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Abstract. Current wireless networks mainly focus on delay-tolerant applica-
tions while demands for latency-sensitive applications are rising with VR/AR
technologies and machine-to-machine IoT applications. In this paper we con-
sider multi-channel, multi-radio scheduling at the MAC layer to optimize for the
performance of prioritized, delay-sensitive demands. Our objective is to design
an interference-free schedule that minimizes the maximum weighted refresh
time among all edges, where the refresh time of an edge is the maximum number
of time slots between two successive slots of that edge and the weights re�ect
given priorities. In the single-antenna unweighted case with k channels and
n transceivers, the scheduling problem reduces to the classical edge coloring
problem when k ≥ bn/2c and to strong edge coloring when k = 1, but it is
neither edge coloring nor strong edge coloring for general k. Further, the priority
requirement introduces extra challenges. In this paper we provide a random-
ized algorithm with an approximation factor of Õ

(
max

{√
∆p,

∆p√
k

}
logm

)
in expectation, where ∆p denotes the maximum degree of the unweighted multi-
graph, which is formed by duplicating each edge ei forwi times (wi is ei’s integral
priority value), and m is the number of required link communications.3 �e re-
sults are generalized to the multi-antenna se�ings. We evaluate the performance
of our methods in di�erent se�ings using simulations.

Keywords: Latency sensitive scheduling · Multi-channel scheduling · Fairness.

1 Introduction

Today’s communication networks have provided great support to delay-tolerant appli-
cations (e.g., web, email). But demands for latency-sensitive applications in wireless
and mobile networks are rising, with emerging applications from video-conferencing,
real-time interactions using Virtual Reality/Augmented Reality (VR/AR), vehicular
networking and distributed robotics. �ese new applications require more stringent
delay guarantees. To support latency-sensitive applications, one must develop network
control algorithms at various layers with latency guarantees.

3 f(n) ∈ Õ(h(n)) means that f(n) ∈ O
(
h(n) logk(h(n))

)
for some positive constant k.
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In this paper, we look at the MAC layer and consider a TDMA-based (Time-Division
Multiple Access) multi-channel link scheduling problem. Multi-radio multi-channel
architecture is widely adopted in wireless mesh networks deployments (e.g., in MIT
Roofnet, WING [1, 4, 5, 8, 24]) and is increasingly supported in IEEE standards (e.g.,
02.11 and 802.16) [7, 9, 11]. We assume that there are k channels of di�erent frequencies
to use and each node may have one or multiple radio interfaces, possibly operating
on di�erent channels. At each time slot, each of the radio interfaces may be assigned
one of the k channels and if two nodes within the same communication range have
two radio interfaces on the same channel, the message can be successfully received
provided there is no interference in the neighborhood. �e general question on channel
assignment and scheduling is to decide for each link which channel to use and when,
given an optimization objective. In this paper, we examine the following problem.
Min Max Weighted Refresh Time Scheduling. Given k channels and a simple
weighted graph G = (V,E) with |V | = n and |E| = m in which edge ei ∈ E has
integer weight wi with the minimum edge weight being 1, we would like to design
a periodic schedule for all edges in G,4 which speci�es a set of edges for each time
slot and the channels they use. �e channel assignment for an edge (u, v) speci�es the
channel that the transceivers at u and v adopt. If a node has r radio interfaces, di�erent
radio interfaces may operate on di�erent channels. A feasible schedule must follow the
following rules to avoid interference:

– �ere are at most r active edges incident to any node at any given time, since a
node has r radio interfaces.

– Two edges that are active at the same time must use di�erent channels if they
are within the interference distance from each other, i.e., they have a common
endpoint or some of their endpoints are neighbors5.

Here, we consider interference at the protocol level, leaving the physical model (SINR
model) for future exploration. Our goal is to �nd a feasible schedule of all edges that
minimizes

max
i∈{1,...,m}

wiTi.

Here, Ti denotes the maximum refresh time for edge ei, i.e., the maximum number of
time slots until edge ei appears again in the given schedule. We name this problem
as Min Max Weighted Refresh Time Scheduling problem for the case of non-uniform
weights; Min Max Refresh Time Scheduling otherwise.

In this paper, we focus on the algorithmic aspect of the scheduling problem and
assume that the networking issues (synchronization, packet loss, and re-transmissions)
are handled in the standard manner. We assume relatively long streaming tra�c �ow
such that the schedules for tra�c demands are updated when tra�c demands change
substantially.

4 Schedules are restricted to be periodic because each non-periodic in�nite schedule with a
�nite max weighted refresh time can be turned to a periodic schedule with the same refresh
time. See Appendix for a proof.

