns a sorted list
which load instructions are preferably at the front. Thus exploration strategies
of VeriDAG are manageable.

When function calls including the POSIX thread creation pthread_create

and branch instructions corresponding to call and br in LLVM IRs are removed,
program graphs are enlarged.

Thus, for one program and one MCM, (Parse) is done once, and (Generate)
and (Explore) are repeated until the program graph is empty. The (Generate)-
(Explore) loop corresponds with a recursive function dfs introduced in Sect. 4.

Model checking of VeriDAG is unbounded. VeriDAG can be bounded by
restricting the number of nodes related to the effects of store instructions. This
corresponds to restricting the sizes of buffers.

A property to be verified is given an assertion as a formula in a program to
be verified. For example, an assertion that the values of the variable r0 is equal
to 1 is as follows.

#pragma VeriDAG assert(variable(r0)==1)

An assertion that the values of the variable x on the shared memory which
thread 0 observes is equal to 1 is as follows.

#pragma VeriDAG assert(memory(x,0)==1)

Proposition variables consist of variables on states and constants. A state
may refer to a state at an assert pragma or a state at a checkpoint pragma,
and can be inserted anywhere in a model. For example, a checkpoint pragma
which stores a value 1 in some state as chk_r0 for use in a later assertion can
be written as follows.

#pragma VeriDAG checkpoint(chk_r0)

r0=1;

4 Implementation

Models written in the C programming language are translated into LLVM IRs
via Clang. Because LLVM IRs are slightly redundant in model checking with
MCMs as explained in Sect. 3, the (Parse) part of VeriDAG generates its own
intermediate representations for optimization from LLVM IRs to reduce the

58 J. Kloos et al.

number of operations that are attached to nodes in program graphs, although
the current version of VeriDAG does not support the whole LLVM IRs. VeriDAG
can handle LLVM IRs at any optimization stage of Clang, although it cannot
handle assemblies specific to computer architectures. This is straight-forward
and needs no further explanation,

VeriDAG moves to a (Generate) part after the (Parse) part and whenever
nodes which consist of r=Callf t, r=Forkf t, Branchϕ?L :L, and NDChoiceL :L
are processed. VeriDAG updates a program graph by considering the dependency
between instructions which the MCM specifies, and the basic block (written in
our intermediate languages) which has the function f or label L designated by
the instruction.

At an (Explore) part, VeriDAG uses a depth-first search to explore execution
traces. A function dfs of VeriDAG collects roots of program graphs (by using
a function getRoots), which should be chosen, and executed and removed as
follows:

dfs ((pg,gst):rests) ... =

dfs (concatMap 〈updatePg pg,updateGst gst〉 (getRoots pg):rests) ...

where pg and gst denote a program graph and a global state, respectively. The
function concatMap is defined in neither Prelude nor Data.List, and defined by
using Data.IntMap [21] for improving performance. The function 〈f, g〉 denotes
the function which returns the pair (fx,gx) for any x. Functions updatePg and
updateGst update the program graph and global states, respectively.

VeriDAG is carefully implemented by standard techniques to address the
state explosion in model checking. VeriDAG uses the so-called memoization tech-
nique to remember program graphs and states that are visited. To be concrete,
the dfs function is extended to be with memoization as follows:

dfs ((pg,gst):rests) memos ... =

dfs (filterMemos memos (concatMap ...):rests) ...

where the function filterMemos is also defined by using Data.IntMap. The
careful implementation avoids repeating expensive exploration histories. This
promotes the so-called partial order reduction, in which states and program
graphs are memoized regardless of histories of execution traces.

We finally remark about the so-called fairness of the scheduler in model
checking with MCMs. Consider a program (while(x==0){y=1}) ‖ x=1 . In
conventional model checking, which ignores relaxed MCMs, memoization avoids
an infinite execution trace consisting of instructions from the first thread because
the state is not changed. However, in model checking with relaxed MCMs, the
buffer on the first thread is changed each time y=1 is invoked. In this sense, it
is difficult to support fairness in model checking with MCMs. In this paper, we
have implemented parameterization of buffer sizes by limiting the numbers of
effect nodes for store instructions in the generation of program graphs. Under
the buffer size limitation, the program finishes in a finite step. In Sect. 6, we
conduct experiments for programs that contain loop statements with the buffer
size limitation.

A Verifier of Directed Acyclic Graphs 59

 0.01

 0.1

 1

 10

 100

 1000

 10000

a
m

d
5

a
m

d
1

0

iw
p

2
3

a

iw
p

2
8

b

n
4

n
5

a
m

d
6

iw
p

2
2

iw
p

2
5

iw
p

2
6

iw
p

2
7

iw
p

2
8

a

n
3

s
in

g
ly

fe
n

c
e

d

a
m

d
3

iw
p

2
1

iw
p

2
3

b

iw
p

2
4

n
1

n
2

n
6

n
7

n
8

u
n

fe
n

c
e

d

e
la

p
s
e

d
 t

im
e
 (

s
e

c
.)

McSPIN
VeriDAG

Fig. 1. McSPIN vs. VeriDAG with RMO

5 Performance Evaluation

In this section, we compare VeriDAG with McSPIN, a model checker with
MCMs [5]. Although some model checkers with MCMs are being developed,
most of them cannot take user-defined memory models as inputs, and do not
provide functions that allow MCM designers to draw new memory models. Al-
though the tool herd [9] can take a user-defined MCM as an input, it is difficult
to compare the herd with VeriDAG fairly since the herd cannot take models
written in the C programming language. The herd also adopts its own format of
input MCMs. Nidhugg [1] partially supports relaxed MCMs such as the POWER
MCM (similar to RMO). However, Nidhugg does not completely support atomic
primitives such as compare-and-swap under the POWER MCM as seen in [23].

McSPIN can take user-defined memory models as inputs, and performs model
checking with the memory models. McSPIN uses the SPIN model checker [17] as
an engine for exploring execution traces. Because SPIN provides model checking
with sequential consistency of code written in the modeling language PROMELA
only, McSPIN takes a memory model and a program written in C as inputs, and
generates a PROMELA code that contains all the relaxed behaviors under the
memory model.

For the experimental environment, the CPU was an Intel Xeon E5-2620
2.10GHz, and the memory was a DDR4-2400 128GB. McSPIN used SPIN ver-
sion 6.4.6, and GCC version 6.3.0. VeriDAG was compiled by GHC 8.0.2, and
used Clang 5.0.0.

In the experiment, we use the x86 litmus test originally developed to dis-
tinguish x86-TSO from x86-CC [24]. This has 24 programs, and each program
has one assertion. Under RMO, 6 assertions hold, and 18 assertions are violated.
Under PSO, 14 assertions hold, and 10 assertions are violated. In this experi-
ment, model checking is terminated by an exhaustive search of execution traces
or detection of a counterexample.

Figure 1 shows a comparison between McSPIN and VeriDAG under RMO.
The y-axis denotes elapsed time for model checking. The assertions in the 6 pro-
grams (amd5, amd10, iwp23b, iwp28a, n4, n5) to the left of the vertical line hold.
The assertions in the remaining 18 programs are violated. VeriDAG was better

60 J. Kloos et al.

 0.01

 0.1

 1

 10

 100

 1000

 10000

a
m

d
5

a
m

d
1

0

iw
p

2
3

b

iw
p

2
8

a

n
4

n
5

a
m

d
6

iw
p

2
2

iw
p

2
5

iw
p

2
6

iw
p

2
7

iw
p

2
8

b

n
3

s
in

g
ly

fe
n

c
e

d

a
m

d
3

iw
p

2
1

iw
p

2
3

a

iw
p

2
4

n
1

n
2

n
6

n
7

n
8

u
n

fe
n

c
e

d

e
la

p
s
e

d
 t

im
e
 (

s
e

c
.)

McSPIN
VeriDAG

Fig. 2. McSPIN vs. VeriDAG with PSO

than McSPIN in all cases except n8. The exceptional case is an assertion that is
violated under RMO, and SPIN found a counterexample in its exploration.

VeriDAG occupied at most 325 MB of memory while McSPIN occupied at
most 66 GB of memory. Because McSPIN generates PROMELA code containing
descriptions to control behaviors with MCMs, McSPIN uses a large amount of
memory for its exploration engine SPIN.

Figure 2 shows a comparison between McSPIN and VeriDAG under PSO.
VeriDAG was competitive with McSPIN. We think that stage optimization [7]
improves model checking under PSO on McSPIN. Although stage optimization
affects model checking under arbitrary memory models, it significantly improves
performance under stricter memory models such as TSO and PSO because re-
ordering of load instructions is prohibited. Further details of stage optimization
are beyond the scope of this paper. Similarly, model checkers specific to TSO
and PSO often have better performance because simple implementation of store
buffers that work with sequential consistency is sufficient to simulate behaviors
under TSO and PSO. Such optimization has not been applied to the current
version of VeriDAG.

Nevertheless, we claim that the development of VeriDAG is significant for the
following two reasons. First, VeriDAG has not yet been sufficiently optimized. We
can apply some optimizations specific to stricter memory models such as TSO
and PSO to VeriDAG, potentially improving VeriDAG so that it is competitive
with McSPIN under stricter memory models as in the experimental results with
RMO. Second, weak memory models such as RMO are becoming more important
than strict memory models such as TSO and PSO because modern multi/many-
core architectures use relaxed MCMs to spread parallel processing.

6 Reordering Control

In this section, we introduce an implementation of reordering control [6] in
VeriDAG to show the flexibility of exploration strategies using VeriDAG.

Reordering control is one of the practical uses of directed model checking [15],
and is a promising method for detecting counterexamples more quickly. In di-
rected model checking, the exploration of execution traces are guided by the cost

A Verifier of Directed Acyclic Graphs 61

 0.001
 0.01

 0.1
 1

 10
 100

 1000
 10000

 100000

staccato dekker peterson fast bakery aravind chicken

e
la

p
s
e

d
 t

im
e

 (
s
e

c
.) original

delay
hasten

Fig. 3. Effectiveness of the reordering controls

of reaching the next state. The directed model checker HSF-SPIN [14] offers a
wide variety of exploration strategies. However, in conventional model check-
ing which ignores MCMs, there are not many practical uses of directed model
checking as described in the manual for HSF-SPIN [13].

Reordering control focuses on instructions that are reordered or not under
MCMs. Reordering control prevents some instructions from being reordered, and
may lead to counterexamples more quickly. Consider the program (x = 1; r0 =
y) ‖ (y = 1; r1 = x). The assertion r0 = 1∨r1 = 1 for this program is violated by
the execution trace Iss0 i0; Iss0 i1; Iss0 i2; Iss0 i3; Eff0{0,1} i0; Eff0{0,1} i2 where

i0 ≡ x=Store∅ 1, i1 ≡ r0 =Load∅ y, i2 ≡ y =Store∅ 1, and i3 ≡ r1 =Load∅ x, and
each load and store instruction has one effect under multi-copy-atomicity, which
has two reorderings of x = 1; r0 = y and y = 1; r1 = x. Moreover, the assertion
is violated by the trace Iss0 i0; Iss0 i1; Iss0 i2; Eff0{0,1} i2; Iss0 i3; Eff0{0,1} i0
which has only one reordering of x = 1; r0 = y.

The exploration strategy of VeriDAG can be changed easily by choosing the
roots of program graphs as explained in Sect. 3. In this paper, we introduce two
reordering controls, delay and hasten, to delay and hasten the effects of Store
by choosing the latest and earliest instances possible, respectively. Definitions
are straight-forward as follows:

hasten = f [] []

where f st ow (nd@(Node _ (Eff _ (Store _ _ _))):nds) = f (nd:st) ow nds

f st ow (nd:nds) = f st (nd:ow) nds

f st ow [] = (reverse st)++(reverse ow)

delay = f [] []

where f st ow (nd@(Node _ (Eff _ (Store _ _ _))):nds) = f (nd:st) ow nds

f st ow (nd:nds) = f st (nd:ow) nds

f st ow [] = (reverse ow)++(reverse st)

We conduct experiments to show the effectiveness of reordering control.
The programs for the experiments consist of two sets. The first includes

popular mutual exclusion algorithms, such as Dekker’s algorithm [12], Lamport’s
bakery algorithm [18], Peterson’s algorithm [25], Lamport’s fast algorithm [20],
and Aravind’s algorithm [10]. These programs run correctly under SC; however,
they should not run correctly under TSO because they were not designed for
relaxed MCMs.

62 J. Kloos et al.

The second includes concurrent copying protocols used in concurrent copying
garbage collection algorithms, such as Chicken [26] and Staccato [22], which are
larger than the standard mutual exclusion algorithms described above. Although
these algorithms are based on a common idea, they are expected to behave dif-
ferently because Chicken appears to be designed for Intel architectures such as
x86 which uses TSO, and Staccato appears to be designed for POWER architec-
tures which use more relaxed MCMs. In the experiments, we used the programs
that were modeled in [7].

The experimental environment was the same as that in Sect. 5. Also, model
checking is terminated by an exhaustive search of execution traces or detection
of a counterexample as for the experiments in Sect. 5. All the experiments in
this section are conducted under RMO.

Figure 3 shows the effectiveness of the delay and hasten reordering controls.
In all the experiments using the mutual exclusion algorithms, model checking
with the delay reordering control detected counterexamples more quickly. How-
ever, in the experiment using Chicken, model checking with the hasten reorder-
ing control detected a counterexample more quickly. Thus the delay reordering
control does not always have the best performance.

The exploration strategies for the original implementation and using the
hasten reordering control had similar performances. This is because the original
strategy implemented on VeriDAG is similar to the hasten reordering control.

In the experiment using Staccato, the reordering controls gave no improve-
ment. This is because Staccato was designed for the POWER MCM and runs
correctly under RMO. That is, Staccato had no counterexample under RMO,
while the other algorithms did have counterexamples under RMO.

7 Related Work

There do exist some model checkers that use MCMs. To the best of our knowl-
edge, most of these are specific to certain MCMs, and most of them use external
engines such as SMT solvers and model checkers that ignore relaxed MCMs [35,
31, 32, 2, 5].

The tool herd [9] also aims at model checking with various MCMs by one
tool. However, there exist two differences from VeriDAG. First, the herd does not
support C-style models, and accepts text files in a language which the developers
themselves call adhoc [9]. Second, configuration files for MCMs are written in
its own format whose extension is .cat, differently from that VeriDAG adopts
Haskell functions that denote dependencies between operations to specify MCMs.
It is significant to clarify differences between the expressive powers is significant.
Investigating flexibility of exploration strategies in [9] is also significant.

Model checkers specific to certain MCMs have advantages in performance.
CSeq [16], which was developed to support TSO and PSO, has great perfor-
mance [31]. Weak2SC also supports TSO and PSO [32]. Both Weak2SC and
McSPIN use SPIN as back-end engines. However, Weak2SC also has better per-
formance than McSPIN since program counters can denote computational con-

A Verifier of Directed Acyclic Graphs 63

figurations under TSO and PSO, while program graphs denote those under more
relaxed MCMs on VeriDAG. Program graphs is similar to that of sb-graphs pro-
posed in [32], which are graph representations of programs with MCMs. However,
sb-graphs cannot handle RMO because they do not support reordering of load in-
structions. We only compared VeriDAG with McSPIN, so VeriDAG should have
a poorer performance than Weak2SC. We do not expect the best performance
for model checking with MCMs from VeriDAG, but retain the high flexibility of
allowing various user-defined memory models as a research framework.

McSPIN also has the flexibility of allowing various user-defined memory mod-
els as inputs. However, because McSPIN, which uses SPIN as a back-end engine,
has the limitation that changing exploration strategies is difficult, we cannot
necessarily apply new exploration strategies to McSPIN with ease. VeriDAG has
no such limitation because it has been fully developed from scratch.

Weak2SC and VeriDAG use the same preprocessing via Clang, and both
generate graph representations of programs with MCMs. However, sb-graphs,
which are graph representations in Weak2SC, cannot represent programs with
RMO differently from VeriDAG as explained in Sect. 2. Weak2SC also gener-
ates PROMELA codes, and has to use SPIN to explore execution traces, while
VeriDAG has its own exploration engine.

DIVINE [30, 29] also uses Clang, and supports model checking with TSO and
the LLVM memory model through the LLVM-to-LLVM program transformation
with store buffers. However, the method seems to lack flexibility of supporting
various MCMs since it is necessary to implement one kind of store buffers at
each MCM. Actually, DIVINE does not support more relaxed MCMs that allow
reordering of load instructions such as RMO.

LTSmin [11], which was developed to support MCMs [35], uses a notion
of cost introduced by Reffel et al. [27], and conducts model checking under
TSO, PSO, and LMO (a restriction of RMO) simultaneously. However, it is
not clear how to input user-defined MCMs and define their costs. Moreover,
LTSmin suggests a reason to not support RMO, and clarifies a problem about
reordering of load instructions in [35]. However, LTSmin may be restricted by its
use of several external solvers. VeriDAG can take user-defined memory models as
Haskell functions, which denote dependencies between instructions, and generate
program graphs, thus avoiding the problem. VeriDAG does not use external
solvers in exploring execution traces.

HSF-SPIN [14] is an extension of SPIN, and provides various heuristic searches
for directed model checking [15]. However, it has not been used for the heuristic
searches in this paper for model checking with relaxed MCMs.

8 Conclusion and Future Work

This paper provides VeriDAG, a model checker for program graphs correspond-
ing to concurrent programs with MCMs. VeriDAG has good flexibility and allows
for easy implementation of reordering control. VeriDAG is expected to be a useful
research framework for model checking with MCMs.

64 J. Kloos et al.

There remain several areas of interest for future research. This paper provides
no experiment to compare VeriDAG with tools which are developed by other re-
search groups. It is significant since such experiment shows a trade-off of the
flexibility of VeriDAG. VeriDAG cannot currently take temporal logic formulas
such as linear time temporal logic (LTL) formulas which correspond to Büchi
automata. We would like to support assertion consisting of LTL formulas by im-
plementing a special program graph corresponding to the so-called never claim
of the SPIN model checker [17], and enhancing the acceptance cycle detection
which is compatible with the memoization of VeriDAG. In the experiments in
Sect. 6, we showed that reordering controls affect the performance of counterex-
ample detection, and presented some comparisons between various reordering
controls. A more detailed investigation of this issue is left.

Acknowledgments. The author thanks Johan Tibell and Kazuhiko Yamamoto,
who gave advices on the use of GHC and its modules to improve the perfor-
mance of VeriDAG. The author also thanks the anonymous reviewers for several
comments to improve the paper. This work was supported by JSPS KAKENHI
Grant Number 16K21335.

References

1. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.F.:
Stateless model checking for TSO and PSO. In: Proc. of TACAS. Volume 9035 of
LNCS. (2015) 353–367

2. Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: Context-bounded analysis for
POWER. In: Proc. of TACAS. Volume 10206. (2017) 56–74

3. Abdulla, P.A., Atig, M.F., Jonsson, B., Leonardsson, C.: Stateless model checking
for POWER. In: Proc. of CAV. Volume 9780 of LNCS. (2016) 134–156

4. Abe, T., Maeda, T.: Concurrent program logic for relaxed memory consistency
models with dependencies across loop iterations. Journal of Information Processing
25 (2017) 244–255

5. Abe, T., Maeda, T.: A general model checking framework for various memory con-
sistency models. International Journal on Software Tools for Technology Transfer
19(5) (2017) https://bitbucket.org/abet/mcspin/.

6. Abe, T., Ugawa, T., Maeda, T.: Reordering control approaches to state explosion
in model checking with memory consistency models. In: Proc. of VSTTE. (2017)

7. Abe, T., Ugawa, T., Maeda, T., Matsumoto, K.: Reducing state explosion for
software model checking with relaxed memory consistency models. In: Proc. of
SETTA. Volume 9984 of LNCS. (2016) 118–135

8. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: a tutorial.
Computer 29(12) (1996) 66–76

9. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Transactions on Programming
Languages and Systems 36(2) (2014) http://diy.inria.fr/herd/.

10. Aravind, A.A.: Yet another simple solution for the concurrent programming control
problem. IEEE Transactions on Parallel and Distributed Systems 22(6) (2011)
1056–1063

A Verifier of Directed Acyclic Graphs 65

11. Blom, S., van de Pol, J., Weber, M.: LTSmin: Distributed and symbolic reachabil-
ity. In: Proc. of CAV. Volume 6174 of LNCS. (2010) 354–359

12. Dijkstra, E.W.: Cooperating sequential processes. In: Programming Languages:
NATO Advanced Study Institute. Academic Press (1968) 43–112

13. Edelkamp, S., Lafuente, A.L.: HSF-SPIN User Manual. (2006)
14. Edelkamp, S., Lafuente, A.L., Leue, S.: Directed explicit model checking with

HSF–SPIN. In: Proc. of SPIN. Volume 2057. (2001) 57–79
15. Edelkamp, S., Schuppan, V., Bosnacki, D., Wijs, A., Fehnker, A., Aljazzar, H.:

Survey on directed model checking. In: Proc. of MoChArt. Volume 5348 of LNCS.
(2008) 65–89

16. Fischer, B., Inverso, O., Parlato, G.: CSeq: A concurrency pre-processor for se-
quential C verification tools. In: Proc. of ASE. (2013) 710–713

17. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley (2003)
18. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem.

Comm. ACM 17(8) (1974) 453–455
19. Lamport, L.: How to make a multiprocessor computer that correctly executes

multiprocess programs. IEEE Transactions on Computers (9) (1979) 690–691
20. Lamport, L.: A fast mutual exclusion algorithm. ACM Transactions on Computer

Systems 5(1) (1987) 1–11
21. Leijen, D., Palamarchuk, A.: The IntMap module. https://hackage.haskell.

org/package/containers-0.5.10.2/docs/Data-IntMap.html.
22. McCloskey, B., Bacon, D.F., Cheng, P., Grove, D.: Staccato: A parallel and concur-

rent real-time compacting garbage collector for multiprocessors. Research Report
RC24504, IBM (2008)

23. Nidhugg: Nidhugg Manual, Version 0.2. (2016) https://github.com/nidhugg.
24. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. Technical

Report UCAM-CL-TR-745, Computer Laboratory, University of Cambridge (2009)
25. Peterson, G.L.: Myths about the mutual exclusion problem. Information Process-

ing Letters 12(3) (1981) 115–116
26. Pizlo, F., Petrank, E., Steensgaard, B.: A study of concurrent real-time garbage

collectors. In: Proc. of PLDI. (2008) 33–44
27. Reffel, F., Edelkamp, S.: Error detection with directed symbolic model checking.

In: Proc. of FM. Volume 1708 of LNCS. (1999) 195–211
28. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding

POWER multiprocessors. In: Proc. of PLDI. (2011) 175–186
29. Still, V.: LLVM transformations for model checking. Master’s thesis, Masaryk

University (2016)
30. Still, V., Rockai, P., Barnat, J.: Weak memory models as LLVM-to-LLVM trans-

formations. In: Proc. of MEMICS. Volume 9548 of LNCS. (2015) 144–155
31. Tomasco, E., Truc Nguyen Lam, O.I., Fischer, B., Torre, S.L., Parlato, G.: Lazy

sequentialization for TSO and PSO via shared memory abstractions. In: Proc. of
FMCAD. (2016) 193–200

32. Travkin, O., Wehrheim, H.: Verification of concurrent programs on weak memory
models. In: Proc. of ICTAC. Volume 9965 of LNCS. (2016) 3–24

33. Turon, A., Vafeiadis, V., Dreyer, D.: GPS: Navigating weak memory with ghosts,
protocols, and separation. In: Proc. of OOPSLA. (2014) 691–707

34. Vafeiadis, V., Narayan, C.: Relaxed separation logic: A program logic for C11
concurrency. In: Proc. of OOPSLA. (2013) 867–884

35. van der Berg, F.: Model checking LLVM IR using LTSmin: Using relaxed memory
model semantics. Master’s thesis, University of Twente (2013)

66 J. Kloos et al.

Trace-based Analysis of Memory Corruption
Malware Attacks

Zhixing Xu1, Aarti Gupta2, and Sharad Malik1

1 Department of Electrical Engineering, Princeton University
2 Department of Computer Science, Princeton University

Abstract. Understanding malware behavior is critical for cybersecurity. This is
still largely done through expert manual analysis of the malware code/binary.
In this work, we introduce a fully automated method for malware analysis that
utilizes memory traces of program execution. Given both benign and malicious
execution traces of a program, the method identifies memory segments specific to
the malware attack, and then uses them to localize the attack in the source code.
We evaluated our method on the RIPE benchmark for memory corruption mal-
ware attacks and demonstrated its ability to: (i) perform diagnosis by identifying
the program location of both code corruption (e.g. buffer overflow location) and
attack execution (e.g. control flow to payload), (ii) recognize the characteristics
of different attacks.

1 Introduction

Malicious software, referred to as malware, continues to grow in sophistication. IDC
and the National University of Singapore estimate that enterprises spent $127 billion in
2014 dealing with malware security issues [7]. Therefore, analysis/detection of malware
is a priority research area.

Program analysis is an important first step for malware detection. This involves an-
alyzing potential malware samples and vulnerable target programs either statically or
dynamically. Static analysis for malware performs source code scan which matches the
code pattern with known malware “signatures” in order to find program sections that
cause malicious behavior or security problems [21, 13]. It is susceptible to obfusca-
tion [3] and fails to take into consideration the actual program paths during execution.

Dynamic analysis for malware detection has been proposed to address these is-
sues [16, 19, 9]. It examines program execution by generating test input and monitoring
its execution behavior. Malicious execution is detected if part of the program execution
behavior conforms with malware “signatures” or is considered abnormal. Since the ex-
ecution traces keep knowledge of program state at each step during program execution,
the malicious/vulnerable code sections and the corresponding conditions of the security
vulnerability can be located and recognized in the source code. To reduce the overhead
of generating proper test inputs, some dynamic analysis tools have successfully used
concolic execution, albeit for small and less complicated programs [18, 25].

This work was supported in part by SONIC (one of the six SRC STARnet centers, sponsored
by MARCO and DARPA) and NSF Grant 1525936. Any opinions, findings, and conclusions
presented here are those of the authors and do not necessarily reflect those of SONIC or NSF.

© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 67–82, 2017.
https://doi.org/10.1007/978-3-319-70389-3_5

Both static and dynamic program analysis/malware detection approaches mentioned
above require databases of syntactic “signatures” for malware behavior. These databases
are usually derived from malware samples with expert human input. This is expensive
and the databases may not be complete as malware behavior may sometimes be too
complicated for human analysis. What is missing is automation for determining the
“signatures” for malware attacks. In contrast to these program analysis approaches re-
quiring human input, statistical techniques based on machine learning have been used to
find patterns corresponding to malicious program behavior [22, 8]. Examples of feature
sets in machine learning for malware detection are network metadata [22] and system
call sequences [8]. These feature sets are used to train a machine learning classifier to
classify whether an unknown program run is malicious or not. Recent work on malware
detection with machine learning has started using feature sets at the hardware level such
as Hardware Performance Counters (HPC) [6], instruction mixes [14] and memory ac-
cess patterns [26].

Although the models learned through statistical methods are effective in classify-
ing malware attacks, they do not help much in diagnosis. It is hard to translate the
“signature” machine learning model obtained to program semantics such as regular ex-
pressions of program constructs. This is especially true when the feature sets used in
machine learning are at a low level of the computer system, (e.g., hardware level). Thus,
they are unable to diagnose program vulnerability at the software source level as done
by dynamic analysis approaches. This source-level information is often important for
patching vulnerabilities and preventing attacks.

Dynamic analysis is a white-box approach in that it uses knowledge of program
source code for diagnosis. However, human inputs for determining the malware “sig-
nature” are required. In contrast, statistical malware detection is a black-box approach
since it only uses low-level program features without knowledge of the program source
code. It achieves automation but does not aid diagnosis.

This paper proposes a diagnosis method for understanding malware attacks. It aims
for the automation benefits of statistical methods, with the diagnosis capabilities pro-
vided by the dynamic analysis approaches. It does so through a novel trace-based analy-
sis approach that identifies different malware attacks and program vulnerabilities with-
out expert human input. Inspired by the effectiveness of using low-level features for
malware detection, this approach utilizes virtual memory access traces which require
minimum source code knowledge, unlike traditional traces with program states used in
dynamic analysis. Using memory access traces from normal program runs and program
runs for different attacks, it automatically identifies the memory accesses that are spe-
cific to attacks, and relates them to the program source using a code localization method
based on the memory traces.

A key insight underlying this approach is that malware attacks have to modify the
control-flow and/or key data structures in normal system execution to achieve their ma-
licious purpose. This modification is reflected in just the address trace, without the need
for associated program state. Events represented in the memory accesses are then re-
lated to the program source with little extra effort.

A major challenge for the analysis is the sheer volume of memory accesses in each
trace. We address this by first identifying maximal address segments which are exclu-

68 Z. Xu et al.

sively accessed by malicious runs. We then find a subset of these segments that cover
all malicious traces. This cover provides a set of addresses in each malicious trace that
distinguish it from all benign traces. These distinguishing addresses are then connected
back to the source code to localize the malicious activity. This includes finding the
vulnerability (e.g., buffer overflow location) as well as the actual attack that exploits
this vulnerability (e.g., control flow redirection). Experiments on a large benchmark of
memory corruption attacks (RIPE benchmark [24]) show the efficacy of this approach.

We make the following contributions in this paper:

– We introduce a technique for malware analysis that uses address traces without
associated program state.

– We develop a novel algorithm to identify a minimum set of memory segments that
distinguish all malicious runs from benign runs. These segments are then used for
identifying the vulnerability and attack in the code.

– We have experimentally evaluated this method on a comprehensive benchmark for
memory corruption attacks (RIPE benchmark) and demonstrated its effectiveness
in identifying locations for program code vulnerability and attack, as well as rec-
ognizing the characteristics of different attacks.

We propose our approach as a general methodology for malware attack analysis.
While our evaluation in this paper has focused on memory corruption attacks, we be-
lieve it is applicable to other types of malware attacks.

2 Malware Attacks and Program Memory Traces

We now give a brief description of common malware attack techniques and how they
affect program memory traces.

2.1 Memory Corruption Attacks

Code infection at the user level primarily occurs through memory corruption vulnera-
bilities: buffer overflow, heap overflow, format string vulnerability, etc. Buffer overflow
(BOF) is possibly the most common vulnerability exploited. The attacker overflows a
program buffer’s boundary and overwrites adjacent memory locations. A carefully con-
structed buffer input can contain malicious payload and change the program’s control
flow to this payload. Vanilla buffer overflow attacks that transfer control to locations
outside the existing code base are easy to catch using program memory traces since
it always redirects control flow to anomalous locations. Sophisticated code reuse tech-
niques transfer control to locations in the existing code base and are more challenging.

Modern computer systems have prevention techniques against these attacks. Data
Execution Prevention (DEP) does not allow data in certain memory sectors (e.g., the
stack) to be executed. Address Space Layout Randomization (ASLR) shifts the code
and data segments by adding a randomized offset to their initial addresses. However,
current memory exploit attacks are capable of successfully bypassing these preven-
tions [15]. Even when the address space is fully randomized, it is possible to calculate
the base address and offset at runtime [10], or even with brute-force methods [20].

Trace-based Analysis of Memory Corruption 69

Consider return-oriented programming (ROP) attacks as an example. This attack
executes a sequence of assembly code snippets called gadgets. Gadgets are carefully
chosen from an existing code base, and are chained to implement the malicious ob-
jective. It naturally bypasses DEP, and ASLR using the techniques mentioned above.
However, when examining the memory access traces, these code sections are executed
in an anomalous way, thereby leaving some evidence of the attack. For example, how
and where control flow transfers to gadgets will be different from normal execution.

2.2 RIPE Benchmark

RIPE [24] is a testbed that generates a synthetic benchmark which contains a total of
850 different memory corruption attacks in various forms including modern attacks
such as return-to-libc attacks, return-oriented programming, etc. The attacks in RIPE
are a good representation of non-synthetic memory corruption attacks in the wild. The
benchmark is built to cover five dimensions:

1. Location: 4 types of locations of buffers in memory – Stack, Heap, BSS, and Data
segment

2. Target code pointer: 16 target code pointers to redirect to the attack code; e.g.,
return address, base pointer, longjmp buffer, function pointer, etc.

3. Overflow technique: direct, indirect overflow techniques
4. Code reuse techniques for attack: ROP attack (as mentioned in §2.1), return-to-libc

attack (where the attacker uses existing code from libc-function to perform attack).
5. Function exploited: 10 functions being exploited (memory unsafe functions that got

attacked using BOF); e.g., memcpy(), strcpy()

A user can specifically choose the attack type in each dimension. The complete set
of useful combinations across the dimensions yields the 850 different attacks. We also
build a “benign” version of RIPE where the vulnerabilities are patched. Each type of
attack is implemented on both the “benign” and the original version of RIPE program
and the memory traces for both executions are collected. The memory traces include the
instruction address of every memory operation (data access/control flow) and its target
address. They also record the basic block address and the function name that each such
instruction appears in.

3 Automated Trace Analysis: Challenges and Solutions

The primary challenge of memory trace analysis is the large number of memory ac-
cesses in each program run. The memory trace for one program run contains millions to
billions of memory accesses. Therefore, we first create a “summary” of the trace. This
summary should serve two main purposes: it should reduce analysis overhead, and it
should extract relevant distinctions of malicious runs in comparison to benign runs.

We implement this summary by: (i) first creating address segments that are ex-
clusive to malicious executions, and then (ii) selecting the most important segments
among them for further analysis. A memory segment is a range of contiguous memory

70 Z. Xu et al.

addresses. Using important memory segments instead of individual addresses greatly
reduces the number of candidates for diagnosis, i.e., candidate locations in the source
code that need to be examined to localize the malware attack. This reduction from po-
tentially billions to a few tens is a key contribution of our approach.

Another challenge is dynamically allocated data structures in memory traces. Pro-
grams often have data structures that are assigned to memory only at runtime (e.g., data
structures in heap), making the memory region for these data structures vary across dif-
ferent runs even for the same program. The solution we use is to: (i) associate a dynamic
data structure with the basic block(s) in which it is accessed, (ii) run the code with the
same input multiple times to track the complete data structure across different runs, and
(iii) “normalize” the addresses across the different runs. In our current implementation,
this normalization is done only for the attacked data structures that our approach iden-
tifies during diagnosis. We expect that normalization for all dynamic data structures
would benefit our analysis more. This will be discussed further in §4 and §5.

3.1 Memory segment construction

We now describe how the memory segments are constructed by coalescing memory
accesses in traces. Suppose we have B benign and M malicious program traces. Each
trace is an ordered set of memory addresses (with associated information as described
earlier), i.e., {a1, a2, a3, . . . ak}. Let array A contain all the addresses that appear in any
of the traces. It is sorted by address value. Each address is labeled as “malicious” if it
appears only in malicious traces and not in any benign trace. It is labeled as “benign”
if it appears in any “benign” trace. For an element a in array A, let a.addr denote its
memory address and a.label denote its label. For addresses labeled as “malicious”, we
also record the indices of the traces that this address appears in. Let a.index denote the
set of indices of the traces that contain this address.

Algorithm 1 Memory segment construction
// Array A of all memory accesses, sorted
// Set MS of malicious segments, initially empty
// Sets MS Ti of malicious segments in traces, initially empty
for each memory access a in A do

if a.label == malicious then
MS .add(a2ms(a.addr, A))
for i in a.index do

MS Ti.add(a2ms(a.addr, A))
end for

end if
end for

Algorithm 1 shows how malicious memory segments are constructed by coalesc-
ing addresses. We use a function a2ms(addr, A) to get the maximal address range
(alow, ahigh) that includes the malicious memory access addr, but does not include
any benign memory access. Specifically, given a malicious memory address addr and
the sorted array A, it returns an open interval (alow, ahigh) where:

Trace-based Analysis of Memory Corruption 71

– alow is the largest memory address labeled as benign that is smaller than addr, and
– ahigh is the smallest memory address labeled as benign that is greater than addr.

This function can be viewed as mapping a given malicious address addr to a malicious
segment, i.e., a contiguous range of addresses that contains no address labeled benign.

The set MS denotes the entire set of malicious segments for all traces, and each
set MS Ti, i = 1, 2, ...,M contains the malicious segments accessed in malicious trace
i. The boundaries of these malicious segments are the nearest memory addresses that
were accessed in some benign trace. This boundary choice gives the most separation
from existing benign accesses to malicious accesses. It can also lead to large malicious
segments. Large segments may combine together the malicious accesses that are spe-
cific to different attacks, making it harder to distinguish between them. One can easily
use additional criteria to direct the boundary choice, including criteria related to pro-
gram semantics. For example, one may want the size of malicious memory segments be
within value n, which may capture the typical size of memory structures in the program.
If some segment has size larger than n, it would be divided into smaller segments.

In our implementation, we keep two sorted arrays of memory addresses, one for
control flow memory accesses (call, branch, etc.), and the other for data accesses. As
a result, the malicious memory segments that we construct are also specific to one of
these two types of accesses, and segments of different types can overlap with each
other. Distinguishing control flow and data accesses gives these segments an extra layer
of information that we utilize later for diagnosis. We now show how these segments
help narrow the search for the malicious code programs.

3.2 Covering memory segments

Each trace i (i = 1, 2, ...,M) is now associated with a set of malicious segments MS Ti.
However, these sets are still quite large. Analyzing all of them for each trace to diagnose
the malware attack is not practical. Instead, what we take advantage of is that multiple
malicious traces will likely have the same vulnerability that is exploited (e.g., same
buffer) and the same attack (e.g., same malicious code executed). What is useful in
this context is “small explanations” that are sufficient to diagnose the attacks in all the
traces. Thus, in terms of these memory segments, it translates to identifying a set of
memory segments that between them include an address from each of the malicious
traces. In other words, this set of segments “covers” all traces. Such a cover set further
helps narrow the search for malicious code in programs.

Determining this cover of malicious segments can be framed as a set covering prob-
lem. Assume the size of set MS is N (this set MS includes the memory segments from
both control flow and data accesses). We construct an M ∗N matrix C = ||ci j||. The rows
of the matrix C represent the malicious traces, and the columns represent the malicious
memory segments. The entries of the matrix represent whether a memory segment con-
tains an address in the corresponding trace:

ci j = 1 iff jth malicious segment ∈ MS Ti

The following integer linear programming (ILP) problem can be formed to find the
smallest subset of MS to cover all the traces. Binary variable x j, 1 ≤ j ≤ N indicates if
column j is in the cover or not.

72 Z. Xu et al.

Minimize
N∑

j=1

x j

Subject to
N∑

j=1

ci jx j ≥ 1 i = 1, ...,M

x j = 0 or 1

The solution can be represented by set X1 where
j ∈ X1 iff x j = 1

Set X1 contains the indices of the smallest covering of malicious segments in MS for
all traces. Potentially, the covering problem could be solved directly using memory
addresses instead of memory segments. However, as ILP is NP-hard, the reduction in
number of columns that is obtained through segmentation is critical in making the in-
stance sizes manageable in practice.

The memory segments in the cover are the most commonly accessed across all mali-
cious traces and are likely to provide the most common explanation across the different
attacks. We call this result the first level solution. If we are seeking a finer distinction
between different attacks, these segments may not be the most informative. For exam-
ple, RIPE has some parts of code/memory accesses that are used to set up the attacks,
which are therefore common to most malicious traces and the associated attacks. They
themselves do not provide information on how different attacks are constructed. To fur-
ther identify the distinguishing characteristics of these different attacks, there is value
in going beyond this first level solution to find the next largest cover of C. This can
be done by dropping the first level solution which is normally done by dropping any
one segment in the solution set, using

∑
j x j < |X1|, x j ∈ X1. The new solution set is

different, but many segments in the original solution set may still appear in the new set.
In our analysis, we are looking for totally new segments to get new information of the
attacks, so we prefer to drop all segments of the first level solution by adding

x j = 0, for j ∈ X1

to the original ILP. Let X2 be the solution of this new ILP. We refer to this as the second
level solution. This set of memory segments has more detail of the differences between
memory accesses from different attack traces, because the common parts of the different
attacks are filtered out when we blocked the first level solution. The practical value of
this is seen in §5.

4 Trace-based Analysis Framework

Figure 1 shows the overall framework of our approach. The memory segment construc-
tion and selection described in §3 use information only from memory traces to narrow
the locations in memory where malicious behavior occurs. We now use these to perform
diagnosis to locate in the program: (i) where the attack happens, i.e., where control flow
jumps to execute the malicious code, and more importantly (ii) the security vulnerabil-
ity. This is done through back annotation to the source program.

Trace-based Analysis of Memory Corruption 73

Memory segment
construction

User code
localization

Memory segment
selection

Solving covering
problem

Code corruption
identification

If the attack
separates injection

and trigger
Back

annotation
to program

source

Memory trace based analysis Trace + source analysis

Benign and malicious
memory traces

Fig. 1: Overall framework

We illustrate this part of our approach step by step with a real example. Recall
from §2, every execution trace from RIPE is an attack built from some combination
of 5 different dimensions. Here we take one particular attack as an example. This ex-
ample attack targets the stack buffer location and overwrites the stack function pointer
with direct overflow technique by exploiting the security vulnerability of the strncat()

function using the return-to-libc code reuse technique.

4.1 User code localization

Step 1: User machine code localization Since the memory addresses in the malicious
segment never appear in benign program runs, the access to this memory segment nor-
mally happens in a basic block outside the original program’s code segment. (Note that
attacks using ROP technique may have the memory segment inside the original pro-
gram code, and will be discussed separately). In this step, an automated trace-back is
implemented to determine the last basic block inside the original program code, before
the occurrence of the malicious memory access. This is easy to do because our trace
records the information about the basic blocks, so we know which of them belong to
the original code. This basic block corresponds to the last code in the original program
that is executed before the control flow jumps to malicious locations.

In our example attack, the malicious memory segment accessed is (0x80487a6,

0x80487c0). This was obtained from the covering. We first locate the memory access ma
in this segment in the trace. We then do an automated backward search in the memory
trace, to determine the last basic block executed in original program code before the
occurrence of access ma. Table 1 shows a snippet of the memory trace which shows
this basic block. Note that the memory address shown here is for sake of completeness.
The address itself is not important, but it allows us to track the attack characteristics in
terms of malicious memory accesses. The left-most column denotes whether the access
is the start of a basic block (‘BBL’ if it is). The column “Access type” tells us whether
the access is a read or write, “Code addr” shows the address of the instruction and “R/W
location” shows the target data location of this memory access.

Step 2: User source code localization After identifying the last basic block exe-
cuted in the trace, we can locate it in the original program based on its address (0x0804a253

74 Z. Xu et al.

Table 1: Machine code localization
Access type Code addr R/W location

BBL R 0x0804a253 0xbfb6a10c
MEM W 0x0804a259 0xbfb530e4
MEM W 0x0804a261 0xbfb530e0
MEM W 0x0804a268 0xbfb530dc

here, as shown above). The corresponding line for this basic block in source code is line
1066. We see that a function pointer stack func ptr is getting called by the program
with some argument provided by the benchmark. The address of this function pointer
can be inferred by using the method for determining dynamically assigned addresses
described in §3.

1065 case FUNC_PTR_STACK_VAR:

1066 ((int (*)(char *,int)) (*stack_func_ptr))

("/tmp/rip-eval/f_xxxx" 700);

1067 break;

From this information, we can see that this pointer is now directed to execute the
malicious payload. However, the pointer itself got overwritten somewhere before this
line. Note that this example shows a function pointer as the target. In general, the con-
trol flow to payload may happen by targeting other kinds of code pointers, e.g., by
changing contents of longjump buffer, or by overwriting function return address on
stack. Whichever way the code pointer gets attacked, what interests us most is where
the overwriting occurs, since it helps us to locate the actual vulnerability in the code.

For ROP attacks, since the malicious payload is typically a chain of gadgets, the
malicious segment is usually inside the original program. In this case, the segment
already gives us information about the control flow redirection. The return addresses
on stack of the gadgets are target pointers of the attack. We can use the location where
they got overwritten to locate the vulnerability. Doing a trace-back in the memory trace
can help identify the gadgets and the starting point of control flow redirection.

4.2 Code corruption identification

In our example, the attack trigger (call of the function pointer) and the injection (where
memory corruption happens and the pointer gets overwritten) happen in different loca-
tions. Therefore, after the user code localization, we need to analyze further in order to
find out where the injection happens.

Step 1: Machine code corruption identification Using the information obtained
from the last step (function pointer stack func ptr and its address 0xbf99f83c), we
analyze the memory trace again and search for the location where this pointer got over-
written outside the program’s original code. Table 2 shows a snippet of the basic block
where this pointer is overwritten, i.e. the code corruption location.

Now, we again use an automated trace-back to determine the last basic block ac-
cessed inside the original program, before this code corruption access. The resulting

Trace-based Analysis of Memory Corruption 75

basic block is shown in Table 3. We then use its address (0xb61f74d0) to go back to
the program source to identify the code corruption location in the original program.
Here, the basic block address 0xb61f74d0 corresponds to libc.so.6:strncat, which
also identifies the function getting attacked. Again, it is not the the address itself that is
important but its tracking with the basic block and the function in the source code.

Table 2: Machine code corruption identification
Access type Code addr R/W location

BBL R 0xb61f74d0 0x805079c
MEM W 0xb61f74d5 0x0bf99f83c

Step 2: Source code corruption identification This step is similar to the corre-
sponding step in user code localization. The basic block we found led us to the code
where the buffer overflow happens. Line 914 corresponds to the basic block in Table 3.
We find that the function strncat is what the malware used for the buffer overflow at-
tack. At this point, we have determined the location of the vulnerability in the original
code. This completes our diagnoses for this example.

Table 3: Source code corruption identification
Access type Code addr R/W location

BBL R 0x08049e33 0xbf99f900
MEM R 0x08049e36 0xbf98bb30
MEM W 0x08049e3c 0xbf988818
MEM R 0x08049e40 0xbf99f908

913 case STRNCAT:

914 strncat(buffer, input_buffer, input_size);

915 break;

A natural question to ask here is why the memory segment identified in the cov-
ering led us first to where the attack triggers, but not to where the attack is injected.
The buffer overflow write operation should also correspond to a malicious memory seg-
ment, since it is accessed only in malicious code. The reason is that we are using a
small cover of the malicious memory segments. Since the buffers in the program are
allocated dynamically, they have different memory addresses in each memory trace.
Thus, these segments are not likely to be part of a small cover. They may be discovered
after many levels of solutions are blocked. However, this is likely to be computationally
very expensive. In comparison, the small cover helps us quickly get to the attack trig-
ger, which is common across a large number of traces as it is an instruction address and
not the address of a dynamic data structure. This reinforces one of the main benefits
of our trace-based approach – we gain by automatically extracting common relevant
information from multiple traces.

As mentioned in §3, it is possible to analyze all the different dynamic addresses in
different traces that may represent the same data structure. However, this may require
additional knowledge of the source program, e.g., the basic block addresses where the

76 Z. Xu et al.

data structures are used. In our method, we perform such analysis only for the data
structures that are attacked, for which the accessing basic block addresses can be auto-
matically inferred from traces. With additional effort, we can perform a normalization
for all dynamic addresses. With full normalization, we believe it is possible that a small
cover will directly help identify the vulnerability.

5 Evaluation

5.1 Experimental Setup

In our evaluation, the RIPE benchmark was executed on a QEMU virtual machine with
Ubuntu 6.06 system and Linux kernel version 2.6.15. The host machine uses 2.53GHz
Intel Xeon X3440 processor with 16GB memory. Among the 850 RIPE attacks, 752
were successful on our target system. The memory traces are collected with ASLR
turned off. (For ASLR turned on, the randomized memory addresses in our traces can
be “de-randomized” the same way that attackers circumvent ASLR as mentioned in 2.1)

For trace collection, we developed a “pintool” using a binary instrumentation tool
Pin [12] to collect the memory access trace during the execution of the target program.
The “pintool” is designed to record the address of each memory operation and its tar-
get address. It also provides information about the basic block and the function name
that each instruction appears in. It took on average 2.43 sec. to execute the attacked
program without Pin instrumentation, and 3.45 sec. with Pin instrumentation on our
QEMU virtual machine. 1

We used the Matlab ILP solver intlinprog on a 2GHz Intel Core i7 with 8GB
memory machine to solve the covering problem. The ILP runs took 3.14 sec. on average.

5.2 Memory segment construction and selection

We used our approach on the 752 “pairs” of benign and malicious traces. Algorithm 1
constructed a total of 118,819 malicious memory segments. The construction of these
segments took 401.54 sec. on average, on the host machine mentioned in §5.1

In contrast, the total number of memory addresses labeled malicious is 1,192,954,
which is about 10 times the size of segments. This reduction is critical in generating
ILP instances that can be solved in practice. Most of the segments are specific to only a
few traces, due to execution-specific memory accesses. Nonetheless, the actual number
of memory segments needed to cover all malicious traces can still be very small. In fact,
after running the covering algorithm on these segments, we obtained a cover that con-
tains only 4 memory segments that cover all 752 malicious traces. This is a significant
reduction in the original number of malicious memory segments. The “level 1” part of
Table 4 shows the 4 memory segments selected.

Some explanations of the identified segments are also shown in the table (column
“Explanation of the segment”). Some segments are very large, and the explanation is for
a small part. We can relate these memory segments with their attack types. For exam-
ple, the return-to-libc attacks all access the malicious memory segment of the procedure
linkage table. Similarly return oriented programming attacks all access memory seg-
ments corresponding to their gadgets. This is because with our instrumentation of RIPE

Trace-based Analysis of Memory Corruption 77

benchmark, the gadgets are not accessed in the benign traces, but this is not always the
case for general ROP attacks. We argue that our approach can catch other characteristics
of ROP attacks. For example, after normalization of dynamic data structure addresses
(as described earlier), we argue that low-level covers will include malicious segments
where a buffer is overwritten.

Table 4: Minimum set covers for malicious memory segments
Covering level Index Type Explanation of the segment 1 Typical attack types # of traces

level 1

1 control lib/ld-linux.so.2.text
attacks at stack location
without code reuse 182

2 control
memory region near .txt
including read only segments

attacks at .bbs, heap
and .data location 415

3 control .plt (procedure linkage table) return to libc 150
4 control unaccessed gadget in the program rop attack 10

level 2

1 data .bss (block started by symbol) bss pointer attack 154
2 data libc.so.6: libc free heap pointer attack 136
3 data .data data pointer attack 154

....

As discussed in §3, the second level solution obtained by blocking every element of
the first level solution can give us more detailed information of different attack types.
The “level 2” part of Table 4 shows some example memory segments selected from the
61 segments in the second level solution. We see these segments can also be related to
their respective attack type. We see that some attack classification that was coarse at
level 1 is finer at level 2. The three level 2 segments shown in Table 4 cover attacks
to three different types of locations (.bbs, .data, heap, respectively) and lead to charac-
teristics of these attacks. Note that these attacks could not be distinguished from each
other using level 1 segments. This result shows us that at the second level the segments
are more fine-grained in terms of covering specific types of attack. We also noticed that
level 1 segments are all accesses of control flow. However, level 2 memory segments
have more data accesses. Among the 61 level 2 segments, 44 are for data accesses and
17 of are for control flow accesses. This is because control flow locations are normally
the most distinguishing traits for malicious attacks. We can discover the distinguishing
data accesses in different attacks only after the control flow locations are blocked.

5.3 Source code identification

After construction and selection of the malicious memory segments, we do the back
annotation to identify the user code that contains the jump location to the malicious
payload. Some traces may have multiple malicious segments in the covering set. We
found that they all go back to the same source code section.

Table 5 shows some results for user code localization and for corruption identifica-
tion. Each row shows the source code identification result for one attack, and we have

1 The code of pin-tools, RIPE benchmark, memory traces and detailed segments explanation
can be found at https://bitbucket.org/zhixing-xu/hvc17.

78 Z. Xu et al.

shown 6 among the total 752 rows (attacks) as examples here. The combined column
“Dimension of attack” shows the type of the attack. The remaining columns show the
information that we generated by our analysis. Specifically, the columns under “Attack
execution identification” show information about the source code from which control
flows to the malicious payload. Similarly, the columns under “Memory corruption iden-
tification” show information about where the memory corruption happens.

As an example, consider the first attack in the table. The attacker targets a buffer
located in the .bss region, and overwrites a function pointer in .bss with direct overflow
technique, by exploiting the security vulnerability of the fscanf() function, without
using any code reuse attack technique. Using our approach, we identified the address of
the last basic block in the program before malicious payload execution as 0x0804a3e2,
and the corresponding source code at line 1112, where the function pointer located in
the .bss region got called. The actual buffer overflow happens at source code line 925,
where function fscanf got called and has the basic block address of 0x08049ef3. Thus,
here our approach successfully located the code fragment where the attack is executed,
and where the buffer overflow happens. Overall, for all 752 traces, we were able to
successfully locate such information.

Table 5: Results of Trace Analysis and Diagnosis

Dimensions of attack Attack execution identification
Memory corruption
& identification

Location
Overflow
tech

Target
pointer

Code reuse
technique

Attack
function

Attack execution code line
& content

BOF code line
& content

bss direct structfuncptrbss none fscanf 1112: bss function pointer called 925: fscanf
stack direct ret none strncpy 1140: return from wrapper function 898: strncpy
bss direct longjmpbss returntolibc snprintf 1099: jump with longjmp buffer 908: snprintf
data indirect funcptrdata none homebrew 1080: data func pointer called 939: homebrew
stack direct ret rop fscanf 1140: return from wrapper function 925: fscanf

In summary, we evaluated our approach on RIPE benchmark with a total of 752 dif-
ferent memory corruption attacks. By analyzing the level 1 and 2 malicious segments,
we show the value of memory segment construction and selection in reducing diagno-
sis overhead and extracting relevant distinction from benign runs. We then successfully
utilize these segments for back annotation to the program source code, which demon-
strates the approach’s capability to identify both the attack payload execution location
and code corruption point.

6 Extensions to Unlabeled Traces

We now consider the potential application of our framework to handle unlabeled traces,
where we would like to first identify and diagnose potentially malicious traces. In this
setting, we already have existing traces labeled as benign and malicious, and we need
to classify a new unlabeled trace. Here we can leverage our framework as follows. We
start by assuming that the new trace is malicious and run our segmentation and covering

Trace-based Analysis of Memory Corruption 79

method by including this trace. This provides us with a set of segments from the cover
labeled as malicious and containing addresses from this trace. These segments can then
be back-annotated to the source code, and help us narrow our analysis to these sections
of the code.

Consider the case where the segments contain an address that has already been
analyzed for previous traces. Here, the vulnerability has already been identified and
classified for that address. This can be reused and repeated analysis is not needed. Now
consider the case where cover segments contain addresses that have not been seen in
previous malicious runs. Here the analysis may find a new vulnerability, or declare the
trace to be benign. The key value of the framework is the elimination of addresses
from benign runs, and the covering algorithm for the malicious traces to narrow the set
of candidates for diagnosis. This extension has not been implemented and will be the
subject of future work.

7 Related Work

Work most closely related is in two categories: (i) dynamic malware analysis/detec-
tion, and (ii) statistical approaches for malware detection. None of them provide the
combination of automation and diagnosis provided by our approach.

7.1 Dynamic malware analysis/detection

Dynamic malware analysis/detection observes the behavior of the system as it exe-
cutes [16, 9, 4]. As the name suggests, dynamic behavior-based detection attempts to
detect deviations from normal behavior of a program as it operates. The advantage
of dynamic detection is that it is resilient to malware variants [13] which static anal-
ysis fails to handle. For example, semantic-aware signature checking is implemented
to improve detection of malware polymorphic and metamorphic variants [4]. Instead
of checking the runtime behavior of provided tests, some tools perform concrete and
symbolic execution of a program simultaneously to explore additional execution paths
besides the current one [18, 25]. Despite the approach taken, these analysis/detection
methods always need some form of human input.

Control flow integrity (CFI) approaches [1, 23, 5] have been widely explored as a
form of dynamic malware detection. They check program execution so that its execu-
tion always follows the program’s known Control-Flow Graph (CFG). Any deviation
from the CFG is recognized as an attack. However, the deviation does not provide any
information on attack diagnosis which will need further human input.

Earlier efforts on automatic malware diagnosis aimed at signature generation for
network worm attacks [19, 11]. While these techniques don’t rely on base knowledge of
the memory unsafe conditions, they rely on the assumption that the attack would always
trigger an exception or a crash due to common memory corruption defense techniques
(e.g., ASLR). This exception/crash then points to the responsible instructions. However,
as common defense techniques can be compromised by modern attacks, this assumption
may not hold. Our method does not rely on this assumption and generates the attacked
memory location automatically through memory trace based analysis.

80 Z. Xu et al.

7.2 Statistical malware detection

Demme et al. [6] collect hardware performance counter statistics for programs and
malware under execution. They show that machine learning tools can effectively clas-
sify malware using these statistics. Ozsoy et al. build on this evidence to develop a
lightweight online hardware-supported malware detector MAP using feature sets in-
cluding hardware performance counters and instruction mix [14]. Xu et al. explore a
framework using virtual memory access patterns as feature set for online malware de-
tection in a per-application based scenario [26].

A number of earlier works explore sub-semantic features for malware detection. Bi-
lar et al. [2] examine the frequency of opcode use in malware. Runwal et al. [17] study
opcode sequence similarity graphs. None of the trained models in these approaches have
been utilized for providing diagnosis about the malware behavior and for localizing the
vulnerability.

8 Conclusions

In this paper, we presented a fully automated approach for analyzing malware attacks
based on program memory trace analysis. We narrow down potentially billions of ad-
dresses to a selected few for diagnosis to identify the code vulnerability. We do this
by first coalescing memory accesses specific to the malicious traces into memory seg-
ments. We then select a minimum subset from these segments that covers all malicious
traces, to further help narrow the search for vulnerable code. These remaining segments
are then used in back-annotation from memory traces to actual program source to iden-
tify the code vulnerabilities. This judicious combination of segmentation and covering
is key in obtaining the final results.

We evaluated our method on the RIPE benchmark which includes common memory
corruption malware attacks and demonstrated its ability to identify the program loca-
tion of both code corruption and attack execution. We also successfully identified the
characteristics of different attacks. A key value of the proposed approach is using au-
tomation in profiling malware behavior using mainly low-level trace data. This provides
a promising direction for automated malware analysis with potential application even
beyond the memory corruption attacks that are the focus here.

References

1. Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. Control-flow integrity. In Proceedings
of the 12th ACM conference on Computer and communications security.

2. Bilar, D. Opcodes as predictor for malware. International Journal of Electronic Security
and Digital Forensics (2007), 156–168.

3. Christodorescu, M., and Jha, S. Static analysis of executables to detect malicious patterns.
Tech. rep., DTIC Document, 2006.

4. Christodorescu, M., Jha, S., Seshia, S. A., Song, D., and Bryant, R. E. Semantics-aware
malware detection. In Security and Privacy, 2005 IEEE Symposium on.

5. Davi, L., Hanreich, M., Paul, D., Sadeghi, A.-R., Koeberl, P., Sullivan, D., Arias, O., and
Jin, Y. Hafix: Hardware-assisted flow integrity extension. In Proceedings of the 52nd Annual
Design Automation Conference (2015), ACM, p. 74.

Trace-based Analysis of Memory Corruption 81

6. Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, A., Sethumadhavan, S., and
Stolfo, S. On the feasibility of online malware detection with performance counters.
SIGARCH Comput. Archit. News 41, 3 (June 2013), 559–570.

7. F. Gantz, J., Florean, A., Lee, R., Lim, V., Sikdar, B., Lakshmi, S. K. S., Madhavan, L.,
and Nagappan, M. The link between pirated software and cybersecurity breaches. https:
//news.microsoft.com/download/presskits/dcu/docs/idc_031814.pdf.

8. Hofmeyr, S. A., Forrest, S., and Somayaji, A. Intrusion detection using sequences of system
calls. Journal of Computer Security 6, 3 (Aug. 1998), 151–180.

9. Jacob, G., Debar, H., and Filiol, E. Behavioral detection of malware: from a survey towards
an established taxonomy. Journal in computer Virology 4, 3 (2008), 251–266.

10. Li, H. Understanding and exploiting flash actionscript vulnerabilities, 2011.
11. Liang, Z., and Sekar, R. Fast and automated generation of attack signatures: A basis for

building self-protecting servers. In Proceedings of the 12th ACM conference on Computer
and communications security (2005), ACM, pp. 213–222.

12. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V. J.,
and H, K. Pin: building customized program analysis tools with dynamic instrumentation.
In ACM Conference on Programming Language Design and Implementation (2005).

13. Moser, A., Kruegel, C., and Kirda, E. Limits of static analysis for malware detection. In
Computer security applications conference, 2007. ACSAC 2007. Twenty-third annual.

14. Ozsoy, M., Donovick, C., Gorelik, I., Abu-Ghazaleh, N., and Ponomarev, D. Malware-
aware processors: A framework for efficient online malware detection. In High Performance
Computer Architecture (HPCA), 2015 IEEE 21st International Symposium on.

15. Pappas, V., Polychronakis, M., and Keromytis, A. D. Transparent rop exploit mitigation
using indirect branch tracing. In USENIX Security (2013), vol. 30, p. 38.