5 �is is the case of `-hop interference model (wireless links `+ 1 or more hops away from one
another can be scheduled to transmit data at the same time) when ` = 2.
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Motivation and Related Work. A lot of prior work on channel assignment and
scheduling focused on maximizing network throughput (i.e., the total number of links
one can schedule in a single slot without interference), or makespan (i.e., minimize
the time slots to complete a given demand vector), which will be reviewed in the
next section. For latency sensitive applications fairness is important as well, in order
for tra�c �ows to experience steady and predictable latency over time. Our prob-
lem provides guaranteed share of resources for each edge. Further, we wish to allow
prioritized treatment for emergency oriented applications (compared to recreational ap-
plications). �is can be implemented by edges on the routes of tra�c with high priority
carrying higher weights. In our problem, these edges are scheduled more frequently.

a b

c d

Fig. 1. �e edges (a, b),
(c, d) can be colored
the same in edge color-
ing but cannot be col-
ored the same in strong
edge coloring (due to
the edge (a, d)).

Mathematically, our problem is closely related to edge col-
oring and strong edge coloring problems. �e problem of edge
coloring is to assign a color to each edge such that no two
adjacent edges have the same color. �e minimum number of
colors used is called the chromatic index, which is either ∆ or
∆+ 1, where ∆ is the maximum degree in the graph (Vizing’s
�eorem), although deciding which one is the optimal index
is NP-hard [13]. Greedy coloring, i.e., use a color that is not
yet used in the neighboring edges, gives a 2-approximation.
In strong edge coloring, two edges e, e′ cannot have the same
color if they share a common endpoint or their endpoints are
connected by an edge (Figure 1). In the wireless network set-
ting, this maps to the scenario when protocol level interference is considered and shall
be eliminated in the schedule [3, 17, 20, 21]. �e minimum number of colors used is
called the strong chromatic index. Counting the number of edges that could be in con�ict
with any edge shows that the strong chromatic index is between∆ and 2∆(∆− 1)+1.
Erdös and Nešetřil conjectured that the strong chromatic index is at most 5∆2/4, which
is still open. For a given graph, computing its strong chromatic index is NP-hard [25],
and a greedy algorithm gives a Θ(∆) approximation. Closing the gap appears to be a
long-standing problem (see [16]).

Our problem adds more complications by considering k possible channels and r
radios per node. As we will show in this paper, our scheduling problem includes edge
coloring and strong edge coloring as special cases. As far as we are aware, our problem
has not been studied before.
Our contribution. In this paper, we initiate the study of the Min Max Weighted Refresh
Time Scheduling problem. We consider the single radio case �rst, i.e., r = 1. When
edges have the same weight, our problem reduces to the classical edge coloring problem
if k is at least bn/2c and the strong edge coloring problem if k = 1. For a general k, a
greedy algorithm that assigns each edge the earliest possible time slot with the �rst
available channel achieves an approximation factor of

⌈
2(∆−1)

k

⌉
+ 2, where ∆ is the

maximum degree of the given graph. Notice that this bound is a smooth transition
from the 2-approximation for edge coloring to Θ(∆)-approximation for strong edge
coloring, when k varies between 1 and n/2.
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When edges have di�erent priorities/weights, the problem becomes tricky. Intu-
itively, an edge with a higher weight should be scheduled more frequently. �at is, we
may want to create multiple copies of this edge so that we can apply the scheduling
algorithm for the unweighted se�ing by treating each duplicate edge as a di�erent
edge. But how many copies should we make for an edge of weight wi? Second, the
duplicated copies of the same edge, ideally, shall be spread uniformly in the schedule,
avoiding a large gap somewhere. However, it is not clear how to ensure the uniform
placement of the duplicated copies of ei, for every edge ei, with non-trivial interference
pa�erns to avoid. Last, we need to obtain a lower bound for the optimal refresh time in
order to prove approximation factors.

Our insights come from understanding the optimal schedule. Suppose the optimal
schedule repeats every T slots. �ere is a lower bound L(S) of the optimum maximum
refresh time – by simply dividing T by µi, the number of times ei appears in one cycle,
for each edge ei. Next, we show that this lower bound achieves the minimum value `∗
if µi is Cwi, for some integer C . �is is useful for the algorithm design as we know that
the number of copies duplicated for ei shall be proportional to wi, but we still do not
know what C is. By using the probabilistic method, we show that if we set C = 1 and
take the schedule that minimizes the lower bound L(S), then the value of L(S) is at
most a factor of 7 logm of `∗, where m is the number of distinct edges to be scheduled.
�is way we are only losing a factor of O(logm).

�e analysis above suggests the following simple scheduling algorithm for the
weighted se�ing. We �rst make wi copies of edge ei, generate a random permutation
of these edges (possibly with duplicates), and partition the permutation into chunks of
equal length. For each chunk, run the aforementioned greedy scheduling algorithm and
then combine the schedules together. We ensure that the length of each chunk is small
enough such that for each edge e, only O(1) edges in expectation may interfere with e.
Hence, the greedy schedule uses O(1) time slots for each chunk. Further, in a random
permutation, the duplicated edges are likely to be placed evenly – the maximum gap
can be bounded by the standard balls and bins problem. In summary, the approximation
factor (in expectation) is bounded as

O

(
max

{√
∆p,

∆p√
k

}
logm

logWmax

log logWmax

)
,

where ∆p denotes the maximum degree of the unweighted multi-graph, which is
formed by duplicating each edge ei for wi times, and Wmax is the highest weight of all
edges. Notice that the endpoints of the edge of maximum weight has degree at least
Wmax in the multi-graph. �at is, ∆p ≥ Wmax. Hence, the provided approximation
factor can be wri�en concisely as Õ

(
max

{√
∆p,

∆p√
k

}
logm

)
.

Finally, both the weighted and unweighted algorithms can be extended to the
multi-antenna case, i.e., r > 1. We also run simulations empirically (in Appendix) to
evaluate the performance of our algorithms. �e simulations show that our unweighted
algorithm works as e�ciently for large graphs as for small graphs when they have
similar densities. When we have a reasonable number of channels, our algorithm can
e�ciently use them for large graphs to keep the latency low. On the other hand, our
weighted algorithm can e�ciently use only two available channels for graphs with
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uniform weight distribution. It is approximately two times be�er than with only one
channel.

�e rest of this paper is organized as follows. Section 2 discusses related work. We
address the single antenna case in Section 3 and Section 4, and extend our result to the
multi-antenna case in Section 5. Section 6 concludes this paper.

2 Related Work

Channel assignment and link scheduling with wireless interference have mainly focused
on throughput optimization (maximizing the number of edges that can be scheduled at
the same time). �is problem is closely related to �nding the maximum independent
set. For a given demand vector, a commonly formulated problem is to minimize the
number of slots to meet the demand, called the makespan.

For the centralized se�ing, Hajek and Sasaki [12] considered the problem of mini-
mizing makespan but ignored wireless interference, proposing two polynomial-time
algorithms for direct messages and relayed messages. Ramanathan and Lloyd [19]
considered wireless interference and focused on trees and planar graphs. Balakrishnan
et al. [2] looked at unit disk graphs and proposed PTAS and distributed constant factor
polynomial-time approximation algorithms. Sharma [22] considered approximation
algorithms for the k-hop interference model.

A few papers [6, 15] considered fully distributed scheduling algorithms that optimize
for throughput or makespan. For 1-hop interference model, the maximum number of
edges that could be scheduled at the same time is the maximum matching. A greedy
maximal matching algorithm has at least half of edges of the optimal, and in general
has an approximation factor depending on the ‘interference degree’ [6, 14, 28].

�e results have been generalized to multi-hop communication scenarios. Kumar
et al. [15] studied the problem of minimizing makespan for given packets in a wireless
se�ing with 2-hop interference (the same as ours) and proposed a distributed algorithm
with an approximation bound of Θ(∆ log2 n) for arbitrary graphs. �ey also show
that it is hard to approximate the minimum makespan within a factor of ∆1−ε for
any positive constant ε < 1, even in the centralized se�ing. On the other hand, with
the same greedy idea, Wan et al. [26] scheduled replicated edges (tra�c demands on
direct-communicated links) in any multi-hop wireless network under any arbitrary
interference model. �e proposed algorithm achieves a 1 + µ lnα approximation ratio
using a µ−approximate algorithm for �nding a maximal set of transmi�ing edges
to greedily schedule the edges, where α is the maximum number of edges that can
transmit simultaneously. Furthermore, in the multi-antenna scenario under the binary
interference model, they also considered a variant in which tra�c demands are given
on the node-level links and proposed a constant factor approximation algorithm [27].

Fairness is not considered in the scheduling literature as much as throughput. Shi
et al. [23] discussed the existing fairness models of channel assignment and compared
them systematically. �ey also stated several challenges, such as designing fairness
strategies under distributed scenarios (since we consider wireless networks), corrective
strategies for unfairness, and how to assign weights to nodes and how to allocate
resources according to the weights. Most studies have focused on resource allocation
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but the weight assignment strategies have not received much a�ention. Chaporkar
et al. [6] proposed the use of a token generation mechanism together with maximal
scheduling for fairness, but no guarantee is provided.

3 Min Max Refresh Time in the Single-Antenna Setting

We start with the case in which all edges are unweighted and each node has only one
antenna (r = 1) and show the connection of our problem (i.e., the Min Max Refresh
Time Scheduling problem de�ned in Section 1) with other graph problems. For di�erent
k, the number of channels, the problem in the single-antenna unweighted case maps
equivalently to di�erent graph coloring problems.

– When k = 1, this problem is equivalent to the strong edge coloring problem. �e
edges of the same color are scheduled during the same time slot.

– When k ≥ b|V |/2c, the problem is equivalent to the edge coloring problem, where
V is the set of transceivers. Again the edges of the same color are scheduled during
the same time slot – though they may use di�erent channels.

– In between the problem is neither edge coloring nor strong edge coloring. We
show that a greedy algorithm gives a d2(∆− 1)/ke+ 2 factor approximation to
the optimal solution.

�eorem 1. In the single-antenna case with unit weights, the Min Max Refresh Time
Scheduling problem with only one channel available is equivalent to strong edge coloring.