16. Ringenburg, M. F., and Grossman, D. Preventing format-string attacks via automatic and
efficient dynamic checking. In Proceedings of the 12th ACM conference on Computer and
communications security (2005), ACM, pp. 354–363.

17. Runwal, N., Low, R. M., and Stamp, M. Opcode graph similarity and metamorphic detection.
Journal in Computer Virology 8 (2012), 37–52.

18. Sen, K., Marinov, D., and Agha, G. Cute: a concolic unit testing engine for c. In ACM
SIGSOFT Software Engineering Notes (2005), vol. 30, ACM, pp. 263–272.

19. Sezer, E. C., Ning, P., Kil, C., andXu, J. Memsherlock: an automated debugger for unknown
memory corruption vulnerabilities. In Proceedings of the 14th ACM conference on Computer
and communications security (2007), ACM, pp. 562–572.

20. Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., and Boneh, D. On the effec-
tiveness of address-space randomization. In Proceedings of the 11th ACM conference on
Computer and communications security (2004), ACM, pp. 298–307.

21. Viega, J., Bloch, J.-T., Kohno, Y., andMcGraw, G. Its4: A static vulnerability scanner for c
and c++ code. In Computer Security Applications, 2000.

22. Wang, K., and Stolfo, S. J. Anomalous payload-based network intrusion detection. In
Recent Advances in Intrusion Detection (2004), Springer, pp. 203–222.

23. Wang, Z., and Jiang, X. Hypersafe: A lightweight approach to provide lifetime hypervisor
control-flow integrity. In Security and Privacy (SP), 2010 IEEE Symposium on.

24. Wilander, J., Nikiforakis, N., Younan, Y., Kamkar, M., and Joosen, W. Ripe: runtime
intrusion prevention evaluator. In 27th Computer Security Applications Conference (2011).

25. Xu, R.-G., Godefroid, P., andMajumdar, R. Testing for buffer overflows with length abstrac-
tion. In Proceedings of the 2008 international symposium on Software testing and analysis
(2008), ACM, pp. 27–38.

26. Xu, Z., Ray, S., Subramanyan, P., and Malik, S. Malware detection using machine learn-
ing based analysis of virtual memory access patterns. In Proceedings of the 2017 Design,
Automation & Test in Europe Conference & Exhibition (2017).

82 Z. Xu et al.

Trace-Based Run-Time Analysis of
Message-Passing Go Programs

Martin Sulzmann and Kai Stadtmüller

Faculty of Computer Science and Business Information Systems
Karlsruhe University of Applied Sciences

Moltkestrasse 30, 76133 Karlsruhe, Germany
martin.sulzmann@hs-karlsruhe.de

kai.stadtmueller@live.de

Abstract. We consider the task of analyzing message-passing programs
by observing their run-time behavior. We introduce a purely library-based
instrumentation method to trace communication events during execution.
A model of the dependencies among events can be constructed to identify
potential bugs. Compared to the vector clock method, our approach is
much simpler and has in general a significant lower run-time overhead.
A further advantage is that we also trace events that could not commit.
Thus, we can infer more alternative communications. This provides the
user with additional information to identify potential bugs. We have fully
implemented our approach in the Go programming language and provide
a number of examples to substantiate our claims.

1 Introduction

We consider run-time analysis of programs that employ message-passing. Specifi-
cally, we consider the Go programming language [4] which integrates message-
passing in the style of Communicating Sequential Processes (CSP) [6] into a C
style language. We assume the program is instrumented to trace communication
events that took place during program execution. Our objective is to analyze
program traces to assist the user in identifying potential concurrency bugs.

Motivating Example In Listing 1.1 we find a Go program implementing a system
of newsreaders. The main function creates two synchronous channels, one for
each news agency. Go supports (a limited form of) type inference and therefore
no type annotations are required. Next, we create one thread per news agency
via the keyword go. Each news agency transmits news over its own channel. In
Go, we write ch <- "REUTERS" to send value "REUTERS" via channel ch. We
write <-ch to receive a value via channel ch. As we assume synchronous channels,
both operations block and only unblock once a sender finds a matching receiver.
We find two newsreader instances. Each newsreader creates two helper threads
that wait for news to arrive and transfer any news that has arrived to a common
channel. The intention is that the newsreader wishes to receive any news whether
it be from Reuters or Bloomberg. However, there is a subtle bug (to be explained
shortly).
© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 83–98, 2017.
https://doi.org/10.1007/978-3-319-70389-3_6

func reuters(ch chan string) { ch <- "REUTERS" } // r!

func bloomberg(ch chan string) { ch <- "BLOOMBERG" } // b!

func newsReader(rCh chan string , bCh chan string) {

ch := make(chan string)

go func() { ch <- (<-rCh) }() // r?; ch!

go func() { ch <- (<-bCh) }() // b?; ch!

x := <-ch // ch?

}

func main() {

reutersCh := make(chan string)

bloombergCh := make(chan string)

go reuters(reutersCh)

go bloomberg(bloombergCh)

go newsReader(reutersCh , bloombergCh) // N1

newsReader(reutersCh , bloombergCh) // N2

}

Listing 1.1. Message passing in Go

Trace-Based Run-Time Verification We only consider finite program runs and
therefore each of the news agencies supplies only a finite number of news (exactly
one in our case) and then terminates. During program execution, we trace
communication events, e.g. send and receive, that took place. Due to concurrency,
a bug may not manifest itself because a certain ‘bad’ schedule is rarely taken in
practice.

Here is a possible trace resulting from a ‘good’ program run.

r!; N1.r?; N1.ch!; N1.ch?; b!; N2.b?; N2.ch!; N2.ch?

We write r! to denote that a send event via the Reuters channel took place. As
there are two instances of the newsReader function, we write N1.r? to denote that
a receive event via the local channel took place in case of the first newsReader

call. From the trace we can conclude that the Reuters news was consumed by
the first newsreader and the Bloomberg news by the second newsreader.

Here is a trace resulting from a bad program run.

r!; b!; N1.r?; N1.b?; N1.ch!; N1.ch?; DEADLOCK

The helper thread of the first newsreader receives the Reuters and the Bloomberg
news. However, only one of these messages will actually be read (consumed). This
is the bug! Hence, the second newsreader gets stuck and we encounter a deadlock.
The issue is that such a bad program run may rarely show up. So, the question is
how can we assist the user based on the trace information resulting from a good
program run? How can we infer that alternative schedules and communications
may exist?

84 M. Sulzmann and K. Stadtmüller

Event Order via Vector Clock Method A well-established approach is to derive
a partial order among events. This is usually achieved via a vector of (logical)
clocks. The vector clock method was independently developed by Fidge [1] and
Mattern [8]. For the above good program run, we obtain the following partial
order among events.

r! < N1.r? b! < N2.b?

N1.r? < N1.ch! N2.b? < N2.ch! (1)

N1.ch! < N1.ch? N2.ch! < N2.ch? (2)

For example, (1) arises because N2.ch! happens (sequentially) after N2.b? For
synchronous send/receive, we assume that receive happens after send. See (2).
Based on the partial order, we can conclude that alternative schedules are
possible. For example, b! could take place before r!. However, it is not clear
how to infer alternative communications. Recall that the issue is that one of the
newsreaders may consume both news messages. Our proposed method is able
to clearly identify this issue and has the advantage to require a much simpler
instrumentation We discuss these points shortly. First, we take a closer look at
the details of instrumentation for the vector clock method.

Vector clocks are a refinement of Lamport’s time stamps [7]. Each thread
maintains a vector of (logical) clocks of all participating partner threads. For
each communication step, we advance and synchronize clocks. In pseudo code,
the vector clock instrumentation for event sndR.

vc[reutersThread]++

ch <- ("REUTERS", vc , vcCh)

vc’ := max(vc , <-vcCh)

We assume that vc holds the vector clock. The clock of the Reuters thread is
incremented. Besides the original value, we transmit the sender’s vector clock
and a helper channel vcCh. For convenience, we use tuple notation. The sender’s
vector clock is updated by building the maximum among all entries of its own
vector clock and the vector clock of the receiving party. The same vector clock
update is carried out on the receiver side.

Our Method We propose a much simpler instrumentation and tracing method to
obtain a partial order among events. Instead of a vector clock, each thread traces
the events that might happen and have happened. We refer to them as pre and
post events. In pseudo code, our instrumentation for sndR looks like follows.

pre(hash(ch), "!")

ch <- ("REUTERS", threadId)

post(hash(ch), "!")

The bang symbol (‘!’) indicates a send operation. Function hash builds a hash
index of channel names. The sender transmits its thread id number to the receiver.
This is the only intra-thread overhead. No extra communication link is necessary.

Here are the traces for individual threads resulting from the above good
program run.

Trace-Based Run-Time Analysis 85

R: pre(r!); post(r!)

N1_helper1: pre(r?); post(R#r?); pre(ch1!); post(ch1!)

N1_helper2: pre(b?)

N1: pre(ch1?); post(N1_helper1#ch1?)

B: pre(b!); post(b!)

N2_helper1: pre(r?)

N2_helper2: pre(b?); post(B#b?); pre(ch2!); post(ch2!)

N2: pre(ch2?); post(N2_helper2#ch2?)

We write pre(r!) to indicate that a send via the Reuters channel might happen.
We write post(R#r?) to indicate that a receive has happened via thread R. The
partial order among events is obtained by a simple post-processing phase where
we linearly scan through traces. For example, within a trace there is a strict order
and therefore

N2_helper2: pre(b?); post(B#b?); pre(ch2!); post(ch2!)

implies N2.b? < N2.ch!. Across threads we check for matching pre/post events.
Hence,

R: pre(r!); post(r!)

N1_helper1: pre(r?); post(R#r?); ...

implies r! < N1.r?. So, we obtain the same (partial order) information as the
vector clock approach but with less overhead.

The reduction in terms of tracing overhead compared to the vector clock
method is rather drastic assuming a library-based tracing scheme with no access
to the Go run-time system. For each communication event we must exchange
vector clocks, i.e. n additional (time stamp) values need to be transmitted where
n is the number of threads. Besides extra data to be transmitted, we also require
an extra communication link because the sender requires the receivers vector
clock. In contrast, our method incurs a constant tracing overhead. Each sender
transmits in addition its thread id. No extra communication link is necessary.
This results in much less run-time overhead as we will see later.

The vector clock tracing method can be improved assuming we extend the
Go run-time system. For example, by maintaining a per-thread vector clock and
having the run-time system carrying out the exchange of vector clocks for each
send/receive communication. There is still the O(n) space overhead. Our method
does not require any extension of the Go run-time system to be efficient and
therefore is also applicable to other languages that offer similar features as found
in Go.

A further advantage of our method is that we also trace (via pre) events
that could not commit (post is missing). Thus, we can easily infer alternative
communications. For example, for R: pre(r!); ... there is the alternative
match N2_helper1: pre(r?). Hence, instead of r! < N1.r? also r! < N2.r?

is possible. This indicates that one newsreader may consume both news message.
The vector clock method, only traces events that could commit, post events in
our notation. Hence, the above alternative communication could not be derived.

86 M. Sulzmann and K. Stadtmüller

Contributions Compared to earlier works based on the vector clock method, we
propose a much more light-weight and more informative instrumentation and
tracing scheme. Specifically, we make the following contributions:

– We give a precise account of our run-time tracing method (Section 3) for
message-passing as found in the Go programming language (Section 2) where
for space reasons we only formalize the case of synchronous channels and
selective communications.

– A simple analysis of the resulting traces allows us to detect alternative
schedules and communications (Section 4). For efficiency reasons, we employ a
directed dependency graph to represent happens-before relations (Section 4.1).

– We show that vector clocks can be easily recovered based on our tracing
method (Section 5). We also discuss the pros and cons of both methods for
analysis purposes.

– Our tracing method can be implemented efficiently as a library. We have fully
implemented the approach supporting all Go language features dealing with
message-passing such as buffered channels, select with default or timeout and
closing of channels (Section 6).

– We provide experimental results measuring the often significantly lower
overhead of our method compared to the vector clock method assuming based
methods are implemented as libraries (Section 6.2).

The online version of this paper contains an appendix with further details.1

2 Message-Passing Go

Syntax For brevity, we consider a much simplified fragment of the Go pro-
gramming language. We only cover straight-line code, i.e. omitting procedures,
if-then-else etc. This is not an onerous restriction as we only consider finite
program runs. Hence, any (finite) program run can be represented as a program
consisting of straight-line code only.

Definition 1 (Program Syntax).

x, y, . . . Variables, Channel

i, j, . . . Integers
b ::= x | i | hash(x) | head(b) | last(b) | bs | tid Expressions
bs ::= [] | b : bs
e, f ::= x← b | y :=← x Transmit/Receive
c ::= y := b | y := makeChan | go p | select [ei ⇒ pi]i∈I Commands
p, q, r ::= [] | c : p Program

For our purposes, values are integers or lists (slices in Go terminology). For
lists we follow Haskell style notation and write b : bs to refer to a list with head
element b and tail bs. We can access the head and last element in a list via

1 https://arxiv.org/abs/1709.01588

Names

Trace-Based Run-Time Analysis 87

primitives head and last. We often write [b1, . . . , bn] as a shorthand b1 : · · · : [].
Primitive tid yields the thread id number of the current thread. We assume that
the main thread always has thread id number 1 and new thread id numbers are
generated in increasing order. Primitive hash() yields a unique hash index for
each variable name. Both primitives show up in our instrumentation.

A program is a sequence of commands where commands are stored in a list.
Primitive makeChan creates a new synchronous channel. Primitive go creates
a new go routine (thread). For send and receive over a channel we follow Go
notation. We assume that a receive is always tied to an assignment. For assignment
we use symbol := to avoid confusion with the mathematical equality symbol =.
In Go, symbol := declares a new variable with some initial value. We also use :=
to overwrite the value of existing variables. As a message passing command we
only support selective communication via select. Thus, we can fix the bug in our
newsreader example.

func newsReaderFixed(rCh chan string , bCh chan string) {

ch := make(chan string)

select {

case x := <-rCh:

case x := <-bCh:

}

}

The select statement guarantees that at most one news message will be consumed
and blocks if no news are available. In our simplified language, we assume that
the x← b command is a shorthand for select [x← b⇒ []]. For space reasons, we
omit buffered channels, select paired with a default/timeout case and closing of
channels. All three features are fully supported by our implementation.

Trace-Based Semantics The semantics of programs is defined via a small-step
operational semantics. The semantics keeps track of the trace of channel-based
communications that took place. This allows us to relate the traces obtained by
our instrumentation with the actual run-time traces.

We support multi-threading via a reduction relation

(S, [i1]p1, . . . , in]pn])
T
=⇒ (S′, [j1]q1, . . . , jn]qn]).

We write i]p to denote a program p that runs in its own thread with thread id i.
We use lists to store the set of program threads. The state of program variables,
before and after execution, is recorded in S and S′. We assume that threads
share the same state. Program trace T records the sequence of communications
that took place during execution. We write x! to denote a send operation on
channel x and x? to denote a receiver operation on channel x. The semantics
of expressions is defined in terms a big-step semantics. We employ a reduction
relation (i, S) ` b ⇓ v where S is the current state, b the expression and v the
result of evaluating b. The formal details follow.

88 M. Sulzmann and K. Stadtmüller

Definition 2 (State).

v ::= x | i | [] | vs Values
vs ::= [] | v : vs
s ::= v | Chan Storables
S ::= () | (x 7→ s) | S C S State

A state S is either empty, a mapping, or an override of two states. Each state maps
variables to storables. A storable is either a plain value or a channel. Variable
names may appear as values. In an actual implementation, we would identify the
variable name by a unique hash index. We assume that mappings in the right
operand of the map override operator C take precedence. They overwrite any
mappings in the left operand. That is, (x 7→ v1) C (x 7→ v2) = (x 7→ v2).

Definition 3 (Expression Semantics (i, S) ` b ⇓ v).

S(x) = v

(i, S) ` x ⇓ v
(i, S) ` j ⇓ j (i, S) ` [] ⇓ []

(i, S) ` b ⇓ v (i, S) ` bs ⇓ vs

(i, S) ` b : bs ⇓ v : vs

(i, S) ` b ⇓ v : vs

(i, S) ` head(b) ⇓ v
(i, S) ` b ⇓ [v1, . . . , vn]

(i, S) ` last(b) ⇓ vn
(i, S) ` tid ⇓ i (i, S) ` hash(x) ⇓ x

Definition 4 (Program Execution (S, P)
T
=⇒ (S′, Q)).

i]p Single program thread
P,Q ::= [] | i]p : P Program threads
t := i]x! | i← j]x? Send and receive event
T ::= [] | t : T Trace

We write (S, P) =⇒ (S′, Q) as a shorthand for (S, P)
[]
=⇒ (S′, Q).

Definition 5 (Single Step).

(Terminate) (S, i][] : P) =⇒ (S, P)

(Assign)
(i, S) ` b ⇓ v S′ = S C (y 7→ v)

(S, i](y := b : p) : P) =⇒ (S′, i]p : P)

(MakeChan)
S′ = S C (y 7→ Chan

(S, i](y := makeChan : p) : P) =⇒ (S′, i]p : P)

Trace-Based Run-Time Analysis 89

Definition 6 (Multi-Threading and Synchronous Message-Passing).

(Go)
i 6∈ {i1, . . . , in}

(S, i1](go p : p1) : P) =⇒ (S, i]p : i1]p1 : P)

(Sync)

∃l ∈ J,m ∈ K.el = x← b fm = y :=← x S(x) = Chan

(i1, S) ` b ⇓ v S′ = S C (y 7→ v)

(S, i1](select [ej ⇒ qj]j∈J : p1) : i2](select [fk ⇒ rk]k∈K : p2) : P)
[i1]x!,i2←i1]x?]
==========⇒

(S′, i1](ql ++ p1) : i2](rm ++ p2) : P)

Definition 7 (Scheduling).

(Schedule)
π permutation on {1, . . . , n}

(S, [i1]p1, . . . , in]pn]) =⇒ (S, [π(i1)]pπ(1), . . . , π(in)]pπ(n)])

(Closure)
(S, P)

T
=⇒ (S′, P ′) (S′, P ′)

T ′

=⇒ (S′′, P ′′)

(S, P)
T ++ T ′

=====⇒ (S′′, P ′′)

3 Instrumentation and Run-Time Tracing

For each message passing primitive (send/receive) we log two events. In case
of send, (1) a pre event to indicate the message is about to be sent, and (2) a
post event to indicate the message has been sent. The treatment is analogous
for receive. In our instrumentation, we write x! to denote a single send event
and x? to denote a single receive event. These notations are shorthands and
can be expressed in terms of the language described so far. We use ≡ to define
short-forms and their encodings. We define x! ≡ [hash(x), 1] and x? ≡ [hash(x), 0].
That is, send is represented by the number 1 and receive by the number 0.

As we support non-deterministic selection, we employ a list of pre events
to indicate that one of several events may be chosen For example, pre([x!, y?])
indicates that there is the choice among sending over channel x and receiving over
channel y. This is again a shorthand notation where we assume pre([b1, . . . , bn]) ≡
[0, b1, . . . , bn].

A post event is always singleton as at most one of the possible communications
is chosen. As we also trace communication partners, we assume that the sending
party transmits its identity, the thread id, to the receiving party. We write
post(i]x?) to denote reception via channel x where the sender has thread id i.
In case of a post send event, we simply write post(x!). The above are yet again
shorthands where i]x? ≡ [hash(x), 0, i] and post(b) ≡ [1, b].

Pre and post events are written in a fresh thread local variable, denoted by
xtid where tid refers to the thread’s id number. At the start of the thread the
variable is initialized by xtid := []. Instrumentation ensures that pre and post

90 M. Sulzmann and K. Stadtmüller

events are appropriately logged. As we keep track of communication partners, we
must also inject and project messages with additional information (the sender’s
thread id).

We consider instrumentation of select [x ← 1 ⇒ [], y :=← x ⇒ [z ← y]].
We assume the above program text is part of a thread with id number 1. We
non-deterministically choose between a send an receive operation. In case of
receive, the received value is further transmitted. Instrumentation yields the
following.

[x1 := x1 ++ pre([x!, x?]),
select [x← [tid, 1]⇒ [x1 := x1 ++ post(x!)],

y′ :=← x⇒ [x1 := x1 ++ post(head(y′)]x?), y := last(y′),
z ← [tid, y]]]

We first store the pre events, either a read or send via channel x. The send is
instrumented by additionally transmitting the senders thread id. The post event
for this case simply logs that a send took place. Instrumentation of receive is
slightly more involved. As senders supply their thread id, we introduce a fresh
variable y′. Via head(y′) we extract the senders thread id to properly record
the communication partner in the post event. The actual value transmitted is
accessed via last(y′).

Definition 8 (Instrumentation of Programs). We write instr(p) = q to
denote the instrumentation of program p where q is the result of instrumentation.
Function instr(·) is defined by structural induction on a program. We assume a
similar instrumentation function for commands.

instr([]) = []
instr(c : p) = instr(c) : instr(p)

instr(y := b) = [y := b]
instr(y := makeChan) = [y := makeChan]
instr(go p) = [go ([xtid := [] ++ instr(p)])]
instr(select [ei ⇒ pi]i∈{1,...,n}) = [xtid := xtid ++ [pre([retr(e1), . . . , retr(en)])],

select [instr(ei ⇒ pi)]i∈{1,...,n}]
instr(x← b⇒ p) = x← [tid, b]⇒ (xtid := xtid ++ [post(x!)]) ++ instr(p)
instr(y :=← x⇒ p) = y′ :=← x⇒ [xtid := xtid ++ [post(head(y′)]x?)],

y := last(y′)] ++ instr(p)

retr(x← b) = x! retr(y =← x) = x?

Run-time tracing proceeds as follows. We simply run the instrumented pro-
gram and extract the local traces connected to variables xtid. We assume that
thread id numbers are created during program execution and can be enumerated
by 1 . . . n for some n > 0 where thread id number 1 belongs to the main thread.

Trace-Based Run-Time Analysis 91

Definition 9 (Run-Time Tracing). Let p and q be programs such that instr(p) =

q. We consider a specific instrumented program run where ((), [1][x1 := []] ++ q])
T
=⇒

(S, 1][] : P) for some S, T and P . Then, we refer to T as p’s actual run-time
trace. We refer to the list [1]S(x1), . . . , n]S(xn)] as the local traces obtained via
the instrumentation of p.

Command x1 := [] is added to the instrumented program to initialize the trace
of the main thread. Recall that main has thread id number 1. This extra step
is necessary because our instrumentation only initializes local traces of threads
generated via go. The final configuration (S, 1][] : P) indicates that the main
thread has run to full completion. This is a realistic assumption as we assume
that programs exhibit no obvious bug during execution. There might still be
some pending threads, in case P differs from the empty list.

4 Trace Analysis

We assume that the program has been instrumented and after some program
run we obtain a list of local traces. We show that the actual run-time trace can
be recovered and we are able to point out alternative behaviors that could have
taken place. Alternative behaviors are either due alternative schedules or different
choices among communication partners.

We consider the list of local traces [1]S(x1), . . . , n]S(xn)]. Their shape can
be characterized as follows.

Definition 10 (Local Traces).

U, V ::= [] | i]L : U
L ::= [] | pre(as) : M
as ::= [] | x! : as | x? : as
M ::= [] | post(x!) : L | post(i]x?) : L

We refer to U = [1]L1, . . . , n]Ln] as a residual list of local traces if for each
Li either Li = [] or Li = [pre(. . .)].

To recover the communications that took place we check for matching pre and
post events recorded in the list of local traces. For this purpose, we introduce a

relation U
T
=⇒ V to denote that ‘replaying’ of U leads to V where communications

T took place. Valid replays are defined via the following rules.

92 M. Sulzmann and K. Stadtmüller

Definition 11 (Replay U
T
=⇒ V).

(Sync)

L1 = pre([. . . , x!, . . .]) : post(x!) : L′1
L2 = pre([. . . , x?, . . .]) : post(i1]x?) : L′2

i1]L1 : i2]L2 : U
[i1]x!,i2←i1]x?]
==========⇒ i1]L

′
1 : i2]L

′
2 : U

(Schedule)
π permutation on {1, . . . , n}

[i1]L1, . . . , in]Ln]
[]
=⇒ [iπ(1)]Lπ(1), . . . , iπ(n)]Lπ(n)]

(Closure)
U

T
=⇒ U ′ U ′

T ′

=⇒ U ′′

U
T ++ T ′

=====⇒ U ′′

Rule (Sync) checks for matching communication partners. In each trace, we must
find complementary pre events and the post events must match as well. Recall
that in the instrumentation the sender transmits its thread id to the receiver.
Rule (Schedule) shuffles the local traces as rule (Sync) only considers the two
leading local traces. Via rule (Closure) we perform repeated replay steps.

We can state that the actual run-time trace can be obtained via the replay

relation U
T
=⇒ V but further run-time traces are possible. This is due to alternative

schedules.

Proposition 1 (Replay Yields Run-Time Traces). Let p be a program and q
its instrumentation where for a specific program run we observe the actual behavior

T and the list [1]L1, . . . , n]Ln] of local traces. Let T = {T ′ | [1]L1, . . . , n]Ln]
T ′

=⇒
1][] : U for some residual U}. Then, we find that T ∈ T and for each T ′ ∈ T we

have that ((), p)
T ′

=⇒ (S, 1][] : P) for some S and P .

Definition 12 (Alternative Schedules). We say [1]L1, . . . , n]Ln] contains

alternative schedules iff the cardinality of the set {T ′ | [1]L1, . . . , n]Ln]
T ′

=⇒ 1][] :
U for some residual U} is greater than one.

We can also check if even further run-time traces might have been possible
by testing for alternative communications.

Definition 13 (Alternative Communications). We say [1]L1, . . . , n]Ln] con-
tains alternative matches iff for some i, j, x, L, L′ we have that (1) Li = pre([. . . , x!, . . .]) :
L, (2) Lj = pre([. . . , x?, . . .]) : L′, and (3) if L = post(x!) : L′′ for some L′′ then
L′ 6= post(j]x?) : L′′′ for any L′′′.

We say U = [1]L1, . . . , n]Ln] contains alternative communications iff U

contains alternative matches or there exists T and V such that U
T
=⇒ V and V

contains alternative matches.

The alternative match condition states that a sender could synchronize with
a receiver (see (1) and (2)) but this synchronization did not take place (see (3)).
For an alternative match to result in an alternative communication, the match
must be along a possible run-time trace.

Trace-Based Run-Time Analysis 93

[x := makeChan, y := makeChan,
go [z := (← y)6], go [(y ← 1)4, (x← 1)5], go [(x← 1)3],
x := (← x)1, x := (← x)2]

[4][pre((y?)6), post(3](y?)6)],
3][pre((y!)4), post((y!)4), pre((x!)5), post((x!)5)],
2][pre((x!)3), post((x!)3)],
1][pre((x?)1), post(2](x?)1), pre((x?)2), post(4](x?)3)]]

x!|3 x?|1

x?|2

x!|5

y!|4

y?|6

Fig. 1: Dependency Graph among Events

4.1 Dependency Graph for Efficient Trace Analysis

Instead of replaying traces to check for alternative schedules and communications,
we build a dependency graph where the graph captures the partial order among
events. It is much more efficient to carry out the analysis on the graph than
replaying traces. Figure 1 shows a simple example.

We find a program that makes use of two channels and four threads. For
reference, send/receive events are annotated (as subscript) with unique numbers.
We omit the details of instrumentation and assume that for a specific program
run we find the list of given traces on the left. Pre events consist of singleton lists
as there is no select. Hence, we write pre((y?)6) as a shorthand for pre([(y?)6]).
Replay of the trace shows that the following locations synchronize with each other:
(4, 6), (3, 1) and (5, 2). This information as well as the order among events can be
captured by a dependency graph. Nodes are obtained by a linear scan through
the list of traces. To derive edges, we require another scan for each element in a
trace as we need to find pre/post pairs belonging to matching synchronizations.
This results overall in O(m ∗m) for the construction of the graph where m is the
number of elements found in each trace. To avoid special treatment of dangling
pre events (with not subsequent post event), we assume that some dummy post
events are added to the trace.

Definition 14 (Construction of Dependency Graph). Each node corre-
sponds to a send or a receive operation in the program text. Edges are constructed
by observing events recorded in the list of traces. We draw a (directed) edge among
nodes if either

– the pre and post events of one node precede the pre and post events of another
node in the trace, or

– the pre and post events belonging to both nodes can be synchronized. See rule
(Sync) in Definition 11. We assume that the edge starts from the node with
the send operation.

Applied to our example, this results in the graph on the right. See Figure 1.
For example, x!|3 denotes a send communication over channel x at program

94 M. Sulzmann and K. Stadtmüller

location 3. As send precedes receive we find an edge from x!|3 to x?|1. In general,
there may be several initial nodes. By construction, each node has at most one
outgoing edge but may have multiple incoming edges.

The trace analysis can be carried out directly on the dependency graph. To
check if one event happens-before another event we seek for a path from one
event to the other. This can be done via a depth-first search and takes time
O(v + e) where v is the number of nodes and e the number of edges. Two events
are concurrent if neither happens-before the other. To check for alternative
communications, we check for matching nodes that are concurrent to each other.
By matching we mean that one of the nodes is a send and the other is a receive
over the same channel. For our example, we find that x!|5 and x?|1 represents an
alternative communication as both nodes are matching and concurrent to each
other.

To derive (all) alternative schedules, we perform a backward traversal of the
graph. Backward in the sense that we traverse the graph by moving from children
to parent node. We start with some final node (no outgoing edge). Each node
visited is marked. We proceed to the parent if all children are marked. Thus,
we guarantee that the happens-before relation is respected. For our example,
suppose we visit first y?6. We cannot visit its parent y!4 until we have visited x?2
and x!5. Via a (backward) breadth-first search we can ‘accumulate’ all schedules.

5 Comparison to Vector Clock Method

Via a simple adaptation of the Replay Definition 11 we can attach vector clocks
to each send and receive event. Hence, our tracing method strictly subsumes the
vector clock method as we are also able to trace events that could not commit.

Definition 15 (Vector Clock).

cs ::= [] | n : cs

For convenience, we represent a vector clock as a list of clocks where the first
position belongs to thread 1 etc. We write cs[i] to retrieve the i-th component
in cs. We write inc(i, cs) to denote the vector clock obtained from cs where all
elements are the same but at index i the element is incremented by one. We write
max(cs1, cs2) to denote the vector clock where we per-index take the greater
element. We write ics to denote thread i with vector clock cs. We write i]x!cs to
denote a send over channel x in thread i with vector clock cs. We write i← j]x?cs

to denote a receive over channel x in thread i from thread j with vector clock cs.

Definition 16 (From Trace Replay to Vector Clocks).

(Sync)

L1 = pre([. . . , x!, . . .]) : post(x!) : L′1
L2 = pre([. . . , x?, . . .]) : post(i1]x?) : L′2

cs = max(inc(i1, cs1), inc(i2, cs2))

ics11]L1 : ics22]L2 : U
[i1]x!

cs,i2←i1]x?cs]
=============⇒ ics1]L

′
1 : ics2]L

′
2 : U

Trace-Based Run-Time Analysis 95

Like the construction of the dependency graph, the (re)construction of vector
clocks takes time O(m ∗m) where m is the number of elements found in each
trace.

To check for an alternative communication, the vector clock method seeks for
matching events. This incurs the same (quadratic in the size of the trace) cost
as for our method. However, the check that these two events are concurrent to
each other can be performed more efficiently via vector clocks. Comparison of
vector clocks takes time O(n) where n is the number of threads. Recall that our
graph-based method requires time O(v + e) where v is the number of nodes and
e the number of edges. The number n is smaller than v + e.

However, our dependency graph representation is more efficient in case of
exploring alternative schedules. In case of the vector clock method, we need to
continuously compare vector clocks whereas we only require a (backward) traversal
of the graph. We believe that the dependency graph has further advantages in
case of user interaction and visualization as it is more intuitive to navigate
through the graph. This is something we intend to investigate in future work.

6 Implementation

We have fully integrated the approach laid out in the earlier sections into the Go
programming language and have built a prototype tool. We give an overview of
our implementation which can be found here [5]. A detailed treatment of all of
Go’s message-passing features can be found in the extended version of this paper.

6.1 Library-Based Instrumentation and Tracing

We use a pre-processor to carry out the instrumentation as described in Section 3.
In our implementation, each thread maintains an entry in a lock-free hashmap
where each entry represents a thread (trace). The hashmap is written to file
either at the end of the program or when a deadlock occurs. We currently do
not deal with the case that the program crashes as we focus on the detection of
potential bugs in programs that do not show any abnormal behavior.

6.2 Measurement of Run-Time Overhead Library-Based Tracing

We measure the run-time overhead of our method against the vector clock method.
Both methods are implemented as libraries assuming no access to the Go run-time
system. For experimentation we use three programs where each program exercises
some of the factors that have an impact on tracing. For example, dynamic versus
static number of threads and channels. Low versus high amount of communication
among threads.

The Add-Pipe (AP) example uses n threads where the first n− 1 threads
receive on an input channel, add one to the received value and then send the
new value on their output channel to the next thread. The first thread sends the
initial value and receives the result from the last thread.

96 M. Sulzmann and K. Stadtmüller

3ms

243msPS100

476ms

8ms

1475msPS250

6229ms

3ms

44msC1000

1191ms

0ms 7500ms

6ms

107msC2000

5901ms

7ms

910msAP21

909ms

17ms

2141msAP51

3825ms

Default

Pre-Post

VC

0ms 7500ms

Fig. 2: Performance overhead using Pre/Post vs Vector clocks(VC) in ms.

In the Primesieve (PS) example, the communication among threads is
similar to the Add-Pipe example. The difference is that threads and channels
are dynamically generated to calculate the first n prime numbers. For each found
prime number a ‘filter’ thread is created. Each thread has an input channel to
receive new possible prime numbers v and an output channel to report each
number for which v mod prime 6= 0 where prime is the prime number associated
with this filter thread. The filter threads are run in a chain where the first thread
stores the prime number 2.

The Collector (C) example creates n threads that produce a number which
is then sent to the main thread for collection. This example has much fewer
communications compared to the other examples but uses a high number of
threads.

Figure 2 summarizes our results. Results are carried out on some commodity
hardware (Intel i7-6600U with 12 GB RAM, a SSD and Go 1.8.3 running on
Windows 10 was used for the tests). Our results show that a library-based
implementation of the vector clock method does not scale well for examples
with a dynamic number of threads and/or a high amount communication among
threads. See examples Primesieve and Add-Pipe. None of the vector clock
optimizations [3] apply here because of the dynamic number of threads and
channels. Our method performs much better. This is no surprise as we require
less (tracing) data and no extra communication links. We believe that the overhead
can still be further reduced as access to the thread id in Go is currently rather
cumbersome and expensive.

7 Conclusion

One of the challenges of run-time verification in the concurrent setting is to
establish a partial order among recorded events. Thus, we can identify potential
bugs due to bad schedules that are possible but did not take place in some specific
program run. Vector clocks are the predominant method to achieve this task.
For example, see work by Vo [11] in the MPI setting and work by Tasharofi [10]
in the actor setting. There are several works that employ vector clocks in the

Trace-Based Run-Time Analysis 97

shared memory setting For example, see Pozniansky’s and Schuster’s work [9] on
data race detection. Some follow-up work by Flanagan and Freund [2] employs
some optimizations to reduce the tracing overhead by recording only a single
clock instead of the entire vector. We leave to future work to investigate whether
such optimizations are applicable in the message-passing setting and how they
compare to existing optimizations such as [3].

We have introduced a novel tracing method that has much less overhead
compared to the vector clock method. Our method can deal with all of Go’s
message-passing language features and can be implemented efficiently as a library.
We have built a prototype that can automatically identify alternative schedules
and communications. In future work we plan to conduct some case studies and
integrate heuristics for specific scenarios, e.g. reporting a send operation on a
closed channel etc.

Acknowledgments

We thank some HVC’17 reviewers for their constructive feedback on an earlier
version of this paper.

References

1. C. J. Fidge. Timestamps in message-passing systems that preserve the partial
ordering. 10(1):56–66, 1987.

2. C. Flanagan and S. N. Freund. Fasttrack: Efficient and precise dynamic race
detection. In Proc. of PLDI ’09, pages 121–133. ACM, 2009.

3. V. K. Garg, C. Skawratananond, and N. Mittal. Timestamping messages and events
in a distributed system using synchronous communication. Distributed Computing,
19(5-6):387–402, 2007.

4. The Go programming language. https://golang.org/.
5. Trace-based run-time analysis of message-passing Go programs.

https://github.com/KaiSta/gopherlyzer-GoScout.
6. C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–

677, Aug. 1978.
7. L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558–565, 1978.
8. F. Mattern. Virtual time and global states of distributed systems. In Parallel and

Distributed Algorithms, pages 215–226. North-Holland, 1989.
9. E. Pozniansky and A. Schuster. Multirace: efficient on-the-fly data race detection

in multithreaded C++ programs. Concurrency and Computation: Practice and
Experience, 19(3):327–340, 2007.

10. S. Tasharofi. Efficient testing of actor programs with non-deterministic behaviors.
PhD thesis, University of Illinois at Urbana-Champaign, 2013.

11. A. Vo. Scalable Formal Dynamic Verification of Mpi Programs Through Distributed
Causality Tracking. PhD thesis, University of Utah, 2011. AAI3454168.

98 M. Sulzmann and K. Stadtmüller

Software Verification: Testing vs. Model Checking
A Comparative Evaluation of the State of the Art

Dirk Beyer and Thomas Lemberger

LMU Munich, Germany

Abstract. In practice, software testing has been the established method
for finding bugs in programs for a long time. But in the last 15 years,
software model checking has received a lot of attention, and many suc-
cessful tools for software model checking exist today. We believe it is
time for a careful comparative evaluation of automatic software test-
ing against automatic software model checking. We chose six existing
tools for automatic test-case generation, namely AFL-fuzz, CPATiger,
Crest-ppc, FShell, Klee, and PRtest, and four tools for software model
checking, namely Cbmc, CPA-Seq, Esbmc-incr, and Esbmc-kInd, for the task
of finding specification violations in a large benchmark suite consisting
of 5 693 C programs. In order to perform such an evaluation, we have
implemented a framework for test-based falsification (TBF) that executes
and validates test cases produced by test-case generation tools in order
to find errors in programs. The conclusion of our experiments is that
software model checkers can (i) find a substantially larger number of bugs
(ii) in less time, and (iii) require less adjustment to the input programs.

1 Introduction
Software testing has been the standard technique for identifying software bugs
for decades. The exhaustive and sound alternative, software model checking,
is believed to be immature for practice. Some often-named disadvantages are
the need for experts in formal verification, extreme resource consumption, and
maturity issues when it comes to handling large software systems.

But are these concerns still true today? We claim that the answer is No,
and show with experiments on a large benchmark of C programs that software
model checkers even find more bugs than testers. We found it is time for a
comparative evaluation of testing tools against model-checking tools, motivated
by the success of software model checkers as demonstrated in the annual In-
ternational Competition on Software Verification (SV-COMP) [4], and by the
move of development groups of large software systems towards formal verification,
such as Facebook 1, Microsoft [2, 44], and Linux [38].

Our contribution is a thorough experimental comparison of software testers
against software model checkers. We performed our experimental study on
5 693 programs from a widely-used and state-of-the-art benchmarking set.2 To
represent the state of the art in terms of tools, we use AFL-fuzz, CPATiger,
1 http://fbinfer.com/ 2 https://github.com/sosy-lab/sv-benchmarks

© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 99–114, 2017.
https://doi.org/10.1007/978-3-319-70389-3_7

Crest-ppc, FShell, Klee, and PRtest as software testers, and Cbmc, CPA-Seq,
Esbmc-incr, and Esbmc-kInd as software model checkers.3 The goal in our study
is to evaluate the ability to reliably find specification violations in software. While
the technique of model checking was originally developed as a proof technique
for showing formal correctness, rather than for efficiently finding bugs, this study
evaluates all tools exclusively against the goal of finding bugs.

To make the test generators comparable, we developed a unifying framework
for test-based falsification (TBF) that interfaces between input programs, test
generators, and test cases. For each tester, the infrastructure needs to (a) prepare
the input program source code to match the input format that the tester expects
and can consume, (b) run the tester to generate test cases, (c) extract test vectors
from the tester’s proprietary format for the produced test cases, and (d) execute
the tests using a test harness to validate whether the generated test cases cover
the bug in the program under test (i.e., whether at least one test case exposes
the bug). If a bug is found, the framework outputs a witnessing test case in two
different, human- and machine-readable formats: (1) a compilable test harness
that can be used to directly provoke the bug in the program through execution
and (2) a violation witness in a common exchange format for witnesses [7], which
can be given to a witness validator to check the specification violation formally
or by execution. This allows us to use input programs, produce executable
tests, and check program behavior independently from a specific tester’s quirks
and requirements. We make the following contributions:

• Our framework, TBF, makes AFL-fuzz, CPATiger, Crest-ppc, FShell,
Klee, and PRtest applicable to a large benchmark set of C programs, without
any manual pre-processing. It is easily possible to integrate new tools. TBF
is available online and completely open-source.4
• TBF provides two different, human-readable output formats for test cases

generated by AFL-fuzz, CPATiger, Crest-ppc, FShell, Klee, and PRtest,
and can validate whether a test case describes a specification violation
for a program under test. Previously, there was no way to automatically
generate test cases with any of the existing tools that are (i) executable and
(ii) available in an exchangeable format. This helps in understanding test
cases and supports debugging.
• We perform the first comparison regarding bug finding of test-case gener-
ation tools and software model checkers at a large scale. The experiments
give the interesting insight that software model checkers can identify more
program bugs than the existing test-case generators, using less time. All our
experimental data and results are available on a supplementary web page.5

3 The choice of using C programs is justified by the fact that C is still the most-used
language for safety-critical software. Thus, one can assume that this is reflected in the
research community and that the best test-generation and model checking technology
is implemented in tools for C. The choice of the particular repository is justified by the
fact that this is the largest and most diverse open benchmark suite (cf. SV-COMP [4]).

4 https://github.com/sosy-lab/tbf 5 https://www.sosy-lab.org/research/test-study/

100 D. Beyer and T. Lemberger

Related Work. A large-scale comparative evaluation of the bug-finding capabil-
ities of software testers and software model checkers is missing in the literature
and this work is a first contribution towards filling this gap. In the area of
software model checking, SV-COMP serves as a yearly comparative evaluation
of a large set of model checkers for C programs and the competition report
provides an overview over tools and techniques [4]. A general survey over tech-
niques for software model checking is available [37]. In the area of software
testing, there is work comparing test-case generators [28]. Surveys provide an
overview of different test techniques [1] and a detailed web site is available
that provides an overview over tools and techniques 6.

2 Background: Technology and Tools
In this paper, we consider only fully automatic techniques for testing and model
checking of whole programs. This means that (i) a verification task consists of a
program (with function main as entry) and a specification (reduced to reacha-
bility of function __VERIFIER_error by instrumentation), (ii) the comparison
excludes all approaches for partial verification, such as unit testing and pro-
cedure summarization, and (iii) the comparison excludes all approaches that
require interaction as often needed for deductive verification.

2.1 Software Testing

Given a software system and a specification of that system, testing executes the
system with different input values and observes whether the intended behavior is
exhibited (i.e., the specification holds). A test vector 〈η1, · · · , ηn〉 is a sequence of
n input values η1 to ηn. A test case is described by a test vector, where the i-th
input of the test case is given by the i-th value ηi of the test vector. A test suite
is a set of test cases. A test harness is a software that supports the automatic
execution of a test case for the program under test, i.e., it feeds the values from
the test vector one by one as input to the program. Test-case generation produces
a set of test vectors that fulfills a specific coverage criterion. Program-branch
coverage is an example of a well-established coverage criterion.

There are three major approaches to software test-case generation: symbolic or
concolic execution [18, 19, 29, 39, 45, 46], random fuzz testing [30, 36], and model
checking [5, 10, 35]. In this work, we use one tester based on symbolic execution
(Klee), one based on concolic execution (Crest-ppc), one based on random
generation (PRtest), one based on random fuzzing (AFL-fuzz), and two based
on model-checking (CPATiger and FShell), which we describe in the following
in alphabetic order. Table 1 gives an overview over testers and model checkers.
AFL-fuzz [17] is a coverage-based greybox fuzzer. Given a set of start inputs,
it performs different mutations (e.g., bit flips, simple arithmetics) on the existing
inputs, executes these newly created inputs, and checks which parts of the
program are explored. Depending on these, it decides which inputs to keep, and
which to use for further mutations. Output: AFL-fuzz outputs each generated
6 Provided by Z. Micskei: http://mit.bme.hu/∼micskeiz/pages/code_based_test_generation.html

Software Verification: Testing vs. Model Checking 101

Table 1: Overview of test generators and model checkers used in the comparison
Tool Ref. Version Technique

AFL-fuzz [17] 2.46b Greybox fuzzing
Crest-ppc [39] f542298d Concolic execution, search-based
CPATiger [10] r24658 Model checking-based testing, based on CPAchecker

FShell [35] 1.7 Model checking-based testing, based on Cbmc

Klee [19] c08cb14c Symbolic execution, search-based
PRtest 0.1 Random testing

Cbmc [40] sv-comp17 Bounded model checking
CPA-Seq [25] sv-comp17 Explicit-state, predicate abstraction, k-Induction
Esbmc-incr [43] sv-comp17 Bounded model checking, incremental loop bound
Esbmc-kInd [27] sv-comp17 Bounded model checking, k-Induction

test case in its own file. The file’s binary representation is read ‘as is’ as input,
so generated test cases do not have a specific format.
CPATiger [10] uses model checking, more specifically, predicate abstrac-
tion [12], for test case generation. Is is based on the software-verification tool
CPAchecker [11] and uses the FShell query language (FQL) [35] for speci-
fication of coverage criteria. If CPATiger finds a feasible program path to a
coverage criterion with predicate abstraction, it computes test inputs from the
corresponding predicates used along that path. It is designed to create test
vectors for complicated coverage criteria. Output: CPATiger outputs gener-
ated test cases in a single text file, providing the test input as test vectors
in decimal notation together with additional information.
Crest [18] uses concolic execution for test-case generation. It is search-based,
i.e., it chooses test inputs that reach yet uncovered parts of the program fur-
thest from the already explored paths. Crest-ppc [39] improves on the con-
colic execution used in Crest by modifying the input generation method to
query the constraint solver more often, but using only a small set of con-
straints for each query. We performed experiments to ensure that Crest-ppc
outperforms Crest. The results are available on our supplementary web page.
Output: Crest-ppc outputs each generated test case in a text file, listing the
sequence of used input values in decimal notation.
FShell [35] is another model-checking-based test-case generator. It uses
CBMC (described in Sect. 2.2) for state-space exploration and also uses FQL
for specification of coverage criteria. Output: FShell outputs generated test
cases in a single text file, listing input values of tests together with additional
information. Input values of tests are represented in decimal notation.
Klee [19] uses symbolic execution for test-case generation. After each step in a
program, Klee chooses which of the existing program paths to continue on next,
based on different heuristics, including a search-based one and one preventing
inefficient unrolling of loops. Since Klee uses symbolic execution, it can explore
the full state space of a program and can be used for software verification, not
just test-case generation. As we are interested in exploring the capabilities of

102 D. Beyer and T. Lemberger

testing, we only consider the test cases produced by Klee. Output: Klee outputs
each generated test case in a binary format that can be read with Klee. The
input values of tests are represented by their bit width and bit representation.
PRtest is a simple tool for plain random testing. The tool is delivered to-
gether with TBF and serves as base line in our experiments. Output: PRtest
outputs each generated test case in a text file, listing the sequence of used
input values in hexadecimal notation.

2.2 Software Model Checking
Software model checking tries to prove a program correct or find a property
violation in a program, by exploring the full state space and checking whether
any of the feasible program states violate the specification. A lot of different
techniques exist to do this. Since the number of concrete states of a program can
be, in general, infinite, a common principle is abstraction. A good abstraction is,
on the one hand, as coarse as possible —to keep the state space that must be
explored small— and, on the other hand, precise enough to eliminate false alarms.

Tools for software model checking combine many different techniques, for
example, counterexample-guided abstraction refinement (CEGAR) [21], predicate
abstraction [31], bounded model checking (BMC) [16, 22], lazy abstraction [9, 34],
k-induction [8, 27], and interpolation [23, 42]. A listing of the widely-used tech-
niques, and which tools implement which technique, is given in the SV-COMP’17
report [4] in Table 4. In this work, we use a general-purpose bounded model
checker (Cbmc), a sequential combination of approaches (CPA-Seq), a bounded
model checker with incrementally increasing bounds (Esbmc-incr), and a k-
induction based model checker (Esbmc-kInd).
Cbmc [22, 40] uses bit-precise BMC with MiniSat [26] as SAT-solver backend.
BMC performs model checking with limited loop unrolling, i.e., loops are only
unrolled up to a given bound. If no property violation can be found in the explored
state space under this restriction, the program is assumed to be safe in general.
CPA-Seq [25] is based on CPAchecker that combines explicit-state model check-
ing [13], k-induction [8], and predicate analysis with adjustable-block abstrac-
tion [12] sequentially. CPA-Seq uses the bit-precise SMT solver MathSAT5 [20].
Esbmc-incr [43] is a fork of Cbmc with an improved memory model. It uses an
iterative scheme to increase its loop bounds, i.e., if no error is found in a program
analysis using a certain loop bound, then the bound is increased. If no error is
found after a set number of iterations, the program is assumed to be safe.
Esbmc-kInd [27] uses automatic k-induction to compute loop invariants in
the context-bounded model checking of Esbmc. It performs the three phases of
k-induction in parallel, which often yields a performance advantage.

2.3 Validation of Results
It is well-understood that when testers and model checkers produce test cases
and error paths, respectively, sometimes the results contain false alarms. In order
to avoid investing time on false results, test cases can be validated by reproducing
a real crash [24, 41] and error paths can be evaluated by witness validation [7, 15].
A violation witness is an automaton that describes a set of paths through the

Software Verification: Testing vs. Model Checking 103

Result

if verdict false

Input
Program

Pre-
processor

Prepared
Program

Test-Case
Generator

Test
Cases

Test-Vector
Extractor

Test
Vectors

Witness
Generator

Harness
Generator Harness

Test
Executor

Verdict Witness

Fig. 1: Workflow of TBF

program that contain a specification violation. Each state transition contains a
source-code guard that specifies the program-code locations at which the transition
is allowed, and a state-space guard that constrains the set of possible program
states after the transition. We considered four existing witness validators.
CPAchecker [7] uses predicate analysis with adjustable-block abstraction
combined with explicit-state model checking for witness validation.
CPA-witness2test7 creates a compilable test harness from a violation witness
and checks whether the specification violation is reached through execution.
FShell-witness2test8 also performs execution-based witness validation, but
does not rely on any verification tool.
Ultimate Automizer [32] uses an automata-centric approach [33] to model
checking for witness validation.

In this work, we evaluate the results from testers with TBF by considering
for each test case, one by one, whether compiled with a test harness and the
program, the execution violates the specification, and we evaluate the results of
model checkers by validating the violation witness using four different witness
validators. This way, we count bug reports only if they can be reproduced.

3 Framework for Test-Based Falsification
We designed a framework for test-based falsification (TBF) that makes it possible
to uniformly use test-case generation tools. Figure 1 shows the architecture of
this approach. Given an input program, TBF first pre-processes the program
into the format that the test-case generator requires (‘prepared program’). This
includes, e.g., adding function definitions for assigning new symbolic values
and compiling the program in a certain way expected by the generator. The
prepared program is then given to the test-case generator, which stores its
output in its own, proprietary format (‘test cases’). These test cases are given
to a test-vector extractor to extract the test vectors and store them in an
exchangeable, uniform format (‘test vectors’). The harness generator produces a
test harness for the input program, which is compiled and linked together with
the input program and executed by the test executor. If the execution reports
a specification violation, the verdict is false. In all other cases, the verdict
7 https://github.com/sosy-lab/cpachecker
8 https://github.com/tautschnig/cprover-sv-comp/tree/test-gen/witness2test

104 D. Beyer and T. Lemberger

int nondet_int ();
short nondet_short ();
void __VERIFIER_error ();

int main() {
int x = nondet_int ();
int y = x;

if (nondet_short ()) {
x++;

} else {
y++;

}

if (x > y) {
__VERIFIER_error ();

}
}

Fig. 2: An example C program
int nondet_int (){

int __sym;
CREST_int(__sym);
return __sym;

}

Fig. 3: A function definition
prepared for Crest-ppc

void __VERIFIER_error () {
fprintf(stderr , "__TBF_error_found .\n");
exit (1);

}

int nondet_int () {
unsigned int inp_size = 3000;
char * inp_var = malloc(inp_size);
fgets(inp_var , inp_size , stdin);
return *((int *) parse_inp(inp_var));

}

short nondet_short () {
unsigned int inp_size = 3000;
char * inp_var = malloc(inp_size);
fgets(inp_var , inp_size , stdin);
return *((short *) parse_inp(inp_var));

}

Fig. 4: Excerpt of a test harness; test vec-
tors are passed by standard input (fgets,
parse_inp)

is unknown. If the verdict of a program is false, TBF produces a self-contained,
compilable test harness and a violation witness to the user.
Input Program. TBF is designed to evaluate test-case generation tools
and supports the specification encoding that is used by SV-COMP. In this
work, all programs are C programs and have the same specification: “Func-
tion __VERIFIER_error is never called.”
Pre-processor. TBF has to adjust the input programs for the respective test-
case generator that is used. Each test-case generator uses certain techniques
to mark input values. We assume that, except for special functions that are
defined by the rules for the repository9, all undefined functions in the program
are free of side effects and return non-deterministic values of their corresponding
return type. For each undefined function, we append a definition to the program
under test to inject a new input value whenever the specific function is called.
The meaning of the special functions defined by the repository rules are also
represented in the code. Figure 2 shows a program with undefined functions
nondet_int and nondet_short. As an example, Fig. 3 shows the definition of
nondet_int that tells Crest-ppc to use a new (symbolic) input value. We display
the full code of pre-processed example programs for all considered tools on
our supplementary web page. After pre-processing, we compile the program
as expected by the test-case generator, if necessary.
Test-Vector Extractor. Each tool produces test cases as output as described
in Sect. 2.1. For normalization, TBF extracts test vectors from the generated
test cases in an exchangeable format. We do not wait until the test generator is
finished, but extract a test vector whenever a new test case is written, in parallel.
9 https://sv-comp.sosy-lab.org/2017/rules.php

Software Verification: Testing vs. Model Checking 105

α0 α1 α2

αs

αe

nondet_int()

\return == 43

nondet_short()

\return == 43

nondet_int()

\return == 1

nondet_short()

\return == 1

__VERIFIER_error()

true

nondet_int()
true

nondet_short()
true

Fig. 5: Violation witness for test vector 〈43, 1〉 and two non-deterministic methods

Harness Generator and Test Executor. We provide an effective and efficient
way of checking whether a generated test vector represents a property violation:
We create a test harness for the program under test that can feed an input value
into the program for each call to a non-deterministic function. For performance
reasons, it gets these input values from standard input. For each test vector
extracted from the produced test cases, we execute the pre-compiled test harness
with the vector as input and check whether a property violation occurs during
execution. An example harness is shown in Fig. 4.
Witness Generation. A test vector 〈η1, · · · , ηn〉 can be represented by a vi-
olation witness that contains one initial state α0, one accepting state αe, one
sink sate αs, and, for each value ηi of the test vector, a state αi with, for each
non-deterministic function occurring in the program, a transition from αi−1 to αi

with the call to the corresponding function as source-code guard and ηi as return
value for the corresponding function as state-space guard, i.e.: the transition can
only be taken if the corresponding function is called, and, if the transition is
taken, it is assumed that the return value of the corresponding function is ηi.
From αn, there is one transition to αe for each occurring call to __VERIFIER_error,
and one transition to αs for each non-deterministic function in the program.
Each such transition has the corresponding function call as source-code guard
and no state-space guard. The transitions to sink state αs make sure that no
path is considered that may need an additional input value. While such a path
may exist in the program, it can not be the path described by the test vector.
Fig. 5 shows an example of such a witness. Each transition between states is
labeled with the source-code guard (no box) and the state-space guard (boxed).
The value ‘true’ means that no state-space guard exists for that transition.

When validating the displayed violation witness, a validator explores the
state-space until it encounters a call to nondet_int or nondet_short. Then, it
is told to assume that the encountered function returns the concrete value 43,
described by the special identifier \return. When it encounters one of the two
functions for the second time, it is told to assume that the corresponding function
returns the concrete value 1. After this, if it encounters a call to __VERIFIER_error,
it confirms the violation witness. If it encounters a call to one of the two non-
deterministic functions for the third time, it enters the sink state αs, since our
witnessed counterexample only contains two calls to non-deterministic functions.

106 D. Beyer and T. Lemberger

4 Experimental Evaluation
We compare automatic test generators against automatic software model checkers
regarding bug finding abilities in a large-scale experimental evaluation.

4.1 Experiment Setup

Programs under Test. To get a representative set of programs under test, we
used all 5 693 verification tasks of the sv-benchmarks set10 in revision 879e141f11

whose specification is that function __VERIFIER_error is not called. Of the
5 693 programs, 1 490 programs contain a known bug (at most one bug per
program), i.e., there is a path through the program that ends in a call to
__VERIFIER_error, and 4 203 programs are correct. The benchmark set is par-
titioned into categories. A description of the kinds of programs in the cate-
gories of an earlier version of the repository can be found in the literature
(cf. [3], Sect. 4). For each category (e.g., ‘Arrays’), the defining set of contained
programs (.set file 12), and a short characterization and the bit architecture of
the contained programs (.cfg file 13) can be found in the repository itself.
Availability. More details about the programs under test, generated test
cases, generated witnesses, and other experimental data are available on
the supplementary web page.14

Tools. We used the test generators and model checkers in the versions specified
in Table 1. TBF15 is implemented in Python 3.5.2 and available as open-source;
we use TBF in version 0.1. For Crest-ppc, we use a modified revision that
supports long data types. For readability, we add superscripts t and m to the
tool names for better visual identification of the testers and model checkers,
respectively. We selected six testing tools that (i) support the language C, (ii) are
freely available, (iii) cover a spectrum of different technologies, (iv) are available
for 64-bit GNU/Linux, and (v) generate test cases for branch coverage or similar:
AFL-fuzz, CPATiger, Crest-ppc, FShell, Klee, and PRtest. For the model
checkers, we use the four most successful model checkers in category ‘Falsification’
of SV-COMP’17 16, i.e., Cbmc, CPA-Seq, Esbmc-incr, and Esbmc-kInd. To
validate the results of violation witnesses, we use CPAchecker and Ultimate
Automizer in the revision from SV-COMP’17, CPA-witness2test in revision
r24473 of the CPAchecker repository, and FShell-witness2test in revision
2a76669f from branch test-gen in the Cprover repository17.
Computing Resources. We performed all experiments on machines with an
Intel Xeon E3-1230 v5 CPU, with 8 processing units each, a frequency of 3.4GHz,
33GB of memory, and a Ubuntu 16.04 operating system with kernel Linux 4.4.
10 https://sv-comp.sosy-lab.org/2017/benchmarks.php
11 https://github.com/sosy-lab/sv-benchmarks/tree/879e141f
12 https://github.com/sosy-lab/sv-benchmarks/blob/879e141f/c/ReachSafety-Arrays.set
13 https://github.com/sosy-lab/sv-benchmarks/blob/879e141f/c/ReachSafety-Arrays.cfg
14 https://www.sosy-lab.org/research/test-study/ 15 https://github.com/sosy-lab/tbf
16 https://sv-comp.sosy-lab.org/2017/results/
17 https://github.com/tautschnig/cprover-sv-comp

Software Verification: Testing vs. Model Checking 107

 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000 1200 1400

C
P
U

tim

e

(s
)

n-th fastest correct result

AFL-fuzz
T

CPATiger
T

Crest
T

FShell
T

KLEE
T

PRTest
T

CBMC
M

CPA-seq
M

ESBMC-incr
M

ESBMC-kInd
M

Fig. 6: Quantile plots for the different tools for finding bugs in programs

We limited each benchmark run to 2 processing units, 15GB of memory, and
15min of CPU time. All CPU times are reported with two significant digits.

4.2 Experimental Results
Now we report the results of our experimental study. For each of the 1 490 pro-
grams that contain a known bug, we applied all testers and model checkers in
order to find the bug. For the testers, a bug is found if one of the generated
test cases executes the undesired function call. For the model checkers, a bug is
found if the tools returns answer false together with a violation witness.
Qualitative Overview. We illustrate the overall picture using the quantile
plot in Fig. 6. For each data point (x, y) on a graph, the quantile plot shows
that x bugs can be correctly identified using at most y seconds of CPU time.
The x-position of the right-most data point for a tool indicates the total num-
ber of bugs the tool was able to identify. In summary, each model checker
finds more bugs than the best tester, while the best tester (Kleet) closely
follows the weakest model checker (CBMCm).