Proof. In a strong edge coloring problem, the edges of the same color form an induced
matching. Let us identify the colors by unique integers from {1, · · · , c}. Here c is the
number of available colors. We schedule all edges of color i during time slot i, for all
i ∈ {1, · · · , c}. We repeat this �nite schedule forever to form our �nal in�nite schedule.
In each slot, the edges do not cause any interference. Further, the maximum refresh
time for any one edge is exactly c in this schedule.

In the other direction, given an in�nite schedule solution with the maximum refresh
time t, it can be transformed into a periodic schedule by �nding the pre�x schedule
that achieves the maximum refresh time. Focus on this pre�x schedule (cycle), it will
create an induced matching for each slot and we remove any duplicate edges in this
cycle. If we color the edges in the same time slot by the same color, this becomes a
valid strong edge coloring solution. �e maximum refresh time t implies that the cycle
cannot have a length more than t, so the valid strong edge coloring solution has at
most t colors. �erefore, the two problems are equivalent. ut

�eorem 2. In the single-antenna case with unit weights, the Min Max Refresh Time
Scheduling problem with at least b|V |/2c channels is equivalent to the edge coloring
problem.

Proof. Suppose we are given an edge coloring solution with c colors. Observe that it
is a decomposition of the given graph G into c matchings. Assign a new time slot to
each matching. In each time slot, assign each edge in the corresponding matching to
a di�erent channel. �ere are at most b|V |/2c edges in a matching of G so we have
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enough channels to build this schedule. Form a periodic schedule by repeating this
schedule of c time slots. �e refresh time for any edge is at most c.

On the other hand, given an in�nite schedule with maximum refresh time t, it
must have a smallest periodic cycle of length at most t. By eliminating any duplicate
edges, each edge appears exactly once now, i.e., this cycle partitions the edges into at
most t time slots. �e edges scheduled for a given time slot cannot share any common
vertices – since each node is given only one channel. �at means each time slot gives a
matching, so this graph is t edge colorable. ut

For any k, we show that the following greedy algorithm has an approximation ratio
of d2(∆ − 1)/ke + 2. We examine the edges one by one. For each edge e, we check
the �rst slot with the �rst channel to see if e can be scheduled without violating any
constraints. If not, we move on to the next channel and check again. If we run out of
channels, we move on to the next time slot. When we go through all the edges, denote
the number of slots used as h. We then repeat the schedule an in�nite number of times.
�e refresh time for all edges is precisely h.

To show the approximation factor, we observe that the optimal schedule for G, for
any k, is at least ∆ – this is because these ∆ edges a�ached to the common node must
be placed in di�erent slots.

�eorem 3. In the single-antenna unweighted case, the greedy algorithm gives a schedule
with a maximum refresh time of at most d 2(∆−1)

2

k e + 2(∆ − 1) + 1. �erefore, this
algorithm is a d 2(∆−1)k e + 2−approximate algorithm for the Min Max Refresh Time
Scheduling problem.

Proof. We consider the edges that are placed in the last time slot of the generated �nite
schedule. Take one of these edges, say, edge e. �e reason e is placed at the h-th slot, by
the greedy rule, is that it cannot be placed anywhere earlier. For each of the previous
slot, at least one of the following two events happens: the �rst event is that an edge
incident to one endpoint of e is scheduled and so we cannot schedule e. �e second
event is that we run out of channels for e. For each of the k channels, there is an edge
e′ that is at most one hop away from e and is scheduled with this channel. (Here, at
most one hop away means that edges e and e′ have a common endpoint or some of
their endpoints are neighbors.)

Since e is incident to at most 2(∆ − 1) edges, the number of slots of the �rst
type is at most 2(∆− 1). At most 2(∆− 1)2 edges are one hop away from e. For the
second event to happen we need to use k such edges. �erefore, there are at most
d2(∆− 1)2/ke slots of the second type.

�e worst case happens if, for each slot, exactly one of the two events happens. �is
amounts to a total of at most d2(∆− 1)2/ke+ 2(∆− 1) + 1 slots. Furthermore, the
lower bound of optimal max refresh time ∆ means that this greedy algorithm produces
a (d2(∆− 1)/ke+ 2)-approximate solution. ut

Remark. When k = Θ(∆), the greedy algorithm is a constant approximation. �e
upper bound d2(∆ − 1)2/ke + 2(∆ − 1) + 1 is nearly tight – for k = 1 there are
graphs that require Ω(∆2) slots. For example, a 5-cycle must use 5 colors for strong
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edge coloring. If we glue two 5-cycles together as in Figure 2, the graph requires 20
colors. In general, if we glue l of the 5-cycles together, this amounts to 5∆2/4, where
∆ = 2l.

a b c d e

a′ b′ c′ d′ e′

Fig. 2. Two 5-cycles abcde and
a′b′c′d′e′ glued to each other (by
the blue edges). �e graph re-
quires 20 colors/slots to schedule
if a single channel is used.

Remark. �e bounds here work for general graphs.
Speci�cally, in the case of unit disk graphs, using pack-
ing argument, we can show that the greedy algorithm
mentioned above has a O(1) approximation factor [3].