The area below the graph is proportional to the overall consumed CPU time
for successfully solved problems. The visualization makes it easy to see, e.g., by
looking at the 400 fastest solved problems, that most testers time out while most
model checkers use only a fraction of their available CPU time. In summary, the ra-
tio of returned results by invested resources is much better for the model checkers.
Quantitative Overview. Next, we look at the numerical details as shown in
Table 2. The columns are partitioned into four parts: the table lists (i) the
category/row label together with the number of programs (maximal number of
found bugs), (ii) the number of found bugs for the six testers, (iii) the number
of found bugs for the four model checkers, and (iv) the union of the results
for testers, model checkers, and overall. In the two parts for the testers and
model checkers, we highlight the best result in bold (if equal, the fastest result
is highlighted). The rows are partitioned into three parts: the table shows first

108 D. Beyer and T. Lemberger

Table 2: Results for testers and model checkers on programs with a bug

N
o.

P
ro
gr
am

s

A
F
L
-f

u
zz

t

C
P
A
T

ig
er

t

C
r
es

t-
pp

ct

F
S
h
el

lt

K
le

et

P
R
te

st
t

C
B

M
C

m

C
P
A

-s
eq

m

E
S
B

M
C

-i
n
cr

m

E
S
B

M
C

-k
In

d
m

U
ni
on

T
es
te
rs

U
ni
on

M
C

U
ni
on

A
ll

Arrays 81 26 0 20 4 22 25 6 3 6 4 31 13 33
BitVectors 24 11 5 7 5 11 10 12 12 12 12 14 17 19
ControlFlow 42 15 0 11 3 20 3 41 23 36 35 21 42 42
ECA 413 234 0 51 0 260 0 143 257 221 169 286 42 338
Floats 31 11 2 2 4 2 11 31 29 17 13 13 31 31
Heap 66 46 22 16 13 48 32 64 31 62 58 48 66 66
Loops 46 45 27 29 5 40 33 42 36 42 38 41 38 43
ProductLines 265 169 1 204 156 255 144 263 265 265 263 265 265 265
Recursive 45 44 0 35 22 45 31 42 41 40 40 45 43 45
Sequentialized 170 4 0 1 24 123 3 135 122 135 134 123 141 147
LDV 307 0 0 0 0 0 0 51 70 113 78 0 147 147

Total Found 1 490 605 57 376 236 826 292 830 889 949 844 887 1 092 1 176
Compilable 1 115 605 57 376 236 826 292 779 819 830 761 887 930 1 014
Wit. Confirmed 1 490 761 857 705 634 887 979 1 068

Median CPU Time (s) 11 4.5 3.4 6.2 3.6 3.6 1.4 15 1.9 2.3
Average CPU Time (s) 82 38 4.1 27 33 6.7 46 51 61 69

the results for each of the 11 categories of the programs under test, second the
results for all categories together, and third the CPU times required.

The row ‘Total Found’ shows that the best tester (Kleet) is able to find
826 bugs, while all model checkers find more, with the best model checker
(ESBMC-incrm) finding 15% more bugs (949) than the best tester. An interesting
observation is that the different tools have different strengths and weaknesses:
column ‘Union Testers’ shows that applying all testers together increases the
amount of solved tasks considerably. This is made possible using our unifying
framework TBF, which abstracts from the differences in input and output of
the various tools and lets us use all testers in a common work flow. The same
holds for the model checkers: the combination of all approaches significantly
increases the number of solved problems (column ‘Union MC’). The combination
of testers and model checkers (column ‘Union All’) in a bug-finding workflow
can further improve the results significantly, i.e., there are program bugs that
one technique can find but not the other, and vice versa.

While it is usually considered an advantage that model checkers can be
applied to incomplete programs that are not yet fully defined (as expected
by static-analysis tools), testers obviously cannot be applied to such programs
(as they are dynamic-analysis tools). This issue applies in particular to the
category ‘LDV’ of device drivers, which contain non-deterministic models of the
operating-system environment. This kind of programs is important because it
is successfully used to find bugs in systems code 18 [47], but in order to provide
a comparison without the influence of this issue, we also report the results
restricted to those programs that are compilable (row ‘Compilable’).
18 http://linuxtesting.org/results/ldv

Software Verification: Testing vs. Model Checking 109

For the testers, TBF validates whether a test case is generated that identifies
the bug as found. This test case can later be used to reproduce the error path
using execution, and a debugger helps to comprehend the bug. For the model
checkers, the reported violation witness identifies the bug as found. This witness
can later be used to reproduce the error path using witness validation, and an
error-path visualizer helps to comprehend the bug. Since the model checkers
usually do not generate a test case, we cannot perform the same validation
as for the testers, i.e., execute the program with the test case and check if it
crashes. However, all four model checkers that we use support exchangeable
violation witnesses [7], and we can use existing witness validators to confirm
the witnesses. We report the results in row ‘Wit. Confirmed’, which counts
only those error reports that were confirmed by at least one witness validator.
While this technique is not always able to confirm correct witnesses (cf. [4],
Table 8), the big picture does not change. The test generators do not need this
additional confirmation step, because TBF takes care of this already. There are
two interesting insights: (1) Software model checkers should in addition produce
test data, either contained in the violation witness or as separate test vector.
This makes it easier to reproduce a found bug using program execution and
explore the bug with debugging. (2) Test generators should in addition produce
a violation witness. This makes it easier to reproduce a found bug using witness
validation and explore the bug with error-path visualization [6].
Consideration of False Alarms. So far we have discussed only the programs
that contain bugs. In order to evaluate how many false alarms the tools produce,
we have also considered the 4 203 programs without known bug. All testers
report only 3 bugs on those programs. We manually investigated the cause and
found out that we have to blame the benchmark set for these, not the testers.19
Each of the four model checkers solves at least one of these three tasks with
verdict true, implying an imprecise handling of floating-point arithmetics. The
model checkers also produce a very low number of false alarms, the largest
number being 6 false alarms reported by ESBMC-incrm.

4.3 Validity

Validity of Framework for Test-Based Falsification. The results of the
testers depend on a correctly working test-execution framework. In order to
increase the confidence in our own framework TBF, we compare the results
obtained with TBF against the results obtained with a proprietary test-execution
mechanism that Klee provides: Klee-replay20. Figure 7 shows the CPU time in
seconds required by Kleet using TBF (x-axis) and Klee-replay (y-axis) for each
verification task that could be solved by either one of them. It shows that Kleet

(and thus, TBF) is very similar to Klee’s native solution. Over all verification
19 There are three specific programs in the ReachSafety-Floats category of SV-COMP

that are only safe if compiled with 64-bit rounding mode for floats or for a 64-bit
machine model. The category states the programs should be executed in a 32-bit
machine model, which seems incorrect.

20 http://klee.github.io/tutorials/testing-function/#replaying-a-test-case

110 D. Beyer and T. Lemberger

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

C
P
U

T
im
e

fo
r
K
L
E
E
-r
e
p
la
y

(s
)

CPU Time for KLEE
T
 (s)

Fig. 7: CPU time required by Kleet and Klee-replay to solve tasks

tasks, Kleet is able to find bugs in 826 tasks, while Klee-replay is able to find
bugs in 821 tasks. There are 15 tasks that Klee-replay can not solve, while
Kleet can, and 10 tasks that Klee-replay can solve, while Kleet can not.

For Kleet, one unsolved task is due to missing support of a corner case for
the conversion of Klee’s internal representation of numbers to a test vector. The
remaining difference is due to an improper machine model: for Klee-replay, we
only had 64-bit libraries available, while most tasks of SV-COMP are intended to
be analyzed using a 32-bit architecture. This only results in a single false result,
but interprets some of the inputs generated for 32-bit programs differently, thus
reaching different parts of the program in a few cases. This also explains the
few outliers in Fig. 7. The two implementations both need a median of 0.43 s
of CPU time to find a bug in a task. This shows that our implementation is
similarly effective and efficient to Klee’s own, tailored test-execution mechanism.
Other Threats to Internal Validity. We used the state-of-the-art bench-
marking tool BenchExec [14] to run every execution in an isolated container
with dedicated resources, making our results as reliable as possible. Our exper-
imental results for the considered model checkers are very close to the results
of SV-COMP’1721, indicating their accuracy. Our framework TBF is a proto-
type and may contain bugs that degrade the real performance of test-based
falsification. Probably more tasks could be solved if more time was invested
in improving this approach, but we tried to keep our approach as simple as
possible to influence the results as less as possible.
Threats to External Validity. There are several threats to external validity.
All tools that we evaluated are aimed at analyzing C programs. It might be the
case that testing research is focused on other languages, such as C++ or Java.
Other languages may contain other quirks than C that make certain approaches
to test-case generation and model checking more or less successful. In addition,
21 https://sv-comp.sosy-lab.org/2017/results/

Software Verification: Testing vs. Model Checking 111

there may be tools using more effective testing or model-checking techniques
that were developed for other languages and thus are not included here.

The selection of testers could be biased by the authors’ background, but
we reflected the state-of-the-art (see discussion of selection) and related work
in our choice. While we tried to represent the current landscape of test-case
generators by using tools that use fundamentally different approaches, there
might be other approaches that may perform better or that may be able to
solve different tasks. We used most of the recent, publicly available test-case
generators aimed at sequential C programs. We did not include model-based
or combinatorial test-case generators in our evaluation.

For representing the current state-of-the-art in model checking, we only used
four tools to limit the scope of this work. The selection of model checkers is
based on competition results: we simply used the four best tools in SV-COMP’17.
There are many other model-checking tools available. Since we performed our
experiments on a subset of the SV-COMP benchmark set and used a similar
execution environment, our results can be compared online with all verifiers that
participated in the competition. The software model checkers might be tuned
towards the benchmark set, because all of the software model checkers participated
in SV-COMP, while of the testers, only FShell participated in SV-COMP before.

While we tried to achieve high external validity by using the largest and most
diverse open benchmark set, there is a high chance that the benchmark set does not
appropriately represent the real landscape of existing programs with and without
bugs. Since the benchmark set is used by the SV-COMP community, it might be bi-
ased towards software model checkers, and thus, must stay a mere approximation.

5 Conclusion
Our comparison of software testers with software model checkers has shown
that the considered model checkers are competitive for finding bugs on the
used benchmark set. We developed a testing framework that supports the easy
comparison of different test-case generators with each other, and with model
checkers. Through this, we were able to perform experiments that clearly showed
that model checking is mature enough to be used in practice, and even outperforms
the bug-finding capabilities of state-of-the-art testing tools. It is able to cover
more bugs in programs than testers and also finds those bugs faster. With this
study, we do not pledge to eradicate testing, whose importance and usability can
not be stressed enough. But we laid ground to show that model checking should
be considered for practical applications. Perhaps the most important insight of
our evaluation is that is does not make much sense to distinguish between testing
and model checking if the purpose is finding bugs, but to leverage the strengths
of different techniques to construct even better tools by combination.

References
1. S. Anand, E. K. Burke, T. Y. Chen, J. A. Clark, M. B. Cohen, W. Grieskamp,

M. Harman, M. J. Harrold, and P. McMinn. An orchestrated survey of methodologies
for automated software test-case generation. Journal of Systems and Software,
86(8):1978–2001, 2013.

112 D. Beyer and T. Lemberger

2. T. Ball and S. K. Rajamani. The Slam project: Debugging system software via
static analysis. In Proc. POPL, pages 1–3. ACM, 2002.

3. D. Beyer. Competition on software verification (SV-COMP). In Proc. TACAS,
LNCS 7214, pages 504–524. Springer, 2012.

4. D. Beyer. Software verification with validation of results (Report on SV-COMP
2017). In Proc. TACAS, LNCS 10206, pages 331–349. Springer, 2017.

5. D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. Generating
tests from counterexamples. In Proc. ICSE, pages 326–335. IEEE, 2004.

6. D. Beyer and M. Dangl. Verification-aided debugging: An interactive web-service
for exploring error witnesses. In Proc. CAV, LNCS 9780. Springer, 2016.

7. D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Witness
validation and stepwise testification across software verifiers. In Proc. FSE, pages
721–733. ACM, 2015.

8. D. Beyer, M. Dangl, and P. Wendler. Boosting k-induction with continuously-refined
invariants. In Proc. CAV, LNCS 9206, pages 622–640. Springer, 2015.

9. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model checker
Blast. Int. J. Softw. Tools Technol. Transfer, 9(5-6):505–525, 2007.

10. D. Beyer, A. Holzer, M. Tautschnig, and H. Veith. Information reuse for multi-goal
reachability analyses. In Proc. ESOP, LNCS 7792, pages 472–491. Springer, 2013.

11. D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software
verification. In Proc. CAV, LNCS 6806, pages 184–190. Springer, 2011.

12. D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction with adjustable-
block encoding. In Proc. FMCAD, pages 189–197. FMCAD, 2010.

13. D. Beyer and S. Löwe. Explicit-state software model checking based on CEGAR
and interpolation. In Proc. FASE, LNCS 7793, pages 146–162. Springer, 2013.

14. D. Beyer, S. Löwe, and P. Wendler. Reliable benchmarking: Requirements and
solutions. Int. J. Softw. Tools Technol. Transfer, 2017.

15. D. Beyer and P. Wendler. Reuse of verification results: Conditional model checking,
precision reuse, and verification witnesses. In Proc. SPIN, LNCS. Springer, 2013.

16. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. TACAS, LNCS 1579, pages 193–207. Springer, 1999.

17. M. Böhme, V. Pham, and A. Roychoudhury. Coverage-based greybox fuzzing as
Markov chain. In Proc. SIGSAC, pages 1032–1043. ACM, 2016.

18. J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In Proc.
ASE, pages 443–446. IEEE, 2008.

19. C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In Proc. OSDI, pages 209–224.
USENIX Association, 2008.

20. A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The MathSAT5 SMT
solver. In Proc. TACAS, LNCS 7795, pages 93–107. Springer, 2013.

21. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

22. E. M. Clarke, D. Kröning, and F. Lerda. A tool for checking ANSI-C programs. In
Proc. TACAS, LNCS 2988, pages 168–176. Springer, 2004.

23. W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb.
Log., 22(3):250–268, 1957.

24. C. Csallner and Y. Smaragdakis. Check ’n’ crash: Combining static checking and
testing. In Proc. ICSE, pages 422–431. ACM, 2005.

Software Verification: Testing vs. Model Checking 113

25. M. Dangl, S. Löwe, and P. Wendler. CPAchecker with support for recursive
programs and floating-point arithmetic. In Proc. TACAS, LNCS. Springer, 2015.

26. N. Eén and N. Sörensson. An extensible SAT solver. In Proc. SAT, LNCS 2919,
pages 502–518. Springer, 2003.

27. M. Y. R. Gadelha, H. I. Ismail, and L. C. Cordeiro. Handling loops in bounded
model checking of C programs via k-induction. STTT, 19(1):97–114, 2017.

28. S. J. Galler and B. K. Aichernig. Survey on test data generation tools. STTT,
16(6):727–751, 2014.

29. P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated random testing.
In Proc. PLDI, pages 213–223. ACM, 2005.

30. P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox fuzz testing.
In Proc. NDSS. The Internet Society, 2008.

31. S. Graf and H. Saïdi. Construction of abstract state graphs with Pvs. In Proc.
CAV, LNCS 1254, pages 72–83. Springer, 1997.

32. M. Heizmann, D. Dietsch, J. Leike, B. Musa, and A. Podelski. Ultimate Au-
tomizer with array interpolation. In Proc. TACAS, LNCS 9035, pages 455–457.
Springer, 2015.

33. M. Heizmann, J. Hoenicke, and A. Podelski. Software model checking for people
who love automata. In Proc. CAV, LNCS 8044, pages 36–52. Springer, 2013.

34. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proc.
POPL, pages 58–70. ACM, 2002.

35. A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith. How did you specify your
test suite? In Proc. ASE, pages 407–416. ACM, 2010.

36. K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun. jFuzz: A concolic whitebox
fuzzer for Java. In Proc. NFM, pages 121–125, 2009.

37. R. Jhala and R. Majumdar. Software model checking. ACM Computing Surveys,
41(4), 2009.

38. A. V. Khoroshilov, V. Mutilin, A. K. Petrenko, and V. Zakharov. Establishing
Linux driver verification process. In Proc. Ershov Memorial Conference, LNCS 5947,
pages 165–176. Springer, 2009.

39. Y. Köroglu and A. Sen. Design of a modified concolic testing algorithm with smaller
constraints. In Proc. ISSTA, pages 3–14. ACM, 2016.

40. D. Kröning and M. Tautschnig. Cbmc: C bounded model checker (competition
contribution). In Proc. TACAS, LNCS 8413, pages 389–391. Springer, 2014.

41. K. Li, C. Reichenbach, C. Csallner, and Y. Smaragdakis. Residual investigation:
Predictive and precise bug detection. In Proc. ISSTA, pages 298–308. ACM, 2012.

42. K. L. McMillan. Interpolation and SAT-based model checking. In Proc. CAV,
LNCS 2725, pages 1–13. Springer, 2003.

43. J. Morse, M. Ramalho, L. Cordeiro, D. Nicole, and B. Fischer. Esbmc 1.22
(competition contribution). In Proc. TACAS, LNCS 8413. Springer, 2014.

44. Z. Pavlinovic, A. Lal, and R. Sharma. Inferring annotations for device drivers from
verification histories. In Proc. ASE, pages 450–460. ACM, 2016.

45. K. Sen, D. Marinov, and G. Agha. Cute: A concolic unit testing engine for C. In
Proc. ESEC/FSE, pages 263–272. ACM, 2005.

46. H. Seo and S. Kim. How we get there: A context-guided search strategy in concolic
testing. In Proc. FSE, pages 413–424. ACM, 2014.

47. I. S. Zakharov, M. U. Mandrykin, V. S. Mutilin, E. Novikov, A. K. Petrenko, and
A. V. Khoroshilov. Configurable toolset for static verification of operating systems
kernel modules. Programming and Computer Software, 41(1):49–64, 2015.

114 D. Beyer and T. Lemberger

A Supervisory Control Algorithm Based on
Property-Directed Reachability

Koen Claessen1, Jonatan Kilhamn1, Laura Kovács13, and Bengt Lennartson2

1 Department of Computer Science and Engineering,
2 Department of Electrical Engineering,

Chalmers University of Technology
3 Faculty of Informatics, Vienna University of Technology

{koen, jonkil, laura.kovacs, bengt.lennartson}@chalmers.se

Abstract. We present an algorithm for synthesising a controller (supervisor) for
a discrete event system (DES) based on the property-directed reachability (PDR)
model checking algorithm. The discrete event systems framework is useful in
both software, automation and manufacturing, as problems from those domains
can be modelled as discrete supervisory control problems. As a formal frame-
work, DES is also similar to domains for which the field of formal methods for
computer science has developed techniques and tools. In this paper, we attempt
to marry the two by adapting PDR to the problem of controller synthesis. The
resulting algorithm takes as input a transition system with forbidden states and
uncontrollable transitions, and synthesises a safe and minimally-restrictive con-
troller, correct-by-design. We also present an implementation along with experi-
mental results, showing that the algorithm has potential as a part of the solution
to the greater effort of formal supervisory controller synthesis and verification.

Keywords: Supervisory control ·Discrete-event systems ·Property-directed reach-
ability ·Synthesis ·Verification ·Symbolic transition system

1 Introduction

Supervisory control theory deals with the problems of finding and verifying controllers
to given systems. One particular problem is that of controller synthesis: given a system
and some desired properties—safety, liveness, controllability—automatically change
the system so that it fulfills the properties. There are several approaches to this problem,
including ones based on binary decision diagrams (BDD) [14, 6], predicates [11] and
the formal safety checker IC3 [18].

In this work we revisit the application of IC3 to supervisory control theory. Namely,
we present an algorithm for synthesising a controller (supervisor) for a discrete event
system (DES), based on property-directed reachability [4] (PDR, a.k.a. the method un-
derlying IC3 [2]). Given a system with a safety property and uncontrollable transitions,
the synthesised controller is provably safe, controllable and minimally restrictive [16].

1.1 An illustrative example

Let us explain our contributions by starting with an example. Figure 1 shows the tran-
sition system of a finite state machine extended with integer variables x and y. The
© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 115–130, 2017.
https://doi.org/10.1007/978-3-319-70389-3_8

formulas on the edges denote guards (transition cannot happen unless formula is true)
and updates (after transition, x takes the value specified for x′ in the formula). This
represents a simple but typical problem from the domain of control theory, and is taken
from [17].

x = 0, y = 0

l0

l1

l2

l3

l4

l5

b : y′ = 1

a : y′ = 2

a : >

c : x′ = x+ 1

b : >

α : y = 2 ∧ x ≤ 2

α : y = 2 ∧ x > 2

ω : >

Fig. 1. The transition system of the example.

In a controller synthesis problem, a system such as this is the input. The end result
is a restriction of the original system, i.e. one whose reachable state space is a subset of
that of the original one. In this extended finite state machine (denoted as EFSM) repre-
sentation, this is written as new and stronger guard formulas on some of the transitions.

Our example has two more features: the location l5, a dashed circle in the figure, is
forbidden, while the event α is uncontrollable. The latter feature means that the synthe-
sised controller must not restrict any transition marked with the event α.

To solve this problem, we introduce an algorithm based on PDR [4] used in a soft-
ware model checker (Section 3). Intuitively, what our algorithm does is to incrementally
build an inductive invariant which in turn implies the safety of the system. This invariant
is constructed by ruling out paths leading into the bad state, either by proving these bad
states unreachable from the initial states, or by making them unreachable via strength-
ening the guards.

In our example, the bad state l5 is found to have a preimage under the transition
relation T in l3 ∧ y = 2 ∧ x > 2. The transition from l3 to l5 is uncontrollable, so in
order to guarantee safety, we must treat this prior state as unsafe too. The transitions
leading into l3 are augmented with new guards, so that the system may only visit l3 if
the variables make a subsequent transition to l5 impossible. By applying our work, we
refined Figure 1 with the necessary transition guards and a proof that the new system is
safe. We show the refined system obtained by our approach in Figure 2.

116 K. Claessen et al.

x = 0, y = 0

l0

l1

l2

l3

l4

l5

b : y′ = 1

a : y′ = 2

a : y 6= 2 ∨ x ≯ 2

c : x′ = x+ 1

b : y 6= 2 ∨ x ≯ 2

α : y = 2 ∧ x ≤ 2

α : y = 2 ∧ x > 2

ω : >

Fig. 2. The transition system from the example, with guards updated to reflect the controlled
system.

1.2 Our Contributions

1. In this paper we present a novel algorithm based on PDR for controller synthesis
(Section 3) and prove correctness and termination of our approach (Section 4). To
the best of our knowledge, PDR has not yet been applied to supervisory control
systems in this fashion. We prove that our algorithm terminates (given finite vari-
able domains) and that the synthesised controller is safe, minimally-restrictive, and
respects the controllability constraints of the system. Our algorithm encodes system
variables in the SAT domain; we however believe that our work can be extended by
using satisfiability modulo theory (SMT) reasoning instead of SAT.

2. We implemented our algorithm in the model checker Tip [5]. We evaluated our
implementation on a number of control theory problems and give practical evidence
of the benefits of our work (see Section 6).

2 Background

We use standard terminology and notation from first-order logic (FOL) and restrict
formulas mainly to quantifier-free formulas. We reserve P,R,T, I to denote formu-
las describing, respectively, safety properties, “frames” approximating reachable sets,
transition relations and initial properties of control systems; all other formulas will be
denoted with φ, ψ, possibly with indices. We write variables as x, y and sets of vari-
ables as X,Y . A literal is an atom or its negation, a clause a disjunction of literals, and
a cube a conjunction of literals. We use R to denote a set of clauses, intended to be
read as the conjunction of those clauses. When a formula ranges over variables in two
or more variable sets, we take φ(X,Y) to mean φ(X ∪ Y).

For every variable x in the control system, we assume the existence of a unique
variable x′ representing the next-state value of x. Similarly, the setX ′ is the set {x′|x ∈

A Supervisory Control Algorithm 117

X}. As we may sometimes drop the variable set from a formula if it is clear from the
context, i.e. write φ instead of φ(X), we take φ′ to mean φ(X ′) in a similar fashion.

2.1 Modelling Discrete Event Systems

A given DES can be represented in several different ways. The simple, basic model
is the finite state machine (FSM) [10]. A state machine is denoted by the tuple G =
〈Q,Σ, δ,Qi〉, where Q is a finite set of states, Σ the finite set of events (alphabet),
δ ⊆ Q×Σ ×Q the transition relation, and Qi ⊆ Q the set of initial states.

In this notation, a controller can be represented as a function C : Q→ 2Σ denoting
which events are enabled in a given state. For any σ ∈ Σ and q ∈ Q, the statement
σ ∈ C(q) means that the controller allows transitions with the event σ to happen when
in q; conversely, σ /∈ C(q) means those transitions are prohibited.
Extended Finite State Machine. The state machine representation is general and mono-
lithic. In order to more intuitively describe real supervisory control problems, other for-
malisms are also used. Firstly, we have the extended finite state machine (EFSM), which
is an FSM extended with FOL formulas over variables. In effect, we split the states into
locations and variables, and represent the system by the tuple A = 〈X,L,Σ,∆, li, Θ〉.
Here, X is a set of variables, L a set of locations, Σ the alphabet, ∆ the set of transi-
tions, li ∈ L the initial location and Θ(X) a formula describing the initial values of the
variables.

A transition in∆ is now a tuple 〈l, a,m〉 where l,m are the entry and exit locations,
respectively, while the action a = (σ, φ) consists of the event σ ∈ Σ and φ(X,X ′).
The interpretation of this is that the system can make the transition from l to m if the
formula φ(X,X ′) holds. Since the formula can include next-state variables—φ may
contain arbitrary linear expressions over both X and X ′—the transition can specify
updated variable values for the new state.

We have now defined almost all of the notation used in the example in Figure 1.
In the figure, we write σ : φ to denote the action (σ, φ). Furthermore, the figure is
simplified greatly by omitting next-state assignments on the form x′ = x, i.e. x keeping
its current value. If a variable does not appear in primed form in a transition formula,
that formula is implied to have such an assignment.
Symbolic Representation. Moving from FSM to EFSM can be seen as “splitting” the
state space into two spaces: the locations and the variables. A given feature of an FSM
can be represented as either one (although we note that one purpose for using variables
is to easier extend the model to cover an infinite state space). Using this insight we can
move to the “other extreme” of the symbolic transition system (STS): a representation
with only variables and no locations.

The system is here represented by the tuple SA = 〈X̂,T(X̂, X̂ ′), I(X̂)〉 where
X̂ is the set of variables extended by two new variables xL and xΣ with domains L
and Σ, respectively. With some abuse of notation, we use event and variable names to
denote formulas over those variables, such as ln for the literal xL = ln and ¬σ for the
literal xΣ 6= σ. The initial formula I and transition formula T are constructed from the
corresponding EFSM representation as I(X̂) = (xL = li) ∧ Θ(X) and T(X̂, X̂ ′) =∨
〈l,(σ,φ),m〉∈∆(l ∧ σ ∧ φ(X,X ′) ∧m′).

118 K. Claessen et al.

In this paper, we will switch freely between the EFSM and STS representations of
the same system, depending on which is the best fit for the situation. Additionally, we
will at times refer to X̂ as only X , as long as the meaning is clear from context. In
either representation, we will use state to refer to a single assignment of location and
variables, and path for a sequence of states s0, s1, ..., sk.

2.2 Supervisory Control

The general problem of supervisory control theory is this: to take a transition system,
such as the ones we have described so far, and modify it so that it fulfils some prop-
erty which the unmodified system does not. There are several terms in this informal
description that require further explanation.

The properties that we are interested in are generally safety, non-blocking, and/or
liveness, which can be seen as a stronger form of non-blocking. Controlling for a safety
property means that in the controlled system, there should be no sequence of events
which enables transitions leading from an initial state to a forbidden state.

Non-blocking and liveness are defined relative to a set of marked state. The former
means that at least one such state is reachable from every state which is reachable from
the initial states. The latter, liveness, implies non-blocking, as it is the guarantee that
the system not only can reach but will return to a marked state infinitely often. In this
work we have reduced the scope of the problem by considering only safety.

Furthermore, we talk about the property of controllability. This is the notion that
some events in a DES are uncontrollable, which puts a restriction on any proposed
controller: in order to be valid, the transitions involving uncontrollable events must
not be restricted. Formally, in an (E)FSM it is enough to split the alphabet into the
uncontrollable Σu ⊆ Σ and the controllable Σc = Σ \Σu. In an STS, this is expressed
by the transition relation taking the form T = Tu ∨ Tc, where Tc and Tu include
literals xL = σ for, respectively, only controllable and only uncontrollable events σ.

Finally there is the question of what form this “controlled system” takes, since a
controller function C : Q → 2Σ can be impractical. A common method is that of
designating a separate state machine as the supervisor, and taking the controlled system
to be the synchronous composition of the original system and the supervisor [8]. In
short, this means running them both in parallel, but only allowing a transition with a
shared event σ to occur simultaneously in both sub-systems.

However, the formidable theory of synchronised automata is not necessary for the
present work. Instead, we take the view that the controlled system is the original system,
either in the EFSM or STS formulation, with some additions.

In the EFSM case, the controlled system has the exact same locations and transi-
tions, but additional guards and updates may be added. In other words, the controlled
system augments each controllable transition by replacing the original transition for-
mula φ with the new formula φs = φ ∧ φnew. The uncontrollable transitions are left
unchanged. In the STS case, the new transition function is TS = Tu ∨ TS

c where
TS
c = Tc ∧Tnew

c . This way, all uncontrollable transitions are guaranteed to be unmod-
ified in the controlled system.

Finally, a controlled system, regardless of which properties the controller is set out
to guarantee, is often desired to be minimally restrictive (eqiv. maximally permissive).

A Supervisory Control Algorithm 119

The restrictiveness of a controlled system is defined as follows: out of two controlled
versions S1 and S2 of the same original system S, S1 is more restrictive than S2 if there
is at least one state, reachable under the original transition function T, which is reach-
able under TS2 but unreachable under TS1 . A controlled system is minimally restrictive
if no other (viable) controlled system exists which is less restrictive. The word “viable”
in brackets shows that one can talk about the minimally restrictive safe controller, the
minimally restrictive non-blocking controller and so on; for each combination of prop-
erties, the minimally restrictive controller for those properties is different.

3 PDRC: Property-Driven Reachability-Based Control

Property-driven reachability (PDR) [4] is a name for the method underlying IC3 [2],
used to verify safety properties in transition systems. In this paper we present Property-
Driven Reachability-based Control (PDRC), which extends PDR from verifying safety
to synthesising a controller which makes the system safe. In order to explain PDRC, we
first review the main ingredients of PDR.

PDR works by successively blocking states that are shown to lead to unsafe states in
certain number of steps. Blocking a state at step k here means performing SAT-queries
to show that the state is unreachable from the relevant frame Rk. A frame Rk is a
predicate over-approximating the set of states reachable from the initial states I in k
steps.

When a state is blocked—i.e. shown to be unreachable—the relevant frame is up-
dated by excluding that state from the reachable-set approximation. If a state cannot
be blocked at Rk, the algorithm finds its preimage s and proceeds to block s at Rk−1.
If a state that needs to be blocked intersects with the initial states, the safety property
of the system has been proven false. Conversely, if two adjacent frames Ri,Ri+1 are
identical after an iteration, we have reached a fixed-point and a proof of the property P
in one of them entails a proof of P for the whole system.

With PDRC, we focus on the step where PDR has found a bad cube s (represent-
ing unsafe states) in frame Rk, and proceeds to check whether it is reachable from
the previous frame Rk−1. If it is not, this particular cube was a false alarm: it was in
the over-approximation of k-reachable states, but after performing this check we can
sharpen that approximation to exclude s. If s was reachable, PDR proceeds to find its
preimage t which is in Rk−1. Note that t is also a bad cube, since there is a path from
t to an unsafe state. However, in a supervisory control setting, there is no reason not
to immediately control the system by restricting all controllable transitions from t to s.
This observation is the basis of our PDRC algorithm.

3.1 Formal Description of PDRC

As PDRC is very similar to PDR, this description and the pseudocode procedures draw
heavily from [4].

Our PDRC algorithm is given in Algorithm 1. As input, we take a transition system
that can be represented by a transition function T(X,X ′) = Tc ∨ Tu, i.e. one where
each possible transition is either controllable or uncontrollable; and a safety property

120 K. Claessen et al.

Algorithm 1: Blocking and propagation for one iteration of N .

// finding and blocking bad states
1 while SAT[RN ∧ ¬P] do
2 extract a bad state m from the SAT model;
3 generalise m to a cube s;
4 recursively block s as per block(s,N);

// at this point R and/or T have been updated to rule
out m

5 end
// propagation of proven clauses

6 add new empty frame RN+1;
7 for k ∈ [1, N] and c ∈ Rk do
8 if Rk � c′ then
9 add c to Rk+1;

10 end
11 end

P(X). The variables in X are boolean, in order to allow the use of a SAT solver –
although see Section 3.2 describing an extension from SAT to SMT.

Throughout the run of the algorithm, we keep a trace: a series of frames Ri, 0 ≤
i ≤ N . Each Ri(X) is a predicate that over-approximates the set of states reachable
from I in i steps or less. R0 = I, where I is a formula encoding the initial states.

Each frame Ri, i > 0 can be represented by a set of clausesRi = {cij}j , such that∧
j cij(X) = Ri(X). An empty frame Rj = {} is considered to encode >, i.e. the

most over-approximating set possible.
We maintain the following invariants:

1. Ri → Ri+1

2. Ri → P, except for i = N
3. Ri+1 is an over-approximation of the image of Ri under T

Starting with N = 1 and R1 = {}, we proceed to do the first iteration of the
blocking and propagation steps, as shown in Algorithm 1.

The “blocking step” consists of the while-loop (lines 1–5) of Algorithm 1, and com-
ing out of that loop we know that RN → P. The propagation step follows (lines 6–11),
and here we consider for each clause in some frame of the trace whether it also holds in
the next frame.

Afterwards, we check for a fix-point in Ri; i.e. two syntactically equal adjacent
frames Ri = Ri+1. Unless such a pair is found, we increment N by 1 and repeat the
procedure.

The most important step inside the while loop is the call to block (line 4). This
routine is shown in Algorithm 2. Here, we take care of the bad states in a straight-
forward way. First, we consider its preimage under the controllable transition function
Tc (line 2). The preimage cube t can be found by taking a model of the satisfiable
query Rk−1∧¬s∧Tc∧s′ and dropping the primed variables. Each such cube encodes

A Supervisory Control Algorithm 121

Algorithm 2: The blocking routine, which updates the supervisor.
Data: A cube s and a frame index k
// first consider the controllable transitions:

1 while SAT[Rk−1 ∧ ¬s ∧Tc ∧ s′] do
2 extract and generalise a bad cube t in the preimage of Tc;
3 update Tc := Tc ∧ ¬t;
4 end
// then consider the uncontrollable transitions:

5 while SAT[Rk−1 ∧ ¬s ∧Tu ∧ s′] do
6 if k=1 then
7 throw error: system uncontrollable;
8 end
9 extract and generalise a bad cube t in the preimage of Tu;

10 call block(t, k − 1);
11 end
12 add ¬s to Ri, i ≤ k;

states from which a bad state is reachable in one step. Thus, we update the supervisor to
disallow transitions from those bad states (line 3). This accounts for the first while-loop
in Algorithm 2.

The second while-loop (lines 5–11)is very similar, but considers the uncontrollable
transitions, encoded by Tu, instead. If a preimage cube is found here, we cannot rule it
out by updating the supervisor. That preimage instead becomes a bad state on its own,
to be controlled in the previous frame k − 1.

Example 1. Example, revisited. Recall the example in Figure 1. Since it uses integer
variables it seems to require an SMT-based version of PDRC. This particular example is
so simple, however, that “bit-blasting” the problem into SAT by treating the proposition
x < i as a separate boolean variable for each value of i in the domain of x will yield
the same solution.

PDRC requires 3 iterations to completely supervise the system. In the first, the
clause ¬l5 is added to the first frameR1, after proving that it is not in the initial states.
In the second, ¬l5 is found again but this time the uncontrollable transition from l3 is
followed backwards, and the clause ¬α ∨ ¬l3 ∨ y 6= 2 ∨ x ≯ 2 is also added to R1,
which allows us to add ¬l5 to R2. Finally, in the third, the trace of preimages lead
to the controllable transitions l1 → l3 and l2 → l3, and we add new guards to both
(technically, we add new constraints to the transition function).

The updated system is the one shown in Figure 2. The third iteration also proves the
system safe, as we have R1 = R2. These frames then hold the invariant, (¬α∨¬l3∨y 6=
2 ∨ x ≯ 2) ∧ ¬l5, which implies P and is inductive under the updated T.

3.2 Extension to SMT

Our PDRC algorithm in Algorithm 1 uses SAT queries, and is straightforward to use
with a regular SAT solver on systems with a propositional transition function. However,

122 K. Claessen et al.

like in [3, 9] it is possible to extend it to other theories, such as Linear Integer Arith-
metic, using an SMT solver. The SAT query in Algorithm 1 provides no diffuculty, but
some extra thought is required for the ones in the blocking procedure, which follow this
pattern:

while SAT[Ri ∧ ¬s ∧T ∧ s′] do
extract and generalise a bad cube t in the preimage of T;

If one only replaces the SAT solver by an SMT solver capable of handling the
theory in question, one can extract a satisfying assignment of theory literals. However,
each of these might contain both primed and unprimed variables, such as the next-state
assignment x′ = x+ 1.

These lines effectively ask the solver to generalise a state m—an assignment of
theory literals satisfying some formula F—into a more general cube t, ideally choosing
the t that covers the maximal amount of discrete states, while still guaranteeing t→ F.
In the SAT case, this is achieved by dropping literals of t that do not affect the validity
of F(t). An alternate method based on ternary simulation, that is useful when the query
is for a preimage of a transition function T, is given in [4]. For the SMT case, however,
the extent of generalisation depends on the theory and the solver.

In the worst case of a solver that cannot generalise at all, the algorithm is consigned
to blocking a single statem in each iteration. This means that the state space simplifica-
tion gained from using a symbolic transition function in the first place is lost, since the
reachability analysis checks states one by one. In conclusion, PDRC could be imple-
mented for systems with boolean variables using a SAT-solver with no further issues,
while an SMT version would require carefully selecting the right solver for the domain.
We leave this problem as an interesting task for future work.

4 Properties of PDRC

In this section we prove the soundness and termination of our PDRC algorithm.

4.1 Termination

Theorem 1. For systems with state variables whose domains are finite, the PDRC al-
gorithm always terminates.

The termination of regular PDR is proven in [4]. In the case of an unsafe system—
which for us corresponds to an uncontrollable system—the counterexample proving this
must be finite in length, and thus found in finite time. In the case of a safe system, the
proof is based on the following observations: that each proof-obligation (call to block)
must block at least one state in at least one frame; that there are a finite number of frames
for each iteration (value of N); that there are a finite number of states of the system;
and that each Ri+1 must either block at least one more state than Ri, or they are equal.

All these observations remain true for PDRC, substituting “uncontrollable” for “un-
safe”. This means that the proof of termination from [4] can be used for PDRC with
minimal modification.

A Supervisory Control Algorithm 123

4.2 Correctness

We claim that the algorithm described above synthesises a minimally restrictive safe
controller for the original system.

Theorem 2. If there exists any safe controller for the system, the controller synthesised
by the PDRC algorithm is safe.

Proof. We prove Theorem 2 by contradiction. Assume there is an unsafe state s, i.e. we
have ¬P(s), that is reachable from an I-state in k steps. We must then have k ≥ N ,
since invariant (2) states that Ri → P, i < N . Let M be the index of the discovered
fix point RM = RM+1.

Invariant (1) (from Section 3.1) states that Ri → Ri+1, and this applies for all
values 0 ≤ i ≤M . Repeated application of this means that any state in any Ri, i < M
is also contained in RM .

Invariant (3) states that Ri+1 is an over-approximation of the image of Ri. This
means that any state reachable from RM should be in RM+1. Since RM = RM+1,
such a state is also in RM itself. Repeated application of this allows us to extend the
trace all the way to Rk = Rk−1 = · · · = RM .

Now, for the bad state s, regardless of the number of steps k needed to reach it, we
know that s is contained in Rk and therefore in RM . Yet when the algorithm terminated
it had at one point found RM ∧¬P to be UNSAT. The state s, which is both in RM and
¬P, would constitute a satisfying assignment to this query. This contradiction proves
that s cannot exist. ut
Theorem 3. A controller synthesised by the PDRC algorithm is minimally restrictive.

Proof. We prove Theorem 3 also by contradiction. Assume there is a safe path π =
s0, s1, . . . , sk through the original system (with transition function T), which is not
possible using the controlled transition function TPDRC; yet there exists another safe,
controllable supervisor represented by TS where π is possible. By deriving a contra-
diction, we will prove that no such TS can exist.

Consider the first step of π that is not allowed by TPDRC; in other words, a pair
(si, si+1) where we have ¬TPDRC(si, si+1) while we do have both TS(si, si+1) and
T(si, si+1). The only way that TPDRC is more restrictive than T is due to strengthen-
ings on the form TPDRC

c = Tc ∧ ¬m, for some cube m. This means that si must be in
some cube m that PDRC supervised in this fashion.

This happened inside a call block(m, j). Since π is safe, this call cannot have
been made because m itself encoded unsafe states. Instead, there must have been a
previous call block(n, j +1), where m is a minterm of the preimage of n under Tu.
This cube n is either itself a bad cube, or it can be traced to a bad cube by following the
trace of block calls. Since each step in this block chain only uses Tu, we can find a
series of uncontrollable transitions, starting in some s̃i+1 ∈ n, leading to some cube p
which is a generalisation of a satisfying assignment to the query RN ∧ ¬P.

This proves that TS , whose TS
c does not restrict transitions from si, allows for

the system to enter a state s̃i+1, from which there is an uncontrollable path to an unsafe
state. This contradicts the assumption that TS was safe, proving that the combination of
π and TS cannot exist. This proves that the controller encoded by TPDRC is minimally
restrictive. ut

124 K. Claessen et al.

5 Implementation

We have implemented a prototype of PDRC in the model checker Tip (Temporal Induc-
tive Prover [5]). The input format supported by Tip is AIGER [1], where the transition
system is represented as a circuit, which is not a very intuitive way to view an EFSM or
STS. For this reason, our prototype also includes Haskell modules for creating a tran-
sition system in a control-theory-friendly representation, converting it to AIGER, and
using the output from the Tip-PDRC to reflect the new, controlled system synthesised by
PDRC. Finally, it also includes a parser from the .wmod format used by WATERS and
Supremica [13], into our Haskell representation. Altogether, our implementation con-
sists of about 150 lines of code added or changed in the Tip source, and about 1600 lines
of Haskell code. Our tools, together with the benchmarks we used, is available through
github.com/JonatanKilhamn/supermini and github.com/JonatanKilhamn/tipcheck.

When converting transition systems into circuits, certain choices have to be made.
Our encoding allows for synchronised automata with one-hot-encoded locations (e.g.
location l3 out of 5 is represented by the bits [0, 0, 1, 0, 0]) and unary-encoded integer
variables (e.g. a variable ranging from 0 to 5 currently having the value 3 is represented
by [1, 1, 1, 0, 0]). Each of these encoding has a corresponding invariant: with one-hot,
exactly one bit must be set to 1; with unary, each bit implies the previous one. However,
these invariants need not be explicitly enforced by the transition relation (i.e. as guards
on every transition), rather, it is enough that they are preserved by all variable updates.

It should be noted that although the PDRC on a theoretical level works equally
well on STS as EFSM, our implementation does assume the EFSM division between
locations and variables for the input system. However, our implementation retains the
generality of PDRC in how the state space is explored—the algorithm described in
Section 3 is run on the circuit representation, where the only difference between the
location variable xL and any other variable is the choice of encoding.

6 Experiments

For an empirical evaluation, we ran PDRC on several standard benchmark problems:
the extended dining philosophers (EDP) [15], the cat and mouse tower (CMT) [15] and
the parallell manufacturing example (PME) [12]. The runtimes of these experiments
are shown in Table 1 below. The benchmarks were performed on a computer with a 2.7
GHz Intel Core i5 processor and 8GB of available memory.

6.1 Problems

For the dining philosophers, EDP(n, k) denotes the problem of synthesising a safe
controller for n philosophers and k intermediary states that each philosopher must go
through between taking their left fork and taking their right one. The transition system
is written so that all philosophers respect when their neighbours are holding the forks,
except for the even-numbered ones who will try to take the fork to their left even if it is
held, which leads (uncontrollably) to a forbidden state.

A Supervisory Control Algorithm 125

For the cat and mouse problem, CMT(n, k) similarly denotes the problem with n
floors of the tower, k cats and k mice. Again, the transition system already prohibits
cats and mice from entering the same room (forbidden state) except by a few specified
uncontrollable pathways.

Finally, the parallel manufacturing example (PME) represents an automated factory,
with an industrial robot and several shared resources. It differs from the other in that
its scale comes mainly from the number of different synchronised automata. In return,
it does not have a natural parameter that can be set to higher values to increase the
complexity further.

6.2 Results
We compare PDRC to Symbolic Supervisory Control using BDD (SC-BDD) [14, 6],
which is implemented within Supremica. We wanted to include the Incremental, Induc-
tive Supervisory Control (IISC) algorithm [18], which also uses PDR but in another
way. However, the IISC implementation from [18] is no longer maintained. Despite this
failed replication, we include figures for IISC taken directly from [18]—with all the
caveats that apply when comparing runtimes obtained from different machines. Table 1
shows runtimes, where the problems are denoted as above and “×” indicates time-out
(5 min). The parameters for EDP and CMT were chosen to show a wide range from
small to large problems, while still mostly choosing values for which [18] reports run-
times for IISC. We see that while SC-BDD might have the advantage on certain small
problems, PDRC quickly outpaces it as the problems grow larger.

Table 1. Performance of PDRC (our contribution), SC-BDD and IISC on standard benchmark
problems. Note that the IISC implementation was not reproducible by us; the numbers here are
lifted from [18]. “×” indicates timeout (5 min), and “–” means this particular problem was not
included in [18].

Model PDRC IISC[18] SC-BDD
CMT(1,5) 0.09 0.13 0.007

CMT(3,3) 1.3 0.43 1.12

CMT(5,5) 8.3 0.73 ×
CMT(7,7) 30.02 0.98 ×
EDP(5,10) 0.03 0.98 0.031

EDP(10,10) 0.15 – 0.10

EDP(5,50) 0.03 0.12 0.26

EDP(5,200) 0.06 0.12 ×
EDP(5,10e3) 0.19 0.12 ×

PME 0.72 2.3 8.1

7 Discussion

In this section, we relate briefly how BDD-SC [14, 6] and IISC [18] work, in order to
compare and contrast to PDRC.

126 K. Claessen et al.

7.1 BDD-SC

BDD-SC works by modelling an FSM as a binary decision diagram (BDD). The algo-
rithm generates a BDD, representing the safe states, by searching backwards from the
forbidden states. However, the size of this BDD grows with the domain of the integer
variables. The reason is that the size of the BDD is quite sensitive to the number of
binary variables, but also the ordering of the variables in the BDD. Even when more re-
cent techniques on partitioning of the problem are used [6], the size of the BDD blows
up, and we see in Table 1 that BDD-SC very quickly goes from good performance to
time-out.

7.2 IISC

It is natural to compare PDRC to IISC [18], since the latter is also inspired by PDR
(albeit under the name IC3). In theory, PDRC has some advantages.

The first advantage is one of representation. IISC is built on the EFSM’s separation
between locations and variables, as described in 2.1. PDRC, on the other hand, handles
the more general STS representation. Specifically, IISC explicitly unrolls the entire sub-
state-space spanned by the locations. This sub-space can itself suffer a space explosion
when synchronising a large number of automata.

To once again revisit our example (Figure 1): IISC would unroll the graph, starting
in l0, into an abstract reachability tree. Each node in such a tree can cover any combi-
nation of variable values, but only one location. Thus, IISC effectively does a forwards
search for bad locations, and the full power of PDR (IC3) is only brought to bear on the
assignment of variables along a particular error trace. Thus, a bad representation choice
w.r.t. which parts of the system are encoded as locations versus as variables can hurt
IISC, while PDRC is not so vulnerable.

PDRC, in contrast, leverages PDR’s combination of forwards and backwards search:
exploring the state space backwards from the bad states in order to construct an induc-
tive invariant which holds in the initial states. One disadvantage of the backwards search
is that PDRC might add redundant safeguards. For example, the safeguard on the tran-
sition from l1 to 13 in Figure 2 is technically redundant, as there is no way to reach
l2 with the restricted variable values from the initial states. As shown in [18], IISC
does not add this particular guard. However, since both methods are proven to yield
minimally-restrictive supervisors, any extra guards added by PDRC are guaranteed not
to affect the behaviour of the final system.

The gain, on the other hand, is that one does not need to unroll the whole path from
the initial state to the forbidden state in order to supervise it. Consider: each such error
path must have a “point of no return”—the last controllable transition. When synthesis-
ing for safety, this transition must never be left enabled (our proof of Theorem 3 hinges
upon this). In order to find this point, PDRC traverses only the path between the point
of no return and the forbidden state, whereas IISC traverses the whole path. In a sense,
PDRC does not care about how one might end up close to forbidden state, but only
where to put up the fence.

In practice, our results have IISC outperforming PDRC on both PDE and CMT.
We believe the main reason is that unlike IISC which uses IC3 extended to SMT [3],

A Supervisory Control Algorithm 127

our implementation of PDRC works in SAT. This means that while both algorithms
are theoretically equipped to abstract away large swathes of the state space, IISC does it
much easier on integer variables than PDRC, which needs to e.g. represent each possible
value of a variable as a separate gate.

The one point where PDRC succeeds also in practice is on the PME problem. Here,
most of the system’s complexity comes from the number of different locations across
the synchronised automata, rather than from large variable domains. In order to further
explore this difference in problem type, we would have liked to evaluate PDRC and
IISC on more problems with more synchronised automata, such as EDP(10,10). Sadly,
this was impossible since the IISC implementation is no longer maintained.

8 Conclusions and Future Work

We have presented PDRC, an algorithm for controller synthesis of discrete event sys-
tems with uncontrollable transitions, based on property-driven reachability. The algo-
rithm is proven to terminate on all solvable problem instances, and its synthesised con-
trollers are proven to be safe and minimally restrictive. We have also implemented a
prototype in the SAT-based model checker Tip. Our experiments show that even this
SAT-based implementation outperforms a comparable BDD-based approach, but not
the more recent IISC. However, since the implementation of IISC we compare against
uses an SMT solver, not to mention that it is not maintained anymore, we must declare
the algorithm-level comparison inconclusive.

The clearest direction for future research would be to implement PDRC using an
SMT solver, to see if this indeed does realise further potential of the algorithm like we
believe. Both [3] and [9] provide good insights for this task. However, another inter-
esting direction is to use both PDRC and IISC as a starting point to tackling the larger
problem: safe and nonblocking controller synthesis. Expanding the problem domain
like this cannot be done by a trivial change to PDRC, but hopefully the insights from
this work can contribute to a new algorithm. Another technique to draw from is that
of IICTL [7]. As discussed in Section 2.2, by restricting our problem to only safety,
we remove ourselves from real-world applications. For this reason, we do not present
PDRC as a contender for any sort of throne, but as a stepping stone towards the real
goal: formal, symbolic synthesis and verification of discrete supervisory control.

128 K. Claessen et al.

References

[1] Armin Biere. AIGER. 2014. URL: http://fmv.jku.at/aiger/ (visited
on 07/24/2017).

[2] Aaron R. Bradley. “SAT-Based Model Checking without Unrolling”. In: Verifi-
cation, Model Checking, and Abstract Interpretation: 12th International Confer-
ence, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings. Ed. by
Ranjit Jhala and David Schmidt. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 70–87. ISBN: 978-3-642-18275-4. DOI: 10.1007/978-3-642-
18275-4_7.

[3] Alessandro Cimatti and Alberto Griggio. “Software Model Checking via IC3”.
In: Computer Aided Verification: 24th International Conference, CAV 2012, Berke-
ley, CA, USA, July 7-13, 2012 Proceedings. Ed. by P. Madhusudan and Sanjit
A. Seshia. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 277–293.
ISBN: 978-3-642-31424-7. DOI: 10.1007/978-3-642-31424-7_23.

[4] Niklas Eén, Alan Mishchenko, and Robert Brayton. “Efficient Implementation
of Property Directed Reachability”. In: Proceedings of the International Con-
ference on Formal Methods in Computer-Aided Design. FMCAD ’11. Austin,
Texas: FMCAD Inc, 2011, pp. 125–134. ISBN: 978-0-9835678-1-3. URL: http:
//dl.acm.org/citation.cfm?id=2157654.2157675.

[5] Niklas Eén and Niklas Sörensson. “Temporal Induction by Incremental SAT
Solving”. In: Electronic Notes in Theoretical Computer Science 89.4 (2003),
pp. 543–560. ISSN: 1571-0661. DOI: http://dx.doi.org/10.1016/
S1571-0661(05)82542-3.

[6] Z. Fei et al. “A symbolic approach to large-scale discrete event systems modeled
as finite automata with variables”. In: 2012 IEEE International Conference on
Automation Science and Engineering (CASE). Aug. 2012, pp. 502–507. DOI:
10.1109/CoASE.2012.6386479.

[7] Zyad Hassan, Aaron R. Bradley, and Fabio Somenzi. “Incremental, Inductive
CTL Model Checking”. In: Proceedings of the 24th International Conference on
Computer Aided Verification. CAV’12. Springer-Verlag, 2012, pp. 532–547.

[8] C. A. R. Hoare. Communicating Sequential Processes. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1985. ISBN: 0-13-153271-5.

[9] Kryštof Hoder and Nikolaj Bjørner. “Generalized Property Directed Reachabil-
ity”. In: Proceedings of the 15th International Conference on Theory and Appli-
cations of Satisfiability Testing. SAT’12. Trento, Italy: Springer-Verlag, 2012,
pp. 157–171. ISBN: 978-3-642-31611-1. DOI: 10 . 1007 / 978 - 3 - 642 -
31612-8_13.

[10] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation (3rd Edition). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2006. ISBN: 0321462254.

[11] R. Kumar, V. Garg, and S. I. Marcus. “Predicates and predicate transformers for
supervisory control of discrete event dynamical systems”. In: IEEE Transactions
on Automatic Control 38.2 (Feb. 1993), pp. 232–247. ISSN: 0018-9286. DOI:
10.1109/9.250512.

A Supervisory Control Algorithm 129

16 REFERENCES

[12] R. J. Leduc, M. Lawford, and W. M. Wonham. “Hierarchical interface-based
supervisory control-part II: parallel case”. In: IEEE Transactions on Automatic
Control 50.9 (Sept. 2005), pp. 1336–1348. ISSN: 0018-9286. DOI: 10.1109/
TAC.2005.854612.

[13] Robi Malik. Waters/Supremica IDE. 2014. URL: http://www.cs.waikato.
ac.nz/˜robi/download_waters/ (visited on 07/24/2017).

[14] S. Miremadi, B. Lennartson, and K. Akesson. “A BDD-Based Approach for
Modeling Plant and Supervisor by Extended Finite Automata”. In: IEEE Trans-
actions on Control Systems Technology 20.6 (Nov. 2012), pp. 1421–1435. ISSN:
1063-6536. DOI: 10.1109/TCST.2011.2167150.

[15] Sajed Miremadi, Knut Akesson, et al. “Solving two supervisory control bench-
mark problems using Supremica”. In: 2008 9th International Workshop on Dis-
crete Event Systems. May 2008, pp. 131–136. DOI: 10.1109/WODES.2008.
4605934.

[16] P.J. Ramadge and W.M. Wonham. “The control of discrete event systems”. In:
Proceedings of the IEEE, Special Issue on Discrete Event Dynamic Systems 77.1
(1989), pp. 81–98. ISSN: 0018-9219.

[17] Mohammad Reza Shoaei. Incremental and Hierarchical Deadlock-Free Control
of Discrete Event Systems with Variables: A Symbolic and Inductive Approach.
PhD thesis, Series 3827. Chalmers University of Technology, Dept. of Signals
and Systems, Automation, 2015, pp. 44–45. ISBN: 978-91-7597-146-9.

[18] Mohammad Reza Shoaei, Laura Kovács, and Bengt Lennartson. “Supervisory
Control of Discrete-Event Systems via IC3”. In: Hardware and Software: Verifi-
cation and Testing: 10th International Haifa Verification Conference, HVC 2014,
Haifa, Israel, November 18-20, 2014. Proceedings. Ed. by Eran Yahav. Springer
International Publishing, 2014, pp. 252–266.

130 K. Claessen et al.

SMT-based Synthesis of Safe and Robust PID
Controllers for Stochastic Hybrid Systems

Fedor Shmarov1, Nicola Paoletti2, Ezio Bartocci3, Shan Lin4, Scott A. Smolka2, and
Paolo Zuliani1

1 School of Computing, Newcastle University, UK
{f.shmarov,paolo.zuliani}@ncl.ac.uk

2 Department of Computer Science, Stony Brook University, NY, USA
{nicola.paoletti,sas}@cs.stonybrook.edu

3 Faculty of Informatics, TU Wien, Austria
ezio.bartocci@tuwien.ac.at

4 Department of Electrical and Computer Engineering, Stony Brook University, NY, USA
shan.x.lin@stonybrook.edu

Abstract. We present a new method for the automated synthesis of safe and ro-
bust Proportional-Integral-Derivative (PID) controllers for stochastic hybrid sys-
tems. Despite their widespread use in industry, no automated method currently
exists for deriving a PID controller (or any other type of controller, for that mat-
ter) with safety and performance guarantees for such a general class of systems.
In particular, we consider hybrid systems with nonlinear dynamics (Lipschitz-
continuous ordinary differential equations) and random parameters, and we syn-
thesize PID controllers such that the resulting closed-loop systems satisfy safety
and performance constraints given as probabilistic bounded reachability prop-
erties. Our technique leverages SMT solvers over the reals and nonlinear dif-
ferential equations to provide formal guarantees that the synthesized controllers
satisfy such properties. These controllers are also robust by design since they
minimize the probability of reaching an unsafe state in the presence of random
disturbances. We apply our approach to the problem of insulin regulation for
type 1 diabetes, synthesizing controllers with robust responses to large random
meal disturbances, thereby enabling them to maintain blood glucose levels within
healthy, safe ranges.

1 Introduction

Proportional-Integrative-Derivative (PID) controllers are among the most widely de-
ployed and well-established feedback-control techniques. Application areas are diverse
and include industrial control systems, flight controllers, robotic manipulators, and
medical devices. The PID controller synthesis problem entails finding the values of
its control parameters (proportional, integral and derivative gains) that are optimal in
terms of providing stable feedback control to the target system (the plant) with desired
response behavior. Despite the limited number of parameters, this problem is far from
trivial, due to the presence of multiple (and often conflicting) performance criteria that
a controller is required to meet (e.g., normal transient response, stability).

© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 131–146, 2017.
https://doi.org/10.1007/978-3-319-70389-3_9

Developing PID controllers for cyber-physical systems is even more challenging
because their dynamics are typically hybrid, nonlinear, and stochastic in nature. More-
over, it is imperative that the closed-loop controller-plus-plant system is safe (i.e., does
not reach a bad state) and robust (i.e., exhibits desired behavior under a given range
of disturbances). To the best of our knowledge, however, the current techniques for
synthesizing PID controllers (see e.g., [34,9,13]) simply ignore these issues and do not
provide any formal guarantees about the resulting closed-loop system.

In this paper, we present a new framework for the automated synthesis of PID con-
trollers for stochastic hybrid systems such that the resulting closed-loop system prov-
ably satisfies a given (probabilistic) safety property in a robust way with respect to
random disturbances. Specifically, we formulate and tackle two different, yet comple-
mentary, problems: controller synthesis, i.e., find a PID controller that minimizes the
probability of violating the property, thus ensuring robustness against random perturba-
tions; and maximum disturbance synthesis, i.e., find, for a given controller, the largest
disturbance that the resulting control system can sustain without violating the property.
To the best of our knowledge, we are the first to present a solution to these problems
(see also the related work in Section 6) with formal guarantees.

It is well known that safety verification is an inherently difficult problem for non-
linear hybrid systems — it is in general undecidable, hence it must be solved using
approximation methods. Our technique builds on the frameworks of delta-satisfiability
[16] and probabilistic delta-reachability [32] to reason formally about nonlinear and
stochastic dynamics. This enables us to circumvent undecidability issues by returning
solutions with numerical guarantees up to an arbitrary user-defined precision.

We express safety and performance constraints as probabilistic bounded reacha-
bility properties, and encode the synthesis problems as SMT formulae over ordinary
differential equations. This theory adequately captures, besides the reachability proper-
ties, the hybrid nonlinear dynamics that we need to reproduce, and leverages appropriate
SMT solvers [17,31] that can solve the delta-satisfiability problem for such formulae.

We demonstrate the utility of our approach on an artificial pancreas case study,
i.e. the closed-loop insulin regulation for type 1 diabetes. In particular, we synthesize
controllers that can provide robust responses to large random meal disturbances, while
keeping the blood glucose level within healthy, safe ranges.

To summarize, in this paper, we make the following main contributions:

– We provide a solution to the PID controller synthesis and maximum disturbance
synthesis problems using an SMT-based framework that supports hybrid plants with
nonlinear ODEs and random parameters.