4 Min Max Weighted Refresh Time
in the Single-Antenna Setting

In this section, we discuss the Min Max Weighted
Refresh Time Scheduling problem under the single-antenna se�ing. Let G = (V,E) be
a weighted graph, where E is the set of m edges e1, ..., em with weights w1, ..., wm,
respectively. We would like to minimize maxi wiTi, where Ti is the maximum refresh
time for edge ei. When wi’s are not the same, the algorithm in the previous section
does not work. If an edge is more important, then we would like to schedule it more
frequently.

4.1 Lower Bound of the Optimal Solution

We �rst try to understand the structure of the optimal solution. Let us consider the
optimal periodic schedule and consider one cycle S∗ of the optimal periodic schedule.
Suppose S∗ has T ∗ time slots and the maximum refresh time for edge ei is T ∗i and
edge ei appears µ∗i times in S∗. We can picture this periodic schedule as wrapping
S∗ around on a cycle. T ∗i is the maximum gap between adjacent appearances of i
on the cycle. Clearly, T ∗i ≥ T ∗/µ∗i by the pigeonhole principle. De�ne L(S∗) =
maxi∈{1,...,m} wiT

∗/µ∗i . �erefore, the optimal solution is lower bounded as follows.

O(S∗) = max
i∈{1,...,m}

wiT
∗
i ≥ max

i∈{1,...,m}
wiT

∗/µ∗i = L(S∗). (1)

Now let us suppose we have a collection of edges in which edge ei is duplicated µi
times and consider a feasible �nite schedule S for these edges and denote by T (S) the
total number of time slots. For each feasible �nite schedule S, let us de�ne

L(S) = max
i∈{1,...,m}

wiT (S)/µi.

Here, µi is the number of occurrences of edge ei in S. Now, we want to understand
when we can get the minimum value of L(S) among all feasible �nite schedules S.
Since S∗ is one �nite feasible schedule, the minimum value of L(S) is a lower bound
of L(S∗), hence, a lower bound of O(S∗) as well.

Lemma 1. Among all possible feasible schedules S,L(S) is minimized when the schedule
has µi = Cwi for some integer C , for all i.
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Proof. Assume otherwise. Let S be a schedule that achieves the minimum L(S) but
not every µi is exactly Cwi for some integer C . We will create a feasible schedule S′
with L(S′) < L(S), yielding a contradiction.

First, we repeat the schedule D times for some big integer D, which will be deter-
mined later. Now we take the edge ei that has the largest wiT (S)/µi among all edges
(i.e., i realizes the value L(S)). We create a slot that only contains edge ei and add this
slot at the end of the enlarged schedule. In the new schedule S′, we have a total of
T (S′) = DT (S) + 1 slots.

Now we calculate the ratio wjT (S′)/µ′j , for each edge ej in the new schedule S′.
First, for edge ei, we have

wiT (S
′)

µ′i
=
wi(DT (S) + 1)

Dµi + 1
<
wiT (S)

µi
= L(S)

�e inequality is true because µi < T (S).
Now consider an edge ej , j 6= i. �ere are two cases.

– If wjT (S)/µj < wiT (S)/µi, then we can show that

wjT (S
′)/µ′j < wiT (S

′)/µ′i = L(S)

by taking
D >

wj
wiµj − wjµi

.

– If wjT (S)/µj = wiT (S)/µi = L(S), we repeat the same procedure as above.
Notice that in every iteration we remove one edge that realizes L(S).

At the end we can argue that we �nd a new schedule S′ such that for all edges j,
wjT (S

′)/µ′j < L(S). �us L(S′) < L(S). �is is a contradiction to the optimality of
S. Hence, the statement of this lemma is true. ut

�erefore, L(S) is minimized when µi = Cwi, for all i and some constant C . Next,
we show that it does not hurt too much to consider µi = wi if we only care about
minimizing L(S).

Suppose we have two scheduling problems, in the �rst one, each edge ei is duplicated
µ′i = wi times and we take S′ to be one of the best �nite feasible schedules for
these edges that minimize L(S′); while in the second one, each edge ei is duplicated
µ′′i = Cwi times, for a variable C taking all possible integer values. Let S′′ be one of
the optimal schedules that minimize L(S′′). Clearly L(S′′) ≤ L(S′) by de�nition. We
now argue that,

Lemma 2. L(S′) ≤ 7 logmL(S′′), wherem is the number of edges of G.

To prove this lemma, we �rst need the following lemma.

Lemma 3. Given a bipartite graph with vertex sets X and Y . If all the degree of yi ∈ Y
is a multiple of C for a �xed constant C and |X| is also a multiple of C , then there is a
subset X ′ ⊆ X such that |X ′| = |X| · β/C and for each vertex y ∈ Y , the number of
neighbors of y in X ′ is at least d(y)/C , where d(y) is the degree of y and β = 7 logm
withm = |Y |.
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Proof. We will use a probabilistic argument to prove that such anX ′ exists. Partition the
vertex set X into disjoint subsets X1 and X2 randomly with |X1| = |X|β/C . Hence,
each vertex in X has probability β/C to be in X1. Now, for each vertex yi ∈ Y , denote
by Yi the number of edges incident to yi and a vertex in X1. Clearly the expectation of
Yi is E(Yi) = d(yi) · β/C . By Cherno� bound,

Prob{Yi ≤ d(yi)/C} = Prob{Yi ≤ E(Yi)
(
1− (1− 1/β)

)
}

≤ exp{−βd(yi)/C · (1− 1/β)2/3}.

Since d(yi)/C ≥ 1 and (1− 1/β)2 > 1/2 for β = 7 logm,

Prob{Yi ≤ d(yi)/C} < exp{−β/6}.

�erefore, the probability that all nodes in Y have at least 1/C fraction of edges in X1

can be estimated by the union bound.

Prob{All nodes in Y have at least 1/C fraction of edges in X1}
≥ 1−

∑
i Prob{Yi ≤ d(yi)/C} > 1−m/ exp{β/6} > 0.

�us, the probability that all vertices in Y have at least 1/C of their edges in X1 is
positive. �is implies that such a partition must exist. �erefore, such X ′ exists. ut

Now, we are ready to prove Lemma 2.

Proof of Lemma 2. We will prove this by forming a feasible schedule which has edge
ei with occurrence µi from schedule S′′ and this feasible schedule consists of at most
T (S′′)7 logm/C time slots, where m is the number of edges of G. (If T (S′′) is not a
multiple of C , we supplement with empty slots to make it a multiple of C .) Such a
feasible schedule exists by Lemma 3. Here, the bipartite graph with vertex set X ∪ Y
is the following. X consists of T (S′′) vertices and each represents a time slot. On the
other hand, Y consists of m vertices and each represents an edge in G. We connect
a vertex (time slot) in X with a vertex (an edge in G) ei in Y if the edge ei in G is
scheduled in that time slot. Note that for each vertex y ∈ Y , if its corresponding edge
in G is ei, then the degree of y is exactly Cwi. Hence, Lemma 3 shows that there is
a subset of the time slots in S′′ such that each edge ei appears at least wi times in
these time slots. �is generates a scheduling with at most T (S′′)β/C slots, where
β = 7 logm.

Recall that S′ is the optimal schedule with the smallest T (S′). �us, T (S′) ≤
T (S′′)β/C . On the other hand, µ′ = wi and µ′′ = Cwi yield L(S′) = T (S′) and
L(S′′) = T (S′′)/C . Combining them, we get L(S′) ≤ βL(S′′) = 7 logm ·L(S′′). ut

Now for the �rst scheduling problem (we duplicate edge ei exactly wi times and
minimize L(S′)), by the same idea of the max unweighted refresh time in Section 3,
we can get a similar lower bound on T (S′). De�ne an unweighted multigraph Gm =
(V,Em) by duplicating edge ei for wi times. Let ∆p denote the maximum degree
of Gm. �at is, T (S′) ≥ ∆p. Combined with the inequality in Lemma 2, we have
L(S′′) ≥ L(S′)/(7 logm) = T (S′)/(7 logm) ≥ ∆p/(7 logm). On the other hand, as
discussed before, the minimum value of L(S) among all feasible �nite schedules S
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serves as a lower bound for O(S∗) and the minimum value occurs when µi = Cwi for
all i, which is the second scheduling problem. Hence, O(S∗) ≥ L(S′′). Now, we get a
lower bound on the optimal solution as in �eorem 4.

�eorem 4. �e optimal solution for the Min Max Weighted Refresh Time Scheduling
problem has O(S∗) ≥ ∆p

7 logm .

4.2 Algorithm

Our algorithm for the Min Max Weighted Refresh Time Scheduling problem works as
follows. First, generate a random permutation of the edges in Em. Second, partition
these edges into g = dW/be buckets of equal length b, where W =

∑
i wi and b will

be determined later. �e last bucket may have length less than b and that is alright.
For each bucket Bi, consider the induced unweighted multigraph, Gi, which consists
of the edges that appear in this bucket and the edges whose two endpoints appear in
edges of this bucket. Observe that Gi includes all edges in Bi but may contain other
edges, too (e.g., an edge e that is not in Bi but have both vertices appearing in Bi, but
we only include one copy of e if it is a duplicate edge). Finally, run the greedy algorithm
in Section 3 on Gi. (In fact, the greedy algorithm works for unweighted multigraphs.)
�is generates a schedule Si for all the edges in Gi. Keep only the edges in Bi in the
schedule Si to form a new schedule S′i. Our �nal schedule will run S′1, S′2, ..., S′g in
sequence and periodically.

4.3 Analysis of the Approximation Ratio

Now we bound the approximation ratio of the aforementioned algorithm. First, we
examine how many time slots in expectation are needed for each bucket. Second, we
use the balls and bins technique to analyze the maximum weighted refresh time. Let us
consider two cases, k = 1 and k > 1 separately.