– We encode in the framework safety and performance requirements, and state the
corresponding formal guarantees for the automatically synthesized PID controllers.

– We demonstrate the practical utility of our approach by synthesizing provably safe
and robust controllers for an artificial pancreas model.

2 Background

Hybrid systems extend finite-state automata by introducing continuous state spaces and
continuous-time dynamics [2]. They are especially useful when modeling systems that

132 F. Shmarov et al.

combine discrete and continuous behavior such as cyber-physical systems, including
biomedical devices (e.g., infusion pumps and pacemakers). In particular, continuous
dynamics is usually expressed via (solutions of) ordinary differential equations (ODEs).
To capture a wider and more realistic family of systems, in this work we consider hybrid
systems whose behavior depends on both random and nondeterministic parameters,
dubbed stochastic parametric hybrid systems (SPHS) [32]. In particular, our synthesis
approach models both the target system and its controller as a single SPHS. It is thus
important to adopt a formalism that allows random and nondeterministic parameters:
the former are used to model system disturbances and plant uncertainties, while the
latter are used to constrain the search space for the controller synthesis.

Definition 1. (SPHS)[32] A Stochastic Parametric Hybrid System is a tuple H =<
Q,ϒ,X ,P,Y,R, jump,goal>, where

– Q = {q0, · · · ,qm} is the set of modes (discrete states) of the system;
– ϒ⊆ {(q,q′) : q,q′ ∈ Q} is the set of possible mode transitions (discrete dynamics);
– X = [u1,v1]×·· ·× [un,vn]× [0,T]⊂ Rn+1 is the continuous system state space;
– P = [a1,b1]× ·· · × [ak,bk] ⊂ Rk is the parameter space of the system, which is

represented as P = PR×PN , where PR is domain of random parameters and PN is
the domain of nondeterministic parameters (and either domain may be empty);

– Y = {yq(p) : q ∈ Q,p ∈ X×P} is the continuous dynamics where yq : X×P→ X;
– R = {g(q,q′)(p) : (q,q′) ∈ ϒ,p ∈ X ×P} is the set of ‘reset’ functions g(q,q′) : X ×

P→ X ×P defining the continuous state at time t = 0 in mode q′ after taking the
transition from mode q.

and predicates (or relations)

– jump(q,q′)(p) is true iff the discrete transition (q,q′) ∈ ϒ may occur upon reaching
state (p,q) ∈ X×P×Q,

– goalq(p) is true iff p ∈ X×P is a goal state for mode q.

The goal predicate is the same for all modes and is used to define the safety require-
ments for the controller synthesis (see (4.6) in Section 4). We assume that the SPHS has
an initial state (x0,q0) ∈ X×Q. The continuous dynamics Y is given as an initial-value
problem with Lipschitz-continuous ODEs over a bounded time domain [0,T], which
have a unique solution for any given initial condition p ∈ X×P (by the Picard-Lindelöf
theorem). System parameters are treated as variables with zero derivative, and thus are
part of the initial conditions. Finally, parameters may be random discrete/continuous
(capturing system disturbances and uncertainties) with an associated probability mea-
sure, and/or nondeterministic (i.e. the parameters to synthesize), in which case only
their bounded domain is known.

Probabilistic Delta-Reachability: For our purposes we need to consider probabilistic
bounded reachability: what is the probability that a SPHS (which models system and
controller) reaches a goal state in a finite number of discrete transitions? Reasoning
about reachability in nonlinear hybrid systems entails deciding first-order formulae over
the reals. It is well known that such formulae are undecidable when they include, e.g.,
trigonometric functions. A relaxed notion of satisfiability (δ-satisfiability [16]) can be

SMT-based Synthesis of Safe and Robust 133

utilized to overcome this hurdle, and SMT solvers such as dReal [17] and iSAT-ODE
[10] can “δ-decide” a wide variety of real functions, including transcendental functions
and solutions of nonlinear ODEs. (Essentially, those tools implement solving proce-
dures that are sound and complete up to a given arbitrary precision.)

A probabilistic extension of bounded reachability in SPHSs was presented in [32],
which basically boils down to measuring the goal set, i.e. the set of parameter points
for which the system satisfies the reachability property. Recall that the set of goal states
for a SPHS is described by its goal predicate. When nondeterministic parameters are
present, the system may exhibit a range of reachability probabilities, depending on the
value of the nondeterministic parameters. That is, the reachability probability is given
by a function Pr(ν) =

∫
G(ν) dP, defined for any ν ∈ PN , where G(ν) is the goal set and

P is the probability measure of the random parameters. The ProbReach tool utilizes the
notion of δ-satisfiability when computing the goal set, thereby computing probabilistic
δ-reachability [31]. In particular, ProbReach computes probability enclosures for the
range of function Pr over parameter sets N ⊆ PN , i.e., intervals [a,b] such that

∀ν ∈N Pr(ν) ∈ [a,b] (2.1)

where 06 a6 b6 1 (but a= b can only be achieved in very special cases, of course). To
solve our synthesis problems we leverage ProbReach’s formal approach and statistical
approach for the computation of probability enclosures.

Formal Approach: ProbReach guarantees that the returned enclosures satisfy (2.1) for-
mally and numerically [31]. In particular, any enclosure either has a desired width
ε ∈Q+, or the size of the corresponding parameter box N ⊆ PN is smaller than a given
lower limit. The computational complexity of this approach increases exponentially
with the number of parameters, so it might not be feasible for large systems.

Statistical Approach: It trades computational complexity with correctness guarantees
[32], by solving approximately the problem of finding a value ν∗ for the nondetermin-
istic parameters that minimizes (maximizes) the reachability probability Pr:

ν
∗ ∈ argmin

ν∈PN

Pr(ν)
(
ν
∗ ∈ argmax

ν∈PN

Pr(ν)
)
. (2.2)

ProbReach returns an estimate ν̂ for ν∗ and a probability enclosure [a,b] that are statis-
tically and numerically guaranteed to satisfy:

Prob(Pr(ν̂) ∈ [a,b])> c (2.3)

where 0 < c < 1 is an arbitrary confidence parameter. In general, the size of the en-
closure [a,b] cannot be arbitrarily chosen due to undecidability reasons, although it
may be possible to get tighter enclosures by increasing the numerical precision of
δ-reachability. Also, the statistical approach utilizes a Monte Carlo (Cross Entropy)
method, so it cannot guarantee that ν̂ is a global optimum, i.e., that satisfies (2.2).

PID control: A PID control law is the sum of three kinds of control actions, Propor-
tional, Integral and Derivative actions, each of which depends on the error value, e,
i.e. the difference between a target trajectory, or setpoint sp, and the measured output

134 F. Shmarov et al.

of the system y. At time t, the resulting control law u(t) and error e(t) are given by:

u(t) = Kpe(t)︸ ︷︷ ︸
P

+Ki

∫ t

0
e(τ) dτ

︸ ︷︷ ︸
I

+Kdė(t)︸ ︷︷ ︸
D

, e(t) = sp(t)− y(t) (2.4)

where constants Kp, Ki and Kd are called gains and fully characterize the PID controller.
The above control law assumes a continuous time domain, which is quite common

in the design stage of a PID controller. Alternatively, PID control can be studied over
discrete time, where the integral term is replaced by a sum and the derivative by a
finite difference. However, the analysis of discrete-time PID controllers is impractical
for non-trivial time bounds because they induce a discrete transition for each time step,
and thus, they directly affect the unrolling/reachability depth required for the bounded
reachability analysis, which is at the core of our synthesis method.

3 PID Control of Hybrid Plants

P

I

D

PLANT
SPHS

Fig. 1. PID control loop

We formally characterize the
system given by the feedback
loop between a plant SPHS H
and a PID controller, so called
closed-loop system (see Figure
1). We would like to stress that
we support plants specified as
hybrid systems, given that a va-
riety of systems naturally ex-
hibit hybrid dynamics (regard-
less of the controller). For instance, in the artificial pancreas case study of Section 5,
discrete modes are used to describe different meals, while the glucose metabolism is
captured by a set of ODEs.

We assume that the controller is an additive input and can manipulate only one of
the state variables of H, xu, and that for each mode q of H, there is a measurement
function hq that provides the output of the system at q. To enable synthesis, we further
assume that the PID controller gains k = (Kp,Ki,Kd) are (unknown) nondeterministic
parameters with domain K. To stress this dependency, below we use the notation u(k, t)
to denote the PID control law of Equation 2.4.

Definition 2 (PID-SPHS control system). Let H = 〈Q, ϒ, X, P, Y , R, jump,goal〉
be a plant SPHS, and let u be a PID controller (2.4) with gain parameters k ∈ K ⊂
R3. For q ∈ Q, let hq : X → R be the corresponding measurement function. Let xu be
the manipulated state variable, iu ∈ {1, . . . ,n} be the corresponding index in the state
vector, and sp : [0, t]→ R be the desired setpoint. The PID-SPHS control system with
plant H is the SPHS H ‖ u = 〈Q,ϒ,X ,P×K,Y ′,R′, jump,goal〉, where

SMT-based Synthesis of Safe and Robust 135

– Y ′= {y′q(p,k, t) : q∈Q,p∈X×P,k∈K, t ∈ [0,1]}, where the continuous dynamics
of each state variable with index i = 1, . . . ,n is given by

y′q,i(p,k, t) =

{
yq,i(p, t)+u(k, t) if i = iu
yq,i(p, t) otherwise

where yq,i is the corresponding continuous dynamics in the plant SPHS H, and
u(k, t) is the PID law described in (2.4), with error

e(t) = sp(t)−hq(y′q(p,k, t)); and

– R′ = {g′(q,q′)(p,k, t) : (q,q′)∈ϒ,p∈ X×P,k∈K, t ∈ [0,T]}, where g′(q,q′)(p,k, t) =
g(q,q′)(p, t), i.e. the reset g′(q,q′) is not affected by the controller parameters k and is
equal to the corresponding reset of the plant H, g(q,q′).

In other words, the PID-SPHS control system is obtained by applying the same
PID controller to the continuous dynamics of each discrete mode of the hybrid plant,
meaning that the PID-SPHS composition produces the same number of modes of the
plant SPHS. We remark that external disturbances as well as plant uncertainties can be
encoded through appropriate random variables in the plant SPHS.

4 Safe and Robust PID Controller Synthesis

In this section we first illustrate the class of synthesis properties of interest, able to cap-
ture relevant safety and performance objectives. Second, we formulate the PID control
synthesis problem and the related problem of maximum disturbance synthesis.

We remark that our main objective is designing PID controllers with formal safety
guarantees, i.e. a given set of bad states should never be reached by the system, or
reached with very small probability. Similarly, we aim to synthesize controllers able to
guarantee, by design, prescribed performance levels. For instance, the designer might
need to keep the settling time within strict bounds, or avoid large overshoot.

To this purpose, we consider two well-established performance measures, the fun-
damental index (FI) and the weighted fundamental index (FIw) [24,25]5, defined by:

FI(t) =
∫ t

0
(e(τ))2 dτ FIw(t) =

∫ t

0
τ

2 · (e(τ))2 dτ. (4.5)

FI and FIw quantify the cumulative error between output and set-point, thus providing
a measure of how much the system deviates from the desired behavior. Crucially, they
also indirectly capture key transient response measures such as steady-state error, i.e.
the value of e(t) when t→∞, or maximum overshoot, i.e. the highest deviation from the
setpoint6. In fact, small FI values typically indicate good transient response (e.g. small

5 FI and FIw are also also known as “integral of square error” and “integral of square time
weighted square error”, respectively.

6 In PID theory, transient response measures are often evaluated after applying a step function
to the set-point. However, we do not restrict ourselves to this scenario.

136 F. Shmarov et al.

overshoot or short rise-time), while FIw weighs errors with the corresponding time, in
this way stressing steady state errors.

We now formulate the main reachability property for the synthesis of safe and ro-
bust controllers, which is expressed by predicate goal. The property captures the set of
bad states that the controller should avoid (predicate bad) as well as performance con-
straints through upper bounds FImax,FImax

w ∈R+ on the allowed values of FI and FIw,
respectively, and is given by:

goal= bad∨ (FI > FImax)∨ (FIw > FImax
w). (4.6)

In the case that the designer is not interested in constraining FI or FIw, we allow FImax

and FImax
w to be set +∞.

We now introduce the PID controller synthesis problem that aims at synthesizing
the control parameters yielding the minimal probability of reaching the goal (i.e. the
undesired states). Importantly, this corresponds to minimizing the effects on the plant
of random disturbances, that is, to maximizing the robustness of the resulting system.

We remark that the unrolling depth and the goal predicate are implicit in the reach-
ability probability function Pr (see Section 2).

Problem 1 (PID controller synthesis). Given a PID-SPHS control system H ‖ u with
unknown control parameters k∈K, find the parameters k∗ that minimize the probability
of reaching the goal:

k∗ ∈ argmin
k∈K

Pr(k).

For the duality between safety and reachability, Problem 1 is equivalent to synthesizing
controllers that maximize the probability that ¬goal always holds. If H ‖ u has no ran-
dom parameters (but only nondeterministic parameters), then Problem 1 is equivalent
to synthesizing, if it exists, a controller that makes goal unsatisfiable.

As previously explained, the control parameters k that we aim to synthesize must
be defined as nondeterministic parameters in the SPHS H ‖ u. Crucially, we can employ
both the formal and the statistical approach alike to solve this problem.

In general, it is not possible to know the exact minimizing parameter because of the
inherent undecidability. However, using the formal approach one could select the syn-
thesized controller parameter k∗ as the midpoint of the parameter box whose enclosure
has the least midpoint. Through the following proposition, we show that this solution
can be made arbitrarily precise when all of the returned enclosures have length ≤ ε, the
user-defined parameter that determines the desired length of the enclosure as explained
in Section 2 (however, this cannot be always guaranteed).

Proposition 1. Suppose that the returned enclosures by the formal approach have all
length ≤ ε. Let P∗ be the actual minimal probability, and let k∗ be the solution of the
formal approach for Problem 1. Then, it holds that

Pr(k∗)< P∗+
3
2

ε .

Proof. See Appendix A in [30].

SMT-based Synthesis of Safe and Robust 137

On the other hand, the statistical algorithm returns an over-approximation P̂ of the
minimum probability, c-confidence interval [P̂] such that P̂ ∈ [P̂], and synthesized pa-
rameters k∗ whose reachability probability is included in [P̂] with probability at least c,
as per Equations 2.2 and 2.3.

Below, we define the maximum disturbance synthesis problem, aimed at finding,
given a concrete controller, the maximum disturbance value that the resulting control
system can support without violating a given property. This problem is complementary
to the PID synthesis problem, since it allows the designer to formally evaluate the ro-
bustness of a known controller, possibly synthesized in a previous step. Specifically, we
assume that the disturbance is represented by a vector of nondeterministic parameters
d in the plant SPHS, and that d ranges over some bounded domain D.

Problem 2 (Maximum disturbance synthesis). Given a PID-SPHS control system H ‖ u
with known control parameters k∗ ∈ K and unknown disturbance d ∈ D, and a proba-
bility threshold p, find the highest disturbance d∗ for which the probability of reaching
the goal does not exceed p, i.e. such that:

d∗ = max{d ∈ D | Pr(d)≤ p} .

For the duality between safety and reachability, the probability of reaching goal is below
p if and only if the probability that ¬goal always holds is above 1− p. If H ‖ u has no
random parameters (but only nondeterministic parameters), then Problem 2 reduces to
finding the largest disturbance for which the PID-SPHS system either reaches or does
not reach the goal.

Note that the maximum disturbance synthesis problem is fundamentally different
from the controller synthesis problem, because the kind of parameters that we seek
to synthesize represent external factors that cannot be controlled. That is why we are
interested in knowing the maximum (worst-case) value they can attain such that the
requirements are met with given probability constraints. In particular, we restrict to
upper-bound constraints because we want to limit the probability of reaching a given
goal (undesired) state, even though lower bound constraints can be equally supported
by the synthesis method.

Problem 2 is solved through the formal approach, which allows identifying the pa-
rameters boxes whose probability enclosures are guaranteed to be below the threshold
p, i.e., they are intervals of the form [Pmin,Pmax] with Pmax ≤ p. Then, the synthesized
parameter d∗ is selected as the highest value among all such parameter boxes.

It follows that the returned d∗ is guaranteed to meet the probability constraint
(Pr(d∗) ≤ p), but, due to the iterative refinement, d∗ under-estimates the actual max-
imum disturbance. In this sense, d∗ is a safe under-approximation. The reason is that
there might exist some “spurious” parameter boxes [d] (not returned by the algorithm),
i.e. such that p lies within the corresponding probability enclosure [P] and [d] contains
a disturbance value d′ that is higher than the synthesized d∗ and that, at the same time,
meets the constraint Pr(d′)≤ p.

The statistical approach cannot be applied in this case, because it relies on the Cross
Entropy method, which is designed for estimation and optimization purposes and is not
suitable for decision problems. Note indeed that the probability bound ≤ p induces a
Boolean (and not quantitative) property.

138 F. Shmarov et al.

5 Case Study: Artificial Pancreas

We evaluate our method on the closed-loop control of insulin treatment for Type 1
diabetes (T1D), also known as the artificial pancreas (AP) [20]. Together with model
predictive control, PID is the main control technique for the AP [33,22], and is found
as well in commercial devices [23].

The main requirement for the AP is to keep blood glucose (BG) levels within tight,
healthy ranges, typically between 70-180 mg/dL, in order to avoid hyperglycemia (BG
above the healthy range) and hypoglycemia (BG below the healthy range). While some
temporary, postprandial hyperglycemia is typically admissible, hypoglycemia leads to
severe health consequences, and thus, it should be avoided as much as possible. This is
a crucial safety requirement, which we will incorporate in our synthesis properties.

The AP consists of a continuous glucose monitor that provides glucose measure-
ments to a control algorithm regulating the amount of insulin injected by the insulin
pump. The pump administers both basal insulin, a low and continuous dose that covers
insulin needs outside meals, and bolus insulin, a single high dose for covering meals.

Meals represent indeed the major disturbance in insulin control, which is why state-
of-the-art commercial systems7 can only regulate basal insulin and still require explicit
meal announcements by the patient for bolus insulin. To this purpose, robust control
methods have been investigated [28,35,27], since they are able to minimize the impact
of input disturbances (in our case, meals) on the plant (the patient). Thus, they have the
potential to provide full closed-loop control of bolus insulin without manual dosing by
the patient, which is inherently error-prone and hence, dangerous. Our method for the
synthesis of safe and robust controllers is therefore particularly meaningful in this case.

5.1 Plant Model

To model the continuous system’s dynamics (e.g., glucose and insulin concentrations),
we consider the well-established nonlinear model of Hovorka et al. [21].

At time t, the input to the system is the infusion rate of bolus insulin, u(t), which
is computed by the PID controller. The system output y(t) is given by state variable
Q1(t) (mmol), describing the amount of BG in the accessible compartment, i.e. where
measurements are taken, for instance using finger-stick blood samples. For simplicity,
we did not include a model of the continuous glucose monitor (see e.g. [36]) that instead
measures glucose in the tissue fluid, but we assume continuous access to blood sugar
values. The state-space representation of the system is as follows:

ẋ(t) = F(x(t),u(t),DG) , y(t) = Q1(t) (5.7)

where x is the 8-dimensional state vector that evolves according to the nonlinear ODE
system F (see Appendix B in [30] for the full set of equations and parameters). The
model assumes a single meal starting at time 0 and consisting of an amount DG of
ingested carbohydrates. Therefore, parameter DG represents our input disturbance.

7 MINIMED 670G by Medtronic https://www.medtronicdiabetes.com/products/
minimed-670g-insulin-pump-system

SMT-based Synthesis of Safe and Robust 139

Instead of the BG mass Q1(t), in the discussion of the results we will mainly evalu-
ate the BG concentration G(t) = Q1(t)/VG, where VG is the BG distribution volume.

The error function of the PID controller is defined as e(t) = sp−Q1(t) with the
constant set point sp corresponding to a BG concentration of 110 mg/dL. Multiple
meals can be modeled through a stochastic parametric hybrid system with one mode
for each meal. In particular, we consider a one-day scenario consisting of three random
meals (breakfast, lunch and dinner), resulting in the SPHS of Figure 2.

Meal 1 Meal 2 Meal 3
DG := DG1

t = T1

(DG := DG2)∧ (t := 0)

t = T2

(DG := DG3)∧ (t := 0)

Fig. 2. Stochastic parametric hybrid system modelling a scenario of 3 meals over 24 hours. Above
each edge, we report the corresponding jump conditions, below, the resets.

The model features five random, normally-distributed parameters: the amount of
carbohydrates of each meal, DG1 ∼N (40,10), DG2 ∼N (90,10) and DG3 ∼N (60,10),
and the waiting times between meals, T1 ∼N (300,10) and T2 ∼N (300,10).

A meal containing DG1 grams of carbohydrates is consumed at time 0. When the
time in the first mode reaches T1 minutes the system makes a transition to the next
mode Meal 2 where the value of the variable DG is set to DG2 and the time is reset to
0. Similarly, the system transitions from mode Meal 2 to Meal 3, resetting variables
DG and t to DG3 and 0, respectively. All remaining variables are not reset at discrete
transitions.

Basal insulin and initial state: The total insulin infusion rate is given by u(t)+ub where
u(t) is the dose computed by the PID controller, and ub is the basal insulin. As typically
done, the value of ub is chosen in order to guarantee a steady-state BG value of Q1 = sp,
and the steady state thus obtained is used as the initial state of the system.

We denote with C0 the basal controller that switches off the PID controller and
applies only ub (i.e., Kp, Ki and Kd are equal to 0).

5.2 Experiments

We apply the formal and statistical techniques of ProbReach to synthesize the con-
troller parameters Kp, Kd and Ki (Problem 1) and the maximum safe disturbance DG
(Problem 2), considering the probabilistic reachability property of Section 4. All exper-
iments in this section were conducted on a 32-core (Intel Xeon 2.90GHz) Ubuntu 16.04
machine, and the obtained results for the synthesized controllers are summarized in Ta-
ble 1. We also validate and assess performance of the controllers over multiple random
instantiations of the meals, which is reported in Figure 3.

PID controller synthesis Typical healthy glucose levels vary between 4 and 10 mmol/L.
Since avoiding hypoglycemia (G(t)< 4 mmol/L) is the main safety requirement of the
artificial pancreas, while (temporary) hyperglycemia can be tolerated and is inescapable

140 F. Shmarov et al.

after meals, we will consider a BG range of [4,16] for our safety properties. In this way
we protect against both hypoglycemia and very severe levels of hyperglycemia.

Given that the basal insulin level is insufficient to cover meal disturbances, the basal
controller C0 prevents hypoglycemia but causes severe hyperglycemia when a large
meal is consumed (DG > 80) or when the BG level is not low enough by the time the
next meal is consumed (see Figure 3).

We used the statistical engine of ProbReach to synthesize several controllers (see
Table 1), over domains Kd ∈ [−10−1,0], Ki ∈ [−10−5,0] and Kp ∈ [−10−3,0], which
minimize the probability of reaching a bad state at any time instant in the modes Meal 1,
Meal 2 and Meal 3 (reachability depth of 0, 1 or 2, respectively).

The set of unsafe glucose ranges is captured by predicate bad= G(t) 6∈ [4,16]. Con-
troller C1 was synthesized considering only safety requirements, corresponding to the
reachability specification goal= bad (see Equation 4.6). On the other hand, controllers
C2, C3 and C4 were obtained taking into account also performance constraints, by using
the default specification (4.6): goal= bad∨ (FI > FImax)∨ (FIw > FImax

w). Thresholds
FImax and FImax

w have been set to gradually stricter values, respectively to 3.5×106 and
70×109 for C2, 3×106 and 50×109 for C3, and 2.7×106 and 30×109 for C4.

Kd (×102) Ki (×107) Kp (×104) CPUsyn P CPUP Dmax
G1

CPUmax

C0 0 0 0 0 [0.97322,1] 176 69.4 2,327
C1 -6.02 -3.53 -6.17 92,999 [0.19645,0.24645] 4,937 88.07 3,682
C2 -5.73 -3.00 -6.39 156,635 [0.31307,0.36307] 64,254 87.62 3,664
C3 -6.002 -1.17 -6.76 98,647 [0.65141,0.70141] 59,215 88.23 3,881
C4 -6.24 -7.55 -5.42 123,726 [0.97149,1] 11,336 88.24 3,867

Table 1. Results of PID controller synthesis, where: # – name of the synthesized controller, Kd ,
Ki and Kp – synthesized values of the gain constants characterizing the corresponding controller
(Problem 1), CPUsyn – CPU time in seconds for synthesizing the controller parameters, P – 99%-
confidence interval for the reachability probability, CPUP – CPU time in seconds for computing P
for synthesized controller, Dmax

G1
– synthesized maximum meal disturbance for which the system

never reaches the unsafe state, CPUmax – CPU time in seconds for obtaining Dmax
G1

.

Due to the high computational complexity of the artificial pancreas model, the con-
troller synthesis was performed in two steps. First, the values of Kp, Ki and Kd were
synthesized using a coarse precision (i.e., desired width for confidence intervals P) for
computing the probability estimates during the nondeterministic parameter search. Sec-
ond, the confidence intervals for the obtained controllers were computed with a higher
precision. The values of CPUsyn and CPUP in Table 1 represent CPU times used for
solving these two steps. The high computation times are due to the fact that the solvers
incorporated by ProbReach solve ODEs in a guaranteed manner which is, for general
Lipschitz-continuous ODEs, a PSPACE-complete problem, and thus, it is the main bot-
tleneck of the implemented algorithms.

Besides C0 that unsurprisingly yields the highest probability of safety violation
(highest P for the reachability probability), results in Table 1 evidence that controllers

SMT-based Synthesis of Safe and Robust 141

C1, . . . ,C4 fail to maintain the safe state with increasingly higher probability. As we shall
see in more detail later, this behaviour is mostly due to the performance constraints that
become harder and harder to satisfy.

Maximum disturbance synthesis We solve Problem 2 for each of the obtained con-
trollers in Table 1. We consider a domain of [0,120] for the maximum meal disturbance,
and apply the formal approach of ProbReach for synthesizing the maximum size Dmax

G1
of the first meal, such that, given any disturbance DG1 ∈ [0,Dmax

G1
], the system does not

reach the unsafe state within 12 hours. Note that this corresponds to setting the probabil-
ity threshold p of Problem 2 to 0. Since we are interested in just one meal, we consider
a reachability depth of 0 (path length of 1) for the bounded reachability property.

The results in Table 1 indicate that applying a PID controller increases the size of
the allowed meal from approximately 69g of the basal controller to about 88g, and at
the same time, the difference between the synthesized controllers is negligibly small.

Although introducing a controller does not increase the maximum disturbance dra-
matically with respect to the basal case, a PID control decreases the BG level suffi-
ciently enough so that a subsequent meal of similar size can be consumed without the
risk of experiencing severe hyperglycemia. In contrast, C0 does not bring the glucose
level low enough before the following meal.

Note that, being normally distributed with mean 90 g, the second random meal ex-
ceeds such obtained maximum disturbances, which explains why the synthesized con-
trollers fail with some probability to avoid unsafe states.

Performance and safety evaluation In this experiment, we evaluate safety and per-
formance of the controllers by simulating 1,000 instantiations of the random meals.
Such obtained glucose profiles and statistics are reported in Figure 3. No hypoglycemia
episode (G < 4) was registered.

Plots evidence that all four synthesized controllers (C1, . . . ,C4) perform dramatically
better than the basal controller C0, which stays, on the average, 23.59% of the time
in severe hyperglycemia (see index tbad). In particular, all the traces simulated for C0
violate the safe BG constraints G ∈ [4,16] (100% value of %bad).

On the other hand, controllers C1, . . . ,C4 violate safe BG constraints for 17-22% of
their traces, but this happens only for a very short while (no more than 0.45% of the
time) after the second (the largest) meal. This comes with no surprise since we already
formally proven that the second meal exceeds the allowed maximum meal disturbance.

C0 has the worst performance in terms of FI and FIw, with mean FI and FIw values
(indices FI and FIw, resp.) significantly larger than those of C1, . . . ,C4. Among the
synthesized controllers, C3 has the best steady-state behavior (as visible in Figure 3,
plot d), keeping the glucose level very close to the set point towards the end of the
simulation. C3 yields indeed the best mean FIw value (index FIw), while the worse
steady-state behavior is observed for C4. On the other hand, mean FI values are very
similar, meaning that C1, . . . ,C4 maintain the BG levels equally far from the set point
on the average.

One would expect C4 to have the best performance in terms of FIw, since it was
synthesized with the stricter FIw constraint (FImax

w = 30×109). This constraint is, how-

142 F. Shmarov et al.

ever, too strong to be satisfied, as demonstrated by the 100% value of index %FIw>FImax
w

(see Figure 3), implying all traces fail to satisfy FIw ≤ FImax
w . In general, we observe

that strengthening the performance constraints leads to higher chances of violating them
(see the last three indices of Figure 3). We conclude that performance constraints (and
their violation) largely contribute to the reachability probabilities computed by Pro-
bReach (see Table 1) for C2,C3 and C4, whose traces violate FI or FIw constraints for
28%, 67%, and 100% of the times, respectively.

(a) C0 (b) C1 (c) C2 (d) C3 (e) C4

tbad %bad FI (×10−6) FIw (×10−9) %FI>FImax %FIw>FImax
w

%FI>FImax∨FIw>FImax
w

C0 23.59% 100% 20.27 653.89 NA NA NA
C1 0.45% 22% 3.21 66.32 NA NA NA
C2 0.45% 21.4% 3.21 60.91 28.5% 14% 28.5%
C3 0.51% 24.2% 3.24 44.93 67.2% 21.7% 67.2%
C4 0.35% 17.3% 3.21 129.05 86.5% 100% 100%

Fig. 3. BG profiles simulated for 1,000 random meals (shaded blue lines). Grey areas indicate
healthy BG ranges (G ∈ [4,16]). Dashed black lines indicate the ideal setpoint. tbad: mean pro-
portion of time where G 6∈ [4,16] (all traces yielded G > 4, i.e. no hypoglycemia). %bad: propor-
tion of traces violating G ∈ [4,16]. FI and FIw: mean FI and FIw, resp. %FI>FImax , %FIw>FImax

w

and %FI>FImax∨FIw>FImax
w

: proportion of traces violating, resp., either and both performance con-
straints. The best value for each index is highlighted in bold.

6 Related Work

A number of approaches have been proposed for the PID control of nonlinear and
stochastic systems. Among these, nonlinear PID control [34] defines the controller gains
as nonlinear functions of the system state, even though performance guarantees have
been established only for subclasses of nonlinear systems. Adaptive PID (APID) con-
trol [13] supports nonlinear plants with partly unknown dynamics, but no requirements
can be guaranteed by design since the unknown dynamics is estimated via sampling the
plant output. In contrast, we can synthesize controllers with guaranteed performance for
a large class of nonlinear systems (Lipschitz-continuous) while retaining the complete
system dynamics. This allows for a fully model-based approach to controller synthe-
sis, which is key in safety-critical applications, where, on the contrary, the model-free
online tuning of APID is potentially dangerous.

SMT-based Synthesis of Safe and Robust 143

PID control for Markov jump systems, i.e. where the plant is a linear system with
stochastic coefficients, is solved as a convex optimization problem in [18,19], while
in [9], robust PID control for stochastic systems is reduced to a constrained nonlin-
ear optimization problem. Compared to these approaches, we support models where
stochasticity is restricted to random (both discrete and continuous) parameters, with
nondeterministic (i.e., arbitrary) parameters and much richer nonlinear dynamics. An-
other key strength of our method with respect to the above techniques is that design
specifications are given in terms of probabilistic reachability properties. These provide
rigor and superior expressiveness and can encode common performance indices for PID
controllers [25], as shown in Section 4.

Other related work includes the Simplex architecture [29] where, whenever the plant
is at risk of entering an unsafe state, the system switches from a high-performance ad-
vanced controller to a pre-certified (safe) baseline controller (with worse performance),
leading to a potential trade-off between safety and performance. In our approach, per-
formance and safety are instead equal cohorts in the synthesis process. Unlike Simplex,
in the Control Barrier Function (CBF) approach [3], there is no baseline controller to
fall back on: a CBF minimally perturbs a (possibly erroneous) control input to the plant
so the plant remains in the safe region. As far as we know, neither Simplex nor CBFs
have been designed with a stochastic plant model in mind.

The controller synthesis problem under safety constraints (bounded STL properties
in this case) is also considered in [12]. The main differences between this approach
and ours is that they focus on Model Predictive rather than PID control, and their sys-
tem model does not support stochastic parameters. There are a number of formal ap-
proaches (e.g., [1]) to control synthesis that consider the sample-and-hold schema typi-
cal of discrete-time controllers, but they do not yield PID controllers and cannot handle
stochastic hybrid systems. Verification of hybrid control systems with non-deterministic
disturbances is considered in [26] and solved through a combination of explicit model
checking and simulation. However, unlike our method, it does not support controller
synthesis and arbitrary probability distributions for the disturbances.

There has been a sizable amount of work on tools for formal analysis of probabilis-
tic reachability, although they all have limitations that make them unsuitable for our
approach. SiSAT [15] uses an SMT approach for probabilistic hybrid systems with dis-
crete nondeterminism, while continuous nondeterminism is handled via Monte Carlo
techniques only [11]; UPPAAL [7] uses statistical model checking to analyze nonlinear
stochastic hybrid automata; ProHVer [37] computes upper bounds for maximal reach-
ability probabilities, but continuous random parameters are analyzed via discrete over-
approximations [14]; U-Check [5] enables parameter synthesis and statistical model
checking of stochastic hybrid systems [4]). However, this approach is based on Gaus-
sian process emulation and optimisation, and provides only statistical guarantees and
requires certain smoothness conditions on the satisfaction probability function.

Other approaches to solving SMT problems over nonlinear real arithmetic include
the complete (over polynomials), yet computationally expensive, cylindrical algebraic
decomposition method implemented in solvers like Z3 [8], as well as a recent method [6]
based on the incremental linearization of nonlinear functions. However, none of these
support ODEs and transcendental functions.

144 F. Shmarov et al.

7 Conclusions and Future Work

The design of PID controllers for complex, safety-critical cyber-physical systems is
challenging due to the hybrid, stochastic, and nonlinear dynamics they exhibit. Mo-
tivated by the need for high-assurance design techniques in this context, in this pa-
per we presented a new method for the automated synthesis of PID controllers for
stochastic hybrid systems from probabilistic reachability specifications. In particular,
our approach can provide rigorous guarantees of safety and robustness for the resulting
closed-loop system, while ensuring prescribed performance levels for the controller. We
demonstrated the effectiveness of our approach on an artificial pancreas case study, for
which safety and robustness guarantees are paramount.

As future work, we plan to study more advanced variants of the PID design such as
nonlinear PID controllers, as well as investigate how common PID tuning heuristics can
be integrated in our automated approach to speed up the search for suitable controllers.

Acknowledgements: Research supported in part by EPSRC (UK) grant EP/N031962/1,
FWF (Austria) S 11405-N23 (RiSE/SHiNE), AFOSR Grant FA9550-14-1-0261 and
NSF Grants IIS-1447549, CNS-1446832, CNS-1445770, CNS-1445770, CNS-1553273,
CNS-1536086, CNS 1463722, and IIS-1460370.

References

1. V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci. Linearising discrete time hybrid
systems. IEEE Transactions on Automatic Control, PP(99):1–1, 2017.

2. R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An algorithmic
approach to the specification and verification of hybrid systems. In Hybrid Systems, volume
736 of LNCS, pages 209–229, 1992.

3. A. D. Ames and J. Holley. Quadratic program based nonlinear embedded control of series
elastic actuators. In CDC, pages 6291–6298. IEEE, 2014.

4. E. Bartocci, L. Bortolussi, L. Nenzi, and G. Sanguinetti. System design of stochastic models
using robustness of temporal properties. Theor. Comput. Sci., 587:3–25, 2015.

5. L. Bortolussi, D. Milios, and G. Sanguinetti. U-check: Model checking and parameter syn-
thesis under uncertainty. In QEST, volume 9259 of LNCS, pages 89–104, 2015.

6. A. Cimatti, A. Griggio, A. Irfan, M. Roveri, and R. Sebastiani. Invariant checking of NRA
transition systems via incremental reduction to LRA with EUF. In TACAS, volume 10205 of
LNCS, pages 58–75, 2017.

7. A. David, K. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen. UPPAAL SMC tutorial.
International Journal on Software Tools for Technology Transfer, 17(4):397–415, 2015.

8. L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, volume 4963 of LNCS,
pages 337–340, 2008.

9. P. L. T. Duong and M. Lee. Robust PID controller design for processes with stochastic
parametric uncertainties. Journal of Process Control, 22(9):1559–1566, 2012.

10. A. Eggers, M. Fränzle, and C. Herde. SAT modulo ODE: A direct SAT approach to hybrid
systems. In ATVA, pages 171–185, 2008.

11. C. Ellen, S. Gerwinn, and M. Fränzle. Statistical model checking for stochastic hybrid sys-
tems involving nondeterminism over continuous domains. International Journal on Software
Tools for Technology Transfer, 17(4):485–504, 2015.

12. S. S. Farahani, V. Raman, and R. M. Murray. Robust model predictive control for signal
temporal logic synthesis. In ADHS, 2015.

SMT-based Synthesis of Safe and Robust 145

13. M. Fliess and C. Join. Model-free control. International Journal of Control, 86(12):2228–
2252, 2013.

14. M. Fränzle, E. M. Hahn, H. Hermanns, N. Wolovick, and L. Zhang. Measurability and safety
verification for stochastic hybrid systems. In HSCC, pages 43–52, 2011.

15. M. Fränzle, T. Teige, and A. Eggers. Engineering constraint solvers for automatic analysis
of probabilistic hybrid automata. J. Log. Algebr. Program., 79(7):436–466, 2010.

16. S. Gao, J. Avigad, and E. M. Clarke. Delta-decidability over the reals. In LICS, pages
305–314, 2012.

17. S. Gao, S. Kong, and E. M. Clarke. dReal: An SMT solver for nonlinear theories over the
reals. In CADE-24, volume 7898 of LNCS, pages 208–214, 2013.

18. L. Guo and H. Wang. PID controller design for output PDFs of stochastic systems using
linear matrix inequalities. IEEE T. Sys, Man, and Cyb., Part B (Cyb.), 35(1):65–71, 2005.

19. S. He and F. Liu. Robust stabilization of stochastic markovian jumping systems via
proportional-integral control. Signal Processing, 91(11):2478–2486, 2011.

20. R. Hovorka. Closed-loop insulin delivery: from bench to clinical practice. Nature Reviews
Endocrinology, 7(7):385–395, 2011.

21. R. Hovorka et al. Nonlinear model predictive control of glucose concentration in subjects
with type 1 diabetes. Physiological Measurement, 25(4):905, 2004.

22. L. M. Huyett et al. Design and evaluation of a robust PID controller for a fully implantable ar-
tificial pancreas. Industrial & Engineering Chemistry Research, 54(42):10311–10321, 2015.

23. S. S. Kanderian Jr and G. M. Steil. Apparatus and method for controlling insulin infusion
with state variable feedback, July 15 2014. US Patent 8,777,924.

24. W. S. Levine. The control handbook. CRC Press, 1996.
25. Y. Li, K. H. Ang, G. C. Chong, W. Feng, K. C. Tan, and H. Kashiwagi. CAutoCSD-

evolutionary search and optimisation enabled computer automated control system design.
International Journal of Automation and Computing, 1(1):76–88, 2004.

26. T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, and E. Tronci. System level formal
verification via model checking driven simulation. In CAV, volume 8044 of LNCS, pages
296–312, 2013.

27. N. Paoletti, K. S. Liu, S. A. Smolka, and S. Lin. Data-driven robust control for type 1 diabetes
under meal and exercise uncertainties. In CMSB, accepted, 2017.

28. R. S. Parker, F. J. Doyle, J. H. Ward, and N. A. Peppas. Robust H∞ glucose control in diabetes
using a physiological model. AIChE Journal, 46(12):2537–2549, 2000.

29. L. Sha. Using simplicity to control complexity. IEEE Software, 18(4):20–28, 2001.
30. F. Shmarov, N. Paoletti, E. Bartocci, S. Lin, S. A. Smolka, and P. Zuliani. Automated syn-

thesis of safe and robust PID controllers for stochastic hybrid systems. arXiv:1707.05229,
2017.

31. F. Shmarov and P. Zuliani. ProbReach: Verified probabilistic δ-reachability for stochastic
hybrid systems. In HSCC, pages 134–139. ACM, 2015.

32. F. Shmarov and P. Zuliani. Probabilistic hybrid systems verification via SMT and Monte
Carlo techniques. In HVC, volume 10028 of LNCS, pages 152–168, 2016.

33. G. M. Steil et al. The effect of insulin feedback on closed loop glucose control. The Journal
of Clinical Endocrinology & Metabolism, 96(5):1402–1408, 2011.

34. Y. Su, D. Sun, and B. Duan. Design of an enhanced nonlinear PID controller. Mechatronics,
15(8):1005–1024, 2005.

35. P. Szalay, G. Eigner, and L. A. Kovács. Linear matrix inequality-based robust controller
design for type-1 diabetes model. IFAC Proceedings Volumes, 47(3):9247–9252, 2014.

36. M. E. Wilinska et al. Simulation environment to evaluate closed-loop insulin delivery sys-
tems in type 1 diabetes. Journal of diabetes science and technology, 4(1):132–144, 2010.

37. L. Zhang, Z. She, S. Ratschan, H. Hermanns, and E. M. Hahn. Safety verification for proba-
bilistic hybrid systems. In CAV, volume 6174 of LNCS, pages 196–211, 2010.

146 F. Shmarov et al.

A Symbolic Approach to Safety LTL Synthesis

Shufang Zhu1, Lucas M. Tabajara2, Jianwen Li2?, Geguang Pu1??, and Moshe Y.
Vardi2

1 East China Normal University, Shanghai, China
2 Rice University, Texas, USA

Abstract. Temporal synthesis is the automated design of a system that interacts
with an environment, using the declarative specification of the system’s behavior.
A popular language for providing such a specification is Linear Temporal Logic,
or LTL. LTL synthesis in the general case has remained, however, a hard problem
to solve in practice. Because of this, many works have focused on developing syn-
thesis procedures for specific fragments of LTL, with an easier synthesis problem.
In this work, we focus on Safety LTL, defined here to be the Until-free fragment
of LTL in Negation Normal Form (NNF), and shown to express a fragment of safe
LTL formulas. The intrinsic motivation for this fragment is the observation that in
many cases it is not enough to say that something “good” will eventually happen,
we need to say by when it will happen. We show here that Safety LTL synthesis is
significantly simpler algorithmically than LTL synthesis. We exploit this simplic-
ity in two ways, first by describing an explicit approach based on a reduction to
Horn-SAT, which can be solved in linear time in the size of the game graph, and
then through an efficient symbolic construction, allowing a BDD-based symbolic
approach which significantly outperforms extant LTL-synthesis tools.

1 Introduction

Research on synthesis is the culmination of the ideal of declarative programming. By
describing a system in terms of what it should do, rather than how it should be done,
we are able to simplify the design process while also avoiding human mistakes. In the
framework defined by synthesis, we describe a specification of a system’s behavior in a
formal language, and the synthesis procedure automatically designs a system satisfying
this specification [30]. Reactive synthesis [24] is one of the most popular variants of this
problem, in which we wish to synthesize a system that interacts continuously with an
environment. Such systems include, for example, operating systems and controllers for
mechanical devices. To specify the behavior of such systems, we need a specification
language that can reason about changes over time. A popular such language is Linear
Temporal Logic, or LTL [23].

Despite extensive research, however, synthesis from LTL formulas remains a diffi-
cult problem. The classical approach is based on translating the formula to a determin-
istic parity automaton and reducing the synthesis problem to solving a parity game [24].
This translation, however, is not only theoretically hard, given its doubly-exponential
? Corresponding author

?? Corresponding author
© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 147–162, 2017.
https://doi.org/10.1007/978-3-319-70389-3_10

upper bound, but also inefficient in practice due to the lack of practical algorithms for
determinization [15]. Furthermore, despite the recent quasi-polynomial algorithm [7]
for parity games, it is still not known if they can be solved efficiently. A promising
approach to mitigating this problem consists of developing synthesis techniques for
certain fragments of LTL that cover interesting classes of specifications but for which
the synthesis problem is easier. Possibly the most notable example is that of General-
ized Reactivity(1) formulas, or GR(1) [3], a fragment for which the synthesis problem
can be solved in cubic time with respect to the game graph.

Here we focus on the Safety LTL fragment, which we define to be the fragment of
LTL composed of Until-free formulas in Negation Normal Form (NNF). Such formulas
express safety properties, meaning that every violating trace has a finite bad prefix that
falsifies the formula [19]. The intrinsic motivation for this fragment is the observation
that in many cases it is not enough to say that something “good” will eventually happen,
we need to say by when it will happen [21]. For this strict subset of LTL, the synthesis
problem can be reduced to a safety game, which is far easier to solve. In fact, for such
a game the solution can be computed in linear time with respect to the game graph [1].
Some novel techniques for safety game solving have been developed in the context
of the Annual Synthesis Competition (SyntComp) 3, but there the input consists of an
AIGER model, while in this paper we are concerned with synthesis from Safety LTL
formulas. See further discussion in the Concluding Remarks.

Our first contribution is a new solution to safety games by reducing to Horn satisfi-
ability (Horn-SAT). There have been past works using SAT in the context of bounded
synthesis [2], but our approach is novel in using a reduction to Horn-SAT, which can
be solved in linear time [11]. Because, however, the Horn formula is proportional to the
size of the state graph, in which the number of transitions is exponential in the num-
ber of input/output variables and the number of states can be in the worst case doubly
exponential in the size of the Safety LTL formula, this approach becomes infeasible for
larger instances. To avoid this problem, we pursue an alternative approach that uses a
symbolic representation of the game graph via Binary Decision Diagrams (BDDs) [5].

Symbolic solutions to safety games have played an important part in LTL synthe-
sis tools following the idea of Safraless synthesis [20], which avoids the high cost of
determinization and the parity acceptance condition of classical LTL synthesis by in-
stead employing a translation to universal co-Büchi automata. Unbeast [14], a symbolic
BDD-based tool for bounded synthesis, decomposes the LTL specification into safety
and non-safety parts, using an incremental bound to allow the non-safety part to also
be encoded as a safety game. Another tool, Acacia+ [4], takes a bounded synthesis ap-
proach that allows the synthesis problem to be reduced to a safety game, then explores
the structure of the resulting game to implement a symbolic antichain-based algorithm.

In the above approaches the safety game is constructed from a co-Büchi automaton
of the LTL specification. Our insight in this paper is that, since every bad trace of a for-
mula in the Safety LTL fragment has a finite prefix, we can construct from the negation
of such a formula a deterministic finite automaton that accepts exactly the language
corresponding to bad prefixes. This DFA can be seen as the dual of a safety automaton
defining a safety game over the same state space. Using a DFA as the basis for our safety

3 http://www.syntcomp.org/

148 S. Zhu et al.

game allows us to leverage tools and techniques developed for symbolic construction,
determinization and minimization of finite automata.

Our symbolic synthesis framework is inspired by a recent approach [29] for syn-
thesis of LTL over finite traces. This problem can be seen as the dual of Safety LTL
synthesis, and as such we can inter-reduce the realizability problem between the two
by negating the result. Nevertheless, the strategy generation is irreducible since the two
problems are solving the game for different players. Therefore, we modify the algorithm
to produce a strategy for the safety game instead. The procedure consists of two phases.
First we construct symbolically a safety automaton from the Safety LTL formula instead
of direct construction. For that we present a translation from the negation of Safety LTL
to first-order logic over finite traces, which allows us to symbolically construct the dual
DFA of the safety automaton. Second, we solve the safety game by computing the set of
winning states through a backwards symbolic fixpoint computation, and then applying
a boolean-synthesis procedure [16] to symbolically construct a strategy.

In summary, our contribution in this paper is to introduce a fragment of LTL called
Safety LTL and present two approaches for the synthesis problem for this fragment, an
explicit one based on a reduction to Horn-SAT and a symbolic one exploiting techniques
for symbolic DFA construction. Since Safety LTL is a fragment of general LTL, existing
LTL synthesis tools can likewise be used to solve the Safety LTL synthesis problem. To
demonstrate the benefits of developing specialized synthesis techniques, we perform an
experimental comparison with Unbeast and Acacia+, both tools for general LTL synthe-
sis. Our results show that the explicit approach is able to outperform these tools when
the formula is small, while the symbolic approach has the best performance overall.

2 Preliminaries

2.1 Safety/Co-safety LTL

Linear Temporal Logic (LTL), first introduced in [23], extends propositional logic by in-
troducing temporal operators. Given a set P of propositions, the syntax of LTL formulas
is defined as φ ::= > | ⊥ | p | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2.
> and ⊥ represent true and false respectively. p ∈ P is an atom, and we define a

literal l to be an atom or the negation of an atom. X (Next) and U (Until) are tempo-
ral operators. We also introduce the dual operator of U , namely R (Release), defined
as φ1Rφ2 ≡ ¬(¬φ1U¬φ2). Additionally, we define the abbreviations Fφ ≡ >Uφ
and Gφ ≡ ⊥Rφ. Standard boolean abbreviations, such as ∨ (or) and→ (implies) are
also used. An LTL formula φ is Until-free/Release-free iff it does not contain the Un-
til/Release operator. Moreover, we say φ is in Negation Normal Form (NNF), iff all
negation operators in φ are pushed only in front of atoms.

A trace ρ = ρ0ρ1 . . . is a sequence of propositional interpretations (sets), in which
ρm ∈ 2P (m ≥ 0) is the m-th interpretation of ρ, and |ρ| represents the length of ρ.
Intuitively, ρm is interpreted as the set of propositions which are true at instantm. Trace
ρ is an infinite trace if |ρ| = ∞, which is formally denoted as ρ ∈ (2P)ω . Otherwise ρ
is a finite trace, denoted as ρ ∈ (2P)∗. LTL formulas are interpreted over infinite traces.
Given an infinite trace ρ and an LTL formula φ, we inductively define when φ is true in
ρ at step i (i ≥ 0), written ρ, i |= φ, as follows:

A Symbolic Approach to Safety LTL Synthesis 149

– ρ, i |= > and ρ, i 6|= ⊥;
– ρ, i |= p iff p ∈ ρi;
– ρ, i |= ¬φ iff ρ, i 6|= φ;
– ρ, i |= φ1 ∧ φ2, iff ρ, i |= φ1 and ρ, i |= φ2;
– ρ, i |= Xφ, iff ρ, i+ 1 |= φ;
– ρ, i |= φ1Uφ2, iff there exists j ≥ i such that ρ, j |= φ2, and for all i ≤ k < j, we

have ρ, k |= φ1.

An LTL formula φ is true in ρ, denoted by ρ |= φ, if and only if ρ, 0 |= φ.
Informally speaking, a safe LTL formula rejects traces whose “badness” follows

from a finite prefix. Dually, a co-safe LTL formula accepts traces whose “goodness”
follows from a finite prefix. Thus, φ is a safe formula iff ¬φ is a co-safe formula. To
define the safe/co-safe formulas, we need to introduce the concept of bad/good prefix.

Definition 1 (Bad/Good Prefix [19]). Consider a language L of infinite words over P .
A finite word x over P is a bad/good prefix for L if and only if for all infinite words y
over P , the concatenation x · y of x and y isn’t/is in L.

Safe/co-safe LTL formulas are defined as follows.

Definition 2 (safe/co-safe [19]). An LTL formula φ is safe/co-safe iff every word that
violates/satisfies φ has a bad/good prefix.

We use pref(φ) to denote the set of bad prefixes for safe formula φ, equivalently,
we denote by co-pref(¬φ), the set of good prefixes for ¬φ, which is co-safe. Indeed,
pref(φ) = co-pref(¬φ) [19].

Theorem 1. An LTL formula φ is safe iff ¬φ is co-safe, and each bad prefix for safe
formula φ is a good prefix for ¬φ.

Checking if a given LTL formula is safe/co-safe is PSPACE-complete [19]. We now
introduce a fragment of LTL where safety/co-safety is a syntactical feature.

Theorem 2 ([26]). If an LTL formula φ in NNF is Until-free/Release-free, then φ is
safe/co-safe.

Motivated by this theorem, we define now the syntactic fragment of Safety/Co-
Safety LTL.

Definition 3. Safety/Co-Safety LTL formulas are in NNF and Until-free/Release-free,
respectively.

Remark: To the best of our knowledge, it is an open question whether every safe LTL
formula is equivalent to some Safety LTL formula. We conjecture that this is the case.

150 S. Zhu et al.

2.2 Boolean Synthesis

In this paper, we utilize the boolean synthesis technique proposed in [16].

Definition 4 (Boolean Synthesis [16]). Given two disjoint atom sets I,O of input
and output variables, respectively, and a boolean formula ξ over I ∪ O, the boolean-
synthesis problem is to construct a function γ : 2I → 2O such that, for all I ∈ 2I , if
there exists O ∈ 2O such that I ∪O |= ξ, then I ∪ γ(I) |= ξ. We call γ the implemen-
tation function.

We treat boolean synthesis as a black box, applying it to the key operation of Safety
LTL synthesis proposed in this paper. For more details on algorithms and techniques for
boolean synthesis we refer to [16].

3 Safety LTL Synthesis

In this section we give the definition of Safety LTL synthesis. We then show how this
problem can be modeled as a safety game played over a kind of deterministic automaton,
called a safety automaton. In the following sections we describe approaches to construct
this automaton from a Safety LTL formula and solve the game that it specifies.

Definition 5 (Safety LTL Synthesis). Let φ be an LTL formula over an alphabet P and
X ,Y be two disjoint atom sets such thatX ∪Y = P .X is the set of input (environment)
variables and Y is the set of output (controller) variables. φ is realizable with respect
to 〈X ,Y〉 if there exists a strategy g : (2X)∗ → 2Y , such that for an arbitrary infinite
sequence X0, X1, . . . ∈ (2X)ω , φ is true in the infinite trace ρ = (X0 ∪ g(X0)), (X1 ∪
g(X0, X1)), (X2 ∪ g(X0, X1, X2)) The synthesis procedure is to compute such a
strategy if φ is realizable.

There are two versions of the Safety LTL synthesis, depending on the first player.
Here we consider that the environment moves first, but the version where the controller
moves first can be obtained by a small modification.

The Safety LTL synthesis is a subset of LTL synthesis by restricting the property
to be a Safety LTL formula. Therefore, we can use general LTL-synthesis methods to
solve the Safety LTL synthesis problem. Classical approaches to LTL synthesis problems
involve two steps: 1) Convert the LTL formula to a deterministic automaton; 2) Reduce
LTL synthesis to an infinite game over the automaton. We now present the automata
corresponding to the class of Safety LTL formulas.

Definition 6 (Deterministic Safety Automata). A deterministic safety automaton (DSA)
is a tuple As = (2P , S, s0, δ), where 2P is the alphabet, S is a finite set of states with
s0 as the initial state, and δ : S × 2P → S is a partial transition function. Given an
infinite trace ρ ∈ (2P)ω , a run r of ρ on As is a sequence of states s0, s1, s2, . . . such
that si+1 = δ(si, ρi). ρ is accepted by As if As has an infinite run r of ρ.

Note that in the definition, δ is a partial function, meaning that given s ∈ S and
a ∈ 2P , δ(s, a) can either return a state s′ ∈ S or be undefined. Thus, an infinite run

A Symbolic Approach to Safety LTL Synthesis 151

of ρ on As may not exist due to the possibility of δ(si, ρi) being undefined for some
(si, ρi). A DSA is essentially a deterministic Büchi automaton (DBA) [6] with a partial
transition function and a set of accepting states F = S.

Deterministic safety games are games between two players, the environment and
the controller, played over a DSA. We have two disjoint sets of variables X and Y . X
contains uncontrollable variables, which are under the control of the environment. Y
contains controllable variables, which are under the control of the controller. A round
consists of both the controller and the environment setting the value of the variables they
control. A play of the game is a word ρ ∈ (2X∪Y)ω that describes how the environment
and the controller set values to the variables during each round. A run of the game is
the corresponding sequence of states through the play. The specification of the game is
given by a deterministic safety automaton As = (2X∪Y , S, s0, δ).

A winning play for the controller is an infinite sequence accepted by As. A strategy
for the controller is a function f : (2X)∗ → 2Y such that given a history of the setting
of the environmental variables, f determines how the controller set the controllable
variables in Y . A strategy is a winning strategy if starting from the initial state s0, for
every possible sequence of assignments of the variables in X , it leads to an infinite run.
Checking the existence of such a winning strategy counts for the realizability problem.

Safety games can be seen as duals of reachability games, where reachability games
are won by reaching a set of winning states, while safety games are won by avoiding
a set of losing states. Safety games however cannot be reduced to reachability games.
The realizability problem of safety game can indeed be reduced to that of reachability
game since the two are dual and the underlying game is determined, but this does not
work for strategy generation. Safety game does not generate a winning strategy for the
environment if it is unrealizable. It is known that reachability games can be solved in
linear time in the size of the game graph [1]. One of the ways to do this is by a reduction
to Horn Satisfiability, which can be solved in linear time [11]. In the next section we
present such a reduction.

4 Explicit Approach to Safety Synthesis

We now show how to solve safety games by reducing to Horn satisfiability (Horn-SAT),
a variant of SAT where every clause has at most one positive literal. Horn-SAT is known
to be solvable in linear time using constraint propagation, cf. [11]. Modern SAT solvers
use specialized data structures for performing very fast constraint propagation [22].

From a DSA As = (2X∪Y , S, s0, δ) defining a safety game, we construct a Horn
formula f such that the game is winning for the system if and only if f is satisfiable.
Then, from a satisfying assignment of f we can extract a winning strategy. We now de-
scribe the construction of the Horn formula. There are three kinds of Boolean variables
in f : (1) state variables: ps for each state s ∈ S; (2) state-input variables: p(s,X) for
each state s ∈ S and X ∈ 2X ; (3) state-input-output variables: p(s,X,Y) for each state
s ∈ S, X ∈ 2X , and Y ∈ 2Y .

We first construct a non-Horn boolean formula f ′, then we show how to obtain a
Horn formula f from f ′. The intuition of the construction is that first, s0 must be a

152 S. Zhu et al.

winning state. Then, for every winning state, for all inputs there should exist an output
such that the corresponding successor is a winning state.

Let n represent the number of possible output assignments: 2Y = {Y1, . . . , Yn},
n = 2|Y|. f ′ is a conjunction of ps0 with the following constraints for each state s ∈ S:
(1) ps → p(s,X), for eachX ∈ 2X ; (2) p(s,X) →

(
p(s,X,Y1) ∨ p(s,X,Y2) ∨ . . . ∨ p(s,X,Yn)

)
,

for eachX ∈ 2X ; (3) p(s,X,Y) → pδ(s,X,Y), for eachX ∈ 2X , Y ∈ 2Y , if δ(s,X, Y) is
well defined ; and (4) ¬p(s,X,Y), for each X ∈ 2X , Y ∈ 2Y , if δ(s,X, Y) is undefined.

Theorem 3. The formula f ′ is satisfiable with assignment α′ iff the safety game over
As is realizable and α′ encodes a winning strategy.

Proof. If f ′ is satisfiable with assignment α′, there is a set C ⊆ S of states, where
for each state s ∈ C, it is the case that ps is true in α′. Then, by clauses of type (1),
given a state s ∈ C, for all inputs X ∈ 2X , it is the case that p(s,X) is also true in
α′. Furthermore, by clause of type (2), there must be some output Y ∈ 2Y such that
p(s,X,Y) is true in α′. Since p(s,X,Y) is true, there cannot be a clause ¬p(s,X,Y) of type
(4), and therefore it is the case that δ(s,X, Y) is well defined and, by clause of type
(3), pδ(s,X,Y) is also true in α′. This means that we have a wining strategy such that
all states in C, including s0, are winning. In response to input X ∈ 2X , the system
outputs Y ∈ 2Y such that p(s,X,Y) is true in α′, and this ensures that the successor state
δ(s,X, Y) is also in C.

If the safety game over As is realizable, then there is a winning strategy g : S ×
2X → 2Y and a set C ⊆ S, containing s0, of winning states such that for each state
s ∈ C and input X ∈ 2X , the output Y = g(s,X) is such that δ(s,X, Y) ∈ C. Then
the truth assignment α′ that makes ps true iff s ∈ C, and makes p(s,X) and p(s,X,g(s,X))

true for all s ∈ C and X ∈ 2X is a satisfying assignment of f .

We now transform the formula f ′ to an equi-satisfiable formula f that is a Horn for-
mula (in which every clause contains at most one positive literal). We replace each vari-
able ps, p(s,X), and p(s,X,Y) in f ′ by its negative literal ¬ps, ¬p(s,X), and ¬p(s,X,Y),
respectively. We can then rewrite each constraint (¬ps → ¬p(s,X)) as (p(s,X) → ps).
Similarly, we can rewrite (¬p(s,X) → (¬p(s,X,Y1) ∨ . . . ∨ ¬p(s,X,Yn))) as the equiva-
lent constraint ((p(s,X,Y1) ∧ . . . ∧ p(s,X,Yn)) → p(s,X)). f is equivalent to f ′ with the
polarity of the literals flipped, therefore we have that f is equi-satisfiable to f ′. Given a
satisfying assignment α for f , we obtain a satisfying assignment α′ for f ′ by, for every
variable p, assigning p to be true in α′ iff p is assigned false in α.

Since f is a Horn formula, we can obtain a winning strategy in linear time. Note,
however, that f is constructed from an explicit representation of the DSA As, as a
state graph with one transition per assignment of the input and output variables. The
challenge for this approach is the blow-up in the size of the state graph with respect to
the input temporal formula. To address this challenge we need to be able to express the
state graph more succinctly.

Therefore, we present an alternative approach for solving safety games using a sym-
bolic representation of the state graph. Although the algorithm is no longer linear, not
having to use an explicit representation of the game makes up for that fact. In order to
construct this symbolic representation efficiently, we exploit the fact that safety games

A Symbolic Approach to Safety LTL Synthesis 153

are dual to reachability games played over a DFA, allowing us to use techniques for
symbolic construction of DFAs. This construction is described in the next section.

5 Symbolic Approach to Safety Synthesis

In order to perform Safety-LTL synthesis symbolically, the first step is to construct a
symbolic representation of the DSA from the Safety-LTL formula. The following sec-
tion explains how we can achieve this. The key insight that we use is that a symbolic
representation of the DSA can be derived from the symbolic representation of the DFA
encoding the set of bad prefixes of the Safety-LTL formula, allowing us to exploit tech-
niques for symbolic DFA construction. After this, we describe how we can, from this
representation, symbolically compute the set of winning states of the safety game, and
then extract from them a winning strategy using boolean synthesis.

5.1 From Safety LTL to Deterministic Safety Automata

In this section, we propose a conversion from Safety LTL to DSA. The standard ap-
proach to constructing deterministic automata for LTL formulas is to first convert an
LTL formula to a nondeterministic Büchi automaton using tools such as SPOT [12],
LTL2BA [17], and then apply a determinization construction, e.g., Safra’s construc-
tion [25]. The conversion from LTL to deterministic automata, however, is intractable in
practice, not only because of the doubly-exponential complexity, but also the non-trivial
construction of both Safra [25] and Safraless [20] approaches. Therefore, LTL synthesis
is able to benefit from a better automata construction technique. One of the contribution
in this paper is proving such a technique which efficiently constructs the corresponding
safety automata of Safety LTL formulas. The novelty here is a much simpler conversion,
thus yielding a more efficient synthesis procedure.

Since every trace rejected by a DSA As can be rejected in a finite number of steps,
we can alternatively define the language accepted by As by the finite prefixes that it
rejects. This allows us to work in the domain of finite words, which can be recognized
much more easily, using deterministic finite automata. Therefore, a DSA can be seen
as the dual of a DFA over the same state space. Given a DFA D = (2P , Sd, s0, λ, Fd),
the corresponding DSA As = (2P , S, s0, δ) can be generated by following steps: 1)
S = Sd\Fd; 2) For s ∈ S, a ∈ 2P , if λ(s, a) = s′ ∈ S, then δ(s, a) = s′, otherwise
δ(s, a) is undefined.

Theorem 4 ([19]). Given a Safety LTL formula φ, there is a DFA Aφ which accepts
exactly the finite traces that are bad prefixes for φ.

Given a Safety LTL formula φ and the corresponding DFA Aφ, we can construct the
DSA Asφ. The correctness of such construction is guaranteed by the following theorem.

Theorem 5. For a Safety LTL formula φ, the DSA Asφ = (2P , S, s0, δ), which is dual
to Aφ = (2P , Sd, s0, λ, Fd), accepts exactly the traces that satisfy φ.

154 S. Zhu et al.

Proof. For an infinite trace ρ, ρ |= φ implies that an arbitrary prefix ρ′ of ρ is not a bad
prefix for φ, so ρ′ cannot be accepted by Aφ. Therefore, starting from the initial state
s0, λ always returns some successor s′ /∈ Fd, so the corresponding transition is also in
Asφ. The run r of ρ on Asφ is indeed infinite. As a result, ρ |= φ implies that ρ can be
accepted by Asφ.

On the other hand, an infinite trace ρ being accepted by Asφ implies that the run
r of ρ on Asφ is infinite. Therefore, starting from the initial state s0, partial function δ
can always return some successor s′ ∈ S, for which s′ /∈ Fd. There is a corresponding
transition in Aφ for each transition in Asφ, then an arbitrary prefix ρ′ of ρ is indeed can
not be accepted by Aφ, such that ρ′ is not a bad prefix. As a result, ρ can be accepted
by Asφ implies that ρ |= φ.

Based on Theorem 5, the construction of the DSA relies on the construction of the
DFA for the Safety formula φ. Therefore, we can leverage the techniques and tools
developed for DFA construction. Although it still cannot avoid the doubly-exponential
complexity, DFA construction is much simpler than that of ω-automata (e.g. parity [25],
or co-Büchi [20]). Consider a Safety LTL formula φ. From Theorem 1 and 4, we know
that ¬φ, which is co-safe, can be interpreted over finite words. Thus, we can construct
the DFA Aφ from ¬φ.
DFA construction Summarily, the DFA construction is processed as follows: Given a
Safety LTL formula φ, we first negate it to obtain a Co-Safety LTL formula ¬φ. Taking
the translation described below, which restricts the interpretation of¬φ over finite linear
ordered traces, we can obtain a first-order logic formula fol(). The DFA for such fol()
is obviously able to accept exactly the set of bad prefixes for φ (or say, good prefixes
for ¬φ).

Consider an infinite trace σ = ρ0ρ1 · · · ρn>> · · · that satisfies the Co-Safety LTL
formula ψ = ¬φ in NNF, where the finite prefix ρ = ρ0ρ1 · · · ρn of σ is a good prefix
for ψ. The corresponding FOL interpretation I = (∆I , ·I) of ρ is defined as follows:
∆I = {0, 1, 2, · · · , last}, where last = |ρ| − 1. For each p ∈ P , its interpretation
pI = {i | p ∈ ρ(i)}. Intuitively, pI is interpreted as the set of positions where p is true
in ρ. Then we can generate a corresponding FOL formula that opens in x by a function
fol(ψ, x) from the Co-Safety LTL formula and a variable x where 0 ≤ x ≤ last, which
is defined as follows:

– fol(p, x) = p(x) and fol(¬p, x) = ¬p(x)
– fol(ψ1 ∧ ψ2, x) = fol(ψ1, x) ∧ fol(ψ2, x)
– fol(ψ1 ∨ ψ2, x) = fol(ψ1, x) ∨ fol(ψ2, x)
– fol(Xψ, x) = ∃y.succ(x, y) ∧ fol(ψ, y)
– fol(ψ1Uψ2, x) = ∃y.x ≤ y ≤ last ∧ fol(ψ2, y) ∧ ∀z.x ≤ z < y → fol(ψ1, z)

In the above, the notation succ denotes that y is the successor of x. The following
theorem guarantees a finite trace ρ is a good prefix of the Co-Safety LTL formula ψ iff
the corresponding interpretation I of ρ models fol(ψ, 0).

Theorem 6. Given a Co-Safety LTL formula ψ, a finite trace ρ and the corresponding
interpretation I of ρ, ρ is a good prefix for ψ iff I |= fol(ψ, 0).

Proof. We prove the theorem by the induction over the structure of ψ.

A Symbolic Approach to Safety LTL Synthesis 155

– Basically, if ψ = p is an atom, ρ is a good prefix for ψ iff p ∈ ρ0. By the definition
of I, we have that 0 ∈ pI . As a result, ρ is a good prefix for ψ iff I |= fol(p, 0).
Moreover, if ψ = ¬p where p is an atom, ρ is a good prefix for ψ iff p 6∈ ρ0, and iff
0 6∈ pI , finally iff I |= fol(¬p, 0) holds;

– If ψ = ψ1 ∧ ψ2, ρ is a good prefix for ψ implies ρ is a good prefix for both ψ1 and
ψ2. By induction hypothesis, it is true that I |= fol(ψ1, 0) and I |= fol(ψ2, 0).
So I |= fol(ψ1, 0) ∧ fol(ψ2, 0), i.e. I |= fol(ψ1 ∧ ψ2, 0) holds. On the other
hand, since I |= fol(ψ1 ∧ψ2, 0), I |= fol(ψ1, 0) and I |= fol(ψ2, 0) are true. By
induction hypothesis, we have that ρ is a good prefix for both ψ1 and ψ2. Thus ρ is
a good prefix for ψ1 ∧ ψ2;

– If ψ = ψ1 ∨ ψ2, the proof here is omitted to save space.
– If ψ = Xψ1, ρ is a good prefix for ψ iff suffix ρ′ = ρ1ρ2 . . . , ρ|ρ|−1 of ρ is a good

prefix for ψ1. Let I ′ be the corresponding interpretation of ρ′, thus every atom
p ∈ P satisfies i ∈ pI′ iff (i+ 1) ∈ pI . By induction hypothesis, I ′ |= fol(ψ1, 0)
holds, thus I |= fol(ψ1, 1) is true. Therefore, I |= fol(Xψ1, 0) holds.

– If ψ = ψ1Uψ2, ρ is a good prefix for ψ iff there exists i (0 ≤ i ≤ |ρ|− 1) such that
suffix ρ′ = ρiρi+1 . . . , ρ|ρ|−1 of ρ is a good prefix for ψ2. And for all j (0 ≤ j < i),
ρ′′ = ρjρj+1 . . . , ρi−1 is a good prefix for ψ1. Let I ′ and I ′′ be the corresponding
interpretations of ρ′ and ρ′′. Thus every atom p ∈ P satisfies that k ∈ pI

′
iff

(i+ k) ∈ pI , k ∈ pI′′ iff (j + k) ∈ pI . By induction hypothesis, I ′ |= fol(ψ2, 0)
and I ′′ |= fol(ψ1, 0) holds. Thus I |= ∃i.0 ≤ i ≤ (|ρ| − 1) · fol(ψ2, i) and
I |= ∀j.0 ≤ j < i · fol(ψ1, j) hold. Therefore, I |= fol(ψ1Uψ2, 0).

MONA [18] is a tool that translates Weak Second-order Theory of One or Two suc-
cessors (WS1S/WS2S) [10] formula to minimal DFA, represented symbolically. WS1S
subsumes the First-Order Logic (FOL) over finite traces, which allows us to adopt
MONA to construct the DFA Aφ for Safety formula φ. Taking the assumption that
the DFA generated by MONA accepts exactly the same traces that satisfy fol(¬φ, 0),
which corresponds to Co-Safety LTL formula ¬φ, by Theorem 6 we can conclude that
the DFA returned by MONA is Aφ that accepts exactly the bad prefixes for the Safety
LTL formula φ.

Theorem 7. Let φ be a Safety LTL formula and Aφ be the DFA constructed by MONA
taking fol(¬φ, 0) as input. Finite trace ρ is a bad prefix for φ iff ρ is accepted by Aφ.

Deleting all transitions toward the accepting states in Aφ and removing the accept-
ing states of Aφ derives the safety automaton Asφ. To solve the Safety LTL synthesis
problem, we reduce the problem to a deterministic safety game over this automaton.
We first present the standard formulation and algorithm for solving such a game. Then,
since MONA constructs the DFA symbolically, we present a symbolic version of this
algorithm.

5.2 Solving Safety Games Symbolically

Computing a winning strategy of the safety game over DSA solves the synthesis prob-
lem. We base our symbolic approach on the algorithm from [9] for DFA (reachability)

156 S. Zhu et al.

games, which are the duals of safety games. In this section, we first describe the general
algorithm, which computes the set of winning states as a fixpoint. We then show how
to perform this computation symbolically using the symbolic representation of the state
graph constructed by MONA. Finally, we describe how we can use boolean synthesis to
extract a winning strategy from the symbolic representation of the set of winning states.

Consider a set of states E . The pre-image of E is a set Pre(E) = {s ∈ S | ∀X ∈
2X .∃Y ∈ 2Y .δ(s, (X,Y)) ∈ E}. That is, Pre(E) is the set of states from which,
regardless of the action of the environment, the controller can force the game into a
state in E . If the controller moves first, we swap the order of ∃Y ∈ 2Y and ∀X ∈ 2X to
compute the pre-image.

We define Win(As) as the greatest-fixpoint of Wini(A
s), which denotes the set of

states in which the controller can remain within i steps. This means thatWin(As) is the
set of states in which the controller can remain indefinitely, that is, the set of winning
states. The safety game is solved by computing the fixpoint as follows:

Win0(A
s) = S (1)

Wini+1(A
s) =Wini(A

s) ∩ Pre(Wini(A
s)) (2)

That is, we start with the set of all states and at each iteration remove those states from
which the controller cannot force the game to remain in the current set.

For realizability checking, if s0 ∈Win(As), then the game is realizable, otherwise
the game is unrealizable. We also consider an early-termination heuristic to speed up the
realizability checking: after each computation of Wini(A

s), if s0 /∈ Wini(A
s), then

return unrealizable. To generate the strategy, we define a deterministic finite transducer
T = (2X , 2Y , Q, s0, %, ω) based on the set Win(As), where: Q = Win(As) is the
set of winning states; % : Q × 2X → Q is the transition function such that %(q,X) =
δ(q,X ∪ Y) and Y = ω(q,X); ω : Q × 2X → 2Y is the output function, where
ω(q,X) = Y such that δ(q,X ∪Y) ∈ Q. Note that there are many possible choices for
the output function ω. The transducer T defines a winning strategy by restricting ω to
return only one possible setting of Y .

Following the construction in Section 5.1, MONA produces a symbolic represen-
tation of the DFA Aφ which accepts all bad prefixes of the Safety LTL formula φ.
Therefore, in this section we show how to derive a DSA and solve the correspond-
ing safety game from this representation. Following [29], we define a symbolic DFA
as A = (X ,Y,Z, Z0, η, f), where: X is a set of input variables; Y is a set of output
variables; Z is a set of state variables; Z0 ∈ 2Z is the assignment to the state proposi-
tions corresponding to the initial state; η : 2X × 2Y × 2Z → 2Z is a boolean function
mapping assignments X , Y and Z of the variables of X , Y and Z to a new assignment
Z ′ of the variables of Z; f is a boolean formula over the propositions in Z , such that f
is satisfied by an interpretation Z iff Z corresponds to an accepting state.

GivenA, the corresponding safety automaton As = (2X∪Y , S, s0, δ) that avoids all
bad prefixes accepted by A is defined by: X and Y are the same as in the definition of
A; S = {Z ∈ 2Z | Z 6|= f}; s0 = Z0; δ : S × 2X∪Y → S is the partial function such
that δ(Z,X ∪ Y) = η(X,Y, Z) if Z ∈ S, and is undefined otherwise.

Lemma 1. If Aφ is a symbolic DFA that accepts exactly the bad prefixes of a Safety
LTL formula φ, then Asφ is a deterministic safety automaton for φ.

A Symbolic Approach to Safety LTL Synthesis 157

This correspondence allows us to use the symbolic representation of A to compute
the solution of the safety game defined by As. To compute the set of winning states, we
represent the set Wini(A

s) by a boolean formula wi in terms of the state variables Z ,
such that an assignment Z ∈ 2Z satisfies wi if and only if the state represented by Z is
in Wini(A

s). We define w0 = ¬f and wi+1(Z) = wi(Z) ∧ ∀X.∃Y.wi(η(X,Y, Z)),
which correspond respectively to (1) and (2) above. The fixpoint computation termi-
nates once wi+1 ≡ wi, at which point we define w = wi, representing Win(As). We
can then test for realizability by checking if the assignment Z0 representing the initial
state satisfies w.

Theorem 8. The safety game defined by As is realizable if and only if Z0 |= w.

If Z0 |= w, then we wish to construct a transducer T = (2X , 2Y , Q, s0, %, ω) rep-
resenting a winning strategy. We define Q = {Z ∈ 2Z | Z |= w}, s0 = Z0 and
%(Z,X, Y) = η(X,Y, Z) if η(X,Y, Z) ∈ Q and undefined otherwise. To construct ω,
we can use a boolean-synthesis procedure. Recall that the input to this procedure is a
boolean formula ϕ, a set of input variables I and a set of output variables O. In our
case, ϕ(Z,X, Y) = w(η(X,Y, Z)), I = Z∪X andO = Y . The result of the synthesis
is a boolean function ω : 2Z∪X → 2Y . Then, from the definition of boolean synthesis it
follows that if the output is chosen by ω the game remains in the set of winning states.
That is, if Z ∈ 2Z satisfies w, then for all X ∈ 2X , η(Z,X, ω(Z ∪X)) also satisfies w.

6 Experimental Evaluation

6.1 Implementation

Explicit Approach The main algorithm for the explicit approach consists of three
steps: DSA construction, Horn formula generation and SAT solving for synthesis. We
adopted SPOT [12] as the DSA constructor since the output automata should be deter-
ministic. Generating the Horn formula follows the rules described in Section 4. Further-
more, here we used Minisat-2.2 [13] for SAT solving. Decoding the variables that are
assigned with the truth in the assignment returned by Minisat-2.2 [13] is able to generate
the strategy if the Safety LTL formula is realizable with respect to 〈inputs, outputs〉.

Symbolic Encoding We implemented the symbolic framework for Safety LTL syn-
thesis in the SSyft tool, which is written in C++ and utilizes the BDD library CUDD-
3.0.0 [28]. The entire framework consists of two steps: the DSA construction and the
safety game over the DSA. In the first step, the dual of the DSA, a DFA is constructed
via MONA [18] and represented as a Shared Multi-terminal BDD (ShMTBDD) [5, 18].
From this ShMTBDD, we construct a representation of the transition relation η by a
sequence B = 〈B0, B1, . . . , Bn−1〉 of BDDs. Each Bi, when evaluated over an assign-
ment of X ∪ Y , outputs an assignment to a state variable zi ∈ Z . The boolean formula
f representing the accepting states of the DFA is likewise encoded as a BDD Bf .

To perform the fixpoint computation, we construct a sequence 〈Bw0
, Bw1

, . . . , Bwi
〉

of BDDs, whereBwi is the BDD representation of the formulawi.Bwi+1 is constructed
from Bwi by substituting each state variable zi with the corresponding BDD Bi, which

158 S. Zhu et al.

can be achieved by the Compose operation in CUDD. Moreover, CUDD provides the
operations UnivAbstract and ExistAbstract for universal and existential quantifier elim-
ination respectively. The fixpoint computation benefits from the canonicity of BDDs
by checking the equivalence of Bwi+1 and Bwi . To check realizability we use the Eval
operation. Since in our construction the state variables appear at the top of the BDDs,
we use the Input-First boolean-synthesis procedure introduced in [16] to synthesize the
winning strategy if the game is realizable.

6.2 Experimental Methodology

To show the efficiency of the methods proposed in this paper, we compare our tool
SSyft based on the symbolic framework and the explicit approach, named as Horn SAT,
with extant LTL synthesis tools Unbeast [14] and Acacia+ [4]. Both of the LTL synthesis
tools can use either SPOT [12] or LTL2BA [17] for the automata construction. From our
preliminary evaluation, both Unbeast and Acacia+ perform better when they construct
automata using LTL2BA. As a result, LTL2BA is the default LTL-to-automata translator
of Unbeast and Acacia+ in our experiments. All tests are ran on a platform whose
operating system is 64-bit Ubuntu 16.04, with a 2.4 GHz CPU (Intel Core i7) and 8 GB
of memory. The timeout was set to be 60 seconds (s).

Input Formulas Our benchmark formulas are collected from [14], called LoadBal-
ancer. Since not all cases are safe, here we propose a class of Expansion Formulas for
safety-property generation. Consider an LTL formula φ in NNF. We use a transformation
function ef(φ, l) that given φ and a parameter l, which represents the expansion length,
returns a Safety LTL formula. The function ef() works in the following way: (1) For
each subformula of the form φ1Uφ2, expand to φ2 ∨ (φ1 ∧X(φ1Uφ2)) for l− 1 times;
(2) Substitute the remaining φ1Uφ2 with φ2. Note that Safety formulas are Until-free in
NNF, thus for LTL formulas in NNF, it is not necessary to deal with the Release operator.
The intuition of the expansion is to bound the satisfied length of φ1Uφ2 by adding the
Next(X) operator. The parameter l scales to 5 in our test, for each length there are 79
instances. And 395 cases in total.

Correctness The correctness of our implementation was evaluated by comparing
the results from our approaches with those from Acacia+ and Unbeast. For the solved
cases, we never encountered an inconsistency.

6.3 Results

We evaluated the performance of SSyft and Horn SAT in terms of the number of solved
cases and the running time. Our experiments demonstrate that the symbolic approach
we introduced here significantly improves the effectiveness of Safety LTL synthesis. The
safety game has two versions, depending on which player (environment or controller)
moves first. Both our tool SSyft and Acacia+ are able to handle these two kinds of
games, while Unbeast supports only games with the environment moving first. As a
result, we only consider the comparison on the environment-moving-first game. We
aim to compare the results on two aspects: 1) the scalability on the expansion length; 2)
the number of solved cases in the given time limit.

A Symbolic Approach to Safety LTL Synthesis 159

Fig. 1 shows the number of solved cases for each expansion length (1-5)4. As shown
in the figure, SSyft solves approximately twice as many cases as the other three tools.
The advantage of SSyft diminishes as the expansion length grows, because MONA can-
not generate the automata for such cases. Neither of Acacia+ and Unbeast can solve
these cases even in a small expansion length. Horn SAT performs similarly as SSyft
when l = 1, which derives smaller DSA. The performance of Horn SAT decreases
sharply as the size of the DSA grows, since formula generation dominates the synthesis
time. In total, SSyft solves a total of 339 cases, while Acacia+, Unbeast and Horn SAT
solve 182, 132 and 159 cases, respectively.

The scatter plot for the total time comparison is shown in Fig. 2, where + plots
the data for SSyft against Acacia+, 4 plots the data for SSyft against Unbeast and ◦
is for Horn SAT. Clearly, SSyft outperforms the other three tools. The results shown
in Fig. 2 confirm the claim that the symbolic approach is much more efficient than
Acacia+ and Unbeast. In some cases, Horn SAT performs better than SSyft, nevertheless
in general SSyft has a significant advantage. Thus, the evidence here indicates that both
the symbolic approach and the explicit method introduced in this paper contribute to
the improvement of the overall performance of Safety LTL synthesis.

 0

 20

 40

 60

 80

 100

1 2 3 4 5

Expansion length

Solved cases of LoadBalancer

SSyft
Acacia+
Unbeast

Horn_SAT

Fig. 1. Comparison of SSyft against Aca-
cia+, Unbeast and the Horn SAT approach
on the number of solved cases as the expan-
sion length grows

10−2 10−1 100 101
10−2

10−1

100

101

Acacia+/Unbeast/Horn SAT(sec)

S
S
y
ft
(s
ec
)

Unbeast
Acacia+
Horn SAT

Fig. 2. Comparison of SSyft against Aca-
cia+, Unbeast and the Horn SAT approach
on total solving time

7 Concluding Remarks

We presented here a simple but efficient approach to Safety LTL synthesis based on the
observation that a minimal DFA can be constructed for Co-Safety LTL formula. Fur-
thermore, a deterministic safety automaton (DSA) can be generated from the DFA, and
a symbolic safety game can be solved over the DSA. A comparison with the reduction
to Horn-SAT confirms better scalability of the symbolic approach. Further experiments
show that the new approach outperforms existing solutions for general LTL synthesis.

4 We recommend viewing the figures online for better readability.

160 S. Zhu et al.

Both the DSA construction and the symbolic safety game solution contribute to the im-
provement. It will be interesting to apply our approach to the safety-first method [27]
for LTL synthesis.

It should be noted, however, that symbolic DSA construction cannot avoid the worst
case doubly exponential complexity: it can only make the synthesis simpler and more
efficient in practice. Our experiments show that the bottleneck is manifested when
the input Safety LTL formula gets larger, and DSA construction becomes unachiev-
able within the reasonable time. A promising solution may be to develop an on-the-fly
method to perform the DSA construction and solve the safety game at the same time.
We leave this to our future work.

Beyond general LTL-synthesis approaches, another relevant work is on GR(1) syn-
thesis [3]. Although GR(1) synthesis aims to handle a fragment of general LTL as well,
it is not comparable to Safety LTL, since GR(1) does not allow arbitrary nesting of the
Release (R) and Next (X) operators. For that reason, our experiments do not cover the
comparison between our approach and GR(1) synthesis. Another work related is synthe-
sis of the GXW fragment [8]. In this fragment, input formulas are conjuction of certain
pattern formulas expressed using the temporal connectives G, X , and W . Because of
the limitation to six specific patterns, this fragment is quite less general that the Safety
LTL fragment studied here.

Our work is also related to the safety-synthesis track of the Annual Synthesis Com-
petition (SyntComp). While the Safety-LTL-synthesis problem can, in principle, be re-
duced to safety synthesis, the reduction is quite nontrivial. Safety-synthesis tools from
SyntComp take AIGER models5 as input, while our approach takes Safety LTL formu-
las as input. A symbolic DSA can be encoded as an AIGER model by adding additional
variables to encode intermediate BDD nodes. As we saw, however, the construction of
symbolic DSAs is a very demanding part of Safety LTL synthesis, with a worst-case
doubly exponential complexity, so the usefulness of such a reduction is questionable.

We have shown here a new symbolic approach to Safety LTL synthesis, in which a
more efficient automata-construction technique is utilized. Experiments show that our
new approach outperforms existing solutions to general LTL synthesis, as well as a new
reduction of safety games to Horn SAT.

Acknowledgments. Work supported in part by NSF grants CCF-1319459 and IIS-
1527668, NSF Expeditions in Computing project “ExCAPE: Expeditions in Computer
Augmented Program Engineering”, NSFC Projects No. 61572197 and No. 61632005,
MOST NKTSP Project 2015BAG19B02, and by the Brazilian agency CNPq through
the Ciência Sem Fronteiras program.

References

1. de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent Reachability Games. In: FOCS.
pp. 564–575 (1998)

2. Bloem, R., Könighofer, R., Seidl, M.: SAT-based Synthesis Methods for Safety Specs. In:
VMCAI. pp. 1–20 (2014)

5 http://fmv.jku.at/aiger/

A Symbolic Approach to Safety LTL Synthesis 161

3. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of Reactive(1) de-
signs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

4. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.: Acacia+, a Tool for LTL Synthesis. In:
CAV. pp. 652–657 (2012)

5. Bryant, R.E.: Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams.
ACM Comput. Surv. 24(3), 293–318 (1992)

6. Buc̈hi, J.R.: Weak Second-Order Arithmetic and Finite Automata. Z.Math. Logik Grundl.
Math. 6, 66–92 (1960)

7. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding Parity Games in
Quasipolynomial Time. In: STOC. pp. 252–263 (2017)

8. Cheng, C., Hamza, Y., Ruess, H.: Structural Synthesis for GXW Specifications. In: CAV. pp.
95–117 (2016)

9. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on Finite Traces. In: IJCAI. pp.
1558–1564 (2015)

10. Doner, J.: Tree Acceptors and Some of Their Applications. J. Comput. Syst. Sci. 4(5), 406–
451 (1970)

11. Dowling, W.F., Gallier, J.H.: Linear-Time Algorithms for Testing the Satisfiability of Propo-
sitional Horn Formulae. J. Log. Program. 1(3), 267–284 (1984)

12. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.: Spot 2.0-A
Framework for LTL and ω-Automata Manipulation. In: ATVA. pp. 122–129 (2016)

13. Eén, N., Mishchenko, A., Amla, N.: A Single-Instance Incremental SAT Formulation of
Proof- and Counterexample-Based Abstraction (2010)

14. Ehlers, R.: Symbolic Bounded Synthesis. In: CAV. pp. 365–379 (2010)
15. Fogarty, S., Kupferman, O., Vardi, M.Y., Wilke, T.: Profile Trees for Büchi Word Automata,

with Application to Determinization. In: GandALF. pp. 107–121 (2013)
16. Fried, D., Tabajara, L.M., Vardi, M.Y.: BDD-Based Boolean Functional Synthesis. In: CAV,

Part II. pp. 402–421 (2016)
17. Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: CAV. pp. 53–65 (2001)
18. Henriksen, J., Jensen, J., Jørgensen, M., Klarlund, N., Paige, B., Rauhe, T., Sandholm, A.:

Mona: Monadic Second-Order Logic in Practice. In: TACAS. pp. 89–110 (1995)
19. Kupferman, O., Vardi, M.Y.: Model Checking of Safety Properties. Formal Methods in Sys-

tem Design 19(3), 291–314 (2001)
20. Kupferman, O., Vardi, M.Y.: Safraless Decision Procedures. In: FOCS. pp. 531–542 (2005)
21. Lamport, L.: What good is temporal logic? In: IFIP Congress. pp. 657–668 (1983)
22. Malik, S., Zhang, L.: Boolean Satisfiability from Theoretical Hardness to Practical Success.

Commun. ACM 52(8), 76–82 (2009)
23. Pnueli, A.: The Temporal Logic of Programs. In: FOCS. pp. 46–57 (1977)
24. Pnueli, A., Rosner, R.: On the Synthesis of a Reactive Module. In: POPL. pp. 179–190 (1989)
25. Safra, S.: On the Complexity of omega-Automata. In: FOCS. pp. 319–327 (1988)
26. Sistla, A.P.: Safety, Liveness and Fairness in Temporal Logic. Formal Asp. Comput. 6(5),

495–512 (1994)
27. Sohail, S., Somenzi, F.: Safety First: A Two-Stage Algorithm for LTL Games. In: FMCAD.

pp. 77–84 (2009)
28. Somenzi, F.: CUDD: CU Decision Diagram Package 3.0.0. Universiy of Colorado at Boulder

(2016)
29. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: Symbolic LTLf Synthesis. In: IJCAI. pp.

1362–1369 (2017)
30. Zohar, Z.M., Waldinger, R.: Toward Automatic Program Synthesis. Commun. ACM 14(3),

151–165 (1971)

162 S. Zhu et al.

An Interaction Concept for Program Verification
Systems with Explicit Proof Object

Bernhard Beckert, Sarah Grebing, and Mattias Ulbrich

Karlsruhe Institute of Technology
{beckert,sarah.grebing,ulbrich}@kit.edu

Abstract. Deductive program verification is a difficult task: in general,
user guidance is required to control the proof search and construction.
Providing the right guiding information is challenging for users and usu-
ally requires several reiterations. Supporting the user in this process can
considerably reduce the effort of program verification.
In this paper, we present an interaction concept for deductive program
verification systems that combines point-and-click interaction with the
use of a proof scripting language. Our contribution is twofold: Firstly,
we present a concept for a flexible and concise proof scripting language
tailored to the needs of program verification. Secondly, we explore the
correspondences between program debugging and proof debugging and
introduce a concept for analysing failed proof attempts which leverages
well-established concepts from software debugging. We illustrate our con-
cepts on examples – including small Java programs with non-trivial spec-
ifications – using an early prototype implementation of our interaction
concepts that is built on top of the program verification system KeY.

1 Introduction

Research in automatic program verification has made a huge progress in recent
years. Nevertheless, in the foreseeable future, there will always be programs and
properties that are of importance in practice but for which verification systems
cannot find correctness proofs automatically without user guidance [1]. Finding
the right guiding information that allows a verification system to find a proof is,
in general, an iterative process of repeated failed attempts.

Program verification proofs have characteristics considerably different from
proofs of mathematical theorems (e.g., properties of algebraic structures). In
particular, they consist of many structurally and/or semantically similar cases
which are syntactically large, but usually of less intrinsic complexity. The mech-
anism for providing user guidance should reflect this peculiarity of proofs in the
program verification domain and provide appropriate means for interaction.

We present an interaction concept based on using a proof scripting language
together with a proof development and debugging approach, tailored to the
needs of program verification. Our first contribution is a concept for a concise
and flexible proof scripting language which allows the user to formulate proof
statements which are applied to a group of syntactically or semantically similar

© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 163–178, 2017.
https://doi.org/10.1007/978-3-319-70389-3_11

subproblems. The core of the language concept is the possibility to define selec-
tion criteria that choose several goals at a time that are then treated uniformly.
These selection criteria are resilient to change in the sense that small changes in
the proof require small changes in the proof script describing that proof.

Two interaction paradigms have emerged in state-of-the-art interactive ver-
ification systems: text-based interaction (proof scripts and source code annota-
tions) and point-and-click interaction. Compared to scripting languages where
single proof statements apply to only one goal, and to a textual recording of
pure point-and-click interactions, a scripting language with multi-matching al-
lows creating more compact proof scripts.

However, powerful concepts like multi-matching, which allow proof scripts
whose structure is different from the proofs they describe, have to be comple-
mented with a suitable method to debug failed proof attempts. Thus, as a second
contribution of this paper, we introduce a concept for interactive proof devel-
opment. The focus of this concept is to aid the user in comprehending failed
proof attempts and identifying the next step to successfully continue the proof.
Proofs can be constructed using a proof scripting language as well as direct
manipulation of the proof object using point-and-click interaction.

We showcase our concept, which is particularly well suited for verification
systems with explicit proof objects using a sequent calculus, by applying the
concept for the interactive program verifier KeY [2].

The remainder of this paper is structured as follows: In Sections 2 and 3, we
discuss the proof characteristics of interactive program verification and related
work. Then, we introduce the concepts for a proof scripting language tailored to
the peculiarities of proofs in this domain in Section 4; and we present a concept
for debugging proofs performed using a scripting language in Section 5, making
use of functionalities that are adapted from program debugging. We conclude
and discuss future work in Section 6.

2 Interactive Program Verification

Program verification proofs differ from mechanised proofs of mathematical theo-
rems, particularly in the size and complexity of the occurring formulas and in the
number of different cases to investigate. Program verification proofs often have
a large number of individual subgoals reflecting the control-flow possibilities in
the program.

Each subgoal represents the effect of a possible program execution path,
and subgoals for similar paths often have a high degree of similarity since they
share common path- and postconditions. Such related subgoals may be treated
uniformly, using a common proof strategy. During proof construction, the user
typically switches between focusing on one particular proof goal and looking at
a number of proof branches to decide which ones are semantically similar.

With increasing complexity of programs and specifications, users normally
develop proofs in an iterative and explorative manner, as subtleties of the proofs

164 B. Beckert et al.

are often only discovered after an attempt fails. These iterations include mod-
ifying the specification or the program, as well as adding information to guide
the proof search. Until the verification succeeds, (a) failed attempts have to be
inspected in order to understand the cause of failure and (b) the next step in
the proof process has to be chosen.

Both (a) and (b) are complex tasks. One reason is the inherent difficulty of
understanding a mechanised, formal proof for a non-trivial program property. In
addition, proofs generated by verification systems are of fine granularity. This
makes is difficult for users to understand the big picture of a proof – the abstract
argumentation for why the program fulfils its specification. To succeed with sub-
task (b), performing the next proof step, the user has to understand the nature
of why the proof failed: Is it a mismatch between specification and program or
is the guidance for the proof system insufficient? State-of-the-art tools support
the user in both tasks by, e.g., providing counterexamples and means to inspect
the (incomplete or failed) proof object. However, performing the proof process
is still characterised by trial-and-error phases. We claim that support for debug-
ging large proofs is needed, providing means for explicating the correspondence
between parts of the proof and parts of the program and its specification, for
automating repetitive tasks and applying them to a number of uniform proof
goals, and for analysing failed proof attempts.

The interaction has to use a suitable level of granularity. However, most ex-
isting verification tools with explicit proof object – i.e., a concrete proof object
consisting of atomic rule applications, – only support the most detailed granu-
larity, whereas systems using proof scripts – i.e., the proof object is implicitly
known to exist but not actually constructed, – support interaction on a more
abstract level and also allow repetition of proof steps (but mostly, repetition can
only be applied to single or to all proof goals, but not to matching subsets).

The KeY system. The design of our concept is based on the results of
two focus group experiments [3,4] and is targeted towards rule-based program
verification systems operating on program logics. Our primary target, in which
we exemplarily realize the concept, is the interactive Java verification tool KeY.

The typical workflow of KeY is depicted in Fig. 1: Initially, the user provides
a Java program, together with a specification formulated in the Java Modelling
Language [5] (step 1a). Proof obligations in KeY are formalised in a program
logic called Java DL, and proofs are conducted using a sequent calculus [2]. The
result of an automatic proof search (step 2) is (a) the successful verification of
the program or (b) either a counterexample or an open proof with goals that
remain to be shown. In the latter case, the user may interact directly with KeY
(step 3a) by interactively applying calculus rules (e.g., quantifier instantiations
or logical cuts). Alternatively, the user may revise the program or specification
(step 3b). Often, verifying programs in KeY involves both kinds of interactions,
interspersed by automated proof search.

Proofs in KeY are organised in directed, labelled trees whose vertices are
called proof nodes. Each node is labelled with a sequent, the root is labelled
with the original proof obligation. Inner nodes are additionally labelled with the

An Interaction Concept for Program Verification 165

Prover
or

Java + JML

Proof debugging,
Interaction and
Exploration

Open Goals or
CounterexampleRevision

Proof Script

3a3b

1b

1a

2

Fig. 1. Interactive Program Verification using scripts

calculus rule that was used to construct the node. When interactively applying
rules, KeY allows the user to inspect the whole proof tree with all applied rules.
Proof search and guidance is done by using point-and-click interaction, where
the user points to a formula and mouseclicks on it to apply a rule. Besides the
application of single calculus rules, it is also possible to apply sets of rules in so
called macro steps, which we also call prover strategies. Two important strategies
in this paper are auto and symbex. While auto applies all admissible rules,
symbex only applies rules performing symbolic execution of the Java program.
In this work, we introduce proof scripts (step 1b) to provide an additional way
of interacting with the program verification system.

3 Related Work

Many general purpose proof assistants using higher-order logic feature text-based
interaction (e.g., Isabelle/HOL [6] and Coq [7]). They mostly use an implicit
proof object, where the user can only inspect the goal states but not the in-
termediate atomic proof states. Proofs are performed either using the system’s
programming language or by using a language that directly communicates with
the system’s kernel and builds an abstraction layer on top of the kernel. All
such languages have in common that they serve as the only interaction method.
Therefore, care has been taken to design proof languages that are both a human-
readable input method for proofs and a proof guidance language with which it
is possible to control the prover’s strategies (also called tactics). Isar [8] is the
most prominent state-of-the-art language that serves these purposes. Proof ex-
ploration can be done by providing proof commands or by postponing proof
tasks using a special keyword.

On top of the proof language the aforementioned systems offer languages
that allow to write strategies (e.g., Eisbach [9] for Isabelle or MTac [10] for
Coq) to enable users to program their own tactics tailored to the proof problem.
ProofScript [11] is a proof language inspired by the programming language B-17
and the proof language Isar. It is intended for the use in collaborative proving
in ProofPeer and is designed to overcome the language stack present in the
aforementioned systems, providing one language that fits all purposes. All these

166 B. Beckert et al.

languages contain mechanisms for matching terms and formulas to select proof
goals for rule application. We refer to [9] for an overview of proof languages.

There also exist approaches to debugging proof tactics and gain more insight.
For example, Tinker2 [12] is a graphical tool for inspecting the flow of goals in
proof tactics. And Hentschel [13] applies debugging concepts to the verification
domain in his symbolic execution debugger built into KeY. This debugger sup-
ports the user in case the cause of a failed proof attempt is a mismatch between
the program and its specification. However, it does not give significant insights
if the proof fails because of insufficient user guidance.

4 Concept for a Proof Scripting Language

It is part of our interaction concept to support the combination of point-and-
click with scripting. The control-structures of our proof scripting language can
be used to control the application of strategies of the underlying verification
system. The basic principles of the language are introduced in the following.

Important Features. The characteristics of proofs for program verification
(Sect. 2) lead to the following important elements of our concept for a proof
scripting language:

1. integration of domain specific entities like goal, formula, term and rule as
first-class citizens into the language;

2. an expressive proof goal selection mechanism
– to identify and select individual proof branches,
– to easily switch between proof branches,
– to select multiple branches for uniform treatment (multi-matching);

that is resilient to small changes in the proof;
3. a repetition construct which allows repeated application of proof strategies;
4. support for proof exploration within the language.

The objects manipulated during proof construction are called proof goals. We
assume that each proof goal is unique and identifiable by its contents (e.g., its
sequent, when using a sequent calculus).

Applying calculus rules or proof strategies to a proof goal results in the
creation of new proof goals that are added to the proof.

Performing proof construction is characterised by explorative phases in which
the user tries to determine the best way to approach the remaining proof tasks.
One example for this is when the user suspects that a fact is derivable but is
not certain. In such cases, the user may try different proof strategies or different
lightweight techniques (such as, bounded model-checkers to find counterexam-
ples). These exploration activities have to be considered for the design of a proof
scripting language – for example by supporting (hypothetical) queries to the un-
derlying proof system or other reasoning systems without disturbing the current
proof state.

An Interaction Concept for Program Verification 167

4.1 Preliminaries for the Proof Scripting Language

In the following, we introduce a concept for a proof scripting language taking the
aforementioned principles into account. We present it using an abstract syntax
and demonstrate the language constructs on smaller examples within the KeY
system.

The script language supports local variables of types boolean and integer,
and of domain-specific types such as goal, formula and term. Expressions can be
constructed using arithmetic operators, boolean connectives, subterm selection,
and substitution expressions for concrete and schematic terms and formulas.
Evaluations of expressions and assignments to variables are defined as usual.

We distinguish between two kinds of states for the evaluation of a proof
script: (a) proof states of the verification system characterised by the set of open
proof goals and (b) script states, which in addition to a proof state contain the
value of state variables that are local for each open proof goal.

There are three cases in which the evaluation of a script terminates: (1) there
are no further statements to execute (the end of the script is reached), (2) an
error state is reached, or (3) the set of remaining open proof goals is empty.

Running Example. Our example (see Listing 1) uses a Java class Simple
with a method transitive(int[] a), which creates a copy of the argument
array, sorts it, and copies the result. The goal is to prove (using KeY) that, after
the execution of transitive(), the output array is a permutation of the input
array. After applying KeY’s symbolic execution strategy and a simplification
strategy, the user is left with eleven open goals of which four cases correspond
to the post states of the two conditional statements (in lines 11 and 12). These
cases are similar as they share the same postcondition and differ only a little in
their path conditions. For each of these cases, it has to be shown that the output
array is a permutation of the input array, i.e., that the permutation property is
preserved across the method calls in the body of transitive().

The informal argument for why this holds is that the invoked methods
copyArray() and sort() each preserve the permutation property (as speci-
fied in lines 17 and 25), and that the method log() does not change the heap
(line 30). These methods are called in the body of transitive() on the array
a (lines 8–13).

In the following, we first demonstrate script language features on smaller
examples but will finally return to our running example at the end of this section
and show a full script for the proof.

4.2 Script Language Constructs

The three main building blocks of the scripting language are mutators, control-
flow structures, and selectors for proof goals. We describe the general concepts
and use the KeY system as a showcase for our examples. The abstract syntax of
our language concept is summarised in Fig. 2.

Mutators. Mutators (M in Fig. 2) are the most basic building blocks that
when executed change the script state and the proof state by adding nodes to

168 B. Beckert et al.

1 public final class Simple {
2 boolean b1, b2;
3
4 /*@ public normal_behavior
5 @ ensures seqPerm(array2seq(\result), \old(array2seq(a)));
6 @ assignable \everything; */
7 public int[] transitive(int[] a){
8 a = Simple.copyArray(a);
9 sort(a);

10 int[] b = Simple.copyArray(a);
11 if(b1) { b = Simple.copyArray(a); }
12 if(b2) { log(b); }
13 return b;
14 }
15
16 /*@ public normal_behavior
17 @ ensures seqPerm(array2seq(a), \old(array2seq(a)));
18 @ assignable a[*]; */
19 public void sort(int[] a) { /* in-place sorting */ }
20
21 /*@ public normal_behavior
22 @ ensures (∀ int i; 0 <= i < input.length; input[i]==\result[i])
23 @ && \result.length == input.length;
24 @ ensures \fresh(\result);
25 @ ensures seqPerm(array2seq(\result), array2seq(input));
26 @ assignable \nothing; */
27 public /*@ helper @*/ static int[] copyArray(int[] input) { /* deep-copy */ }
28
29 /*@ public normal_behavior
30 @ assignable \strictly_nothing; */
31 public void log(int[] a) { /* ... */}
32 }

Listing 1. Java program with JML annotations (running example).

the proof tree. Proof commands that correspond to calculus rule applications
or strategy applications are called native as their implementation is not written
in the proof scripting language. Additionally, the language allows calling other
scripts as mutators.

The semantics for both mutator types is similar: they change the set of
open proof goals of the proof state. However, native proof commands are only
applicable to a single goal in our concept. If the goal set of a proof state consists
of more than one goal, it is ambiguous to which of these the command should
be applied. To avoid confusing results, we define this to result in an error state.

The termination of native proof commands depends on the underlying proof
system. Native commands that may run indefinitely long thus allow the specifi-
cation of a timeout or a maximal number of rules application as arguments.

Example 1. The mutator

applyEq on=
mutation target︷ ︸︸ ︷
’==> x==y’ with=

side condition︷ ︸︸ ︷
’y==1 ==>’

in KeY has the semantics that an equality y==1 occurring in the antecedent (the
part to the left of ==> in the goal) is to be applied to the formula x==y in the

An Interaction Concept for Program Verification 169

M ::= (script name | native command) args
C ::= C1; C2 | var := expression | repeat {C} | foreach {C} | theonly {C}

| cases {case S1 : {C1} . . . case Sn : {Cn} } | S

S ::= expression | matchSeq schemaSeq | closes {C} |
| matchLabel regexp | matchRule rulename

Fig. 2. Abstract syntax of the proof scripting language.

succedent (the part right of ==>), replacing x==y with the formula x==1.

state before applyEq︷ ︸︸ ︷
x==1, y==1 ==> x==y

state after applyEq︷ ︸︸ ︷
x==1, y==1 ==> x==1

If either of the formulas y==1 and x==y is not present in the goal, this mutator
is not applicable.

Control Flow. Besides sequential composition and variable assignment, the
language supports control structures (C in Fig. 2) targeting command appli-
cation to one or more proof goals. To be able to apply proof commands to a
single goal node repeatedly, we include a repeat statement. The semantics of
the statement is that the command following repeat is applied until it does not
modify the state anymore.

Example 2. Consider the following example script for KeY containing a repeat
command: repeat { andLeft }. As long as the non-splitting rule andLeft is
applicable in a sequent, it is applied. This is a typical situation for the verifi-
cation tasks in the KeY system where the original proof obligation contains a
conjunction of formulas resulting from the method’s preconditions.

After applying this script to the sequent A && (B && C) ==> D && E, we
get the new sequent A, B, C ==> D && E. The rule andLeft does not have
arguments, therefore the underlying verification system needs to find the right
formulas to apply the rule to. In case there is more than one formula that the
rule can be applied to, an argument indicating the right formula is needed. Note
that, by its definition, the rule andLeft is only applied to the conjunctions in
the antecedent.

Selectors. As the application of calculus rules can cause a proof goal to
split into different cases, it would be ambiguous to apply a proof command after
a split. Therefore, one must be able to indicate to which proof goals a proof
command is to be applied. Selectors (S in Fig. 2) can be used to select one or more
proof goals. Our language concept includes the cases-command for this purpose.
It is tailored to the needs of proving in the domain of program verification,
allowing the formulation of proof goal sets using matching conditions. These
are expressions evaluated for each proof goal; all goals which satisfy a matching
condition Si are then subject to the corresponding proof command Ci. Thus

170 B. Beckert et al.

uniform treatment for several goals can be realised. If a proof goal satisfies more
than one matching condition, the first one wins. The application of a cases
command results in a script state consisting of the union of all open goals of
each case, after the corresponding commands have been executed.

In our language concept, we support three fundamentally different types of
matching conditions: State conditions consist of an expression over the script
variables. Script evaluation selects those proof goals in which the specified ex-
pression evaluates to true. Syntactical conditions (keyword matchSeq) allow the
specification of a logical sequent with schematic placeholders. The condition sat-
isfies those proof goals for which the schematic sequent can be unified with the
proof goal’s sequent. Semantic conditions (notated as closes {C}) involve the
deductive capacities of the verification system to decide the selection of proof
goals. A proof goal is selected if and only if the evaluation of the proof command
C would close this goal.

Syntactic matching is not limited to the goal’s sequent (using matchSeq) but
can also be applied to rule names (using matchRule) and to labels put on the
branches of a rule application (using matchLabel).

In addition to the cases command, foreach {C} and theonly {C} are in-
cluded for convenience purposes. Both apply command C to each goal in the
state and are semantically equivalent to cases { case true: {C} }. Command
theonly can be used in situations where the user expects that there is exactly
one goal in the proof state. If there is more than one when the command is
evaluated, a warning is passed to the user.

Schematic placeholders used for syntactic goal matching have names that
start with ‘?’. When they are instantiated while matching against the sequent
of a proof goal, these instantiations can be accessed also in the embedded proof
command (e.g., as argument for a calculus rule) to direct the proof using informa-
tion present on the sequent. If there is more than one possibility for instantiating
the schema variables during constraint solving, the first match is used.
Example 3. Consider the following simple example for the use of a matching con-
dition within a cases selector, where the template matches sequents containing
an implication in the succedent:

case matchSeq ’==> ?A -> ?B’ : { impRight; andLeft on=’?A’ }

In case of a match, the left side of the implication is assigned to the variable ?A
and the right side is assigned to ?B. Then, the proof command is executed. After
applying the rule impRight, the rule andLeft is applied to the formula bound
to ?A. This example reveals a requirement for the underlying verification system:
it needs to check whether the formula bound to ?A is still on the sequent when
applying the rule andLeft. If there is more than one occurrence in the sequent,
one of them is chosen for rule application. If the formula is not present anymore
(because other rules have been applied before) the rule is not applicable, which
results in an error state.

Proof Exploration. To support proof exploration in the scripting language,
we include the statement “closes { C }”. It examines whether applying the proof

An Interaction Concept for Program Verification 171

command C would close the current goal (without actually effecting the current
state). Besides its use for exploration, closes can be used in the cases statement
as matching condition.
Example 4. Assume that a proof command is (only) to be applied to those goals,
which can be closed once some formula F is added to the succedent of the
goal’s sequent (i.e., the formula F is derivable from the sequent). This can be
expressed using closes as follows: closes (assume ’==> F’; auto), where
assume ’==> F’ is a proof command adding F to the succedent. Adding ar-
bitrary formulas to the proof obligation during proof construction is unsound.
Thus, the assume command is only allowed in closes statements. The proof
command auto is then used to try to prove the newly created proof obligation.

Explorations that check whether a certain formula is derivable (as shown in
the above example), come in handy, when we want to match a formula, such as
x > 0, but on the sequent a stronger formula, such as x > 1, is present. While
case matchSeq ’x > 0’ would miss the goal node, an expression checking for
derivability of x > 0 would match the sequent.

Running Example. In Fig. 2, a proof script for proving the correctness of
the method transitive (see Fig. 1) is shown, which uses the building blocks
described above. After symbolic execution and some simplification steps (lines
2–3), the KeY system stops in a state with 11 open goals. The tricky cases are
those where the postcondition of the method transitive has to be shown to
be consequences of the postconditions of the called methods copyArray, sort
and log. Corresponding schematic sequent templates (lines 6–10 and 22–25) are
then used in a cases statement to select the relevant goal nodes which need
user interaction. The cases statements select goal nodes that contain predicates
seqPerm(seq1, seq2) formalising that sequence seq1 is a permutation of se-
quence seq2. Rules deriving relations about different heaps using the symmetry
and transitivity properties of the permutation predicate are applied (lines 11–
18 and 26–31). Each condition matches two goals, the commands close them.
To all other goal nodes not selected by the two matching conditions, the proof
command auto is applied with at most 10000 rule applications (line 34).

Without the script and the matching feature it uses, the rule applications
in the two cases statements would have to be applied separately to each of the
four open branches. Additionally, the two cases are similar, so the user is able to
copy-paste the first case and adjust it to the situation of the second case. Note
that the scripting language is especially useful when used together with the
point-and-click features of the system, to ease the selection process for applying
rules/strategies onto terms. This allows one to make use of the mechanism for
suggesting applicable rules of the underlying system.

5 Concept for Debugging Proof Attempts

5.1 Analogy between Programs and Proof Scripts
Scripts formulated in a scripting language like the one presented in the previous
section can be considered to be “programs” that construct (partial) proofs for

172 B. Beckert et al.

1 script prove_transitive() {
2 symbex; // perform symbolic execution of the program
3 foreach { heapSimplification; } // simplify heap terms
4 cases {
5 case matchSeq
6 ’seqPerm(?Res0Copy, ?Arr),
7 seqPerm(?Res0Sort, ?Res0Copy),
8 seqPerm(?Res1Copy0, ?Res0Sort),
9 seqPerm(?Res2Copy1, ?Res0Sort) ==>

10 seqPerm(?Res2Copy1, ?Arr)’:
11 { SeqPermSym on=’seqPerm(?Res0Copy, ?Arr) ==>’; // symmetry rule
12 SeqPermSym on=’seqPerm(?Res0Sort, ?Res0Copy) ==>’; // symmetry rule
13 SeqPermSym on=’seqPerm(?Res1Copy0, ?Res0Sort)==>’; // symmetry rule
14 SeqPermSym on=’seqPerm(?Res2Copy1, ?Res0Sort) ==>’; // symmetry rule
15 SeqPermTrans on=’seqPerm(?Res0Copy, ?Arr) ==>’; // transitivity rule
16 SeqPermTrans on=’seqPerm(?Arr, ?Res0Sort) ==>’ // transitivity rule
17 with=’seqPerm(?Arr,?Res2Copy1)’; // with specific term
18 SeqPermSym on=’seqPerm(?Arr,?Res2Copy1)’;
19 auto maxSteps=10000 // automatic strategy with 10000 rule applications
20 }
21 case matchSeq
22 ’seqPerm(?Res0Copy, ?Arr),
23 seqPerm(?Res0Sort, ?Res0Copy),
24 seqPerm(?Res1Copy0, ?Res0Sort) ==>
25 seqPerm(?Res1Copy0, ?Arr)’:
26 { SeqPermSym on=’seqPerm(?Res0Copy, ?Arr)’;
27 SeqPermSym on=’seqPerm(?Res0Sort, ?Res0Copy)’;
28 SeqPermSym on=’seqPerm(?Res1Copy0, ?Res0Sort)’;
29 SeqPermTrans on=’seqPerm(?Res0Copy, ?Arr)’;
30 SeqPermTrans on=’seqPerm(?Arr, ?Res0Sort)’
31 SeqPermSym 0n=’==> seqPerm(?Res1Copy0, ?Arr)’;
32 auto maxSteps=10000
33 }
34 case true: { auto maxSteps=10000 }
35 }
36 }

Listing 2. Example proof script for method transitive().

a proof obligation. They take the initial proof goal as input and derive a set of
new goals. The input goal is successfully proved if the derived goal set is empty.
The similarity between proof scripts and imperative programs allows us to draw
an analogy between implementing and debugging programs on the one hand and
coming up with proof scripts and analysing failed proof attempts on the other.
The main analogies between the two processes are summarised in Table 1.

Note that evaluating a proof script corresponds to executing a multi-threaded
program because of the proof-forking nature of some proof commands (which
implement case distinctions). Proof commands on different open goals can be
handled independently and in parallel. In that sense, executing a cases com-
mand (see Sect. 4) corresponds to forking threads, which are joined again when
the cases command terminates. The proof tree that is built when executing a
script corresponds to the set of traces of all threads when executing a program.

However, there is also an important difference between proof scripts and
general programs: The result of a successful proof script evaluation is known a
priori (the empty set of goals). Since no output object needs to be constructed,
in many cases predefined operations lead to success. This is the reason why users

An Interaction Concept for Program Verification 173

Table 1. Analogies between program debugging and debugging failed proof attempts.

Proof Debugging ↔ Program Debugging

proof script ↔ program source code
script state (incl. proof state) ↔ program state

sources and open proof goal(s) ↔ program input
proof tree ↔ traces of all threads

proof branch ↔ trace of an individual thread
partial proof ↔ trace of an incomplete program run

completed proof ↔ trace of a successfully terminating program run

often at first follow a try-and-error approach: Just using the auto command for
automatic proof search works for many simple proof goals – which is not possible
for arbitrary simple computation tasks if these differ in their expected outputs.

5.2 Analogy between Debugging and Failed Proof Analysis

Software debugging is the analysis process of understanding unexpected program
behaviour, localising the responsible piece of code, and mending it. Typically,
a concrete run of the program exposing the bug is analysed using specialised
software (a debugger) which supports the user in the process by various means
of visualisation and abstraction. The features help the user comprehend and
explore both individual program states at various points of the execution and
paths through the program taken by the execution. Powerful modern debugging
tools also allow the engineer to modify an intermediate system state (e.g., by
changing the values of variables) to conduct what-if-analyses which help them
understand and explore the system.

When mechanising a formal proof, the user often has the main arguments
of an abstract proof plan in mind which (supposedly) lead to a closed proof.
However, this plan is often at a high abstraction level such that it cannot be
transformed directly and easily into proof script commands; the user has to
refine the proof plan first to be able to formulate it as a proof script. Especially
in early stages of a proof process, the evaluation of a proof script is likely to fail.
The typical reasons for a failed proof attempt include that auxiliary annotations
(such as loop invariants) may be insufficient, that there may be defects in the
source code or the specification, or that the proof script itself may be misleading
or not detailed enough. Eliminating all such deficiencies is an iterative process,
which may also affect other proofs of the same overall verification task (since
there are interfaces and interdependencies between system components even if
they are verified separately).

When the evaluation of a proof script does not lead to a closed proof, the
user needs to be able inspect the intermediate and final proof states in order to
understand the undesired behaviour. This process involves localising the respon-
sible part of the proof and identifying the type of failure: Does the underlying

174 B. Beckert et al.

verification system require more or better guidance? Is there a defect in the
program, the specification, or the proof script?

The same kind of questions arise in conventional program debugging (Are
the data as expected at this point? Is the next statement in the program the
correct? Are all parameters to a routine call correct?). Hence, the user needs
tool support to decide these questions also for debugging proof scripts. Similar
inspection possibilities are required to come up with actions in the proof process.
It must be, in particular, possible to link proof states to commands in the proof
script and to the user’s mental proof plan. To find a suitable course of action,
the user needs to have means to explore the proof state and to test hypotheses
about the cause of failure and about effects of next steps to the proof.

5.3 Adoption of Program Debugging Methods for Proof Debugging

The analogy between proof scripts and programs and the similarities between
the software debugging process and the process for the analysis of failed proof at-
tempts allow us to adopt well-known techniques from software debugging to the
debugging of (failed) proofs. We focus on user support for the activities of locali-
sation, comprehension, and exploration. Additionally, we adapt the presentation
of program states for script states, allowing a detailed inspection.

A screenshot of our early prototype1 (based on the KeY system) realising
these concepts is shown in Fig. 3.

State Presentation. Program states in software debugging may be very
complex. To support the user in inspecting and understanding a state, debugging
systems present the state’s information in a structured manner.

Our concept for proof states includes a structured presentation and func-
tionalities for inspecting the state similar to program debugging systems. For
this, we have identified the following parts of a state that should be visualised
in isolation: (a) the proof tree with a visual highlight of the current node (i.e.,
the node containing the open goal to which the currently active proof command
is being applied), (b) sequent of the current node (i.e., the current open goal),
(c) the currently active proof command in the script, (d) the path in the program
that corresponds to the currently selected proof branch, and (e) the values of all
local variables in the script state.

Localisation. To support the user in localising the cause of a defective be-
haviour, debugging systems provide breakpoints. These allow the user to inspect
the program execution in detail when a program location is reached.

In the setting of program verification, defective behaviour corresponds to a
proof with open goals, and the user is mostly interested in understanding these.
In our concept, using point-and-click interaction with the explicit proof object,
users have the flexibility to navigate in the proof tree in both directions: from
the root to the open goals (leaves) and backwards from the leaves to the root.
The user can follow two possible strategies: (a) Inspecting an open goal that
contains unexpected formulas or terms and performing a backwards search to
1 http://formal.iti.kit.edu/key-psdebugger

An Interaction Concept for Program Verification 175

Fig. 3. Screenshot of our proof debugger prototype based on the KeY system. On the
left (1) is the proof script editor (in this case containing the script from Listing 2);
the currently active proof command is highlighted in blue. In the middle (2), the open
goals of the current proof state are listed; here, the last goal is selected. Below, the
sequent of the selected goal is shown (3). The source code panel (4) shows the Java
program and highlights the symbolic execution path traversed for the selected sequent.
The toolbar (5) shows UI elements for stepping through the proof script.

localise where this information was introduced into the proof. (b) Starting from
a familiar and expected state and tracing the proof in a forward fashion. In order
to support these strategies, we adopt the idea of breakpoints in two ways: regular
breakpoints and (reverse) conditional breakpoints.

A regular breakpoint is a syntactical marker that represents a location in
the proof script. If, in debug mode, execution of the proof script reaches the
breakpoint, execution is stopped and the current proof state is presented to
the user. Similar to program debugging, breakpoints may be conditional. Such
conditional breakpoints include boolean expressions indicating that execution
shall only stop if conditions on the state are true when the breakpoint is reached.