Lemma 4. Suppose k = 1 and b =W/∆2
p. �en the number of time slots needed for the

edges in a speci�c bucket Bi is O(1) in expectation.

Proof. �e number of time slots needed for a bucket Bi, by the greedy algorithm,
depends on the degree of the induced subgraph Gi (�eorem 3). We �rst analyze the
probability that a speci�c edge ej = (u, v) falls inside the induced subgraph Gi. In
order for this event to happen, either edge ej is placed in Bi (with probability at most
b/W∑ as there are dW/be buckets in total), or both endpoints u and v of ej appear in
Bj (as other edges incident to u (v) are placed in Bi). We can bound the probability as
follows. Recall that b =W/∆2

m. By limx→∞(1− 1/x)x = 1/e and Taylor’s Formula,
we get Prob{ej ∈ Gi} ≤ b/W∑ + (1− (1− b/W )∆p)2

≤ 1/∆2
p + (1− (1− 1/∆2

p)
∆p)2

≤ 1/∆2
p + (1− e−1/∆p)2 ≤ 2/∆2

p.

Let edge ej be the last edge be added to the last time slot in the schedule for Gi.
�e number of slots used for Gi depends on the number of edges that can interfere
with ej . Speci�cally, we have to analyze the following two parameters:
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– ∆i(ej): the number of edges in Gi, counting duplication, that share a common
vertex with ej .

– ∆′i(ej): the number of edges in Gi, counting duplication, that are exactly one hop
away from ej . �at is, some of their endpoints are neighbors and they don’t share
any common endpoints.

For bounding ∆i(ej) from above, we consider the edges incident to ej in Gm, each
appearing in Gi with probability at most 2/∆2

p. �e total number of these edges other
than ej is wj − 1 + 2(∆p − wj). �erefore,

E[∆i(ej)] ≤ (wj − 1 + 2(∆p − wj)) · 2/∆2
p < 4/∆p ≤ 4.

Similarly, E[∆′i(ej)] ≤ 2∆2
p · 2/∆2

p = 4.
By the linearity of expectation, E[∆i(ej) +∆′i(ej)] = O(1). �at is, it introduces

O(1) edges, in expectation, in the interference range of the last edge ej . Hence, the
number of slots needed to resolve interference for bucket i, in expectation, is bounded
by O(1). ut

Now, we can analyze the maximum refresh time for each edge e using balls and
bins results.

�eorem 5. With k = 1 and b =W/∆2
p, the proposed algorithm in Section 4.2 , for the

Min Max Weighted Refresh Time Scheduling problem, has an approximation factor of
O(∆p logm logWmax/ log logWmax) in expectation, whereWmax is the highest possible
weight and ∆p is the maximum degree in Gm.

Proof. For each edge ei, we would like to evaluate the maximum refresh time Ti, i.e.,
the maximum number of time slots before edge ei is scheduled again. Recall that edge
ei is duplicated wi times and the schedule is produced from a random permutation of
all (duplicate) edges. We examine each gap between adjacent appearances of edge ei in
the permutation (wrapped as a cycle).

�e number of edges in this gap can be upper bounded by the balls and bins analysis.
Here these wi duplicated edges ei are placed �rst on the cycle and each of the W −wi
remaining edges is randomly placed in one of these wi gaps. We recall the balls and
bins results:

Lemma 5. [10, 18] �rowing R balls independently and uniformly at random into Z
bins. If R = Ω(Z logZ), then the maximum number of balls in one bin is O(R/Z)
with probability 1 − O(1/R); if R = o(Z logZ), then the maximum load of bins is
O( logZ

log logZ ) with probability 1−O(1/R).

If W = Ω(wi logwi), the maximum gap among these wi gaps is bounded by
O(W/wi), with high probability in W . �e number of buckets in this gap is O( Wbwi

) =

O(
∆2

p

wi
). w.h.p. in W . Since each bucket uses a constant number of slots in expectation

and the maximum load (number of buckets in the maximum gap) is highly concentrated
around its mean in the balls and bins se�ing, we can directly multiply these two expected
values to obtain the expected value for the refresh time for edge ei. �at is, the weighted
refresh time for ei is bounded by wiTi = wi ·O(

∆2
p

wi
) = O(∆2

p) in expectation.
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If W = o(wi logwi), a similar argument shows that the weighted refresh time
for ei is bounded by O( wi logwi

b log logwi
) = O(

∆2
p logwi

log logwi
) in expectation. Now compared

to the lower bound of the optimal solution as in �eorem 4, our algorithm has an
approximation factor of O(

∆p logm logWmax

log logWmax
) in expectation. ut

When the number of channels k is not 1, we will change the size of the buckets b
to min{

√
∆p,
√
k}W/∆2

p. �e analysis is similar but a bit more technical.

�eorem 6. Suppose we have k channels. Take b = min{
√
∆p,
√
k}W/∆2

p, then the
algorithm in Section 4.2 has an expected approximation factor of

O

(
max

{√
∆p,

∆p√
k

}
logm logWmax/ log logWmax

)
.