For backwards search, we provide reverse conditional searchpoints, which con-
sist of a boolean condition and a goal node. While breakpoints are the endpoint
of a search, searchpoints are the starting point. The backwards search in the
(partial) proof – from the searchpoint towards the root node – stops at the first
intermediate proof node for which the condition is evaluated to true.

Conditions in breakpoints and searchpoints can be boolean expression from
the script language, in particular all matching conditions can be used here. This
design allows the user to find states where certain formulas are introduced into

176 B. Beckert et al.

the sequent or nodes in the proof tree where certain rules are applied. Break-
points can also be used to select states where the complexity or number of
formulas in the sequent reaches a certain threshold.

Stepping, Tracing, and Comprehension. Once the user has located an
entry point from where to perform a detailed inspection, the next activity is
to stepwise retrace what state changes are made by the proof script. To sim-
plify this process, the proof debugger allows the user to limit the inspection to
interesting parts of the script (step-into) and to omit the details of subscripts
that are deemed irrelevant (step-over). This stepwise retracing allows the user
to comprehend the effects of proof commands and subscripts and the creation
of proof goals.

Expression Evaluation. Software debugging systems support the task of
forming hypotheses about the cause of a defect by allowing the evaluation of user-
provided expressions in the current state. A functionality for proof debugging
corresponding to expression evaluation is to allow the user to provide a set of
formulas, which may or may not be a subset of formulas present in the proof
state, and to evaluate whether these formulas are derivable in the context of a
node in the proof tree.

One may use external solvers or verification systems to determine whether
the set of formulas is satisfiable or not and to get a model in the first case.
This is particularly helpful in cases where the size of the sequent prevents the
underlying proof system from finding a counterexample.

Changing the State: “What-if”? We adopt the idea of allowing the user
to explore the behaviour of the proof script by actively changing the proof state
in debug mode. Thus, the user may gain information about which changes are
necessary to advance the proof search. In a second step, this knowledge may
then be used to, e.g., analyse whether the origin of the part of state that was
changed (e.g., the precondition of the program) has to be adapted.

Hot-Swapping. A further element of the proof debugging concept is to
allow hot swapping, i.e., the user can change parts of the proof script while the
script is executed in debug mode, in order to explore hypotheses about how the
proof construction can proceed in a successful way.

6 Conclusion and Future Work

We have presented an interaction concept for deductive program verification sys-
tems that combines point-and-click interaction with the use of a proof scripting
language. This concept introduces a flexible and concise proof scripting language
tailored to the needs of program verification. In this domain, proofs often consist
of many structurally and/or semantically similar cases which are syntactically
large but of small intrinsic complexity. Using matching mechanisms, the language
provides means taylored to this type of proofs.

Further, we have explored the correspondences between program debugging
and proof debugging and introduced a concept for analysing failed proof at-
tempts, which leverages well-established concepts from software debugging.

An Interaction Concept for Program Verification 177

A prototypical implementation using the KeY system and a case study is
currently work in progress. It remains for future work to evaluate the effectiveness
of the concepts by performing usability studies.
Acknowledgements. Special thanks go to Alexander Weigl who provided valu-
able comments concerning the proof debugging concept, the realisation of the
script language, and the prototype.

References

1. Hähnle, R., Huisman, M.: Deductive software verification: From pen-and-paper
proofs to industrial tools. In: LNCS 10000. (2017)

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M., eds.:
Deductive Software Verification - The KeY Book: From Theory to Practice. Volume
10001 of LNCS. Springer (2016)

3. Beckert, B., Grebing, S., Böhl, F.: How to put usability into focus: Using focus
groups to evaluate the usability of interactive theorem provers. In Benzmüller, C.,
Woltzenlogel Paleo, B., eds.: UITP 2014. Volume 167 of EPTCS. (July 2014) 4–13

4. Beckert, B., Grebing, S., Böhl, F.: A usability evaluation of interactive theo-
rem provers using focus groups. In Canal, C., Idani, A., eds.: 12th International
Conference on Software Engineering and Formal Methods (SEFM 2014) – Collo-
cated Workshops: Human-Oriented Formal Methods (HOFM 2014). Volume 8938
of LNCS., Springer (September 2014) 3–19

5. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. SIGSOFT/SEN 31(3) (2006) 1–38

6. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)

7. Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions. 1st edn. Texts in Theoretical
Computer Science An EATCS Series. Springer-Verlag Berlin Heidelberg (2004)

8. Wenzel, M.: Isar - a generic interpretative approach to readable formal proof
documents. In: Proceedings of the 12th International Conference on Theorem
Proving in Higher Order Logics. TPHOLs ’99, London, UK, UK, Springer-Verlag
(1999) 167–184

9. Matichuk, D., Murray, T., Wenzel, M.: Eisbach: A proof method language for
isabelle. Journal of Automated Reasoning 56(3) (Mar 2016) 261–282

10. Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac: A
monad for typed tactic programming in coq. SIGPLAN Not. 48(9) (September
2013) 87–100

11. Obua, S., Scott, P., Fleuriot, J.: Proofscript: Proof scripting for the masses. In
Sampaio, A., Wang, F., eds.: Theoretical Aspects of Computing – ICTAC 2016:
13th International Colloquium, Taipei, Taiwan, ROC, October 24–31, 2016, Pro-
ceedings, Cham, Springer International Publishing (2016) 333–348

12. Lin, Y., Le Bras, P., Grov, G.: Developing and debugging proof strategies by
tinkering. In: Proceedings of the 22nd International Conference on Tools and
Algorithms for the Construction and Analysis of Systems - Volume 9636, New
York, NY, USA, Springer-Verlag New York, Inc. (2016) 573–579

13. Hentschel, M.: Integrating Symbolic Execution, Debugging and Verification. PhD
thesis, Technische Universität Darmstadt (January 2016)

178 B. Beckert et al.

PRuning Through Satisfaction?

Marijn J.H. Heule1, Benjamin Kiesl2, Martina Seidl3, and Armin Biere3

1 Department of Computer Science, The University of Texas at Austin
2 Institute of Information Systems, TU Wien

3 Institute for Formal Models and Verification, JKU Linz

Abstract. The classical approach to solving the satisfiability problem of
propositional logic prunes unsatisfiable branches from the search space.
We prune more agressively by also removing certain branches for which
there exist other branches that are more satisfiable. This is achieved by
extending the popular conflict-driven clause learning (CDCL) paradigm
with so-called PR-clause learning. We implemented our new paradigm,
named satisfaction-driven clause learning (SDCL), in the SAT solver
Lingeling. Experiments on the well-known pigeon hole formulas show
that our method can automatically produce proofs of unsatisfiability
whose size is cubic in the number of pigeons while plain CDCL solvers
can only produce proofs of exponential size.

1 Introduction

Conflict-driven clause learning (CDCL) [11] is the leading paradigm for solving
the satisfiability problem of propositional logic (SAT). It is well-known that
CDCL solvers are able to generate resolution proofs but this useful ability comes
at a price because it means that CDCL solvers suffer from the same restrictions
as the resolution proof system. For instance, there are seemingly simple formula
families that admit only exponential-size resolution proofs, implying that solving
these formulas with CDCL takes exponential time [14].

To deal with the limitations of resolution, stronger proof systems have been
proposed [19]. Popular examples of such proof systems are extended resolu-
tion [18] and an even more general system based on blocked clauses [10]. These
systems extend resolution by allowing the introduction of short definition clauses
over new variables. As shown by Cook [3], the introduction of these clauses al-
ready suffices to obtain short proofs of the famous pigeon hole formulas—a class
of formulas known for admitting no short resolution proofs [4]. But the intro-
duction of new variables has a downside: The search space of possible variables
is infinite in general, which complicates the search for useful definition clauses.
This may explain the limited success of GlucosER [1], a CDCL solver that uses
extended resolution. To cope with this drawback, we recently introduced a proof
system, called PR (short for propagation redundancy), that allows for short proofs
of the pigeon hole formulas without the need to introduce new variables [6].

? Supported by the National Science Foundation under grant CCF-1526760 and by
the Austrian Science Fund (FWF) under projects S11409-N23 and W1255-N23.

© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 179–194, 2017.
https://doi.org/10.1007/978-3-319-70389-3_12

In this paper, we enhance the CDCL paradigm by extending it in such a
way that it can exploit the strengths of the PR proof system. To do so, we
introduce satisfaction-driven clause learning (SDCL), a SAT solving paradigm
that extends CDCL as follows: If the usual unit propagation does not lead to a
conflict, we do not immediately decide for a new variable assignment (as would
be the case in CDCL). Instead, we first try to prune the search space of possible
truth assignments by learning a so-called PR clause.

Intuitively, a PR clause is a clause that might not be implied by the current
formula but whose addition preserves satisfiability. As we show in this paper,
deciding whether a given clause is a PR clause is NP-complete. We therefore use
an additional SAT solver for finding such clauses. Finding useful PR clauses is a
non-trivial problem as it is not immediately clear which clauses should be added
to improve solver performance. To gain further insight, we develop a strong
theory that relates our SAT encoding for finding PR clauses with two concepts
from the literature: autarkies [9] and set-blocked clauses [8].

The main contributions of this paper are as follows: (1) We introduce satis-
faction-driven clause learning, a paradigm that extends CDCL by performing
the addition of PR clauses. (2) We prove that the problem of deciding whether a
given clause is a PR clause is NP-complete. (3) We use a SAT solver for finding
PR clauses and show that the corresponding SAT encoding is strongly related to
the concepts of autarkies and set-blocked clauses. (4) We implement SDCL as an
extension of the award-winning SAT solver Lingeling [2], which is developed
by the last author of this paper. An experimental evaluation shows that our
approach can generate proofs for much larger pigeon hole formulas than two
existing tools based on extended resolution.

2 Preliminaries

Below we present the most important background concepts related to this paper.

Propositional logic. We consider propositional formulas in conjunctive normal
form (CNF), which are defined as follows. A literal is either a variable x (a
positive literal) or the negation x of a variable x (a negative literal). The com-
plementary literal l of a literal l is defined as l = x if l = x and l = x if l = x.
Accordingly, for a set L of literals, we define L = {l | l ∈ L}. A clause is a
disjunction of literals. A formula is a conjunction of clauses. We view clauses
as sets of literals and formulas as sets of clauses. For a set L of literals and a
formula F , we define FL = {C ∈ F | C ∩L 6= ∅}. For a literal, clause, or formula
F , var(F) denotes the variables in F . For convenience, we treat var(F) as a
variable if F is a literal, and as a set of variables otherwise.

Satisfiability. An assignment is a function from a set of variables to the truth
values 1 (true) and 0 (false). An assignment is total w.r.t. a formula if it assigns
a truth value to all variables occurring in the formula; otherwise it is partial. A
literal l is satisfied (falsified) by an assignment α if l is positive and α(var(l)) = 1

180 M.J.H. Heule et al.

(α(var(l)) = 0, resp.) or if it is negative and α(var(l)) = 0 (α(var(l)) = 1, resp.).
We often denote assignments by sequences of literals they satisfy. For instance,
x y denotes the assignment that assigns 1 to x and 0 to y. For an assignment α,
var(α) denotes the variables assigned by α. Further, αL denotes the assignment
obtained from α by flipping the truth values of the literals in L. A clause is
satisfied by an assignment α if it contains a literal that is satisfied by α. Finally,
a formula is satisfied by an assignment α if all its clauses are satisfied by α. A
formula is satisfiable if there exists an assignment that satisfies it.

Formula simplification. We denote the empty clause by ⊥ and the satisfied
clause by >. Given an assignment α and a clause C, we define C |α = > if α
satisfies C; otherwise, C |α denotes the result of removing from C all the literals
falsified by α. For a formula F , we define F |α = {C |α | C ∈ F and C |α 6= >}.
We say that an assignment α touches a clause C if var(α) ∩ var(C) 6= ∅. Given
an assignment α, the clause {x | α(x) = 0} ∪ {x | α(x) = 1} is the clause that
blocks α. A unit clause is a clause with only one literal. The result of applying
the unit clause rule to a formula F is the formula F |l where (l) is a unit clause
in F . The iterated application of the unit clause rule to a formula, until no unit
clauses are left, is called unit propagation. If unit propagation yields the empty
clause ⊥, we say that it derived a conflict.

Formula relations. Two formulas are logically equivalent if they are satisfied by
the same assignments. Two formulas are satisfiability equivalent if they are either
both satisfiable or both unsatisfiable. Given two formulas F and F ′, we denote
by F � F ′ that F implies F ′, i.e., all assignments satisfying F also satisfy F ′.
Furthermore, by F `1 F ′ we denote that for every clause (l1∨· · ·∨ ln) ∈ F ′, unit
propagation on F ∧ (l1) ∧ · · · ∧ (ln) derives a conflict. If F `1 F ′, we say that
F implies F ′ through unit propagation. For example, (x) ∧ (y) `1 (x ∨ z) ∧ (y),
since unit propagation of the unit clauses (x) and (z) derives a conflict with (x),
and unit propagation of (y) derives a conflict with (y).

Conflict-driven clause learning (CDCL) in a nutshell. To evaluate the satisfia-
bility of a formula, a CDCL solver iteratively performs the following operations:
First, the solver performs unit propagation. Then, it tests whether it has reached
a conflict, meaning that the formula is falsified by the current assignment. If no
conflict has been reached and all variables are assigned, the formula is satisfi-
able. Otherwise, the solver chooses an unassigned variable based on some de-
cision heuristic, assigns a truth value to it, and continues by again performing
unit propagation. If, however, a conflict has been reached, the solver learns a
short clause that prevents it from repeating similar (bad) decisions in the fu-
ture (“clause learning”). In case this clause is the (unsatisfiable) empty clause,
the unsatisfiability of the formula can be concluded. In case it is not the empty
clause, the solver revokes some of its variable assignments (“backjumping”) and
then repeats the whole procedure again by performing unit propagation.

PRuning Through Satisfaction 181

3 Searching for Propagation-Redundant Clauses

As already mentioned in the introduction, the addition of so-called PR clauses
(short for propagation-redundant clauses) to a formula can lead to short proofs
for hard formulas without the introduction of new variables. In this section,
we present an approach for finding PR clauses. Although PR clauses are not
necessarily implied by the formula, their addition preserves satisfiability [6]. The
intuitive reason for this is that the addition of a PR clause prunes the search
space of possible assignments in such a way that there still remain assignments
under which the formula is as satisfiable as under the pruned assignments. In the
following definition, assignments can be partial with respect to the formula [6]:

Definition 1. Let F be a formula, C a clause, and α the assignment blocked
by C. Then, C is propagation redundant (PR) with respect to F if there exists
an assignment ω such that ω satisfies C and F |α `1 F |ω.

The clause C can be seen as a constraint that prunes from the search space
all assignments that extend α. Since F |α implies F |ω, every assignment that
satisfies F |α also satisfies F |ω, meaning that F is at least as satisfiable under ω
as it is under α. Moreover, since ω satisfies C, it must disagree with α on at least
one variable. We refer to ω as the witness, since it witnesses the propagation-
redundancy of the clause. Consider the following example [6]:

Example 1. Let F = (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ z), C = (x), and let ω = x z be
an assignment. Then, α = x is the assignment blocked by C. Now, consider
F |α = (y) and F |ω = (y). Clearly, unit propagation on F |α ∧ (y) derives a
conflict. Thus, F |α `1 F |ω and so C is propagation redundant w.r.t. F . ut

Most known types of redundant clauses are PR clauses [6]. This includes blocked
clauses [10], set-blocked clauses [8], resolution asymmetric tautologies (RATs) [7],
and many more. As a new result, we show next that deciding whether a given
clause is a PR clause is NP-complete, which complicates the search for PR clauses.

Definition 2. The PR problem is the following decision problem: Given a for-
mula F and a clause C, decide if C is propagation-redundant w.r.t. F .

Theorem 1. The PR problem is NP-complete.

Proof. Membership in NP: Let α be the assignment blocked by C. To decide
whether or not C is propagation-redundant with respect to F , just guess an
assignment ω and check if F |α `1 F |ω.

NP-hardness: We present a polynomial reduction from the SAT problem.
Let F be an input formula (in CNF) for the SAT problem and let v be a fresh
variable that does not occur in F . Now, let C = v and obtain the formula F ′

from F by adding to each clause the literal v. We show that F is satisfiable if
and only if C is propagation-redundant with respect to F ′.

For the “only if” direction, assume that F is satisfied by some assignment ω
and let α = v be the assignment blocked by C. Now, obtain a new assignment

182 M.J.H. Heule et al.

ω′ from ω by extending it as follows: ω′(x) = ω(x) if x ∈ var(F) and ω′(v) = 0.
Then, ω′ disagrees with α on v. Moreover, since ω satisfies F , it satisfies F ′.
Hence, F ′ |ω′ = ∅ and thus F ′ |α `1 F ′ |ω′ trivially holds. It follows that C is
propagation-redundant with respect to F ′.

For the “if” direction, assume that C is propagation-redundant with respect
to F ′ and let α = v be the assignment blocked by C. Then, there exists an
assignment ω′ such that F ′ |α `1 F ′ |ω′ and ω′ disagrees with α, meaning that
ω′(v) = 0. Since every clause in F ′ contains v, it follows that α satisfies F ′ and
so it must be the case that ω′ satisfies F ′. Since ω′(v) = 0 and F ′ |v = F , it
follows that ω′ satisfies F . ut

Since the identification of PR clauses is NP-hard, we use a SAT solver to search
for PR clauses. We thus next introduce a SAT encoding which, for a given formula
F and an assignment α, tries to find a witness ω that certifies the propagation
redundancy of the clause that blocks α. We obtain the encoding, which we call
the positive reduct, by selecting only a subpart of F :

Definition 3. Let F be a formula, α an assignment, and C the clause that blocks
α. The positive reduct p(F, α) of F with respect to α is the formula G∧C, where
G is obtained from F by first removing all clauses that are not satisfied by α and
then removing from the remaining clauses all literals that are not assigned by α.

Example 2. Let F = (x ∨ y ∨ z) ∧ (w ∨ y) ∧ (w ∨ z) and α = x y z. Then, the
positive reduct p(F, α) of F w.r.t. α is the formula (x∨y∨z)∧(z)∧(x∨y∨z). ut

We next show that the positive reduct is satisfiable if and only if the clause
blocked by α is a set-blocked clause [8] (see Definition 4 below), meaning that it
is also a PR clause [6] (note that deciding set-blockedness of a clause is also NP-
complete [8]). We show later that we can usually shorten this set-blocked clause
and thereby turn it into a PR clause that might not be set-blocked anymore.

Definition 4. A clause C is set-blocked by a non-empty set L ⊆ C in a for-
mula F if, for every clause D ∈ FL, the clause (C \ L) ∪ L ∪ D contains two
complementary literals.

We say that a clause is set-blocked in a formula F if it is set-blocked by some of
its literals in F . Consider the following example [8]:

Example 3. Let C = (x∨ y) and F = (x∨ y)∧ (x∨ y). Then, C is set-blocked by
L = {x, y}: Clearly, FL = F and C \ L = ∅. Therefore, for D1 = (x ∨ y) we get
that (C \L)∪L∪D1 = (x∨ y ∨ y) contains two complementary literals and the
same holds for D2 = (x∨ y), for which we get (C \L)∪L∪D2 = (x∨ y∨x). ut

Assume we are given a clause C which blocks some assignment α. Our new result
given in the following theorem implies that C is set-blocked in a formula F if and
only if the positive reduct p(F, α) is satisfiable. Recall that for an assignment α
and a set of literals L, αL denotes the assignment obtained from α by flipping
the truth values of the literals in L:

PRuning Through Satisfaction 183

Theorem 2. Let F be a formula, α an assignment, and C the clause that
blocks α. Then, C is set-blocked by L ⊆ C in F if and only if αL satisfies
the positive reduct p(F, α).

Proof. For the “only if” direction, assume that C is set-blocked by L in F . We
show that αL satisfies p(F, α). Clearly, αL satisfies C since αL is obtained from
α by flipping the truth values of the literals in L. Now, let D be a clause in
p(F, α) that is different from C. We show that D is satisfied by αL. By the
definition of p(F, α), D is satisfied by α and thus, if D contains no literals of
L (i.e., D 6∈ FL), it is also satisfied by αL. Assume therefore that D ∈ FL.
Then, since C is set-blocked by L in F , the clause (C \L)∪L∪D contains two
complementary literals.

Since C cannot contain two complementary literals (because it blocks the
assignment α), there must be a literal l ∈ D such that one of the following
holds: (1) l ∈ D, (2) l ∈ C \ L, (3) l ∈ L. In the first case, D is clearly satisfied
by αL. In the second case, since αL differs from α only on literals in L and since
α falsifies C, it follows that αL falsifies l and thus it satisfies l. Finally, in the
third case, it follows that l ∈ L and so αL satisfies l since it satisfies all the
literals in L. It follows that D is satisfied by αL. Therefore, αL satisfies p(F, α).

For the “if” direction, assume that αL satisfies p(F, α). We show that L
set-blocks C in F . Let D ∈ FL. Since α falsifies C, it falsifies L. Therefore, α
satisfies L and thus p(F, α) contains the clause D′, obtained from D by removing
all literals that are not assigned by α. By assumption, αL satisfies D′ and since
it falsifies L, it must satisfy some literal l ∈ D′ \ L. But then l ∈ C \ L and
thus the clause (C \ L) ∪ L ∪D contains two complementary literals. Hence, C
is set-blocked by L in F . ut

Thus, if the SAT solver finds an assignment α for which the positive reduct
with respect to F is satisfiable, then the clause that blocks α is a set-blocked
clause and so its addition to F preserves satisfiability. Even better, when using a
CDCL solver, we can usually add a shorter clause: If α is the current assignment
of the solver, it consists of two parts—a part αd of variable assignments that
were decisions by the solver and a part αu of assignments that were derived from
these decisions via unit propagation. This means that F |αd `1 F |α. Since C is
set-blocked—and thus propagation-redundant—with respect to F , we know that
there exists some assignment ω such that F |α `1 F |ω. But then F |αd `1 F |ω
and so the clause that blocks αd, which is a subclause of the clause that blocks
α, is a PR clause with respect to F . We conclude:

Theorem 3. Let C be a PR clause w.r.t. a formula F and let α = αd ∪ αu be
the assignment blocked by C. Assume furthermore that the assignments in αu

are derived via unit propagation on F |αd. Then, the clause that blocks αd is
propagation-redundant w.r.t. to F .

We can thus efficiently find short PR clauses by using an additional SAT solver
for finding a set-blocked clause and then shortening the clause by removing
literals that are not decision literals.

184 M.J.H. Heule et al.

4 Conditional Autarkies

We have seen that the positive reduct can be used to determine whether a
clause is set-blocked with respect to a given formula. As we show in this section,
searching for satisfying assignments of the positive reduct is actually the same
as searching for certain kinds of partial assignments [12]:

Definition 5. A partial assignment ω is an autarky for a formula F if ω sat-
isfies every C ∈ F for which var(ω) ∩ var(C) 6= ∅.

In other words, an autarky is a (partial) assignment that satisfies every clause
it touches. For example, if a literal l is pure in a formula (i.e., l does not occur
in the formula), then the assignment ω = l is an autarky for the formula. But
also the empty assignment as well as every assignment that satisfies the whole
formula are autarkies. If we are given an autarky ω for a formula F , we can use ω
to simplify F because F |ω and F are satisfiability equivalent, although they are
not necessarily logically equivalent [12]. Autarkies yield PR clauses as follows:

Theorem 4. Let F be a formula and ω an autarky for F . Then, every clause
C such that ω satisfies C and var(C) ⊆ var(ω) is a PR clause with respect to F .

Proof. Let α be the assignment blocked by C. We show that F |α `1 F |ω. Let
D |ω ∈ F |ω for D ∈ F . Since D is not satisfied by ω, it follows that D is not
touched by ω and thus—since var(α) ⊆ var(ω)—it is also not touched by α.
Hence, D |α = D |ω = D is contained in F |α and so F |α `1 D |ω. It follows
that C is a PR clause with respect to F . ut

Suppose a SAT solver has found a partial assignment ωcon for some formula F .
We can then try to search for autarkies in the simplified formula F |ωcon. Given
an autarky ωaut for F |ωcon, we call ω = ωcon ∪ωaut a conditional autarky for F :

Definition 6. A partial assignment ω is a conditional autarky for a formula F
if there exists a subassignment ωcon ⊂ ω such that ω is an autarky for F |ωcon.
We call ωcon the conditional part of ω.

If ω \ ωcon assigns exactly one variable, we call the literal satisfied by ω \ ωcon a
conditional pure literal with respect to ωcon.

Example 4. Consider the formula F = (x∨ y)∧ (x∨ z)∧ (y∨ z). The assignment
ω = y z is a conditional autarky with conditional part ωcon = y: By applying
ωcon to F , we obtain the formula F |y = (x) ∧ (x ∨ z). The only clause of F |y
that is touched by ω is the clause (x ∨ z), which is satisfied ω. The literal z is a
conditional pure literal with respect to ωcon. ut

Note that every autarky ω is a conditional autarky where ωcon is the empty
assignment. However, as illustrated by Example 4, the converse does not hold:
Although the assignment ω = y z is a conditional autarky for F , it is not an
autarky for F because the clause (x ∨ y) is touched but not satisfied by ω. The
following theorem shows that satisfying assignments of the positive reduct are
nothing else than conditional autarkies:

PRuning Through Satisfaction 185

Theorem 5. Let F be a formula and α a partial assignment. Then, an assign-
ment ω over var(α) satisfies the positive reduct p(F, α) if and only if ω is a
conditional autarky for F with ωcon = α ∩ ω.

Proof. For the “only if” direction, assume that ω is a satisfying assignment of
p(F, α). First, note that ω disagrees with α on at least one variable since ω
satisfies the clause that blocks α. Therefore, ωcon ⊂ ω. It remains to show that
ω is an autarky for F |ωcon. Let D |ωcon be a clause in F |ωcon such that D ∈ F
and assume that D |ωcon is touched by ω. Since var(ω) = var(α), it follows
that D |ωcon is also touched by α. Now, if α does not satisfy D |ωcon, then ω
satisfies D |ωcon since ω disagrees with α on all variables in var(α) \ var(ωcon).
In contrast, if α satisfies D |ωcon, then the clause D′, which contains only those
literals of D that are touched by α, is contained in p(F, α). Hence, ω satisfies D′

and thus it satisfies D |ωcon. It follows that ω is a conditional autarky for F .
For the “if” direction, assume that ω is a conditional autarky for F with

ωcon = α ∩ ω and let D′ ∈ p(F, α). If D′ is the clause that blocks α, then ω
satisfies D′ since ω disagrees with α (note that by definition ωcon ⊂ ω). Assume
thus that D′ is not the clause that blocks α. Then, there exists a clause D ∈ F
such that α satisfies D and D′ is obtained from D by removing all literals
that are not assigned by α. Assume now that ωcon does not satisfy D′. Then,
D |ωcon ∈ F |ωcon (note that ωcon cannot satisfy D since the literals in D\D′ are
not assigned by α and thus also not by ω). Since α satisfies D, it satisfies D |ωcon.
Hence, D |ωcon is touched by α and thus also by ω. But then ω satisfies D |ωcon

since it is a conditional autarky for F . Hence, since D′ contains all literals of D
that are assigned by α (and thus by ω), ω satisfies D′. It follows that ω satisfies
p(F, α). ut

Combining Theorem 5 with Theorem 2, which states that a clause C is set-
blocked by L ⊆ C in a formula F if and only if αL satisfies p(F, α), we obtain
the following relationship between conditional autarkies and set-blocked clauses:

Corollary 1. Let F be a formula, C a clause, and α the assignment blocked
by C. Then, C is set-blocked by L ⊆ C in F if and only if αL is a conditional
autarky for F with conditional part αL ∩ α.

This correspondence between set-blocked clauses and conditional autarkies re-
veals an interesting relationship between set-blocked clauses and PR clauses:

Theorem 6. Let C ∨ L be a clause that is set-blocked by L with respect to a
formula F . Any clause C ∨ l with l ∈ L is a PR clause with respect to F .

Proof. Let α be the assignment that is blocked by C ∨ l. We need to show that
there exists an assignment ω such that ω satisfies C ∨ l and F |α `1 F |ω. Let
ω be αL. Clearly, ω satisfies C ∨ l on l. Moreover, we know from Theorem 1
that ω is a conditional autarky for F with conditional part ωcon = α ∩ ω. Now,
let F ′ = F |ωcon, α′ = α \ ωcon, and ω′ = ω \ ωcon. Then, F |α = F ′ |α′ and
F |ω = F ′ |ω′. Since var(α′) ⊆ var(ω′) and ω′ is an autarky for F ′ (Lemma 4),
it follows that F ′ |α′ `1 F ′ |ω′. But then F |α `1 F |ω and thus C ∨ l is a PR
clause w.r.t. F . ut

186 M.J.H. Heule et al.

SDCL (formula F)
1 α := ∅
2 forever do
3 α := Simplify (F, α)
4 if F |α contains a falsified clause then
5 C := AnalyzeConflict ()
6 if C is the empty clause then return unsatisfiable
7 F := F ∪ {C}
8 α := BackJump (C,α)
9 else if p(F, α) is satisfiable then

10 C := AnalyzeWitness ()
11 F := F ∪ {C}
12 α := BackJump (C,α)
13 else
14 l := Decide ()
15 if l is undefined then return satisfiable
16 α := α ∪ {l}

Fig. 1. Pseudo-code of the SDCL procedure

This basically means that if a clause C∨L is set-blocked by L in a formula F , we
can add any clause C ∨ l such that l ∈ L to F without affecting its satisfiability.

Example 5. Consider the formula F = (x∨ y ∨ z)∧ (x∨ y ∨ z)∨ (x∨ y ∨ z). The
clause (x∨ y ∨ z) is set-blocked by {x, y} in F and so (x∨ z) and (y ∨ z) are PR
clauses w.r.t. F as both α = x y z and ω = x y z are autarkies for F . Therefore,
the addition of (x ∨ z) or (y ∨ z) to F preserves satisfiability. ut

We have seen different approaches to finding and adding PR clauses to a formula.
In the following, we make use of these approaches when introducing our extension
of conflict-driven clause learning.

5 Satisfaction-Driven Clause Learning

Our satisfaction-driven clause learning (SDCL) paradigm extends the CDCL
paradigm in the following way: Whenever the CDCL solver is required to pick a
new decision, we first check whether the current assignment and all its extensions
can be pruned from the search space by learning the clause which contains the
negation of all previous decisions. As explained in Section 3, such a learned
clause can be obtained by searching for a satisfying assignment of the positive
reduct with respect to the formula and the current assignment of the solver.

Figure 1 shows the pseudo code of the SDCL procedure. Removing lines 9 to
12 would result in the classical CDCL algorithm, which consists of three phases:
simplify, learn, and decide. The simplify phase uses unit propagation to extend
the current assignment α (line 3). The main reasoning of CDCL is performed
in the learn phase, which kicks in when a conflict is reached, i.e., when a clause

PRuning Through Satisfaction 187

is falsified by the current assignment α (i.e., when the if condition in line 4 is
true). In this case, a so-called conflict clause is computed by the AnalyzeConflict
procedure (line 5). A conflict clause serves as a constraint that should prevent
the solver from investigating unsatisfiable parts of the search space in the future
by encoding the reasons for the current conflict. The naive approach for this
is to use the clause that blocks α as conflict clause. A stronger conflict clause
can be obtained by computing the conflict clause that blocks only the decision
literals of α. In practice, there are several approaches for learning even smaller
clauses [11,17].

If the conflict clause is the empty clause, then the solver can conclude that
the formula is unsatisfiable (line 6); otherwise, the clause is added to the formula
(line 7). After adding the conflict clause to the formula (clause learning), the
solver backjumps (line 8) to the level where the conflict clause contains a literal
that is not falsified. Finally, the decide phase (lines 14 to 16) extends α by
selecting a literal and making it true. In case all variables are assigned and no
clause is falsified, the formula is identified as satisfiable (line 15).

The SDCL related lines (9 to 12) work as follows: If the current assignment
α does not lead to a conflict (i.e., the if condition on line 4 fails), we check
(optionally in a limited way) whether the positive reduct p(F, α) is satisfiable.
If not, a new decision is made (line 14). Otherwise, we conclude that the clause
that blocks α is set-blocked and thus redundant with respect to F . Similar to
the AnalyzeConflict procedure, which shortens conflict clauses in practice, we
can learn a clause that is smaller than the one that blocks α. This is done in
the AnalyzeWitness procedure, which analyzes the assignment that satisfies the
positive reduct (the witness). As shown in Theorem 3, we can add the clause
that blocks only the decision literals of α since it is a PR clause. Alternatively, we
can add PR clauses based on conditional autarkies as described in Theorem 6.
After the clause addition, we backjump by unassigning all variables up to the
last decision (line 12) and continue with a new iteration of the procedure.

A crucial part of the algorithm is the underlying decision heuristic of the
Decide procedure. Most practical implementations of CDCL use the so-called
VSIDS (Variable State Independent Decaying Sum) [13] heuristic which selects
the variable that occurs most frequently in recent conflict clauses. In our early
experiments, VSIDS turned out to be a poor heuristic for SDCL. A possible
explanation is that VSIDS can select variables as early decisions that occur
in different parts of the formula, thereby making it impossible to satisfy the
resulting positive reduct.

In order to select variables in the same part of the formula, we propose the
autarky decision heuristic: Given a formula F and the current assignment α,
the autarky decision heuristic selects the variable that occurs most frequently in
clauses in F |α \ F (i.e., in the clauses of F that are touched but not satisfied
by α). Occurrences are weighted based on the length of clauses—the smaller
the clause, the larger the weight. If F |α \ F is empty, then α is an autarky for
F , hence the name. So this heuristic tries to guide the solver to an autarky.

188 M.J.H. Heule et al.

We expect that this heuristic helps with finding conditional autarkies—and thus
with satisfying the positive reduct formulas—more efficiently.

The autarky heuristic can only be used for non-empty assignments. We there-
fore need a special heuristic for the first decision. This turned out to be chal-
lenging and is still part of current research. A heuristic that works really well for
the pigeon hole formulas is to select the variable x that is least constrained, i.e.,
either x or x occurs least frequently in the formula. The rationale behind this
heuristic is that it creates an initial positive reduct with as few unit clauses as
possible: Notice that a clause which is satisfied by the first decision becomes a
unit clause in the positive reduct unless unit propagation assigns other literals in
that clause. Such a unit clause makes it impossible to satisfy the positive reduct
for the first decision. Also, this heuristic finds pure literals and fixes them using
a PR clause: The positive reduct has only the clause that blocks the current
assignment and can thus be trivially satisfied. However, it is unlikely that this
heuristic is effective for a wide spectrum of benchmark families.

In the next section, we illustrate how short proofs of the pigeon hole formulas
can be produced manually by combining the addition of set-blocked clauses
with resolution. With this we want to illustrate why short proofs can be found
automatically by our implementation of SDCL.

6 Solving Pigeon Hole Formulas using SDCL

A pigeon hole formula PHPn intuitively encodes that n + 1 pigeons have to be
assigned to n holes such that no hole contains more than one pigeon. In the
encoding, a variable xi,k denotes that pigeon i is assigned to hole k:

PHPn :=
∧

1≤i≤n+1

Pi︷ ︸︸ ︷
(xi,1 ∨ · · · ∨ xi,n) ∧

∧
1≤i<j≤n+1

∧
1≤k≤n

Hk
i,j︷ ︸︸ ︷

(xi,k ∨ xj,k) (1)

Clearly, pigeon hole formulas are unsatisfiable. Following Haken [4], we use array
notation for clauses: Every clause is represented by an array of n + 1 columns
and n rows. An array contains a “ ” (“ ”) in the i-th column and k-th row
if and only if the variable xi,k occurs positively (negatively, respectively) in the
corresponding clause. The representation of PHPn in array notation has for every
clause (xi,1 ∨ · · · ∨ xi,n), an array in which the i-th column is filled with “ ”.
Moreover, for every clause (xi,k ∨ xj,k), there is an array that contains two “ ”
in row k—one in column i and the other in column j. For instance, PHP4 in
array notation looks as follows:

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

P1 P2 P3 P4 P5

PRuning Through Satisfaction 189

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

. . .

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

H1
1,2 H1

1,3 H4
3,5 H4

4,5

We use array notation to describe a method for learning binary clauses. For
the explanation, we pick (x1,5∨x4,1) in PHP4 as it allows an easy formulation of
the proof of pigeon hole formulas. The proof idea is similar to that of Cook: We
reduce a pigeon hole formula PHPn to the smaller formula PHPn−1. The main
difference is that in our case PHPn−1 still uses the same variables as PHPn.

Again, we pick the clause C = (x1,5∨x4,1) ∈ PHP4. Let αd = x1,5 x4,1 be the
assignment blocked by C. Then, α = x1,1 x1,2 x1,3 x1,4 x1,5 x4,1x4,2 x4,3 x4,4 x4,5
is obtained from αd by applying unit propagation. Let C ′ be the clause that
blocks α. The clauses and assignments in array notation are as follows:

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

C C ′ αd α

Next, we construct the positive reduct p(PHP4, α). The positive reduct contains
C ′ and all clauses of PHP4 that are satisfied by α, which are the following 22
clauses: P1, P5, H

1
1,2, . . . ,H

1
4,5, H

4
1,2, . . . H

4
4,5. From these clauses, we remove the

literals that are not assigned by α and obtain the positive reduct p(PHP4, α):

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

C ′ P ′1 P ′5

1 2 3 4 5
1
2
3
4

. . .

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

. . .

1 2 3 4 5
1
2
3
4

H1
1,2 H1

4,5 H4
1,2 H4

4,5

The positive reduct is satisfied by the following witness and conditional autarky:

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

ω ωcon

190 M.J.H. Heule et al.

According to Theorem 3, we can learn clause C and, according to Theorem 6,
we can learn the clauses A1, A2, A3, and A4:

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

C A1 A2 A3 A4

After learning (x1,5 ∨ x4,1), we can learn the clause (x2,5 ∨ x4,1) in a similar
way. Now the assignment αd = x4,1 can be extended using unit propagation to
obtain α = x3,1 x3,2 x3,3 x3,4 x3,5 x4,1x4,2 x4,3 x4,4 x4,5 The positive reduct of the
extended formula, p(PHP4∧(x1,5∨x4,1)∧(x2,5∨x4,1), α), is satisfiable, allowing
us to learn the unit clause (x4,1). By repeating the same procedure three times,
we can learn the clauses (x4,2), (x4,3), and (x4,4) in a similar way. Now the
clauses P1 to P4 can be shortened because their last literal is falsified. We have
thus reduced PHP4 to PHP3.

7 Evaluation

We implemented a prototype4 of SDCL on top of the plain Lingeling solver [2]
(no pre- or inprocessing), including proof-logging support in the PR proof for-
mat [6]. We focus on solving large pigeon hole formulas efficiently and automat-
ically, although we envision that the paradigm will be broadly applicable.

Apart from the standard encoding of the pigeon hole formulas, we ran exper-
iments on two alternative, more compact, encodings. Both encodings replace the
at-most-one constraint ≤1(x1,k; . . . ;xn+1,k), i.e., the Hk

i,j clauses in formula (1):
The first alternative replaces the direct encoding by a sequential counter encod-
ing [15]. The second alternative, the minimal encoding, iteratively replaces three
literals of the at-most-one constraint with a new literal and adds an at-most-one
constraint between the three replaced literals and the new literal.

We compared our method with two tools that can reason using extended
resolution: Ebddres [16] and GlucosER [1]. Both tools can refute pigeon hole
formulas efficiently compared to CDCL solvers. Ebddres solves a given formula
using BDDs and optionally converts the BDD proof into an extended-resolution
proof, linear in the number of BDD nodes, which in turn can be checked using
the TraceCheck tool [5]. GlucosER is an extension of the Glucose solver
that allows extended learning—a method that adds definitions based on conflict
clauses. Proof logging is not supported by GlucosER, but it could in theory
be added with reasonable effort.5

Table 1 shows the results of our experiments. Each benchmark was executed
on a compute node with two Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz CPUs
and 128 GB of main memory, running Ubuntu 16.04.2 64-bit.

4 The tools and files are available at http://fmv.jku.at/prune/
5 Because we were unable to compile the sources, we could not add proof logging.

Instead, we used a statically compiled binary.

PRuning Through Satisfaction 191

Table 1. The number of variables and clauses of pigeon hole formulas—standard (-std),
sequential counter (-seq), and minimal (-min)—as well as the runtime (in seconds)
and proof size (in BDD nodes or lemmas) for solving the formulas with Ebddres,
GlucosER, and our SDCL variant of Lingeling. “TO” means a timeout after 9000
seconds and “OF” means 32-bit index overflow (≥ 230 cache lines) for Ebddres.

input Ebddres GlucosER Lingeling (PR)
formula #var #cls time #node time #lemma time #lemma

PHP10-std 110 561 1.00 3,182,495 22.71 329,470 0.07 329
PHP11-std 132 738 3.47 9,493,302 146.61 1,514,845 0.11 439
PHP12-std 156 949 10.64 27,351,195 307.29 2,660,358 0.16 571
PHP13-std 182 1,197 30.81 76,513,832 982.84 6,969,736 0.22 727

PHP20-std 420 4,221 OF —— TO —— 1.61 2,659
PHP30-std 930 13,981 OF —— TO —— 13.45 8,989
PHP40-std 1,640 32,841 OF —— TO —— 67.41 21,319
PHP50-std 2,550 63,801 OF —— TO —— 241.14 41,649

PHP10-seq 220 311 OF —— 1.62 25,712 0.07 327
PHP11-seq 264 375 OF —— 6.94 77,747 0.10 437
PHP12-seq 312 445 OF —— 19.40 174,084 0.14 569
PHP13-seq 364 521 OF —— 172.76 1,061,318 0.18 725

PHP20-seq 840 1,221 OF —— TO —— 1.05 2,657
PHP30-seq 1,860 2,731 OF —— TO —— 6.55 8,987
PHP40-seq 3,280 4,841 OF —— TO —— 27.10 21,317
PHP50-seq 5,100 7,551 OF —— TO —— 86.30 41,647

PHP10-min 180 281 28.60 81,490,141 0.64 15,777 0.06 329
PHP11-min 220 342 143.92 399,014,970 1.82 34,561 0.10 439
PHP12-min 264 409 OF —— 9.87 121,321 0.13 571
PHP13-min 312 482 OF —— 57.66 483,789 0.18 727

PHP20-min 760 1,161 OF —— TO —— 1.03 2,659
PHP30-min 1,740 2,641 OF —— TO —— 6.30 8,989
PHP40-min 3,120 4,721 OF —— TO —— 26.65 21,319
PHP50-min 4,900 7,401 OF —— TO —— 85.00 41,649

Our version of Lingeling is the only tool that can solve pigeon hole for-
mulas with 20 or more pigeons. Over 99% of the learned clauses (“lemmas”)
produced by Lingeling are PR clauses; the remaining ones are conflict clauses.
The number of lemmas for PHPn is cubic in n, while the number of variables
and the size of the formula are at least quadratic in n. All PR clauses that are
found by Lingeling are also added to the proofs. The size of the automatically
produced PR proofs is similar to that of our manual proofs [6]. For the proofs
returned by Lingeling, we observed that between around 5 % and 40 % of the
clauses are not required for proving unsatisfiability. Moreover, our approach is
robust: Performance varies only minimally across the different encodings of the
pigeon hole formulas.

If we turn off our SDCL code, Lingeling requires exponential runtime on
PHPn formulas. Runtimes are similar but in all cases larger than for GlucosER,
e.g., 153 seconds for PHP13-min. We also want to highlight that the autarky

192 M.J.H. Heule et al.

decision heuristic is essential for proving the unsatisfiability of the pigeon hole
formulas—without this heuristic, Lingeling could not find proofs within the
given time limit.

8 Conclusions

We proposed a theoretical and a practical approach to searching for PR clauses.
First, we showed that searching for a PR clause is an NP-complete problem.
As a consequence, a SAT solver that performs the addition of PR clauses has to
solve multiple NP-complete problems instead of only one. To make this approach
feasible and efficient, we turned the problem of finding a PR clause into a SAT
encoding that is significantly easier than the original problem. We called this en-
coding the positive reduct and showed that satisfying the positive reduct yields a
set-blocked clause, or, equivalently, a conditional autarky. We also demonstrated
how this set-blocked clause can be shortened. Based on our theoretical results,
we introduced SDCL—a new SAT-solving paradigm that generalizes CDCL so
that it produces not only conflict clauses but also PR clauses. Finally, we imple-
mented SDCL in the solver Lingeling and performed preliminary experiments
with the pigeon hole formulas that are very promising.

In future work, we want to focus on making the SDCL approach effective on
a wide spectrum of formulas. There are several challenges ahead. First and fore-
most, a heuristic needs to be developed that facilitates finding PR clauses with
few decisions. Our autarky decision heuristic appears to be a useful first step.
Second, experiments should be performed to find out which PR clauses prune
the search space most effectively. In our evaluation, we selected PR clauses based
on decisions. An alternative is to use PR clauses based on conditional autarkies.
It is also not yet clear when and how often an SDCL solver should search for
PR clauses to achieve the best performance. Moreover, it could make sense to
restrict the time spent on solving the positive reduct. Finally, we observed that
although the computational costs for solving the positive reducts are low, the
costs of generating the reducts are very high. Reducing the generation costs
could thus improve the performance significantly.

References

1. Audemard, G., Katsirelos, G., Simon, L.: A Restriction of Extended Resolution for
Clause Learning SAT Solvers. In: Proc. of the 24th AAAI Conference on Artificial
Intelligence (AAAI 2010). pp. 15–20. AAAI Press (2010)

2. Biere, A.: Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT
Competition 2016. In: Proc. of SAT Competition 2016 – Solver and Benchmark
Descriptions. Dep. of Computer Science Series of Publications B, vol. B-2016-1,
pp. 44–45. University of Helsinki (2016)

3. Cook, S.A.: A short proof of the pigeon hole principle using extended resolution.
SIGACT News 8(4), 28–32 (Oct 1976)

4. Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–
308 (1985)

PRuning Through Satisfaction 193

5. Heule, M.J.H., Biere, A.: Proofs for satisfiability problems. In: All about Proofs,
Proofs for All (APPA), Math. Logic and Foundations, vol. 55. College Pub. (2015)

6. Heule, M.J.H., Kiesl, B., Biere, A.: Short proofs without new variables. In: Proc. of
the 26th Int. Conference on Automated Deduction (CADE-26). LNCS, vol. 10395,
pp. 130–147. Springer (2017)

7. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Proc. of the 6th Int.
Joint Conference on Automated Reasoning (IJCAR 2012). LNCS, vol. 7364, pp.
355–370. Springer, Heidelberg (2012)

8. Kiesl, B., Seidl, M., Tompits, H., Biere, A.: Super-blocked clauses. In: Proc. of
the 8th Int. Joint Conference on Automated Reasoning (IJCAR 2016). LNCS, vol.
9706, pp. 45–61. Springer, Cham (2016)

9. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Hand-
book of Satisfiability, pp. 339–401. IOS Press (2009)

10. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Math-
ematics 96-97, 149–176 (1999)

11. Marques Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Computers 48(5), 506–521 (1999)

12. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete
Applied Mathematics 10(3), 287–295 (1985)

13. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference (DAC 2001). pp. 530–535. ACM (2001)

14. Nordström, J.: On the interplay between proof complexity and SAT solving.
SIGLOG News 2(3), 19–44 (2015)

15. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints.
In: Proc. of the 11th Int. Conference on Principles and Practice of Constraint
Programming (CP 2005). LNCS, vol. 3709, pp. 827–831. Springer (2005)

16. Sinz, C., Biere, A.: Extended Resolution Proofs for Conjoining BDDs. In: Proc. of
the 1st Int. Computer Science Symposium in Russia (CSR 2006). LNCS, vol. 3967,
pp. 600–611. Springer (2006)

17. Sörensson, N., Biere, A.: Minimizing learned clauses. In: Proc. of the 12th Int.
Conference on Theory and Applications of Satisfiability Testing (SAT 2009). LNCS,
vol. 5584, pp. 237–243. Springer (2009)

18. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Au-
tomation of Reasoning: 2: Classical Papers on Computational Logic 1967–1970.
pp. 466–483. Springer, Heidelberg (1983)

19. Urquhart, A.: The complexity of propositional proofs. In: Current Trends in The-
oretical Computer Science, pp. 332–342. World Scientific (2001)

194 M.J.H. Heule et al.

LRA Interpolants from No Man’s Land

Leonardo Alt, Antti E. J. Hyvärinen and Natasha Sharygina

Università della Svizzera italiana, Lugano, Switzerland
leonardoaltt@gmail.com, antti.hyvaerinen@usi.ch, natasha.sharygina@usi.ch

Abstract. Interpolation is becoming a standard technique for over-
approximating state spaces in software model checking with Satisfiability
Modulo Theories (SMT). In particular when modelling programs with
linear arithmetics, the standard state-of-the-art technique might provide
either interpolants that are too specific or too generic to be useful for
a given application. In this work we introduce the SI-LRA interpolation
system for linear real arithmetics that allows the tuning of interpolants
based on shifting between the primal and dual interpolants. We prove a
strength relation between the interpolants constructed by SI-LRA, and
integrate SI-LRA into a propositional interpolator in an SMT solver. Our
evaluation, performed using a state-of-the-art software model checker, re-
veals that correct tuning with SI-LRA can reduce the number of needed
refinements by up to one third and provide lower runtimes.

1 Introduction

Many modern software verification techniques rely on satisfiability modulo the-
ories (SMT) solvers which accept as input instances of the propositional sat-
isfiability problem (SAT) where some of the Boolean variables are interpreted
as equalities in some first-order theory. Satisfiability in linear real arithmetics
(LRA) consists of determining whether a set of linear equalities defined over
real variables has a solution. Most LRA solvers use highly efficient variants of
the Simplex algorithm [9], making LRA ubiquitous in model checking and as an
intermediary solving step for non-linear real arithmetics (NRA), linear integer
arithmetics (LIA), and other techniques.

One of the core tasks in software verification is to find invariants that prove
the absence of bad behavior and are inductive with respect to a program loop.
In many powerful verification approaches the invariants are synthesized as gen-
eralizations of simple examples produced by SMT solvers on short loop-free
fragments of program executions. In this work we consider the problem of prov-
ing that a set of linear equalities over real variables does not have a solution, and
how these inequalities can be relaxed while still preserving the property of not
having solutions. In particular in model checking this problem is known as inter-
polation over LRA. For clarity we present the strength-controlled interpolation
system for LRA (SI-LRA), a novel interpolation algorithm based on computing
a primal and a dual interpolant and constructing the final interpolant from the
area between these two (hence the No Man’s Land in the title). We present the
© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 195–210, 2017.
https://doi.org/10.1007/978-3-319-70389-3_13

system as an extension of [17] which allows the use of a strength factor con-
trol the strength. Our experimental results on the interpolating model checker
HiFrog [2] suggest that mid-range strengths result in high-quality interpolants
as indicated by fewer required refinements, and surprisingly that this does not
correlate with the algorithm runtime.

Given the central role of interpolation in program verification, it is natural
to search for LRA interpolants that meet the needs of different model checkers.
Such needs include efficiency in generating interpolants, simplicity of the for-
mulas representing the interpolants, and how they integrate with SMT solvers.
Nevertheless the flexibility of LRA interpolation approaches is still an issue, and
many existing techniques do not allow the interpolation-based application to in-
terfere with the interpolant generation. To the best of our knowledge, this paper
presents the first flexible interpolation system for LRA capable of generating an
infinite amount of interpolants for a given interpolation problem.

Related work. The Propositional Labeled Interpolation System (LIS-PROP),
introduced in [7] and further developed in [21,20,3,24], provides a framework
for adjusting Craig interpolants with respect to their strength and, to some
extent, size for a particular application. LIS-PROP is extended to interpolation
of equalities over uninterpreted functions in [4], while this work presents a way
of controlling the strength of interpolants in linear real arithmetics.

The pioneering work in LRA interpolation was presented in [19] and then
used in [17], where inference rules are given and extended to accommodate the
interpolation algorithm of [19]. A more practical approach is taken in [9], where
LRA interpolation is done inside an SMT solver by extracting the proof of un-
satisfiability from the Simplex algorithm. Both [9] and [17] are only capable of
computing a single interpolant, while our SI-LRA is able to generate an infinite
amount of interpolants.

In [1] the authors construct convex interpolants for A ∧ B, where A and B
are disjunctions of constraints, leading potentially to general and simple inter-
polants. A similar smoothing approach is followed in [5]. SI-LRA is orthogo-
nal to both these approaches, since we aim at creating interpolants of different
strength. The techniques can be used together, with the algorithms from [1,5]
using SI-LRA to generate interpolants for specific subsets of A and B.

Interpolants can be generated by first solving a constraint problem in linear
arithmetics, and then applying a linear programming solver as a black box [23].
However, since most SMT solvers already use the Simplex algorithm for LRA
solving, the use of a black-box solver introduces an extra overhead. The algorithm
from [23] is also not able to generate multiple interpolants for a given problem,
and does not provide strength control as SI-LRA does. A similar approach is
presented in [25] for computing shared interpolants for a maximal number of
conflicts by minimizing the number of linear equations in the interpolant with
respect to computing an interpolant from a single theory conflict. The approach
suffers from the same overhead as [23], and does not provide control over the
strength of the generated interpolants.

196 L. Alt et al.

An approach related to the interpolation system discussed in this work is
presented for Nonlinear Real Arithmetics in [10]. This work is also able to pro-
vide interpolants of different strength, controlled by a labeling function. The
interpolation system from [10] uses the proof of unsatisfiability generated by a
decision procedure based on Interval Constraint Propagation. In a high level,
their system is similar to [19].

Finally, [22] constructs interpolants based on program semantics. Applying
semantics to the real equations would provide a powerful heuristic for LRA
interpolation.

This work is organized as follows. We present our notation in Sec. 2 and the
SI-LRA interpolation framework in Sec. 3. Section 4 presents an experimental
evaluation using a model checker and conclusions are drawn in Sec. 5.

2 Preliminaries

This section introduces the quantifier-free theory of Linear Real Arithmetic
(LRA) and interpolation. We refer the reader to [16] and [9] for an in-depth
discussion on decision procedures for linear real arithmetics as used by modern
SMT solvers.

An LRA instance is a conjunction of linear constraints of the form c ./
a1x1 + . . . + anxn where ./∈ {<,≤}, constants ai are rational numbers, and
the problem variables xi assume rational values from Q. The General Simplex
is an algorithm that takes as input an LRA instance and determines whether
there are values for the problem variables such that the set of constraints is
satisfiable. In case there are values for the problem variables that satisfy the
constraints the algorithm provides one such concrete valuation. If the set of
constraints is unsatisfiable the algorithm returns an unsatisfiable subset Γ of the
constraints as an explanation for the unsatisfiability. In standard SMT solving
the explanations are used for guiding the SAT solver underlying the SMT solver
to avoid similar conflicts. In practice this is done by adding the explanation
clause CLRA = ¬(

∧
c∈Γ) to the SAT solver. In the context of interpolation they

have a further use for constructing safe overapproximations of search spaces.
Given an unsatisfiable first-order formula A ∧ B, a Craig interpolant [6] for

A is a first-order formula IA such that A → IA, IA ∧ B is unsatisfiable, and
IA is defined over the non-logical symbols shared between A and B. Given an
interpolation algorithm Itp(A,B), the dual interpolant for A is the negation of
the interpolant computed by Itp(B,A).

2.1 LRA Interpolation

An explanation Γ is a minimal unsatisfiable subset of the constraints of a query.
The explanation can be used to create a proof of unsatisfiability which in turn can
be used to compute an interpolant. A straightforward but inflexible approach
to create LRA interpolants is presented in [17]. The idea is to create a tree
that represents the proof of unsatisfiability and annotate the nodes with partial

LRA Interpolants from No Man’s Land 197

Table 1. LRA proof system for BI-LRA [17].

Hyp Comb

φ
φ ∈ Γ 0 ≤ t 0 ≤ u

0 ≤ t+ u

Taut Mult

0 ≤ c c ∈ Q, c ≥ 0
0 ≤ c 0 ≤ t

0 ≤ ct c ∈ Q, c > 0

interpolants. We present this system here and will extend it using the duality of
interpolants to create the SI-LRA in Sec. 3. To clarify the difference, we call the
system from [17] the basic interpolation system for LRA (BI-LRA).

A term in BI-LRA is a linear combination c0 + c1x1 + . . . + cnxn, where
x1 . . . xn are distinct variables and c0 . . . cn are constants. This proof system
accepts constraints of the form 0 ≤ term. The rules for deriving a proof in BI-
LRA are given in Table 1, where t and u are terms, and Γ is the explanation for
unsatisfiability.

Example 1. Consider the unsatisfiable formula (3 ≤ x1 + x2)∧ (0 ≤ −x2)∧ (0 ≤
2x2−x1). Once the constraints have been transformed into the form accepted by
the proof system, we can compute the following proof using the rules in Table 1:

(g) 0 ≤ −3

(f) 0 ≤ −3x2

(b) 0 ≤ −x2(d) 0 ≤ 3

(e) 0 ≤ −3 + 3x2

(c) 0 ≤ −x1 + 2x2(a) 0 ≤ −3 + x1 + x2

Applying the Hyp rule to the constraints (a)-(c) is straightforward. We then
apply rule Comb to (a) and (c) to infer (e). We apply rule Taut to obtain the
tautology (d) 0 ≤ 3 and then Mult to multiply (b) by (d) and infer (f) 0 ≤ −3x2.
Now we can apply Comb to combine (e) and (f) to finally infer (g) 0 ≤ −3, a
contradiction.

An LRA interpolation problem is a 3-tuple P = (A,B,R), where A and B
are two sets of LRA constraints such that they are unsatisfiable when conjoined,
and R is the proof of unsatisfiability for A ∧ B. The intuition behind BI-LRA
is to use the contribution from the constraints from A to the sum that leads to
the contradiction. The contribution from A is then effectively the interpolant,
since (i) it is implied by A; (ii) summing the contribution with B leads to a con-
tradiction; and (iii) summing all the contributions from A removes the symbols
local to A, therefore leaving only the common symbols from A and B to the
interpolant.

The interpolation rules of BI-LRA are given in Table 2, where x, y, x′ and y′

are terms, and [φ] is the annotated term such that 0 ≤ φ is the partial interpolant
for that node.

198 L. Alt et al.

Table 2. Interpolation system from [17].

Hyp-A Hyp-B

0 ≤ x [x]
(0 ≤ x) ∈ A

0 ≤ x [0]
(0 ≤ x) ∈ B

Comb Mult
0 ≤ x [x′] 0 ≤ y [y′]

0 ≤ x+ y [x′ + y′]

0 ≤ c 0 ≤ x [x′]

0 ≤ cx [cx′]

Example 2. Continuing Example 1, suppose A = {0 ≤ −3 + x1 + x2, 0 ≤ −x1 +
2x2} and B = {0 ≤ −x2}. The interpolant for A is computed by BI-LRA as
follows. Using the Hyp-A and Hyp-B rules we can infer the partial interpolants

(a) 0 ≤ −3 + x1 + x2 [−3 + x1 + x2]
(0 ≤ −3 + x1 + x2) ∈ A

,

(c) 0 ≤ −x1 + 2x2 [−x1 + 2x2]
(0 ≤ −x1 + 2x2) ∈ A

, and

(b) 0 ≤ −x2 [0]
(0 ≤ −x2) ∈ B

.

Following the proof from Example 1, we apply the Comb rule on (c) and (a) to
infer (d)

0 ≤ −3 + x1 + x2 0 ≤ −x1 + 2x2
(d) 0 ≤ −3 + 3x2 [−3 + 3x2] .

We now apply the Taut rule to use the tautology (e) 0 ≤ 3 and then Mult rule
on (e) and (b) to infer (e) 0 ≤ −3x2 [0]. By applying Comb on (d) and (f) we
infer (g) 0 ≤ −3 [−3 + 3x2]. The annotated proof of unsatisfiability is

(g) 0 ≤ −3
[− 3 + 3x2]

(f) 0 ≤ −3x2
[0]

(e) 0 ≤ 3(b) 0 ≤ −x2
[0]

(d) 0 ≤ −3 + 3x2
[− 3 + 3x2]

(c) 0 ≤ −x1 + 2x2
[− x1 + 2x2]

(a) 0 ≤ −3 + x1 + x2
[− 3 + x1 + x2]

and the final interpolant for A is 0 ≤ −3 + 3x2.

2.2 Propositional Interpolation

In our experiments in Sec. 4 we combine SI-LRA with the propositional inter-
polation interpolation system (LIS-PROP) from [8,3]. We briefly introduce the

LRA Interpolants from No Man’s Land 199

system here; for lack of space we assume familiarity with propositional resolution
(see, e.g., [3]).

A resolution refutation is a directed, acyclic tree where the leaves are source
clauses, the inner nodes are resolvent clauses, and the root is the empty clause.
LIS-PROP takes as input two propositional formulas A, B in conjunctive nor-
mal form, a resolution refutation R of A∧B, and a labeling function L(p, C) 7→
{a, b, ab}, where (p, C) is an occurrence of a variable p in a clause C, of the
refutation R, and a, b, ab are labels. The system returns an interpolant I for A
such that the shape of I depends on L. For all variable occurrences (p, C) in R,
L(p, C) = a if p is local to A; and L(p, C) = b if p is local to B. However, the
label can be freely chosen for the shared variables, allowing in practice a signif-
icant amount of flexibility in constructing interpolants. The label of a variable
occurrence in a resolvent C is determined by the labels of the variables in its
antecedents: If a variable occurs in both its antecedents with different labels, the
label of the new occurrence is ab; and in all other cases the label is equivalent
to the label in its antecedent or both antecedents.

An interpolation algorithm based on LIS-PROP [3] computes an interpolant
with a dynamic algorithm by annotating each clause of R with a partial inter-
polant starting from the source clauses. The partial interpolant of a source clause
C is

I(C) =

{∨
{l | l ∈ C and L(var(l), C) = b} if C ∈ A, and∧
{¬l | l ∈ C and L(var(l), C) = a} if C ∈ B,

(1)

The partial interpolant of a resolvent clause C with pivot p and antecedents C+

and C−, where p ∈ C+ and ¬p ∈ C−, is

I(C) =

 I(C+) ∨ I(C−) if L(p, C+) = L(p, C−) = a,
I(C+) ∧ I(C−) if L(p, C+) = L(p, C−) = b, and
(I(C+) ∨ p) ∧ (I(C−) ∨ ¬p) otherwise.

(2)

The final interpolant can be obtained as I(⊥) where ⊥ is the empty clause, i.e.,
the root of the refutation.

LIS-PROP allows ordering interpolants partially with respect to their logical
strength based on the labeling function. In Sec. 4 we use six propositional inter-
polation algorithms based on LIS-PROP: The algorithms Ms and Mw that are
known as the strong and the weak McMillan interpolants [18]; the Huang [12]
Kraj́ıcek [15] Pudlák [19] interpolation algorithm (P), and the proof-sensitive
interpolation algorithms PS, PSs, and PSw from [3]. Given an ordering ≤ for
logical strengths of formulas, where the least element is the strongest, one can
show that Ms ≤ I ≤ Mw for any LIS-PROP-based interpolation algorithm I,
and that PSs ≤ PS ≤ PSw.

The interpolation algorithms from LIS-PROP can be combined with the
algorithm BI-LRA, and later with SI-LRA, by first computing the interpolants
ILRA for the explanation clauses CLRA of LRA, and then using these interpolants
as the partial interpolants I(CLRA).

200 L. Alt et al.

Table 3. The dual interpolation system

Hyp-A Hyp-B

0 ≤ x [0]
(0 ≤ x) ∈ A

0 ≤ x [x]
(0 ≤ x) ∈ B

Comb Mult
0 ≤ x [x′] 0 ≤ y [y′]

0 ≤ x+ y [x′ + y′]

0 ≤ c 0 ≤ x [x′]

0 ≤ cx [cx′]

3 The LRA Interpolation System SI-LRA

The intuition of the interpolation system SI-LRA is to apply the duality of
interpolants to the interpolation algorithm BI-LRA to obtain two interpolants
and construct new interpolants by a shift transformation that lie between the
interpolant and its dual. Let ItpM be the interpolation algorithm of BI-LRA.
We define its dual ItpD to be ItpD(A,B,R) = ¬ItpM (B,A,R). To formalize the
presentation we first prove an ordering between ItpM and ItpD in Lemma 2 and
then define what we mean by interpolant shifting in Theorem 1.

We start the presentation with an example illustrating the dual interpolant.

Example 3. Recall Example 2, where we had A = {0 ≤ −3 + x1 + x2, 0 ≤
−x1 +2x2} and B = {0 ≤ −x2}. The interpolant ItpD is given by the annotated
proof

0 ≤ −3
[− 3x2]

0 ≤ −3x2
[− 3x2]

0 ≤ 30 ≤ −x2
[− x2]

0 ≤ −3 + 3x2
[0]

0 ≤ −x1 + 2x2
[0]

0 ≤ −3 + x1 + x2
[0]

where the dual interpolant is ¬(0 ≤ −3x2).

Formally, the dual interpolation algorithm works as shown in Table 3, where
x, y, x′ and y′ are terms, and [φ] is the annotated term such that 0 ≤ φ is the
partial interpolant for that node.

Let [γ] be the annotation in the root of the proof tree and the inequality 0 ≤ γ
an interpolant for B. By duality of interpolants, we can assert that ¬(0 ≤ γ)
is an interpolant for A. Furthermore, we can state the following relationship
between the primal and dual interpolants ItpM and ItpD:

Lemma 1. Let P = (A,B,R) be an interpolation problem. Let the inequality
c1 ≤ x be the interpolant generated by ItpM , where c1 is a constant and x is an
LRA term. Then ItpD generates an interpolant of the form ¬(c2 ≤ −x), where
c2 is a constant.

LRA Interpolants from No Man’s Land 201

Proof. Let R be a proof tree that proves the unsatisfiability of A∧B, annotated
with partial interpolants. By Table 1 we know that R is constructed by summing
the inequalities from A and B, and by multiplying by a constant. The proof can
be seen as a way to parenthesize these operations. Using associativity of sum,
we can rearrange any arbitrary proof such that the contradiction is inferred via
an application of the Comb rule on two inequalities

0 ≤ −c1 + x (3)

0 ≤ −c2 − x (4)

such that (i) 0 ≤ −c1 + x is inferred only using inequalities from A; and
(ii) 0 ≤ −c2 − x is inferred only using inequalities from B, where x is an LRA
term and −c1−c2 < 0. From (i), the partial interpolants for Eq. (3) and Eq. (4),
when computing ItpM are, respectively, [− c1 + x] and 0; from (ii) follows that
the partial interpolants for Eq. (3) and Eq. (4), when computing ItpD are, re-
spectively, 0 and [− c2−x]. Therefore, we can see that the term annotated with
the contradiction node is [− c1 + x] when computing ItpM and [− c2 − x] when
computing ItpD. Because of that, we know that the interpolant ItpM is c1 ≤ x
and the interpolant ItpD is ¬(c2 ≤ −x). ut

Lemma 2. Let c1 ≤ x and ¬(c2 ≤ −x) be the interpolants generated for a fixed
interpolation problem by ItpM and ItpD, respectively. The interpolants generated
by ItpM and ItpD represent lower bounds for x, where −c2 < c1.

Proof. In ItpM (P), c1 is clearly a lower bound for x. Transforming ItpD(P)
shows that ¬(c2 ≤ −x) ≡ ¬(−c2 ≥ x) ≡ −c2 < x. By Eq. (3) and Eq. (4),
−c1 − c2 < 0, and therefore it follows that −c2 < c1. ut

3.1 The Strength Factor

By Lemma 2 we have established the strength relation between ItpM and ItpD,
and are ready to introduce SI-LRA. Our idea is based on the observation that
ItpM and ItpD represent lower bounds for the same term (Lemma 2), which
means that any constant c such that −c2 < c ≤ c1 can substitute c1 in ItpM =
c1 ≤ x, to create a new interpolant Itpc = c ≤ x.

Lemma 3. Let c1 ≤ x and ¬(c2 ≤ −x) be the interpolants generated for the
same interpolation problem P by ItpM and ItpD, respectively. Let c be a constant
such that −c2 < c ≤ c1. Then Itpc = c ≤ x is an interpolant for P .

Proof. Because c ≤ c1, ItpM (P) → Itpc(P). Because −c2 < c, Itpc(P) →
ItpD(P). Therefore Itpc is an interpolant for P . ut

202 L. Alt et al.

Algorithm 1 SI-LRA

1: procedure Itp(P = (A,B ,R, α))
2: Requires 0 ≤ α ≤ 1.
3: if α = 1 then
4: return ItpD(P)

5: if α = 0 then
6: return ItpM (P)

7: c1 ≤ x← ItpM (P)
8: ¬(c2 ≤ −x)← ItpD(P)
9: return c1 − α(c1 + c2) ≤ x

Since the bounds c1 and −c2
change from problem to problem, it
is easier to normalize this interval
and apply a strength factor. Let P
be an interpolation problem such that
ItpM (P) = c1 ≤ x and ItpD(P) =
−c2 ≤ −x. Given a factor α such
that 0 ≤ α ≤ 1, we can create a
new interpolant Itpα ≡ cα ≤ x, where
cα = c1 − α(c1 + c2).

We extend the LRA interpolation
problem to include the strength factor, P = (A,B,R, α) and for clarity
present SI-LRA in the form of an algorithm in Alg. 1. In case −c2 < c1 it is
possible to generate infinitely many interpolants of different strength for a given
interpolation problem, giving a very fine-grained control over the strength of the
generated interpolants.

Theorem 1. Let α and α′ be two strength factors such that 0 ≤ α < α′ ≤ 1.
Then Itp(A,B,R, α)→ Itp(A,B,R, α′).

Proof. Analogous to the proof of Lemma 3. ut

Theorem 1 shows that the strength of the LRA interpolants can be controlled
by the strength factor. The interpolation algorithm ItpM from [17] is represented
by the strength factor 0, and generates the strongest interpolants among SI-LRA.
The dual interpolation algorithm ItpD generates the weakest interpolants.

The main advantage of SI-LRA can be visualized when it is combined with
propositional interpolation in an SMT solver.

Example 4. Let A = x ≤ 1 ∧ y ≤ 1 and B = (y ≥ 4 ∧ x ≥ 0 ∧ x ≤ 3) ∨ (x ≥
3∧ y ≥ 0) be two Boolean formulas such that the atoms are LRA terms. Notice
that we cannot decide satisfiability of A∧B using Simplex only. To achieve this
task we can, for instance, use an SMT solver. The formula A∧B is unsatisfiable,
proven by two unsatisfiable queries to the LRA solver, where each query consists
of a conjunction of LRA constraints and is solved using the Simplex algorithm.
The LRA interpolants that are generated by these queries are then used in
propositional interpolation. Using a fixed propositional interpolation algorithm
we get the following interpolants for A when changing the LRA interpolation
algorithm:

ItpM : IM = x ≤ 1 ∧ y ≤ 1

ItpD : ID = ¬x ≥ 3 ∧ ¬y ≥ 4

Itp0.5 : I0.5 = x ≤ 2 ∧ y ≤ 2.5

Notice that IM → I0.5 → ID. Fig. 1 shows the graphical representation of the
problem. The blue region is A and the red region is B. We can see graphically
that they are unsatisfiable when conjoined. The interpolant IM happens to be

LRA Interpolants from No Man’s Land 203

the same as A. Interpolants I0.5 and ID are represented, respectively, by the
light and dark green areas of the graph.

1

2

3

4

2 31

A

IM

I0.5

ID B

Fig. 1. LRA problem and
different interpolants.

Since the strength of the LRA interpolants is given
in the level of the theory interpolants, if a proposi-
tional interpolation algorithm from the Labeled In-
terpolation Systems is used, the strength of the final
interpolant is maintained.

Theorem 2. Let P = (A,B,R) be an interpola-
tion problem. Given two LRA interpolation algorithms
Itpα, Itpα′ from SI-LRA such that 0 ≤ α < α′ ≤
1, and a fixed propositional interpolation algorithm
Itpprop from LIS-PROP, the interpolants I, I ′ com-
puted by the combination algorithm Itpprop, Itpα and
Itpprop, Itpα′ , respectively, are ordered such that I ≤
I ′.

Proof. Eq. (1) and Eq. (2) show how an interpolation algorithm from LIS-PROP
creates interpolants from the leaves to the root. Eq. (1) is only applied to Boolean
clauses and not to theory clauses, so can be disregarded in this context. Let n
be a non-leaf node of R that has as children two theory leaves, t1 and t2. Let
x1 = Itpα(t1), x2 = Itpα(t2), y1 = Itpα′(t1) and y2 = Itpα′(t2). By Theorem 1,
x1 → y1 and x2 → y2.

We now analyze the three possibilities to build the partial interpolant for n
in Eq. (2):

– The first is a disjunction of the partial interpolants of t1 and t2. We know
that ((x1 → y1) ∧ (x2 → y2)) → ((x1 ∨ x2) → (y1 ∨ y2)), so the strength is
maintained.

– The second is a conjunction of the partial interpolants of t1 and t2. We know
that ((x1 → y1) ∧ (x2 → y2)) → ((x1 ∧ x2) → (y1 ∧ y2)), so the strength is
maintained.

– The third is a conjunction of two disjunctions, formed by the partial inter-
polants of t1 and t2 and the pivot of the resolution rule which is an arbitrary
variable. It is also true that ((x1 → y1) ∧ (x2 → y2)) → (((x1 ∨ p) ∧ (x2 ∨
¬p))→ ((y1 ∨ p) ∧ (y2 ∨ ¬p))), so the strength is maintained.

The case where n has as children a theory leaf and a Boolean leaf clearly holds.
Since the annotation of the propositional part of R is not affected, the Theorem
holds. ut

Note that the proof of Theorem 2 allows choosing different strength factors for
different theory leaves in the refutation proof, giving the application even more
possibilities to generate suitable interpolants.

204 L. Alt et al.

Refinement

LRA Solver SAT Solver

Combined Interpolant

Function Summaries

Propositional

Sources

Assertions

SMT encoder

LRA

Interpolating SMT Solver

LRA and Propositional

Assertion safeQuery

Summary

SAT

ItppropItpα

CLRA

Itpprop, Itpα

SMT Encoding

Summary

refiner

Full-ref

Spur-ref

Error trace

LIS-LRA LIS-PROP

Fig. 2. Components of HiFrog relevant to our experiments

4 Experimental Evaluation

We implemented and integrated SI-LRA into the existing propositional inter-
polation in OpenSMT2 [14]. Often software verification can be done in a level
which ignores arithmetic overflows. In this case LRA can be used in software
model checking to abstract the heavy-weight bit-precise propositional encoding
to gain speed-up due to the higher-level theory. If a model checker reports that
a certain property is true when using LRA, it is also true for the propositional
model. However, if a property is determined unsafe in LRA, the generated coun-
terexample might be spurious and introduced by the LRA abstraction. There
are several refinement strategies a model-checker can recover from such cases
(see, e.g., [13]). For simplicity we study two strategies in the experiments: one
where a bit-precise solver needs to be invoked for every counterexample (Full-
ref), and another where the bit-precise solver is invoked only for the spurious
counterexamples (Spur-ref).

HiFrog applies interpolation-based techniques to create function summaries
that are stored and reused while checking incrementally different assertions in
a program. Our set of benchmarks consists of C code originating both from the
industry and from SV-COMP (https://sv-comp.sosy-lab.org/) where this
approach is relevant.

Figure 2 describes the main components of the HiFrog model-checking en-
vironment relevant to our experiments. The Source files and assertions are given
as input to the system which either (i) reports that an assertion is safe and
produces a summary for a function in the form of an interpolant, or (ii) outputs
an error trace witnessing an execution that breaks an assertion. The SMT en-
coding can be either in combination of propositional logic and LRA, or purely
in propositional logic, possibly using previously computed function summaries
(top of Fig. 2). The encoding is then inserted to the Interpolating SMT Solver
which determines the satisfiability of the encoding. In case of unsatisfiability the

LRA Interpolants from No Man’s Land 205

Table 4. Comparison between propositional and LRA encoding in HiFrog.

LRA Results LRA Time (s)
Name (# asserts) Correct SAT Spurious LRA Spur-ref Full-ref Bool

floppy1 (21) 16 5 5 27.5 193 193 192
tcas asrt (162) 162 132 0 65.5 65.5 144 86.0
kbfiltr1 (10) 10 0 0 5.30 5.30 5.30 4.12
diskperf1 (14) 10 4 4 609 667 667 194
cafe (115) 105 95 10 4.75 5.90 14.8 19.2
s3 (131) 126 109 5 1.77 1.82 3.00 1.50
mem (149) 146 52 3 106 106 125 44.6
ddv (152) 56 105 96 12.5 123 124 260
disk (79) 62 72 17 800 1200 8710 8190

total (833) 693 574 140 1630 2370 9990 8900

solver reports that an assertion is safe, produces a Combined Interpolant using
both SI-LRA and LIS-PROP, and stores the summary for future use. In case of
satisfiability, the trace is provided to the Summary Refiner, which uses a refine-
ment strategy to classify the trace either as spurious, triggering a re-check, or
concrete, resulting in an error trace.

We first compare LRA-based incremental software verification using function
summaries to the corresponding approach using propositional logic. To then
develop a more in-depth understanding of the performance of SI-LRA we study
different interpolants that HiFrog can construct during its search.

Modelling in LRA and propositional logic. Table 4 reports experimental results
on how LRA can help the propositional solver in speeding up function-summary-
based model-checking. The column Name reports the name and the number
of assertions for each benchmark, while the columns LRA Results and LRA
time report the results and the runtimes for the LRA-based model-checker. The
column Bool reports the runtime on the purely propositional model.

The column Correct reports how many of the assertions could be immediately
solved in the LRA model without refinement; the column SAT reports how many
potential error traces could be found in the LRA model; and the column Spurious
reports how many of these error traces were spurious in the end. Surprisingly
many of the assertions can be checked only using LRA logic, as indicated by
the big numbers in correct. However, in the current implementation, especially
when resorting to the Full-ref mode, we see that the spuriousness checks result
in a significant overhead. In the Spur-ref mode where a more intelligent strategy
for refinement is used, the use of LRA in encoding provides almost a three-fold
speed-up for the solving.

In general the experiments implicate that modelling with LRA can provide
big speed-ups with respect to propositional models and that the LRA interpo-
lation algorithms are not forming a bottleneck for the solver performance.

206 L. Alt et al.

Table 5. Number of function refinements for HiFrog using different combinations of
propositional and LRA interpolation algorithms.

Alg floppy1 tcas asrt kbfiltr1 diskperf1 cafe s3 mem ddv disk Σ

Ms,ItpM 27100 53800 5120 39900 6400 0 25600 7940 47600 214000
Ms,Itp0.5 25100 53800 5120 39200 6400 0 25100 7940 41500 204000
Ms,ItpD 24800 53800 5380 39200 6400 0 25600 7940 64000 227000

P,ItpM 27100 53800 5120 39700 6400 0 25600 7940 47600 213000
P,Itp0.5 25100 53800 5120 39200 6400 0 25088 7940 41500 204000
P,ItpD 24800 53800 5380 39200 6400 0 25600 7940 64000 227000

Mw,ItpM 27100 53800 5120 41500 6400 0 25600 7940 47600 215000
Mw,Itp0.5 25100 53800 5120 37400 6400 0 25100 7940 41500 20200
Mw,ItpD 24600 53800 5380 39200 6400 0 25600 7940 64000 227000

PS,ItpM 27100 53800 5120 40200 6400 0 25600 7940 47600 214000
PS,Itp0.5 25100 53800 5120 39200 6400 0 25088 7940 41500 204000
PS,ItpD 24600 53800 5380 38100 6400 0 25600 7940 64000 226000

PSw,ItpM 27100 53800 5120 39700 6400 0 25600 7940 47600 213000
PSw,Itp0.5 25100 53800 5120 39200 6400 0 25088 7940 41500 204000
PSw,ItpD 24800 53800 5380 39900 6400 0 25600 7940 64000 228000

PSs,ItpM 27100 53800 5120 39200 6400 0 25600 7940 47600 213000
PSs,Itp0.5 25100 53800 5120 39200 6400 0 25088 7940 41500 204000
PSs,ItpD 24600 53800 5380 39200 6400 0 25600 7940 64000 227000

The SI-LRA evaluation. We compare the different combined interpolation al-
gorithms using in total 18 combinations, where the propositional interpolation
algorithms range over Ms, Mw, P, PS, PSs, PSw of LIS-PROP and the LRA inter-
polation algorithms range over ItpM , ItpD, and Itp0.5, i.e., the strong and weak
LRA interpolation algorithms and the interpolation algorithm with strength fac-
tor α = 0.5, from SI-LRA.

One way to compare the behavior of different interpolation algorithms is to
observe how many summary refinements are needed in model-checking a set of
assertions. The lower the number of refinements is, the more relevant summaries
the interpolation algorithm created. Table 5 reports the number of function
refinements needed when running different interpolation algorithms for the in-
stances in Table 4. We note that on most instances the interpolation algorithm
does affect the required refinements, providing clear evidence that the choice of
the interpolation algorithm can significantly affect the work flow of the model
checker, resulting in the most extreme case (disk) in 35% difference in number of
refinements between the extremes. Interestingly the SI-LRA interpolation algo-
rithm Itp0.5 provides most of the low refinement numbers, showing that neither
one of the straightforward interpolation algorithms provides the most relevant
interpolants for our benchmarks. It is also interesting to note that the strength

LRA Interpolants from No Man’s Land 207

Table 6. Verification time for HiFrog using different combinations of propositional
and LRA interpolation algorithms.

Alg floppy1 kbfiltr1 diskperf1 mem disk Σ

Ms,ItpM 28.2 5.23 604 106 809 1550
Ms,Itp0.5 33.8 5.42 561 136 988 1720
Ms,ItpD 28.2 5.28 476 107 1203 1820

P,ItpM 28.0 5.38 587 104 799 1520
P,Itp0.5 34.1 5.15 548 135 998 1720
P,ItpD 28.1 5.38 440 106 1290 1870

Mw,ItpM 27.5 5.30 609 106 800 1550
Mw,Itp0.5 34.1 5.16 607 137 977 1760
Mw,ItpD 27.9 5.45 475 106 1250 1860

PS,ItpM 28.1 5.44 666 105 804 1610
PS,Itp0.5 34.1 5.10 558 135 1000 1730
PS,ItpD 28.0 5.57 473 107 1240 1850

PSw,ItpM 27.8 5.51 616 104 826 1580
PSw,Itp0.5 34.1 5.28 535 136 998 1710
PSw,ItpD 28.1 5.57 453 106 1250 1840

PSs,ItpM 28.1 5.49 604 105 815 1560
PSs,Itp0.5 34.2 5.12 549 136 996 1720
PSs,ItpD 27.8 5.62 446 107 1290 1880

of the LRA interpolants that led to the least number of refinements was not the
strongest nor the weakest, showing that a fine strength tuning may lead to fast
convergence in interpolation-based model checkers.

We report in Table 6 in addition the verification times for HiFrog using dif-
ferent combinations of propositional and LRA interpolation algorithms for the
cases where the number of refinements was not constant over different interpo-
lation algorithms. The average runtimes for the remaining instance tcas asrt,
cafe, s3, and ddv were 66.0, 4.70, 1.77, and 12.8 seconds, respectively, with small
variance. Interestingly the per-instance winning algorithms are almost evenly dis-
tributed, making it hard to predict which algorithm provides the lowest run time
on our benchmarks, the exception being the strong propositional algorithms Ms

and PSs, which score no wins. Inside each propositional algorithm ItpM scores
in total 18 wins compared to five wins of Itp0.5 and 11 wins of ItpD. However, for
certain instances a given LRA algorithm is consistently better: in particular for
kbfiltr1 Itp0.5 almost always wins, and for diskperf1 ItpD always wins. Finally
we note that there is little correlation between the number of refinements and
the run times, suggesting that the run time invested in the solving phase may
pay off in higher quality interpolants in applications where convergence is the
dominating performance criterion as opposed to run time.

208 L. Alt et al.

In general our preliminary results suggest that there are interesting and non-
trivial choices to be made when designing an efficient LRA interpolation algo-
rithm that call for further analyses.

5 Conclusions

This work presents an interpolation system for linear real arithmetics, proves its
correctness and orders the produced interpolants with respect to their logical
strength, integrates the interpolation system to a propositional interpolation
system, and provides experimental evaluation when used in a model-checking
application. The system is based on computing an interpolant and its dual, and
obtaining by shifting arbitrary “intermediary” interpolants that lie between the
two extremes.

Experimental results in model checking suggest that the choice of the in-
terpolant affects both run time and number of refinements, and mid-strength
interpolants, i.e., α = 0.5, result in small number of refinements. In the future
we plan to apply SI-LRA in domains such as software model checking based
on the PDR algorithm [11], as well as approaches for adapting the strength,
starting with α = 0.5, and tuning the factor depending on whether the generate
interpolants are too precise or too abstract.

Acknowledgements. This work was supported by the SNF grants 200020 163001
and 200020 166288.

References

1. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Proc. CAV 2013. pp.
313–329. No. 8044 in LNCS, Springer (2013)

2. Alt, L., Asadi, S., Chockler, H., Even-Mendoza, K., Fedyukovich, G., Shary-
gina, N.: HiFrog: SMT-based function summarization for software verification. In:
Proc. TACAS 2017. pp. 207–2013. No. 10206 in LNCS, Springer (2017)

3. Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: A proof-sensitive ap-
proach for small propositional interpolants. In: Proc. VSTTE 2015. pp. 1–18. No.
9593, Springer (2016)

4. Alt, L., Hyvärinen, A.E.J., Asadi, S., Sharygina, N.: Duality-based interpolation
for quantifier-free equalities and uninterpreted functions. In: Proc. FMCAD (2017),
to appear.

5. Bogomolov, S., Frehse, G., Giacobbe, M., Henzinger, T.A.: Counterexample-guided
refinement of template polyhedra. In: Proc. TACAS 2017. LNCS, vol. 10205, pp.
589–606 (2017)

6. Craig, W.: Three uses of the herbrand-gentzen theorem in relating model theory
and proof theory. The Journal of Symbolic Logic 22(3), 269–285 (1957)

7. D’Silva, V.: Propositional interpolation and abstract interpretation. In:
Proc. ESOP 2010. pp. 185–204. No. 6012 in LNCS, Springer (2010)

8. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength.
In: Proc. VMCAI 2010. pp. 129–145. No. 5944 in LNCS, Springer (2010)

LRA Interpolants from No Man’s Land 209

9. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In:
Proc. CAV 2006. pp. 81–94. No. 4144 in LNCS, Springer (2006)

10. Gao, S., Zufferey, D.: Interpolants in nonlinear theories over the reals. In:
Proc. TACAS 2016. pp. 625–641. No. 9636 in LNCS, Springer (2016)

11. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Proc. CAV 2015. pp. 343–361. No. 9206 in LNCS, Springer (2015)

12. Huang, G.: Constructing craig interpolation formulas. In: Proc. COCOON 1995.
LNCS, vol. 959, pp. 181–190. Springer (1995)

13. Hyvärinen, A.E.J., Asadi, S., Even-Mendoza, K., Fedyukovich, G., Chockler, H.,
Sharygina, N.: Theory refinement for program verification. In: Proc. SAT 2017.
LNCS, vol. 10491, pp. 347–363. Springer (2017)

14. Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2: An SMT
solver for multi-core and cloud computing. pp. 547–553. No. 9710 in LNCS,
Springer (2016)

15. Kraj́ıcek, J.: Interpolation theorems, lower bounds for proof systems, and indepen-
dence results for bounded arithmetic. Journal of Symbolic Logic 62(2), 457–486
(1997)

16. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of
View, Second Edition. Texts in Theoretical Computer Science. An EATCS Series,
Springer (2016)

17. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1),
101–121 (2005)

18. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV 2003.
pp. 1–13. No. 2725 in LNCS, Springer (2003)

19. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. Journal of Symbolic Logic 62(3), 981–998 (1997)

20. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO:
A framework for producing effective interpolants in SAT-based software verifica-
tion. In: Proc. LPRA-19. pp. 683–693. No. 8312, Springer (2013)

21. Rollini, S.F., Sery, O., Sharygina, N.: Leveraging interpolant strength in model
checking. In: Proc. CAV 2012. pp. 193–209. No. 7358 in LNCS, Springer (2012)

22. Rümmer, P., Subotic, P.: Exploring interpolants. In: Proc. FMCAD 2013. pp. 69
– 76. IEEE (2013)

23. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation.
In: Proc. VMCAI 2007. pp. 346–362. No. 4349 in LNCS, Springer (2007)

24. Schlaipfer, M., Weissenbacher, G.: Labelled interpolation systems for hyper-
resolution, clausal, and local proofs. Journal of Automated Reasoning 57(1), 3–36
(2016)

25. Scholl, C., Pigorsch, F., Disch, S., Althaus, E.: Simple interpolants for linear arith-
metic. In: Proc. DATE 2014. pp. 1–6. European Design and Automation Associa-
tion (2014)

210 L. Alt et al.

Tool Papers

ACAT: A Novel Machine-Learning-Based Tool
For Automating Android Application Testing

Ariel Rosenfeld1,†, Odaya Kardashov2, and Orel Zang2

1 Dept. of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel

2 Dept. of Computer Science, Bar-Ilan University, Ramat-Gan, Israel
† Corresponding author, arielros1@gmail.com

Abstract. Mobile applications are being used every day by more than
half of the world’s population to perform a great variety of tasks. With
the increasingly widespread usage of these applications, the need arises
for efficient techniques to test them. Many frameworks allow automating
the process of application testing, however existing frameworks mainly
rely on the application developer for providing testing scripts for each
developed application, thus preventing reuse of these tests for similar
applications. In this demonstration, we present a novel tool for the au-
tomation of testing Android applications by leveraging machine learning
techniques and reusing popular test scenarios. We discuss and demon-
strate the potential benefits of our tool in an empirical study where we
show it outperforms standard methods in realistic settings.

Keywords: Android Application Testing, Mobile Testing Automation,
Activities Classification, Demonstration

1 Introduction

Mobile devices become a key component in our lives, with more than five million
applications developed so far [1], making them the main productivity feature of
these devices. As mobile devices become more popular, arise the need for efficient
techniques for testing their applications. The large fragmentation of the Android
market, as well as the diverse set of scenarios in which a mobile application can
be used, make testing new applications an expensive, time-consuming and a
complex process. Recently, test automation became the standard, with many so-
lutions and frameworks that allow automating the process of application testing
[2]. The main limitation of these frameworks is that tests are hand-coded for
each application and scenarios, and each new application or new functionality
requires spending many resources to reuse these tests.

In this demonstration, we present a novel tool for automatic testing of An-
droid applications in order to find as many functional bugs as possible. Our tool
is based on the premise that different activities in an Android application share
a similar structure. In order to use this similarity to our benefit, we use ma-
chine learning techniques to classify each activity in the application into one of
© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 213–216, 2017.
https://doi.org/10.1007/978-3-319-70389-3_14

seven pre-defined activity types. For each classified activity, we can run specific
tests, at user interface level, that were coded to utilize the fact that we know its
general structure and desired behavior. We have implemented this approach and
developed an add-on in the Java programming language for the TestProject1 test
automation framework. The platform includes hundreds of add-ons for Web, Mo-
bile and API testing which are freely available to anyone wishing to accelerate
the automation development project. Our developed add-on is named ACAT,
standing for “Activities Classification for Application Testing”. The add-on will
be available to install via TestProject Add-ons store.

To evaluate our add-on, we conducted an experiment in which we ran it
on different applications while evaluating their performance. We found that the
ACAT add-on shows great ability, compared to the standard random-testing
method, in exploring the application’s state space and testing its key components
without prior knowledge about the application. This lets the developer focus on
the development of the application and not on writing tests. The use of machine
learning in application testing tools is, to the best of our knowledge, a novel
method which has yet to be fully explored.

2 Demonstration

In this demonstration we are going to illustrate a common scenario in testing
an Android application with the ACAT add-on. Before executing the ACAT,
the developer provides basic information using a textual input file which in-
cludes technical parameters which are required for the TestProject framework
to communicate with the mobile device. Then, the developer can provide spe-
cific information in the input file, such as a username and a password, which the
add-on will later utilize during the test in the correct context.

During the test, for each new reached activity in the application, the ACAT
classify it using our machine learning model into one of seven pre-defined ac-
tivities types. Then, it executes a series of test cases designed for the predicted
activity type. The ACAT keeps classifying activities and deploying tests until
the main activity of the application has been classified and tested (e.g., mail
activity, browser activity, etc) or when its configured time is up.

Finally, after executing the test, the ACAT creates a textual report file which
includes comprehensive information about the test. This includes some various
statistics about the test, such as the number Of discovered activities and a list
of all the actions executed by the add-on which allows the developer to track the
steps of the test. The most important part of the report is the description of all
the bugs that were discovered during the test, either technical real-time crashes
or logical defects which reflect in the application’s user interface. An example
for the bugs section of this report can be found in Figure 3. Figures 1 and 2
depict the results of running the ACAT on Android’s default mail application
while explaining about the underlying process.

1 http://testproject.io

214 A. Rosenfeld et al.

Fig. 1: The activity was classified as a mail activity. Thus, the ACAT executes the
mail activity test cases. It scrolls through the inbox mails and opens a random
one from the list. Then, it returns to the inbox screen and opens the compose
mail activity.

Fig. 2: The ACAT verifies that a user cannot send a mail without a recipient
address and with an invalid address. Finally, the ACAT verifies that a user
can send a valid mail through this activity by sending a mail to the same user
while filling in a randomly generated ID in the mail’s subject. Then, the ACAT
refreshes the inbox list and searches for a mail with the ID that was sent before.

Fig. 3: An excerpt from the report which was generated after this test.

3 Evaluation & Discussion

We evaluate our add-on against the Android Application Monkey tool [3]. With
the purpose of demonstrating the power of the ACAT, we designed a novel ex-

ACAT: A Novel Machine-Learning-Based Tool 215

periment which focuses on applications logical bugs. These bugs are related to
the application’s logic, meaning unwanted behavior in the application’s function-
ality, as opposed to real-time application crashes which are caused by uncaught
exceptions thrown in the code.

We use 2 open source Android applications in which we artificially “plant”
various logical bugs. While examining the experiment’s results, which we will
present at the demonstration as well, we can identify 2 major trends: 1) The
ACAT was able to classify correctly the 3 unseen activities; 2) The ACAT man-
aged to discover all of the “planted” bugs while the Android Monkey discovered
none.

These trends show an interesting phenomenon. While the Android monkey
was not able to detect a single logical bug, the ACAT discovered all of the var-
ious bugs implemented in the source code of the applications, as well as a bug
that already existed in the original code. This is contributed to our activities
classification method, which enables this add-on the power to tests an activity
against its expected behavior. In addition, our experiment demonstrates that
testing an application by a series of single case tests, designed for each activ-
ity at its own, may provide an advantage compared to the standard testing of
applications which considers the application as a whole unit.

4 Conclusions

This paper introduces a novel add-on for testing Android applications using ma-
chine learning techniques. We have tested our add-on on different applications,
demonstrating its advantage against other popular Android applications testing
tools such as the Android Monkey. The ACAT add-on is shown to find more
logical bugs in an application, which opens the possibility for developing more
sophisticated testing tools. We are currently working with TestProject in order
to integrate the ACAT add-on for the TestProject framework, utilizing their
database of thousands of mobile applications patterns. The ACAT add-on will
be available to install via TestProject Add-ons store. For more technical details
about the approach of the tool see the full publication [4].

References

1. “Number of apps available in leading app stores as of
march 2017.” https://www.statista.com/statistics/276623/

number-of-apps-available-in-leading-app-stores/.
2. J. Gao, X. Bai, W.-T. Tsai, and T. Uehara, “Mobile application testing: a tutorial,”

Computer, vol. 47, no. 2, pp. 46–55, 2014.
3. S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input generation for

Android: Are we there yet?,” in Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on, pp. 429–440, IEEE, 2015.

4. A. Rosenfeld, O. Kardashov, and O. Zang, “Automation of Android Applications
Testing Using Machine Learning Activities Classification,” ArXiv e-prints, Sept.
2017.

216 A. Rosenfeld et al.

MicroTESK: Specification-Based Tool for
Constructing Test Program Generators

Mikhail Chupilko1, Alexander Kamkin1,2,3,
Artem Kotsynyak1, and Andrei Tatarnikov1

1 Ivannikov Institute for System Programming of the Russian Academy of Sciences
2 Lomonosov Moscow State University

3 Moscow Institute of Physics and Technology
{chupilko, kamkin, kotsynyak, andrewt}@ispras.ru

Abstract. The paper presents MicroTESK, a tool that automates con-
struction of test program generators for microprocessors. A constructed
generator consists of the core that implements architecture-independent
generation methods and the model that holds information required to
generate tests for the corresponding architecture. The tool extracts this
information from formal specifications of the instruction set architecture.
The extracted information is used in multiple ways: (1) to get the as-
sembly format of the instructions; (2) to build the coverage model of the
instruction set architecture; (3) to construct the instruction set simulator
used as a reference model. Test programs are created on the basis of test
templates provided by users. Flexible architecture of the tool facilitates
integration of new test generation engines. MicroTESK has been applied
to the ARMv8, MIPS64, PowerPC, RISC-V, and x86 architectures.

Keywords: microprocessors, functional verification, test program gen-
eration, instruction set architectures, formal specifications

1 Introduction

Test program generation and analysis of test execution traces is the most widely
used approach to functional verification of microprocessors. To generate test
programs, special tools called test program generators (TPGs) are used. They
implement various test generation methods to exercise behavior of a micropro-
cessor in “all possible” situations. An important requirement for modern TPGs
is applicability to a wide range of instruction set architectures (ISAs). This im-
plies that information on the ISA must be separated from the implementation of
the test generation methods. Such approach is referred to as model-based testing.

Industrial TPGs such as Genesys-Pro [1] and RAVEN [2] follow the model-
based approach. The main idea is that a TPG consists of the core that im-
plements architecture-independent test generation methods and the model that
stores all information required to create test programs for a specific ISA. Gen-
eration is performed on the basis of test templates, which describe high-level
properties of test programs.
© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 217–220, 2017.
https://doi.org/10.1007/978-3-319-70389-3_15

In this paper, we present MicroTESK, an open-source tool for constructing
model-based TPGs [3]. It provides the reusable core and constructs models by
processing formal specifications of ISAs. Formal specifications are described in
nML, a simple architecture description language [4]. This simplifies development
and maintenance of TPGs. Test templates used by MicroTESK-based TPGs
are written in a Ruby-based language [5]. The use of a well-tried programming
language significantly decreases the learning effort.

2 MicroTESK Approach

MicroTESK is divided into two main parts: (1) the modeling framework that pro-
cesses formal specifications and constructs a microprocessor model; (2) the test-
ing framework that generates test programs on the basis of the model and
test templates provided by users, i.e. verification engineers. The architecture
of MicroTESK is shown in Figure 1.

MicroTESK

Modeling framework

Model libraries

Test template parser

Formal
specifications

Test
templates

Specification analyzers

Metadata ISS

Model

Coverage model

Instruction sequence generators

Test data generators
Test

programs

Testing framework

Fig. 1. The MicroTESK architecture

The model consists of the following components: (1) the metadata that pro-
vides a catalogue of supported instructions; (2) the instruction set simulator (ISS)
that serves as a reference model; (3) the coverage model that holds constraints
describing execution paths of individual instructions.

The modeling framework includes components that analyze formal specifica-
tions, extract the necessary information, and construct the model. ISA specifi-
cations are developed manually in nML language [4]. They describe data types,
registers, memory, addressing modes, and instructions. There is a language ex-
tension called mmuSL aimed at specifying memory management units (MMUs):
address types, segments, buffers, tables, and overall load/store logic [6]. Here is
an nML specification of MIPS64’s ADD instruction.

218 A. Rosenfeld et al.

op add(rd: R, rs: R, rt: R)
syntax = format("add %s, %s, %s", rd.syntax, rs.syntax, rt.syntax)
image = format("000000%5s%5s%5s00000100000", rs.image, rt.image, rd.image)
action = {

if sign_extend(WORD, rs<31>) != rs<63..32> || sign_extend(WORD, rt<31>) != rt<63..32> then
unpredicted; // Precondition

endif;
temp33 = rs<31>::rs<31..0> + rt<31>::rt<31..0>;
if temp33<32> != temp33<31> then

exception("IntegerOverflow"); // Coverage item 1
else

mark("Normal"); // Coverage item 2
rd = sign_extend(DWORD, temp33<31..0>);

endif;
}

The testing framework includes the reusable TPG core that generates test pro-
grams for the given model by processing test templates provided by verification
engineers. The generation process consists of the following stages:

1. constructing an abstract instruction sequence (no particular data);
2. solving constraints applied to the instructions and generating data;
3. creating initialization code that prepares the registers and the memory;
4. executing the instructions (including the initialization code) in the ISS;
5. creating self-checks based on the information provided by the ISS (optional);
6. printing the resulting instructions to an assembly file.

Test templates are represented in a special Ruby-based language [5]. ISA-
specific constructs such as instruction wrappers are created on-the-fly by using
the model metadata. Broadly speaking, test templates specify how to combine
instruction sequences and what constraints to apply. For example, the code below
describes all possible pairs of ADD and SUB instructions with “Normal” and
“IntegerOverflow” constraints having been attached.

class MyTemplate < Template
def run

block(:combinator => ’product’) {
iterate {

add t0, t1, t2 do situation(’Normal’) end
add t0, t1, t2 do situation(’IntegerOverflow’) end

}
iterate {

sub t3, t4, t5 do situation(’Normal’) end
sub t3, t4, t5 do situation(’IntegerOverflow’) end

}
}.run

end
end

MicroTESK allows constructing complex instruction sequences by combin-
ing smaller parts. To solve constraints, the tool utilizes a number of built-in
and external SAT- and SMT-solvers. Supported types of constraints include:
(1) constraints on instruction operands; (2) constraints related to control flow;
(3) floating-point constraints; (4) MMU-related constraints. The tool architec-
ture facilitates integration of custom components for sequence processing and
constraint solving (test data generation).

MicroTESK: Specification-Based Tool 219

3 Practical Application

MicroTESK has been applied to create TPGs for several ISAs including ARMv8,
MIPS64, PowerPC, RISC-V, and x86. The created TPGs are shipped together
with formal specifications and basic test templates. Some of TPGs (including the
ISA specifications) are open source (licensed under the Apache License, Version
2.0), while others are closed and distributed on a commercial basis. Details on
the MicroTESK-based TPGs are provided in Table 1.

Table 1. TPGs constructed with the help of MicroTESK

Architecture Project Type Public/Closed Supported Version

ARMv8 Industrial Closed AArch64 v8.2

MIPS64 Industrial Open Source Revision 6.04

PowerPC Research Closed e500mc

RISC-V Research Open Source Version 2.2

x86 Research Open Source x86-16, partially x86-64

The TPG development is reduced to specifying the corresponding ISA. The
labor costs are approximately 2–5 instructions per person-day (depending on
the ISA complexity). It should be noted that specifications can be reused when
describing other designs of the same family. The nML and mmuSL languages
allow marking specification elements with revisions, which makes it possible to
enable/disable those elements depending on the ISA version.

The bug-finding ability depends on test templates created by verification
engineers. Experience shows that with a properly organized verification process,
a MicroTESK-based TPG can serve as a primary means of chip-level verification.

References

1. A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, A. Ziv. Genesys-
Pro: Innovations in Test Program Generation for Functional Processor Verification.
Design & Test of Computers, 21(2), 2004. pp. 84–93.

2. RAVEN Test Program Generator – http://www.slideshare.net/DVClub/introducing-
obsidian-software-andravengcs-for-powerpc

3. MicroTESK Page – http://forge.ispras.ru/projects/microtesk
4. M. Freericks. The nML Machine Description Formalism. Technical Report TR SM-

IMP/DIST/08, TU Berlin CS Department, 1993.
5. A. Tatarnikov. Language for Describing Templates for Test Program Generation for

Microprocessors. Proceedings of ISP RAS, 28(4), 2016. pp. 81–102.
6. M. Chupilko, A. Kamkin, A. Kotsynyak, A. Protsenko, S. Smolov, A. Tatarnikov.

Specification-Based Test Program Generation for ARM VMSAv8-64 Memory Man-
agement Units. Workshop on Microprocessor Test and Verification, 2015. pp. 1–6.

220 A. Rosenfeld et al.

Embedded functions for test design automation

George B. Sherwood1[0000-0003-0865-1679]

1 Testcover.com LLC, 41 Clover Hill Road, Colts Neck NJ 07722, USA

sherwood@testcover.com

Abstract. Testcover.com introduced an embedded functions feature into its

combinatorial test design service. The feature allows functionally dependent re-

lations among test factors to be defined as functions in a general purpose pro-

gramming language, PHP. These relations enforce constraints among test factor

values and insure that all valid combinations of determinant factors are consid-

ered for the test design. Resulting usability improvements enable automated

pairwise test designs to meet novel objectives: Cover equivalence classes of ex-

pected results; verify univariate and multivariate equivalence class boundaries;

verify corners among intersecting boundaries and edges. The demonstration il-

lustrates how embedded functions can improve automation, accuracy, control

and flexibility in the test design process.

Keywords: automated test design, boundary testing, combinatorial testing, con-

straints, embedded function, equivalence class, functional dependence, interac-

tion testing, PHP, software test design, test case generation.

Introduction

Recent concerns about engineering the Internet of Things (IoT) include conflicting

requirements and inadequate analysis and verification. Diomidis Spinellis observes:

“No doubt, a paradigm shift from balkanized IoT applications to an integrated infra-

structure in which individual IoT nodes are first-class citizens raises formidable chal-

lenges… when multiple IoT nodes and applications get integrated, diverse require-

ments will interfere with each other…” [1]

Similarly, Vinton Cerf writes: “Concerns for safety, security, privacy, and control

must be assuaged by systematic analysis of increasingly complex use scenarios. It

might even be argued that these analyses will need to be carried out automatically just

to keep up with the non-linear growth in potential use cases and device interactions as

the devices proliferate.” [2]

This demonstration of embedded functions (EFs) illustrates the automated design

of software tests to conform to requirements and meet test objectives. Embedded

functions define and enforce required constraints among test factors (e.g. configura-

tions and inputs). [3, 4] They can insure that required test factor combinations (e.g.

for system states or equivalence classes) appear in test cases, and that invalid combi-

nations do not. The EF feature resolves composite relations among test factors so that

test cases conform to the chains of functional dependence.

© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 221–224, 2017.
https://doi.org/10.1007/978-3-319-70389-3_16

When equivalence class factors or boundary value factors are included in the de-

sign, additional test objectives can be met automatically, as needed:

 Cover equivalence classes of expected results [4-6]

 Pair equivalence classes with nondeterminant factor values [4-6]

 Verify univariate and multivariate equivalence class boundaries [4, 6]

 Pair boundary values and edges to verify corner cases [4, 6]

The embedded functions feature represents test design automation progress, leading to

improved usability and efficiency for practitioners. It offers significant contributions

for testing systems developed in various processes. We anticipate a range of uses

from embedded software to agile systems and the IoT. We know of no other automat-

ed test design tool that can meet these objectives for practicing software engineers.

Combinatorial testing. Combinatorial testing generates small sets of test cases to

cover interactions among test factors in complex systems. These test cases must con-

form to system constraints to be valid. When a test case has an invalid combination of

values, it cannot verify the expected result. If such a test case is omitted, the valid

combinations it may have contained might be missing from the remaining test cases.

So the test cases must contain all the required combinations and none of the invalid

ones.

A second constraint challenge is generating test cases that lead to a particular ex-

pected state or class of expected results. Test cases need combinations of factor values

that steer the system under test for the behaviors to be verified. Otherwise the test

process may be inefficient and time consuming.

Research and development progress has led to tools that conform to constraints,

but constraints remain a challenge to the broad adoption of combinatorial testing in

practice. [3]

Functional dependence. Constraints in test models can be expressed as function-

ally dependent relations. For example, test factors for a date input may include

Month, Day and Year, with respective values nov, 1 and 2017. The first and last day

of each month are boundary values for the Day factor. All months start with Day 1,

but the last day of the month depends on the values of Month and Year. The Day

value can be determined by a function last_day(Month,Year). With an appropriate

definition for the last_day function, the boundary values for Day can be listed as 1

and last_day(Month,Year). In this relation Month and Year are determinant factors,

and Day is the dependent factor.

The essential concept for embedded functions is to use simple functions in a well-

known language to describe the system and test constraints. Automated evaluation of

embedded functions reduces the manual analysis work and yields designs that can

meet a variety of test objectives. The analysis is limited to selecting test factors and

values, and defining the embedded functions. PHP was selected as the language for

this implementation of embedded functions. [7]

222 G.B. Sherwood

Description

Testcover.com provides an online, commercial test design service. [8, 9] The Soft-

ware as a Service is accessible with a standard browser. It can be used with a variety

of development environments, processes and tools.

The embedded functions feature was proposed in 2015. [3] During its development

elements of the feature were described and demonstrated at IWCT 2016. [5] Subse-

quently support for substitution functions (described below) and for the functions

editor was included. The EF feature was deployed for controlled introduction June 30,

2017.

Basic Blocks. Reference [6], example 2 illustrates a test design using calendar con-

straints. There are 5 blocks of factor values (Month, Day and Year) in the test design

request. All combinations of factor values in each block are allowed; combinations

that do not appear in any blocks are disallowed. Thus the set of allowed combinations

is the union of all the blocks’ combinations.

Forty test cases are generated, and they cover all allowed pairs of factors. The de-

sign covers the Day boundary values also.

Embedded Functions. Reference [6], example 2 also illustrates the calendar de-

sign using a single block and the embedded function last_day($month,$year). The

$month and $year factors are renamed as PHP variables, so they can be arguments for

the last_day function. These factors list all months and years to be included in the

design. The Day factor contains the fixed values 1 and 10, and the

last_day($month,$year) function.

The last_day function is a wrapper for the PHP internal function

cal_days_in_month. [6, 7] When the request is processed, the last_day function is

evaluated for all combinations of $month and $year values. These are used to gener-

ate the same 40 test cases as with the basic blocks request.

The last_day function is a combination function to be evaluated before test case

generation. [3] Each combination function is called for all combinations of its argu-

ments’ values. The function returns a list of one or more allowed values for generat-

ing test cases. Combination functions should not return values for invalid combina-

tions of arguments.

Substitution functions are evaluated after test case generation. [3] They are used to

relax the requirement for pairwise coverage, e.g. when test case values should be

random or unique (function fUser in example 6 [6]). In example 5c [4, 6] the $Weight

factor value is a test input computed by the substitution function Weight_boundary.

Pairing the boundary value with other factors is not an objective for this design, so

Weight_boundary is defined as a substitution function.

Substitution functions should return an individual value for each test case (not a

list). They also resolve composite relations among test factor values, similarly to

those of combination functions.

Equivalence Class Factors and Boundary Value factors. Use of embedded func-

tions, together with equivalence class factors and boundary value factors, enable au-

Embedded functions for test design automation 223

tomated combinatorial test designs to meet the objectives listed above. Test cases can

be constrained to cover expected equivalence classes by the inclusion of equivalence

class factors. When their factor values are given by combination functions, every

expected class determined by the other factors appears in at least one test case. [4-6]

Similarly, test cases can be constrained to compute and cover boundary values au-

tomatically, using factors to specify the required boundaries. [4, 6] When multiple

boundaries are covered, the intersections cover their respective corner cases. And

whether all corners or selected corners are covered can be controlled by the assign-

ment of combination or substitution evaluation to each EF. [4, 6]

Conclusions

The demonstration shows that specifying constraints (including equivalence class and

boundary requirements) as simple functions, in a language familiar to software engi-

neers, can automate much of the analysis for software test design. Moreover, func-

tions can be reused for different designs, and they can enhance consistency and accu-

racy as test factors and values change.

Reference [4], sections 4-6 illustrate in detail the control and flexibility offered by

embedded functions. They show different test design choices, based on various test

objectives, leading to different patterns of coverage.

Test designs must accommodate system complexity and size, as well as diverse ob-

jectives. The embedded functions feature offers improvements in automation, accura-

cy, control and flexibility, for advances in test efficiency and quality.

References

1. Spinellis, D.: Software-engineering the Internet of Things. IEEE Software 34(1), 4-6

(2017).

2. Cerf, V. G.: A brittle and fragile future. Communications of the ACM 60(7), 7 (2017).

3. Sherwood, G. B.: Embedded functions in combinatorial test designs. In: IEEE Eighth In-

ternational Conference on Software Testing, Verification and Validation Workshops

(ICSTW), pp. 1-10. IEEE, Graz, Austria (2015).

4. Sherwood, G. B.: Test design automation: equivalence classes, boundaries, edges and cor-

ner cases. 2016/7/3. http://testcover.com/pub/background/ecbecc.pdf, last accessed

2017/7/27.

5. Sherwood, G. B.: Embedded functions for constraints and variable strength in combinato-

rial testing. In: IEEE Ninth International Conference on Software Testing, Verification and

Validation Workshops (ICSTW), pp. 65-74. IEEE, Chicago, IL, USA (2016).

6. Testcover.com embedded functions examples (2017),

http://testcover.com/pub/background/examples2017.php, last accessed 2017/7/27.

7. M. Achour, F. Betz, A. Dovgal, et al.: PHP Manual. http://php.net/manual/en/index.php,

last accessed 2017/7/27.

8. About Testcover.com, http://testcover.com/pub/about.php, last accessed 2017/7/27.

9. Testcover.com performance, http://testcover.com/pub/performance.php, last accessed

2017/7/27.

224 G.B. Sherwood

KERIS: A CT Tool of the Linux Kernel with
Dynamic Memory Analysis Capabilities

Bernhard Garn1, Fabian Würfl2, and Dimitris E. Simos1

1 SBA Research, 1040 Vienna, Austria
{bgarn, dsimos}@sba-research.org

2 FH Campus Wien, 1100 Vienna, Austria
fabian.wuerfl@stud.fh-campuswien.ac.at

Abstract. We present KERIS, a configurable, non-centralized server-
based framework which enables the combinatorial testing of the Linux
kernel’s system call interface. The tool constitutes an improvement over
our previously developed tool called ERIS by incorporating dynamic
memory analysis capabilities among other improvements. The testing
framework is designed to offer large-scale automation and requires only
minimal high-level input from the user. Several experiments performed
with KERIS demonstrate the capabilities of finding and reproducing
Linux kernel bugs in an automated manner.

Keywords: combinatorial testing, Linux kernel, system call, tool

1 Introduction

In this paper, we introduce KERIS, the KASAN Enhanced ERIS, which is based
on our combinatorial testing tool ERIS presented in [1]. We created a new test
oracle by integrating an intra-kernel dynamic memory analysis feature called
KASAN, which results in an automated fine-grained test oracle for real-world
experiments.

Combinatorial testing (CT) is a generic test case generation strategy which is
focused on interactions between values of modelled parameters [2]. Mathematical
objects called covering arrays (CAs) guarantee these demanded interactions and
are subsequently translated into software artifacts to be used as test sets. KERIS
employs the widely-used ACTS tool3 for generating CAs.

2 KERIS

KERIS’ features cover the complete testing cycle: modelling, test case generation,
test case execution, log archiving and subsequent post-processing of the results
stored in an SQL database for use-case specific analysis queries.

3 http://csrc.nist.gov/groups/SNS/acts/download tools.html

© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 2 –228, 2017.
https://doi.org/10.1007/978-3-319-70389-3_17

25

ERIS: Linux System Call Testing. For testing Linux system calls, it is necessary
to specify the version, the system call and some abstract test model. The ERIS
framework offers automated large-scale testing capabilities, requiring only these
three mentioned inputs and then populates or creates the necessary data for
each test run independently. The framework accepts lists or ranges for kernel
versions or system calls as input for test runs.

The ERIS framework is built upon loops where for each given kernel version,
for each given system call, for each chosen modelling strategy, and for each chosen
interaction strength of the test set, it executes the following core function as
described in Algorithm 1, and considers these parameters jointly as parameters
of a system under test (SUT). The framework makes use of the Xen virtualization
technology to boot a virtual machine (VM) created from the previous SUT
specification and stores various data parsed out of the VM’s system log file into
an SQL database for further analysis. Although the framework and the Linux
kernel support many different hardware architectures, the test executions are
currently focused on running with a guest image of the x86 64 architecture.

Algorithm 1 Architectural Design of the Core ERIS Framework
function ErisCore(version, syscall, t)

Require: version, syscall . SUT: Kernel version and system call
Require: t . Interaction strength of CA - test set

Mount copy of guest image
Copy latest version of ERIS into guest image
Generate CA of strength t for syscall . The CA is translated to a test set
if precompiled kernel available then

Use precompiled kernel
else

Compile kernel
end if
Compile kernel modules
Install kernel and modules into guest image
Finalize guest image for testing operations
Boot guest image using Xen hypervisor
Execute test set for syscall in dedicated VM
End testing cycle by shutting down the VM and perform clean-up
Import test results into SQL database for further analysis

end function

KASAN: A Kernel Address Sanitizer adopted to ERIS. The KernelAddressSAN-
itizer (KASAN) is a dynamic memory error detector for the Linux kernel. It uses
compile-time instrumentation for checking every memory access and is especially
useful for finding use-after-free and out-of-bounds bugs4.

KERIS is an enhanced version of ERIS, including various bug fixes and other
improvements to the runtime efficiency and usability which were made during its
development. KERIS’ overall architectural design is shown in the figure below.
We give a concise overview of the most important improvements. Large-scale
testability was mainly achieved by precompiling kernel images. Previously, each
kernel version was compiled on demand and deleted after test execution finished.
To solve this issue, all kernel versions (git tags) from v3.2 to v4.10-rc6, including
all release candidates and stable releases, were precompiled (1007 in total; 248
additional with a KASAN-enabled configuration). Now, whenever a test is run

4 https://www.kernel.org/doc/html/latest/dev-tools/kasan.html

226 B. Garn et al.

with a specific kernel version and configuration, the respective precompiled kernel
image is used. This saves about six minutes for each SUT in one test run, reducing
the total test execution time by ten hours for just 100 SUTs.

KERIS also supports “named” kernel configurations and images, which al
lows to have several precompiled kernel images of the same version, but with a
different configuration a necessity to utilize kernels with and without KASAN.
Finally, usability was greatly improved by enhancing the managementscripts to
also support regular expressions, for example when specifying the list of kernel
versions to test.

Additional Improvements to ERIS. In addition, postprocessing was improved by
various scripts. One script parses the main log file of the guest image to generate
an overall report for inclusion in the SQL database on (a) how many test cases
should have been executed, (b) how many test cases were actually executed,
(c) how many test cases succeeded or failed, and (d) a more detailed listing of
why some test cases could have failed. Moreover, we have implemented various
sophisticated sanity checkers (e.g., whether the guest image booted correctly) to
enable a more finegrained analysis of the test results.

3 Automated Large-Scale Kernel Testing

For this work we tested with KERIS 23 different system calls with 134 kernel
versions each (a total of 3082 SUTs) in roughly 102 hours. Furthermore, pro
cessing and analyzing all test runs’ log output took less than two minutes. The
KERIS test environment is currently hosted on a machine running OpenSUSE
13.2 (Harlequin) with kernel version 3.16.748xen (64bit), CPU Intel (R) Core
(tm) i74770 with eight cores running at 3.4 GHz and has 22.2 GB of RAM.

Of the 3082 SUTs, the test execution of 77 SUTs failed. Further analysis
showed that 69 of those failures were due to three malfunctioning kernel images
(v4.0rc1, v4.1.28, v4.2rc2) which crashed before KERIS could be started. The
remaining eight failures were due to Xen not being able to start the guest image.

KERIS: A CT Tool of the Linux Kernel 227

The kernel versions tested were in the range of v4.0 up to v4.6. For each kernel
version, the final release, all release candidates and a selection of stable releases
were tested. Every kernel was compiled with KASAN enabled. As none of the
SUTs triggered memory access violations reported by KASAN, the following
analysis employs concepts of differential testing.

For each system call individually, we performed a comparison of the discre-
pancies in the number of accepted (i.e., system call execution returned zero)
vs. rejected (i.e., system call execution returned a non-zero value) test cases of
the same test set, across the entire range of tested kernel versions. Our analysis
showed that for most system calls, these numbers stayed the same across the
entire range of tested kernel versions. By far the largest deviations between
different kernel versions were found for the settimeofday system call, as shown
in the table below.

Count kernel versions # of test cases # of accepted # of rejected
72 100 0 100
43 100 45 55
15 100 30 70
1 100 34 66

Detecting Dynamic Memory Errors. With KERIS’ capability of utilizing KASAN-
enabled kernels, we are able to assess and detect errors that are caused by me-
mory access violations among other reasons. Recently, Google’s Project Zero
team discovered a vulnerability in Linux’ networking stack5, also with the help
of KASAN. We used the characteristics of this particular vulnerability for a
fine-tuned combinatorial model of a network configuration setup together with
assigning parameter values to the sendto system call, in order to demonstrate
that KERIS is capable of detecting such vulnerabilities. Already in the first test
execution batch, two kernels crashed with a kernel Oops, which was subsequently
detected by our KASAN-based test oracle. A snippet of one of the resulting error
messages encountered by KERIS is shown below.

[30.605462] BUG: unable to handle kernel paging request at ffff880007a60b28
[30.605500] IP: [<ffffffff818baf55>] prb_fill_curr_block.isra.62+0x15/0xc0
[30.605525] PGD 1e0c067 PUD 1e0d067 PMD ffd4067 PTE 8010000007a60065
[30.605550] Oops: 0003 [#1] SMP KASAN

Acknowledgements. The research presented in the paper has been funded in
part by the the Austrian COMET Program (FFG).

References

1. Garn, B., Simos, D.E.: Eris: A tool for combinatorial testing of the linux system call
interface. In: Software Testing, Verification and Validation Workshops (ICSTW),
2014 IEEE Seventh International Conference on. pp. 58–67. IEEE (2014)

2. Kuhn, D., Kacker, R., Lei, Y.: Introduction to Combinatorial Testing. Chapman &
Hall/CRC Innovations in Software Engineering and Software Development Series,
Taylor & Francis (2013)

5 https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-
packet.html

228 B. Garn et al.

RATCOP: Relational Analysis Tool for Concurrent
Programs

Suvam Mukherjee1, Oded Padon2, Sharon Shoham2, Deepak D’Souza1, and
Noam Rinetzky2

1 Indian Institute of Science, India
2 Tel Aviv University, Israel

Abstract. In this paper, we present RATCOP, a static analysis tool for efficiently
computing relational invariants in race free shared-variable multi-threaded Java
programs. The tool trades the standard sound-at-all-program-points guarantee for
gains in efficiency. Instead, it computes sound facts for a variable only at program
points where it is ”relevant”. In our experiments, RATCOP was fairly precise
while being fast. As a tool, RATCOP is easy-to-use, and easily extensible.

1 Introduction
Writing efficient and correct multi-threaded programs is an onerous task, since a multi-
threaded program admits a large set of possible behaviors. As a result, such programs
provide fertile ground for many insidious defects: the bugs are difficult to detect, diffi-
cult to reproduce, and can result in unpredictable failures. Thus, developers are greatly
aided by tools which can automatically report such defects.

Unfortunately, designing algorithms which can automatically reason about behav-
iors of concurrent programs is also a very hard problem. Key to the difficulty lies in ac-
counting for the large set of inter-thread interactions. Static analysis algorithms, based
on the abstract interpretation framework [3], compute sound approximations of the set
of “concrete states” arising at each program point. With this notion of soundness, a
precise static analyzer does not usually scale, whereas a fast analysis is usually quite
imprecise [2].

In this paper, we describe RATCOP 3: Relational Analysis Tool for COncurrent
Programs, a tool to efficiently compute relational invariants in shared-memory data
race free multi-threaded Java programs. RATCOP does not handle procedure calls or
dynamic memory allocation. The abstract analyses implemented in RATCOP are based
on a novel thread-local semantics, called L-DRF [7]. Here, each thread maintains a local
copy of the global state. When a thread t executes a non-synchronization command (an
assignment or an assume), it operates on its local state alone. Each release instruction
is associated with a “buffer”. When t executes a release(m) command, it stores a copy
of its local state in the corresponding buffer. When a thread t′ subsequently acquires m,
it is allowed to observe the states stored at a set of “relevant” buffers. t′ then performs
a mix of these states to create a fresh local state. As [7] shows, for data race free (DRF)
programs, each trace in the standard semantics corresponds to some trace in the L-DRF

3 The source code of RATCOP is available at https : //bitbucket.org/suvam/ratcop

© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 229–233, 2017.
https://doi.org/10.1007/978-3-319-70389-3_18

semantics, and vice versa. Thus, the L-DRF semantics is a precise description of the
behaviors of DRF programs.

Fig. 1. High-level overview
of RATCOP

The L-DRF semantics allows one to rapidly port exist-
ing sequential analyses to analyses for race free programs.
Such analyses operate on a program graph called sync-
CFG (first introduced in [4]), which is a collection of the
control-flow graphs of each thread, augmented with syn-
chronization edges between the release of a lock m, and an
acquire of m. Consequently, the sync-CFG restricts inter-
thread propagations to synchronization points alone. The
resulting analyses satisfy a non-standard notion of sound-
ness: the computed facts for a variable are sound only at
program points where it is accessed. A more precise anal-
ysis is obtained by parameterizing L-DRF with a user-
defined partitioning of the program variables, resulting in
a semantics called R-DRF. Each partition is also called a
“region”. Assuming that the input program is free from re-
gion races [7], which is a stronger notion than data races,

the resulting abstract analyses are more precise than those derived from L-DRF.
In RATCOP, we instantiate abstractions of L-DRF and R-DRF to create several

relational analyses with varying degrees of precision. Our objective was two-fold: (i.)
to investigate the ease of porting a sequential relational analysis to an analysis for race
free concurrent programs (ii.) to investigate the efficiency and precision of the resulting
analysis. The base-line is an interval analysis derived from an earlier work [4]. RATCOP
makes use of the Soot [8] and Apron [5] libraries. RATCOP intelligently leverages the
race freedom property of the input program to minimize the number of inter-thread data
flow propagations, while retaining a fair degree of precision. As shown in [7], on the
benchmarks, RATCOP was able to prove upto 65% of the assertions, in comparison to
25% achieved by the base-line analysis. On a separate set of benchmarks, RATCOP was
upto 5 orders of magnitude faster than Batman, a recent static analyzer for concurrent
programs [6]. Finally, RATCOP is easy-to-use, quite robust, and easily extensible. In
this paper, we detail the architecture of RATCOP.

2 Architecture of RATCOP

RATCOP comprises around 4000 lines of Java code, and implements a number of re-
lational analyses with varying degrees of precision and scalability. Through command
line arguments, the tool can make use of the following three abstract domains provided
by Apron: convex polyhedra, octagons and intervals. It takes only a few lines of code
to extend RATCOP to use additional numerical abstract domains.

RATCOP assumes that the input program is free from data races, and does not
perform any explicit checks for the same. To detect region-level races, RATCOP imple-
ments the scheme outlined in [7], which reduces the problem of checking for region-
level races to that of checking for data races on specific “auxiliary” variables.

230 S. Mukherjee et al.

Fig. 2. An example from [7] illustrating the relational analyses implemented in RATCOP. The
sync-CFG representation of the program is given at the center: inter-thread communication is
restricted to synchronization points alone. All the variables are shared and initialized to 0. The
Value-Set column shows the facts computed using an interval analysis derived from [4]. The L-
DRF and R-DRF columns show the facts computed by polyhedral abstractions of the thread-local
semantics, and its region-parameterized version. The R-DRF analysis is able to prove all the 3
assertions, the L-DRF proves 2, while the Value-Set analysis only proves 1 assertion.

RATCOP re-uses the code to construct the sync-CFG representation of a program
from the implementation of [4]. The sync-CFG construction makes use of a pointer-
analysis, coupled with a may-happens-in-parallel analysis.

The tool now performs a sequential analysis, with the only additional operator being
the inter-thread join. Once the fixpoint is reached, RATCOP automatically tries to prove
the assertions in the program, which amounts to checking whether the computed facts
at a program point imply the condition being asserted. If the tool fails to prove the
implications, the assertion condition and the corresponding data flow fact is logged for
further manual investigation.

For the non-synchronization instructions, RATCOP performs some light parsing,
followed by re-using the existing sequential transformers exposed by Apron. The only
operator we define afresh is the inter-thread join, which is used at the acquire points.
However, this turns out to be simple as well, being a combination of operations pro-
vided by Apron. Thus, porting a sequential relational analysis based on Apron to an
analysis for a race free concurrent program, using our framework, turns out to be quite
straightforward. Fig. 1 summarizes the set of operations in RATCOP.

RATCOP: Relational Analysis Tool 231

RATCOP implements 5 relational analyses: A1−A4, are derived from the L-DRF
and R-DRF semantics, and use the octagon domain. The fifth, A5 (which is also our
baseline), is an interval analysis derived from [4]. The analyses differ in the degree of
abstraction from the L-DRF and R-DRF semantics, with A4 using the most precise
abstract domain, and A5 being the least.

3 Experiments
We illustrate the operation of RATCOP on a simple program from [7], shown in Fig. 2.
The program is free from data races. If the regions are defined to be 〈{x, y}, {z}〉, then
the program is free from region races as well 4. The results of A5 are shown under the
column “Value-Set”. Since an interval based analysis is the best we can do using [4], the
resulting analysis is quite imprecise: it is only able to prove the assertion at line 9. The
analysis cannot track any relational properties. We do better with A2, derived from
L-DRF, which uses octagons. This analysis does track the correlation between x and
y, which allows it to be additionally prove the assertion at line 5. However, the inter-
thread mixing (at the acquire points) is done at the granularity of individual variables.
This keeps A2 from inferring x = y at line 12, for example, even though the two
incoming edges clearly maintain this invariant. The analysis A4 performs this mixing
at the granularity of the specified regions. Thus, it is able to prove all 3 assertions.

In our experiments in [7], we used a subset of concurrent programs from the SV-
COMP 2015 suite [1], after porting them to Java and introducing locks appropriately
to remove races. We ran our experiments in a virtual machine with 16GB RAM and 4
cores which, in turn, ran on a machine with 32 RAM and a quad-core Intel i7 processor.
Unsurprisingly, A4 was the most precise, being able to prove 65% of the assertions. It
was also the slowest, the average time being 406ms. A5 was the least precise, having
proved 25% of the assertions with an average time of 204ms.

We compared RATCOP with a current abstract interpretation based tool for multi-
threaded programs [6], called Batman. Unlike RATCOP, which handles a large subset of
multi-threaded Java programs, Batman handles a toy language with limited constructs.
Moreover, Batman does not automatically check the validity of assertions, which ren-
ders it difficult to use with even small programs. We evaluated the two tools on multi-
threaded programs with little inter-thread communication. RATCOP leveraged the lack
of inter-thread communication intelligently to perform up to 5 orders of magnitude
faster than Batman. The key difference between the two tools is that Batman tries to
compute sound facts at every program point, whereas RATCOP computes sound facts
for variables only at program points where they are accessed.

4 Conclusion
In this paper, we presented RATCOP: a static analysis tool which efficiently computes
relational invariants for race free concurrent programs, with a non-standard notion of
soundness. We hope that RATCOP will serve as a stepping stone for future static anal-
yses for the class of race free programs.

4 The interested reader may refer to [7] for the exact definition of region races.

232 S. Mukherjee et al.

References

1. Dirk Beyer. Software verification and verifiable witnesses. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages 401–416. Springer,
2015.

2. Ravi Chugh, Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Dataflow analysis for concurrent
programs using datarace detection. In Proceedings of the ACM SIGPLAN 2008 Conference
on Programming Language Design and Implementation, pages 316–326, 2008.

3. Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of the
4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pages
238–252. ACM, 1977.

4. Arnab De, Deepak D’Souza, and Rupesh Nasre. Dataflow analysis for datarace-free pro-
grams. In Programming Languages and Systems - 20th European Symposium on Program-
ming, ESOP 2011, pages 196–215, 2011.

5. Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract domains for
static analysis. In International Conference on Computer Aided Verification, pages 661–667.
Springer, 2009.

6. Raphaël Monat and Antoine Miné. Precise thread-modular abstract interpretation of con-
current programs using relational interference abstractions. In International Conference on
Verification, Model Checking, and Abstract Interpretation, pages 386–404. Springer, 2017.

7. Suvam Mukherjee, Oded Padon, Sharon Shoham, Deepak D’Souza, and Noam Rinetzky.
Thread-local semantics and its efficient sequential abstractions for race-free programs. In
Static Analysis - 24th International Symposium, SAS 2017, New York, NY, USA, August 30 -
September 1, 2017, Proceedings, pages 253–276, 2017.

8. Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sun-
daresan. Soot-a java bytecode optimization framework. In Proceedings of the 1999 conference
of the Centre for Advanced Studies on Collaborative research, page 13. IBM Press, 1999.

RATCOP: Relational Analysis Tool 233

Posters

More adaptive does not imply less safe
(with formal verification)

Luca Pulina1 and Armando Tacchella2 ?

1 POLCOMING, Università degli Studi di Sassari, Viale Mancini 5 – 07100 Sassari – Italy
2 DIBRIS, Università degli Studi di Genova, Via Opera Pia, 13 – 16145 Genova – Italy

lpulina@uniss.it — armando.tacchella@unige.it

Abstract. In this paper we provide a concise survey of our work devoted to ap-
plying formal methods to check the safety of adaptive cyber-physical systems.

1 Introduction

In the past few years, the notion of cyber-physical system (CPS) emerged to define
complex systems intertwining physical processes, hardware, software and communica-
tion networks. With respect to “classical” embedded systems, CPSs add elements of
complexity including different spatial and temporal scales among components, multi-
ple and distinct behavioral modalities, and context-dependent interaction patterns [1].
When considering adaptive (also reconfigurable) CPSs, we refer to implements capable
of modifying their internal parameters to achieve and maintain a prescribed quality of
service even in the face of a partially unknown and mutating environment. The addition
of “adaptive” remarks the sharp distinction we draw between systems which only re-
act according to prescribed control policies and systems which can learn and/or update
their control policies. While adaptation is a desirable requirement for CPSs in many
circumstances, most CPSs are deployed in applications where misbehavior can cause
serious damage to the surrounding environment, which makes their safety a manda-
tory requirement. Unfortunately, adaptivity and safety are two conflicting propositions:
safety can be increased by reducing the amount of automatic reconfiguration, while
changing internal parameters during operation may yield unsafe control policies.

The vision behind our research is that the trade-off between safety and adaptivity
could be reduced substantially by resorting to model-based design (MBD) techniques
and formal methods. While MBD tools represents a steadily growing area in CPSs the
application of formal methods is still confined to a niche. In our view, the availability
of abstract system models from MBD tools is an enabler for analyzing those models
in a precise way, and since it is impossible to foresee all the potential adaptations of a
system in advance, formal verification is the only practical way to increase confidence
in the correct adaptive behavior of the final implement. The research question is thus
whether verification techniques conceived with non-adaptive systems in mind, can be
borrowed and/or extended to verify (industry-scale) CPSs.

In the following, we divide our attempts to answer such question in two families. In
Section 2 we consider the safety of stateless models, i.e., models whose purpose is to
? The authors wish to thank their collaborators and colleagues Erika Ábrahám, Nils Jansen,

Joost-Pieter Katoen, Francesco Leofante, Giorgio Metta, Lorenzo Natale, Shashank Pathak
and Simone Vuotto, who contributed to the research herewith presented.

© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 237–240, 2017.
https://doi.org/10.1007/978-3-319-70389-3_19

approximate functional implements. Our main contributions along this research stream
involve safety of artificial neural networks [2,3,4] and kernel-based machines [5]. In
Section 3 we consider modal models, i.e., representations of dynamical systems. Here
we consider both hybrid systems [6] augmented with adaptive capabilities, and prob-
abilistic systems [7,8,9,10], wherein models of environments and control policies are
acquired through approximate dynamic programming.

2 Stateless models

In applications of CPSs, it is often the case that functional relationships between sys-
tem variables are to be approximated and possibly updated to maintain optimal perfor-
mances. Consider, for instance, the relationship between fuel and air intake in electronic
injection systems. While interpolation of a fixed look-up table might suffice to deter-
mine the correct air intake, an adaptive approach might seek to find the best relation-
ship based, e.g., on fuel quality, air relative humidity, and exhaust gas emissions. Both
neural networks and kernel-based machines — see [4,5] for references — have been
proved very successful in fulfilling these tasks by “learning” accurate mappings from
data. However, in spite of some exceptions, their application is confined to non-safety
related implements. The main reason is the lack of general, automated, yet effective
safety assurance methods for learning systems.

Introduced for the first time in our work [4], verification of neural networks known
as Multi-Layer Perceptrons (MLPs) can be carried out using abstraction-refinement
techniques and Satisfiability Modulo Theory (SMT) solvers. The same approach was
later extended to consider several safety-related conditions in [2], and to consider kernel-
based machines in [5]. The key idea of the approach is that both MLPs and kernel-based
machines are linear combinations of non-linear functions. Therefore, it is sufficient to
abstract non-linear elements in order to obtain abstract machines whose input-output
properties can be checked using quantifier-free linear arithmetic over reals (QF-LRA).
Abstract machines are conservative over-approximations of concrete ones. Therefore,
safety of abstract machines implies safety of concrete ones, whereas abstract coun-
terexamples must be checked for realization — a process branded Counter-Example
Triggered Abstraction Refinement (CETAR) in [4]. To a certain extent, spurious coun-
terexamples can also be used to repair the network, i.e., improve its safety. To the best
of our knowledge, this is the only contribution in the literature where formal methods
are leveraged to improve the quality of a functional approximation.

The results obtained in [2] and [5] show that CETAR based on SMT solvers is
applicable to small-to-medium sized networks. However, recent advancements in the
machine learning community command for much larger and complex networks known
as Deep Neural Networks. While the performances of such networks in terms of pre-
dictive power on a variety of tasks are impressive, they also feature some unexpected
behaviors. For instance, in [1] it is shown that very small perturbations on input in-
stances can cause dramatic effects on output results. This “instability” of deep neural
networks was the inspiration behind recent contributions, see, e.g., [11,12]. In spite of
these recent advancements, the problem of verifying large and complex networks is still
an open question worth of further investigation.

238 L. Pulina and A. Tacchella

3 Modal models

Modeling CPSs as a whole usually requires modal models. Furthermore, due to the in-
teraction with physical processes, discrete-time finite-state models are not sufficient to
capture all the subtleties of a CPS. Hybrid and/or probabilistic models are to be consid-
ered instead. With respect to the classical tasks of controller verification and synthesis,
such models introduce additional computational issues which might make formal ap-
proaches untenable in practical applications. Adaptivity, i.e., learning parameters and/or
control strategies, thickens the plot even further. Our research has focused on applica-
ble formal methods for verification, synthesis and repair of controllers, considering the
robotic domain as benchmarks for realistic, yet reasonably sized CPSs.

In [6] we considered a robot learning to play defense in the air hockey game. This
setup is paradigmatic since the robot must see, decide and move fastly, but, at the same
time, it must learn and guarantee that the control system is safe throughout the process.
The (multi-agent) control system is comprised of a vision agent devoted to visual per-
ception, a motion control agent sending position commands to the manipulator and a
coordination agent converting stimuli into commands. The parameters of the coordi-
nation agent change over time, possibly improving on the robot’s ability to intercept
the puck. The system is unsafe if the manipulator moves too close to the table’s edges.
Agents are modeled as hybrid automata, and execution traces are checked for safety
with HYSAT [13]. Because of learning, the whole system must be (re)verified even-
tually. The key idea is to preserve safety at all times by keeping safe – and possibly
ineffective – parameters of the coordination agent in place, until a more effective – and
definitely safe – setting is available. Experimental analysis in the air hockey setup shows
that this approach can yield safety without heavily compromising on effectiveness.

In a series of papers started with [9], we considered the problem of synthesizing safe
controllers using probabilistic models. In these works, we assume that the interaction
between the robot and the environment can be modeled as a Markov Decision Process
(MDP), and that a control strategy for the task at hand can be acquired by approximate
dynamic programming — also known as Reinforcement Learning (RL). Here, the focus
is on safety at the deliberative level, enabling a discrete-time, discrete state abstraction
of the problem domain, where probabilistic effects account for noise in sensing and
acting.3 Since RL acquires (an implicit) system model and an (explicit) control strategy
by trial and error, we postulate that learning is performed in a simulator and then the
control strategy is deployed on the actual robot. The key idea is that, given a control
strategy, an MDP becomes a Markov chain so that safety properties can be expressed
using probabilistic temporal logic and verified using model checkers. In [9] we consider
a task wherein a humanoid should grasp some object while avoiding others, whereas
in [8] we consider a standing-up task for a small (19 degrees-of-freedom) robot. In both
contributions we consider both the problem of verifying that a learned control strategy
fulfills some requirements, and the problem of repairing it until it does. Moreover, in [8],
we consider also the problem of monitoring that the (verified, repaired) control strategy
maintains its properties once deployed on the actual robot.

3 It is however assumed that the state can be detected with sufficient precision, i.e., we postulate
full observability.

More adaptive does not imply less safe 239

References

1. Edward A. Lee. Cyber physical systems: Design challenges. In 11th IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing (ISORC
2008), 5-7 May 2008, Orlando, Florida, USA, pages 363–369, 2008.

2. Luca Pulina and Armando Tacchella. Challenging SMT solvers to verify neural
networks. AI Commun., 25(2):117–135, 2012.

3. Luca Pulina and Armando Tacchella. NeVer: a tool for artificial neural networks
verification. Ann. Math. Artif. Intell., 62(3-4):403–425, 2011.

4. Luca Pulina and Armando Tacchella. An Abstraction-Refinement Approach to
Verification of Artificial Neural Networks. In Computer Aided Verification, 22nd
International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceed-
ings, pages 243–257, 2010.

5. Francesco Leofante and Armando Tacchella. Learning in Physical Domains: Mat-
ing Safety Requirements and Costly Sampling. In AI*IA 2016: Advances in Ar-
tificial Intelligence - XVth International Conference of the Italian Association for
Artificial Intelligence, Genova, Italy, November 29 - December 1, 2016, Proceed-
ings, pages 539–552, 2016.

6. Giorgio Metta, Lorenzo Natale, Shashank Pathak, Luca Pulina, and Armando Tac-
chella. Safe and effective learning: A case study. In IEEE International Conference
on Robotics and Automation, ICRA 2010, Anchorage, Alaska, USA, 3-7 May 2010,
pages 4809–4814, 2010.

7. Shashank Pathak, Luca Pulina, and Armando Tacchella. Evaluating probabilis-
tic model checking tools for verification of robot control policies. AI Commun.,
29(2):287–299, 2016.

8. Francesco Leofante, Simone Vuotto, Erika Ábrahám, Armando Tacchella, and Nils
Jansen. Combining Static and Runtime Methods to Achieve Safe Standing-Up for
Humanoid Robots. In Leveraging Applications of Formal Methods, Verification
and Validation: Foundational Techniques - 7th Int.l Symp., ISoLA 2016, Imperial,
Corfu, Greece, October 10-14, 2016, Proceedings, Part I, pages 496–514, 2016.

9. Shashank Pathak, Luca Pulina, Giorgio Metta, and Armando Tacchella. Ensuring
safety of policies learned by reinforcement: Reaching objects in the presence of
obstacles with the iCub. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Tokyo, Japan, November 3-7, 2013, pages 170–175, 2013.

10. Shashank Pathak, Luca Pulina, and Armando Tacchella. Verification and Repair of
Control Policies for Safe Reinforcement Learning. To appear in Applied Intelli-
gence, 2017.

11. Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification
of deep neural networks. arXiv preprint arXiv:1610.06940 – To appear as invited
paper at CAV 2017, 2016.

12. Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer. Re-
luplex: An efficient smt solver for verifying deep neural networks. arXiv preprint
arXiv:1702.01135 – To appear in the proc. of CAV 2017, 2017.

13. Martin Fränzle and Christian Herde. Hysat: An efficient proof engine for bounded
model checking of hybrid systems. Formal Methods in System Design, 30(3):179–
198, 2007.

240 L. Pulina and A. Tacchella

APSL: a Light Weight Testing Tool for Protocols
with Complex Messages

Tom Tervoort and I.S.W.B. Prasetya0000−0002−3421−4635

Dept. of Inf. and Comp. Sciences, Utrecht University, the Netherlands
s.w.b.prasetya@uu.nl

Abstract. Many real world communication protocols exchange com-
plex messages, consisting of multiple nested fields, some could have val-
ues that depend on other fields. To properly test an implementation, it
is not sufficient to only explore different orders of message exchanges.
We also need to test if the implementation produces correctly format-
ted messages, and responds correctly when it receives different variations
of every message type. This paper presents a light weight model based
testing tool called APSL. Models are described as labelled transitions
systems, from which abstract test sequences can be generated. APSL’s
main contribution is in its language for describing complex message for-
mats, text-based or binary, allowing APSL to automatically concretize
abstract test sequences, and check incoming messages for their type and
format conformance. Testing works out thus of the box: developers do
not need to first write a dedicated concretization layer, which would
otherwise require substantial investment.

Keywords: model based testing of protocols

1 Introduction

Communication protocols are often quite complex. Implementing one is always
tricky and error prone. An implementation should thus be thoroughly tested.
Model-based testing (MBT) has been widely used to do this [1]. In this approach
we first model the behavior of a protocol, from which test sequences can be
systematically derived to test the conformance of an implementation.

The complication modern protocols lies however not only in the interaction
between the communicating parties, but also in the formats of the messages
that they exchange. A message can be a quite complex record structure with
multiple fields, some could be optional, or have delicate dependencies, which
in turn are prone to errors. Existing languages to model protocols, e.g. SDL,
Estelle, or UML’s MSC, mostly focus on describing the interaction part. These
languages can enumerate different message types, but are not refined enough to
describe the formats of the messages. MBT tools for protocols, e.g. TorX [6] and
TGV [3] follow the same trend. When the above languages or tools are used for
MBT, the generated test sequences are abstract in the sense that each step in
a sequence specifies which message type is to be sent or received to/from the
Implementation Under Test (IUT), but it does not specify how to concretize
the step. It does not tell us how to generate a correctly formatted instance of
© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 241–244, 2017.
https://doi.org/10.1007/978-3-319-70389-3_20

!"#$%&'

!"#$%
!"&'()

*"&+,+

!"#$"#% !"#$"%&' (#%"%&'!"#$%

!"&'() *"&+,+ !"#$%!
!"#$%&'

interactions module MyP
actor Server with ...
actor Client with ...

end

message module MyP
message Ask with h is Header(flag=1) end
message Done with h is Header(flag=3) end
message Data with ...
record Header with ...

end

Fig. 1. MyP protocol and its top level APSL description.

the message type to be sent to the IUT, nor how to determine if an incoming
message from the IUT is correctly formatted. Consequently, to actually use them
developers still need to build a separate layer that performs the concretization
steps. The needed effort is substantial. Traditionally, Abstract Syntax Notation
One (ASN.1) [4], introduced in 1984, is used by the industry for describing
complex formats. However ASN.1 has has grown to be large and complex. For
example, it has more than 10 different string types, many intended for legacy
character encodings. It also has ten expansive standards. These make building
an ASN.1-based tool expensive.

This short paper presents APSL (A Protocol Specification Language): a lan-
guage and tool for specifying protocols for the purpose of MBT. As in e.g. TorX,
each actor in a protocol is modeled by a labelled transition system (LTS). How-
ever, APSL allows the formats of messages, both text-based and binary, to be
described. Once the formats are defined, APSL can automatically do the con-
cretization of abstract test sequences. This means that MBT with APSL works
out of the box: there is no need for developers to first build a concretization
layer. Although much lighter than ASN.1, APSL is expressive enough to express
the formats of various real world protocols e.g. NTP, BSON, DNS, WebSocket,
and IMAP —these examples, and APSL source code, can be found in [5].

2 Describing Protocols in APSL

Consider a hypothetical protocol called MyP shown in Figure 1, consisting of two
actors: a server and a client, interacting as visually shown by the corresponding
LTS’s. A transition in the LTS of an actor represents either an action by the
actor to send a message (!m, where m is the type of the message to send), or
the receipt of a message (?m), or a non-observable internal action (τ).

To describe a protocol in APSL we define: (1) an interaction module, de-
scribing which actors participate in the protocol and the LTS of each, and (2)
a message module, describing different types of messages in the protocol and
how they are formatted. Figure 1 shows MyP’s top level interaction and message
modules. There are three types of messages in MyP. Data are sent by the server
to the client, carrying payload. The client sends an Ask to the server to ask for
an instance of Data, or a Done if it has enough. Messages are basically records,
composed from fields. In the example, the message types Ask and Done are both
defined to have a single field named h of a type called Header.

242 T. Tervoort and I.S.W.B. Prasetya

Specifying complex messages Each field in a record has a name and a type,
e.g. Integer or Text. In typical specification languages, e.g. OCL or Z , we do
not have to care about how ’types’ are implemented. In protocol engineering we
need to: a protocol may insist on a specific way with which values are encoded in
bits. E.g. it may require a certain integer field to be represented in a 4-bits big-
endian, while another integer field should be 32-bits, and so on. So in addition
to specifying the type of a field, in APSL we also need to specify a so-called
codec to describe how instances of the type should be represented in bitstrings.
As an example, below we define the record type Header (used in the Ask and Done

messages), which has two fields:

record Header with
flag is Integer as BigEndian(signed=false,length=2)
reserved is Binary(value=b’000000’) end

The field flag is an integer, but furthermore, its BigEndian codec says that it will
be represented by two bits in the unsigned big-endian format. APSL comes with
a range of common codecs, e.g. to format texts, in various ways, into bitstrings
—see the documentation in [5]. The field reserved is of type Binary, which means
that it is simply a bitstring. For such, no codec is required.

APSL supports dependent types: types that are parameterized by value-level
expressions used to specify a subset of a base type. E.g., the type expression
Binary(value=b′000000′) above specifies a subset consisting of a single value: the
bitstring 000000 (so, this is the only allowed value of the field reserved). As another
example, Integer(min=0,max=500) specifies a subset of integers, from 0 up to 500.

An important design principle is that a receiver should be able to efficiently
determine when each field within a message ends. One way to achieve this is by
using a codec that adds a specific bit pattern to mark the end of a field. Another
common convention is to have a field that specifies the length of the next field
or fields. Dependent types are essential to capture such dependency, which can
be quite complex. This is shown by the example below:

record DataItem with
n is Integer(min=0,max=500) as BigEndian(signed=false,length=32)
data is Binary(length=8∗n)
padding is Binary(length=8∗(4 − n%4), char8 pattern=/\0∗\1/) end

The field data is used to hold binary payload. Its type parameter says that
its length is 8n bits. Notice that n is another field, whose type parameter says
that it is an integer between 0 and 500. The field padding is more complicated.
Suppose that the total length of a DataItem should be a multiple of 32 bits.
The field padding is used to pad it if that was not the case. The type parameter
length = 8 ∗ (4− n%4) specifies how long the padding should be. The type Binary

can also be parameterized by a regular expression to specify allowed bitstrings.
Above, the regular expression in char8 pattern = /\0∗\1/ specifies that a bitstring
of zero or more 0’s closed by a 1 should be used as the padding.

For MyP, we still have to define the message type Data. The definition below
shows an example of a message type containing list and optional fields. It says

APSL: a Light Weight Testing Tool for Protocols 243

that any instance of Data consists of a header h, payload containing a list of
DataItem, and an optional field called foot.

message Data with
h is Header(flag=0)
payload is List(elem=DataItem,max length=4) as ... some codec
hasfoot is Bool as BoolBits(falsehood string=X’00’,truth string=X’ff’)
foot is Optional(is empty=!hasfooter,subject=Text) as ... some codec end

Specifying interactions The example below shows how to describe the LTS
of MyP’s client (Figure 1) in APSL:

actor Client with
init state Starting where anytime do send Ask next Waiting or do quit end
state Waiting where on Data do send Ask continue

or do send Done next Starting end end

3 APSL’s Model Based Testing
With APSL we can test if an implementation of an actor conforms its model. A
TCP/IP channel is provided to connect APSL to an implementation under test
(IUT). Then, we can proceed with testing, Each test case is generated by gener-
ating a traversal through the actor’s LTS. The test engine allows a strategy to be
specified to guide a traversal. Whenever the traversal has to be extended with a
send or receive action, the engine consults the strategy. A basic random strategy,
a strategy that steers towards some specified states, and operators to combine
strategies are provided. More sophisticated strategies can be programmed in
Haskell (the implementation language of APSL). During a traversal, whenever
a message of type M has to be sent to the IUT, APSL generates a random
and correctly formatted instance of M , then sends it to the IUT through the
TCP/IP channel. Whenever the IUT sends a message m, the engine checks for
two kinds of errors: m has an invalid format, or m is, according to the LTS, of a
wrong type. There is no need to build any concretization layer. A description of
the engine’s algorithm can be found in [5], including details on how it handles
non-deterministic models. Utilities are provided to inspect the obtained transi-
tion and message coverage. For debugging, test case reduction e.g. by removing
idempotent transitions a la [2] is provided.

References

1. Belinfante, A., Frantzen, L., Schallhart, C.: Tools for test case generation. In: Model-
Based Testing of Reactive Systems, LNCS, vol. 3472. Springer (2005)

2. Elyasov, A., Prasetya, I.S.W.B., Hage, J., Nikas, A.: Reduce first, debug later. In:
9th Int. Workshop on Automation of Software Test. pp. 57–63. ACM (2014)

3. Fernandez, J.C., Jard, C., Jéron, T., Viho, C.: Using on-the-fly verification tech-
niques for the generation of test suites. In: Int. Conf. on CAV. Springer (1996)

4. ITU: ASN.1 Project, http://www.itu.int/en/ITU-T/asn1
5. T. Tervoort: APSL, https://git.science.uu.nl/prase101/apsl
6. Tretmans, J., Brinksma, E.: TorX: Automated model-based testing. In: 1ST Euro-

pean Conf. on Model-Driven Software Engineering (2003)

244 T. Tervoort and I.S.W.B. Prasetya

Towards Verification of Robot Design for
Self-localization

Ryo Watanabe†, Kozo Okano‡, and Toshifusa Sekizawa§

† Graduate School of Engineering, Nihon University, Japan
‡ Faculty of Engineering, Shinshu University, Japan
§ College of Engineering, Nihon University, Japan

Abstract. CPS plays important roles along with popularization. In this
study, we handle an autonomous robot which estimates its position by
observations in discrete two-dimensional field. Probabilistic behaviors are
modeled in MDPs, and model checking results validate robot’s design.

Keywords: probabilistic model checking, self-localization, autonomous robot

1 Introduction

Cyber-physical systems (CPSs) are widely spread among society and play im-
portant roles. Ensuring properties of such systems is vital, and model checking
[3] has successfully been applied from the design phase to implementation.

As an application of CPS, we focus on the design of a robot’s self-localization
in which the robot estimates its position based on observations and a given
map. In robotics, self-localization is often required, using values obtained by
observations of an external environment. A simple example is a robot running on
a maze, where it does not know its initial position. For such a case, it is necessary
to design movements, for the robot, since estimation depends on arrangement
of structures on a map. In this study, we fix movements of the robot. We then
show verification results, using a probabilistic model checker PRISM [4], to see
if the robot can determine its position for a given map.

The roadmap of this paper is as follows. Section 2 describes the target system
and our settings. In Section 3, we build models and show verification results.
Section 4 offers brief discussion, and Section 5 provides a concluding summary.

2 Target System and Our Settings

Probabilistic robotics [6] handles autonomous mobile robots that motions are
determined by uncertain observations of an external environment. The position
is estimated by matching observation values and a given map. One key concept
is belief that represents existence probabilities for all possible positions.

We consider a robot that runs on a two-dimensional array, as a concrete ex-
ample. We assume that a map is a discrete finite space that has periodic bound-
ary conditions, and the robot moves in discrete time. Specifically, let a map M
© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 2 –248, 2017.
https://doi.org/10.1007/978-3-319-70389-3_21

445

Algorithm 1 Deterministic Markov Localization

Input: bel(M(xt−1, yt−1)), ut, zt,M
Output: bel(M(xt, yt))

for all xt, yt do
bel(xt, yt) = bel ((xt−1 − ut +Nx)%Nx, yt−1)
bel(xt, yt) = η p(zt | M(xt, yt),M) bel(xt, yt)

end for

be a two-dimensional array, and denote an element as M(xt, yt). Then periodic
boundary conditions are given as M(Nx, y) = M(0, y),M(x,Ny) = M(x, 0),
where Nx and Ny are the maximum numbers of rows and columns, respectively.
We then set two kinds of structures, door (0) and wall (1). i.e.,M(xt, yt) ∈ {0, 1}.
A movement is changing position in a computational time. We design the direc-
tions of movements as follows. Let the current position be M(x, y). i) if the
observation value is 0, then moves to M(x + 1, y), ii) if the observation value
is 1, then moves to M(x, y + 1). These movements are deterministic, since non-
deterministic movements potentially cause round trip and no convergence. We
consider that these limitations are naturally required in the design phase. An
observation is reading a structure. Then the next movement is decided by the
read value. As probabilistic behaviors, we only consider read error of an obser-
vation. In these settings, if the robot misdetects a wall, then the robot obtains
a door.

We adopt the Markov localization algorithm [6] to calculate the beliefs, as
shown in Algorithm 1. Algorithm 1 takes belief belt−1, movement ut and ob-
servation zt, and a map M as input, and returns belief belt for all positions
M(xt, yt). We assign p (zt|M(xt, yt),M) = (M(xt, yt) + 1)%2 if zt = 0, other-
wise M(xt, yt). This assignment does not accurately represent a probabilistic
observation. Such uncertainty is handled as probabilistic transition in modeling.
Note that, η is the normalization coefficient.

3 Modeling and Verification

We build a model using Markov decision process (MDP) M = (S, s0,A, T) rep-
resenting robot behaviors defined in Algorithm 1, and verify using probabilistic
model checker PRISM [4]. We assign all beliefs, belt and belt, to states S. Accord-
ing to the algorithm, belt is memoryless and satisfies the Markov property. The
initial state is bel0 in which existence probability is uniform distribution. Move-
ments and observations are assigned to transitions T . We add an action move
to A that corresponds to a movement. Next, our observations. The robot non-
deterministically observes either a wall or a door. We also add wall and door to
the set of actions A. Then, A = {move,wall, door}, lastly. For each observation,
there is a possibility of error detection, therefore a transition probability p < 1.0
is assigned to a transition for observing the structure, i.e., another transition
has probability 1 − p for the observation failure. We also consider improbable

46 R. Watanabe et al.24

Fig. 1. Modeling of Self-localization

observation. That is, if all the structures are the same at positions where exis-
tence probability is not 0, the action is decided deterministically to the value of
the structure, but error detection is still considered.

Before specifying formulas, let an observation sequence be a sequence of ob-
servation values. For a given map, one of the purposes of verification is validat-
ing whether the position of the robot converges for all observation sequences.

This property is express as a PCTL formula as P≥1.0

[
FG

∨
i,j (bel(i, j) ̸= 1)

]
. If

this property does not hold for the given map, the robot can uniquely estimate
its position. Additionally for the cases of no convergence, we verify a property

P≥1.0

[
FG

∨
i,j (bel(i, j) = 1)

]
to validate whether the position converges for some

observation sequences. According to the verification results, we are able to clas-
sify maps as three types, 1, 2a and 2b, as follows.

1. The robot can uniquely estimate its position for all observation sequences.
2. The robot cannot estimate its position. This type of maps can be further

classified as the following two types.
(a) Essentially impossible to estimate its position uniquely.
(b) Cannot uniquely estimate because of some observation sequences.

i. The doors are lining up vertically, i.e., M(x, y) = M(x, y + 1) = 1,
and there is at least one another door which enables estimation.

ii. M(x, y) = M(x+ 1, y) = M(x+ 2, y + 1) = 1 and otherwise 0.
iii. When the structure is uniquely judged as wall or door at potential

positions, but observation obtains the opposite value.

Types 2(b)i and 2(b)ii are caused by limitations of robot movements. However,
the position cannot be estimated by exhaustive searching even if the limitations
are removed. Type 2(b)iii induces existence probability 0 for all positions.

We adopt backtracking to achieve verification of type 2b. Specifically, if the
observation value is obtained nondeterministically, store the value and belt. After
that, if type 2(b)i or 2(b)ii occurs by referring the map at calculating belt+1,
then back to belt. After that, adopt another observation value and continue
searching. Figure 1 shows a case of type 2b in which a backtrack occurs. Note
that this approach enables verification of type 2(b)iii caused by misdetection.
We set the size of the map as Nx = 4 and Ny = 2. All 256 combinations
are verified according to the approach. Verification results show the robot can
uniquely estimate its position, except for the type 2a.

Towards Verification of Robot Design 247

4 Brief Discussion and Related Work

The size of the map is fixed in this study. We have tried some experimental
verification of larger maps. So far, the results indicate that larger maps contain
similar characteristics of structure arrangement. Therefore, it would be possible
to reduce the size of state space by considering such arrangements.

There have been a number of studies about autonomous robotics associated
with verification. Many of them focus on analyzing behaviors of a multi-robot
system, such as [1]. One similar study is motion planning and control [5]. This
study handles one autonomous robot exploring a field divided into discrete re-
gions. However, this study aims verification of the entire system, not motions of
the robot. Embedded systems often consist of continuous and discrete dynamics,
or hybrid systems. Another considerable approach is co-simulation using a model
checker and a simulator. The Modana framework [2] provides useful reference,
since it analyzes probabilistic behaviors of CPSs based on co-simulation using
functional mock-up interface.

5 Conclusion

We have studied self-localization by an autonomous robot and verification to
ensure its motion design. Our experimental results suggest usefulness of model
checking for the design of robot motions. In this study, we considered probabilis-
tic observations and adopted Markov localization in discrete two-dimensional
systems. The modeling and verification results showed possibilities of proba-
bilistic model checking to motion designs of an autonomous robot.

Although still in a preliminary stage, we hope to extend this study to analyses
and design methods of various robot vehicles. Future work includes extension
of time-related properties or hybrid systems to handle continuous dynamics,
as these characteristics are important in the design phase in general. In that
process, combining model checking and simulation seem to be effective.

This study was supported by JSPS KAKENHI Grant Number 17K00111.

References

1. Brambilla, M., Pinciroli, C., Birattari, M., Dorigo, M.: Property-driven design for
swarm robotics. In: AAMAS. pp. 139–146. IFAAMAS (2012)

2. Cheng, B., Wang, X., Liu, J., Du, D.: Modana: An integrated framework for model-
ing and analysis of energy-aware CPSs. In: COMPSAC. pp. 127–136. IEEE (2015)

3. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
4. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic

real-time systems. In: CAV’11. LNCS, vol. 6806, pp. 585–591. Springer (2011)
5. Lahijanian, M., Wasniewski, J., Andersson, S.B., Belta, C.: Motion planning and

control from temporal logic specifications with probabilistic satisfaction guarantees.
In: ICRA. pp. 3227–3232. IEEE (2010)

6. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. Intelligent robotics and
autonomous agents, MIT Press (2005)

248 R. Watanabe et al.

Probabilistic Model of Control-Flow Altering based

Malicious Attacks
(Poster submission)

Sergey Frenkel

Federal Reserach Center "Computer Science and Control " Russian Academy of Sc.,
Moscow, Russia, fsergei51@gmail.com

Introduction. The system designers need in various design tools which could help

them both for estimation of possible threats to the security and select one or another

ways of their neutralization. There are many approaches to the evaluation

(verification) of the degree of protection of programs against possible attacks. First of

all, this is fault Injection (FI) simulation techniques [1]. Main drawback of the FI is

necessity to have different expensive software that can be not used to solve other

design problems, in particular for functional verification and testing. Also, due to the

similarity between system failures because of intentional attacks and those due to

accidental component failures, reliability/availability-like models to evaluate system

survivability are used in the security design [2]. But they are based on Continuous

Time Markov Chain (CTMC), identification of which deals with some technical

difficulties.

This paper considers a probabilistic approach to estimation of security risks of the

programs due to malicious attacks which try to change the control flow of the

program to corrupt the program behavior, the system calls sequence in particular. It is

shown the possibility to use a Markov model with two absorbing states defined on

direct product of the spaces of two finite state machines (FSM), one of which is a

program finite automaton model that is running under normal conditions, and second

is the same FSM in which at some point in time (depending on the considered

temporal discreteness) there was a failure due to external attacks (e.g., within the time

of a single operation, or a program's block execution). Previously this model was

suggested for hardware fault-tolerance analysis [6]. However, in contrast to the

previously considered model, in which the effect of an erroneous state change was

considered as a result of the damage of one or another bit of the status codeword, here

we consider an altering of the program control flow (or system calls sequence) as a

cause of the attack malicious effect.

Model of Program under Attacks. The application program model considered is

the Finite State Machine (FSM) of Mealy type, corresponding to the algorithm

implemented by this program. This FSM can be built either from a program source or

from system calls sequences. We consider the attacks effect (that is the malicious

codes action) as the control-data attack which alter the target program’s control data,

say, as data that are loaded to processor program counter at some point in program

execution.

© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 2
https://doi.org/10.1007/978-3-319-70389-3_22

49–252, 2017.

Malicious behavior model :{(ai,aj) (ai, ak)}, where (ai,aj) is an inter-state transition

in the FSM, represented the program with normal behavior, which was changed to the

transition in the state ak due to an attack. No new states arise.

 Note, that such assumption is coordinated with the flow graph altering model.

Let us a program which may be subjected to an attack is represented by an Mealy

automaton (FSM) st+1 = (xt+1,st), where is a transition system, x and s are input

and state vectors correspondingly. The automaton clock t corresponds to execution of

each of the program operator, or each of system call execution. A way of the FSM

building from a system calls sequences see, e.g., in [4,5]. Note, that the program on

the system calls level (parametrized, in general) can be also modeled by such FSM.

[4].

 Let us assume, that all components of the input vector x are independent random

variables. This independence can be provide by a specific choice of the FSM inputs

(see, for example, in [7]).

Let {Mt, t ≥ 0} is Markov chain (MC) describing the target behavior of target FSM

with n states under random input, that is, functioning without effect of any faults

caused by an attack (altering the flow graph, corresponding to the transition function

) and {Ft , t ≥ 0}is the MC based on the same FSM but exposed by some altering

transition. Let Zt ={(Mt, Ft, t ≥ 0}corresponding to behavior of the MCs pairs that is

MC with state space S2= S × S of pairs (ai, aj), ai, aj ∈S. The size of the MC is n(n-1)+

2.The matrix of transition probabilities of these MCs are calculated from the given

FSM transitions table, and the probabilities of Boolean input binary variables of the

FSM as well. Along with the states, Zt has two absorbing states A0 and A1, where A0

is the event "by the moment the FSM's trajectory has been restored and the output is

not were distorted", A1 is “malfunctioning has already manifested itself in the output

signal”. The pairs of (ai, aj) states enables representation of any transient faults as "the

FSM instead of the state ai, in which it should be on this clock after the transition at

the previous time cycle, as a result of the malfunction was in the state aj".

We characterize the security regarding an malicious attack as the probability of

event that the trajectories (states, transitions and outputs) of Mt and Ft will be

coincided after the termination the attack causing a flow graph deviation, before a

clock t when outputs of both FSMs (underlying these MCs) become mismatched. This

probability that the FSM returns to correct functioning after some number t of time

slots can be computed as probability to get in one an absorbing states, using

Chapman-Kolmogorov equation expressing the probability vector of the states

into which the falls the Zt (and corresponding FSM as well, which is the product of

these two FSMs) after t transitions in terms of initial distribution of the MC

states. determined by the initial states of the fault-free and faulty FSMs, and

the state transition probability matrix of this Markov chain. The components of the

vector are the probabilities p0(t), p1(t) of getting into the absorbing state A0 and

A1 mentioned above, and the probability of transitions to the rest (transient) states of

the MC, in the sum equal to 1- p0 (t)- p1 (t). If the fault-free FSM at the initial moment

0 is in the state i0, and the faulty state (say, due to an attack effect) is in the state j0 ≠

i0, then
 , and the remaining coordinates of the vector are zero.

An example of the model application. Here this method for an example of a

program from [5] is demonstrated.

250 S. Frenkel

Let's consider a program with control flow graph (Fig.2), where the original

control-flow is depicted as solid-lined arrows, and altering of the program execution

under a malicious action (attack), which completely bypassing basic block 2, is

depicted as a dashed-lined arrow. The branching in the node 2 is a computational

condition presented in the program.

Fig. 1. The program flow graph and its altering due to attack

In order to build the Mealy automaton, the program block diagram of the Fig, 2 is

rewritten as “Algorithmic State Machine” [3,6] in Fig. 2, where each vertex Y1,..Y5

are some abstractions of the operations which corresponding blocks of the program

Fig.1 execute (e.g., call of the DLL in the line 3), the results of which are represented

by output variables y1,..y5. Note, that function of vertex Y5 in this representation is

to synchronize the condition checking (x1, corresponding to the conditional vertex 2

in the program (Fig.1)) only and the result to form. The (ai,yi) pairs are the states

and the automaton output variables of the FSM (Fig.2(a)), and x1”, is the input

variable of the automaton.

(a) (b)

Fig. 2. States transition table ((a)) and “Algorithmic State Machine” ((b)) of the

program Fig.1 corresponding to the FSM.

Then, in accordance with definition of malicious behavior by an attack mentioned

above, this attack altering the program flow graph (Fig.2) is described in terms of this

automaton transitions as {(4,3)(4,2)}.

The authors of the program [5] explain that this attack works and stays undetected

because it takes advantage of a specific characteristic of the late binding technique

(dynamic dispatch) when the affected variables are stored on the heap. But, on the

other hand, if in the normally functioning program takes place the condition “Go To

Exit” and if the program variable that controls this “Go To” act is checkable by an

Probabilistic Model of Control-Flow Altering 251

built-in checker (which, suppose, convoys the program execution), the attack can be
detected in a point corresponding to the node “Exit” (Fig.2), e,g., if the program’s

code contains ”return 1”. Then, we could characterize the possibility to detect the
attack using this path by the probability of its activation. Obviously, this probability
depends on the probability of variable x1. That is the program’s input data also play a
role in the abstraction of the program behavior by affecting the branching choice
probability, that is the probability that input data provide the choice just a given
branch.
For example, let’s Prob (x1=1)=0.9, which is the probability that result of block 2 Fig.
1 (which a DLL returns) activates the exit from the module. Then, probabilities that
the output values (say,y2) of the program has already manifested itself to the given
clock t as corrupted, what means the attack detection, can be obtained by the solution
of the above Markov chain is the following vectror: PD = (0,0, 0.09, 0.091, 0.093,
0.1629, 0.1638), where the number of each position corresponds to the clock number
minus 1 (the first element corresponds to the moment of failure and is considered a
zero index). It means, that to the fourth clock of the automaton work, when the Exit
will be achieved the attack can be detected with probability about 0.09 only, that may
be turned out rather small, from the point of view sequrity requirements to this
program. But If the probability of the condition Prob(x1=1)=0.4. this probability is
about 0.3, that is has essentially more chances to be detected.
Thus, the model reflects the dynamic of the program behavior.
Note, that as we deal with high abstraction level of the design description, the number
of the FSM states are usually not very large. Thus, taking into account that the
Markov chain size is n(n-1)+2, n is the number of states, and complexity of the
probabilities vector computation is quadratic, we can consider this model as rather
efficient.

Acknowledgment. This work was partially supported by the Russian Foundation for
Basic Research under grants RFBR 15-07-05316 .

References
1. Darbari, A., Al Hashimi, B., Harrod, P., and Bradley, D., A New Approach for Transient
Fault Injection using Symbolic Simulation, IOLTS 2008: pp. 93-98, 2008
2.Hai Wang, Peng Liu, Modeling and evaluating the survivability of an intrusion tolerant
database system, Proceeding of ESORICS'06, pp. 207-224, Hamburg, 2006
3. Baranov, S.: ASMs in high level synthesis of EDA tool Abelite. In: DESDes’09 Int. IFAC
Workshop Proceedings. – Valensia, Spain, pp. 195–200 (2009)

252 S. Frenkel

4. Jacob, G., Debar,H., Eric Filiol, Behavioral detection of malware: from a survey
towards an established taxonomy, J Comput Virol (2008) 4:251–266
5. Seeger, M. M., Using control-flow techniques in a security context: A survey on common
prototypes and their common weakness. In Network Computing and Information Security
(NCIS), 2011 International Conference on, volume 2, pages 133–137, May 2011.
6.Frenkel, S., Frenkel, S.: Some measures of self-repairing ability for fault-tolerant circuits
design. In: Second Workshop MEDIAN 2013, Avignon, France, pp. 57–60, May 30–31, 2013
7. Frenkel, S., et al.: Technical report of FRC “Computer Science and Control” of RAS,

Moscow, Russia (2017), http://www.ipiran.ru/publications/Tech_report.pdf

Author Index

Abe, Tatsuya 51
Alt, Leonardo 195

Bansal, Sorav 19
Bartocci, Ezio 131
Beckert, Bernhard 163
Beyer, Dirk 99
Biere, Armin 179

Chau, Cuong 3
Chupilko, Mikhail 217
Claessen, Koen 115

D’Souza, Deepak 229
Dahiya, Manjeet 19

Frenkel, Sergey 249

Garn, Bernhard 225
Grebing, Sarah 163
Gupta, Aarti 67

Heule, Marijn J.H. 179
Hunt, Warren A. 3
Hyvärinen, Antti E.J. 195

Kamkin, Alexander 217
Kardashov, Odaya 213
Kiesl, Benjamin 179
Kilhamn, Jonatan 115
Kloos, Johannes 35
Kotsynyak, Artem 217
Kovács, Laura 115

Lemberger, Thomas 99
Lennartson, Bengt 115
Li, Jianwen 147
Lin, Shan 131

Majumdar, Rupak 35
Malik, Sharad 67
McCabe, Frank 35
Mukherjee, Suvam 229

Okano, Kozo 245

Padon, Oded 229
Paoletti, Nicola 131
Prasetya, I.S.W.B. 241
Pu, Geguang 147
Pulina, Luca 237

Rinetzky, Noam 229
Roncken, Marly 3
Rosenfeld, Ariel 213

Seidl, Martina 179
Sekizawa, Toshifusa 245
Sharygina, Natasha 195
Sherwood, George B. 221
Shmarov, Fedor 131
Shoham, Sharon 229
Simos, Dimitris E. 225
Smolka, Scott A. 131
Stadtmüller, Kai 83
Sulzmann, Martin 83
Sutherland, Ivan 3

Tabajara, Lucas M. 147
Tacchella, Armando 237
Tatarnikov, Andrei 217
Tervoort, Tom 241

Ulbrich, Mattias 163

Vardi, Moshe Y. 147

Watanabe, Ryo 245
Würfl, Fabian 225

Xu, Zhixing 67

Zang, Orel 213
Zhu, Shufang 147
Zuliani, Paolo 131

	Preface
	Organization
	Tutorials
	SeaHorn: Software Model Checkingwith SMT and
	Combinatorial Security Testing: Quo Vandis?
	Machine Learning in Practice - How to Buildand Deploy ML Projects
	Invited Talks
	Self-Certifying and Secure Compilation
	QED and Symbolic QED: DramaticImprovements in Pre-silicon and Post-siliconValidation of Digital Systems
	Scalable, Transparent and Post-quantumSecure Computational Integrity,with applications to Crypto-Currencies
	Contents
	Full Papers
	1A Framework for Asynchronous Circuit Modeling and Veri�cation in ACL2
	1 Introduction
	2 Related Work
	3 The DE System
	4 Modeling and Veri�cation Approach
	5 32-Bit Self-Timed Serial Adder Veri�cation
	6 Future Work
	7 Conclusion
	Acknowledgements
	References

	2 Modeling unde�ned behaviour semantics for checking equivalence across compileroptimizations
	1 Introduction
	2 Motivating example
	3 Extended simulation relation (with assumptions)
	4 Modeling unde�ned behaviour assumptions
	4.1 May-alias analysis
	4.2 Computing linearly-related and may-depend-on relations

	5 Inferring the simulation relation
	6 Implementation and Experiments
	7 Related Work
	References

	3Deferrability Analysis for JavaScript
	1 Introduction
	2 Background: Loading JavaScript
	3 Deferrability analysis
	3.1 Background: Event traces and races in web pages
	3.2 When is a set of scripts deferrable?
	3.3 JSDefer: A dynamic analysis for deferrability

	4 Evaluation
	4.1 How are async and defer used so far?
	4.2 Are our assumptions justi�ed?
	4.3 Can we derive deferrability annotations for scripts?
	4.4 Does deferring actually gain performance?
	4.5 Threats to validity

	5 Related work
	References

	4 A Veri�er of Directed Acyclic Graphs for Model Checking with Memory Consistency Models
	1 Introduction
	2 Program Graphs: Programs with MCMs
	3 Design
	4 Implementation
	5 Performance Evaluation
	6 Reordering Control
	7 Related Work
	8 Conclusion and Future Work
	References

	5 Trace-based Analysis of Memory CorruptionMalware Attacks
	1 Introduction
	2 Malware Attacks and Program Memory Traces
	2.1 Memory Corruption Attacks
	2.2 RIPE Benchmark

	3 Automated Trace Analysis: Challenges and Solutions
	3.1 Memory segment construction
	3.2 Covering memory segments

	4 Trace-based Analysis Framework
	4.1 User code localization
	4.2 Code corruption identification

	5 Evaluation
	5.1 Experimental Setup
	5.2 Memory segment construction and selection
	5.3 Source code identification

	6 Extensions to Unlabeled Traces
	7 RelatedWork
	7.1 Dynamic malware analysis/detection
	7.2 Statistical malware detection

	8 Conclusions
	References

	6 Trace-Based Run-Time Analysis ofMessage-Passing Go Programs
	1 Introduction
	2 Message-Passing Go
	3 Instrumentation and Run-Time Tracing
	4 Trace Analysis
	4.1 Dependency Graph for E�cient Trace Analysis

	5 Comparison to Vector Clock Method
	6 Implementation
	6.1 Library-Based Instrumentation and Tracing
	6.2 Measurement of Run-Time Overhead Library-Based Tracing

	7 Conclusion
	Acknowledgments
	References

	7 Software Verification: Testing vs. Model Checking A Comparative Evaluation of the State of the Art
	1 Introduction
	2 Background: Technology and Tools
	2.1 Software Testing
	2.2 Software Model Checking
	2.3 Validation of Results

	3 Framework for Test-Based Falsification
	4 Experimental Evaluation
	4.1 Experiment Setup
	4.2 Experimental Results
	4.3 Validity

	5 Conclusion
	References

	8 A Supervisory Control Algorithm Based onProperty-Directed Reachability
	1 Introduction
	1.1 An illustrative example
	1.2 Our Contributions

	2 Background
	2.1 Modelling Discrete Event Systems
	2.2 Supervisory Control

	3 PDRC: Property-Driven Reachability-Based Control
	3.1 Formal Description of PDRC
	3.2 Extension to SMT

	4 Properties of PDRC
	4.1 Termination
	4.2 Correctness

	5 Implementation
	6 Experiments
	6.1 Problems
	6.2 Results

	7 Discussion
	7.1 BDD-SC
	7.2 IISC

	8 Conclusions and Future Work
	References
	REFERENCES

	9 SMT-based Synthesis of Safe and Robust PIDControllers for Stochastic Hybrid Systems
	1 Introduction
	2 Background
	3 PID Control of Hybrid Plants
	4 Safe and Robust PID Controller Synthesis
	5 Case Study: Artificial Pancreas
	5.1 Plant Model
	5.2 Experiments

	6 RelatedWork
	7 Conclusions and Future Work
	References

	10A Symbolic Approach to Safety LTL Synthesis
	1 Introduction
	2 Preliminaries
	2.1 Safety/Co-safety LTL
	2.2 Boolean Synthesis

	3 Safety LTL Synthesis
	4 Explicit Approach to Safety Synthesis
	5 Symbolic Approach to Safety Synthesis
	5.1 From Safety LTL to Deterministic Safety Automata
	5.2 Solving Safety Games Symbolically

	6 Experimental Evaluation
	6.1 Implementation
	6.2 Experimental Methodology
	6.3 Results

	7 Concluding Remarks
	References

	11 An Interaction Concept for Program VerificationSystems with Explicit Proof Object
	1 Introduction
	2 Interactive Program Verification
	3 Related Work
	4 Concept for a Proof Scripting Language
	4.1 Preliminaries for the Proof Scripting Language
	4.2 Script Language Constructs

	5 Concept for Debugging Proof Attempts
	5.1 Analogy between Programs and Proof Scripts
	5.2 Analogy between Debugging and Failed Proof Analysis
	5.3 Adoption of Program Debugging Methods for Proof Debugging

	6 Conclusion and Future Work
	References

	12 PRuning Through Satisfaction?
	1 Introduction
	2 Preliminaries
	3 Searching for Propagation-Redundant Clauses
	4 Conditional Autarkies
	5 Satisfaction-Driven Clause Learning
	6 Solving Pigeon Hole Formulas using SDCL
	7 Evaluation
	8 Conclusions
	References

	13LRA Interpolants from No Man's Land
	1 Introduction
	2 Preliminaries
	2.1 LRA Interpolation
	2.2 Propositional Interpolation

	3 The LRA Interpolation System SI-LRA
	3.1 The Strength Factor

	4 Experimental Evaluation
	5 Conclusions
	References

	Tool Papers
	14 ACAT: A Novel Machine-Learning-Based ToolFor Automating Android Application Testing
	1 Introduction
	2 Demonstration
	3 Evaluation & Discussion
	4 Conclusions
	References

	15 MicroTESK: Speci�cation-Based Tool forConstructing Test Program Generators
	1 Introduction
	2 MicroTESK Approach
	3 Practical Application
	References

	16Embedded functions for test design automation
	Introduction
	Description
	Conclusions
	References

	17 KERIS: A CT Tool of the Linux Kernel withDynamic Memory Analysis Capabilities
	1 Introduction
	2 KERIS
	3 Automated Large-Scale Kernel Testing
	References

	18 RATCOP: Relational Analysis Tool for ConcurrentPrograms
	1 Introduction
	2 Architecture of RATCOP
	3 Experiments
	4 Conclusion
	References

	Posters
	19 More adaptive does not imply less safe(with formal verification)
	1 Introduction
	2 Stateless models
	3 Modal models
	References

	20 APSL: a Light Weight Testing Tool for Protocolswith Complex Messages
	1 Introduction
	2 Describing Protocols in APSL
	3 APSL's Model Based Testing
	References

	21 Towards Veri�cation of Robot Design forSelf-localization
	1 Introduction
	2 Target System and Our Settings
	3 Modeling and Veri�cation
	4 Brief Discussion and Related Work
	5 Conclusion
	References

	22 Probabilistic Model of Control-Flow Altering based Malicious Attacks(Poster submission)
	Introduction
	References

	Author Index