Proof. Given k channels, observe that �eorem 4 is for general k, i.e., ∆p

7 logm gives a
lower bound of the optimal solution. On the other hand, Lemma 4 also holds for general
k and b = min{

√
∆p,
√
k}W/∆2

p. For convenience, let h = min{
√
∆p,
√
k}. Hence,

b = hW/∆2
p.

Prob{ej ∈ Gi} ≤ b/W + (1− (1− b/W )∆p)2

≤ h/∆2
p + (1− e−h/∆p)2

≤ h/∆2
p + h2/∆2

p ≤ 2h2/∆2
p since h ≥ 1.

E[∆i(ej)] ≤ (wj − 1 + 2(∆p − wj)) · 2h2/∆2
p ≤ 4h2/∆p

Similarly, we can get E[∆′i(ej)] ≤ 2∆2
p · 2h2/∆2

p = 4h2.
By the linearity of expectation and the key idea of the proof of �eorem 3, the

number of slots for bucket i, in expectation, is bounded by O(4h2/∆p + 4h2/k). By
h = min{

√
∆p,
√
k}, O(4h2/∆p + 4h2/k) = O(8) .

Next, let us analyze the number of edges in the gaps of edge ei. IfW = Ω(wi logwi),
the number of bins in this gap is at most O

(
W
bwi

)
= O

(
∆2

p

hwi

)
w.h.p. in W . Because of

the high concentration around its mean in the balls and bins problem, we can calculate
the expectation of the weighted refresh time directly by multiplying these two values
mentioned earlier. �at is, in expectation,

wiTi = wiO

(
∆2
p

hwi

)
O(4h2/∆p + 4h2/k) = O(h(∆p +∆2

p/k)).

Similarly, if W = o(wi logwi), the weighted refresh time in expectation for ei is at
most

wiTi = wiO
(

logwi

b log logwi

)
O(4h2/∆p + 4h2/k)

= O
(
wi∆

2
p logwi

Xh log logwi

)
O(4h2/∆p + 4h2/k)

= O
(

logwi

log logwi
h(∆p +∆2

p/k)
)

Combining these two upper bounds, in expectation, its approximation factor is
bounded by O(min{

√
∆p,
√
k} ·∆p logm logWmax/k log logWmax). �en by case

analysis, we get the approximation factor as �eorem 6 states. ut
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5 Min Max (Weighted) Refresh Time in the Multi-Antenna
Setting

In this section, we discuss the multi-antenna case. Since each node has r > 1 radios, it
now can have at most r adjacent edges that are active in a time slot. �e interference
rule is the same as in the single-antenna se�ing: in a time slot, if two active edges are
within interference range, then they must use di�erent channels. �e only di�erence
is that now j adjacent edges incident to the same vertex v can be active in the same
slot if they use di�erent channels and di�erent radio interfaces on v. �e problem
becomes more complicated than before. Fortunately, our algorithms for the weighted
and unweighted problems can be generalized to the multi-antenna case.

Considering these two problems in the multi-antenna scenario, we have the follow-
ing bounds for the optimal solution and the approximation factor for our scheduling
algorithm.

Lemma 6. In the multi-antenna case, the optimal solution has a maximum refresh time
of at least

⌈
2∆−1

min{2r,k}

⌉
.

Proof. In the multi-antenna scenario, given an arbitrary edge e, at most min{2r, k}
edges that are incident to e can appear in the same time slot. �e reason is that for
each endpoint of e, it can transmit at most min{r, k}messages successfully at the same
time. �ere are at most 2min{r, k} possible transmissions in total. �ey are within the
interference area of e so they must use di�erent channels. Hence, the maximum number
of successful transmissions in a time slot is min{k, 2min{r, k}}, which is equivalent
to min{2r, k}. Remember that there are at most 2∆−1 edges in the interference range
of edge e, so the maximum refresh time of the optimal solution is bounded from below
by
⌈

2∆−1
min{2r,k}

⌉
. ut

�eorem 7. In the multi-antenna case, the greedy algorithm gives a schedule of maxi-
mum refresh time at most

⌈
2(∆−1)2

k

⌉
+
⌈

2(∆−1)
min{r,k}

⌉
+ 1.�erefore, this solution for the

Min Max Refresh Time Scheduling problem is a
⌈
min{2r,k}(∆−1)

k

⌉
+ 2−approximation.

Proof. It is similar to the proof of �eorem 3. �e event “an edge incident to one
endpoint of e is scheduled so we cannot schedule e” now becomes “we run out of
channels or radios for one endpoint of e”. �at means for each of the r radios, an edge
e′ that is adjacent to e is scheduled with this radios or for each of the k channels, e′ is
scheduled with this channel. For this event to happen, we need to use at least min{r, k}
such edges. Hence, there are at most

⌈
2(∆−1)
min{r,k}

⌉
slots of this type. �e maximum refresh

time now is at most
⌈
2(∆−1)2

k

⌉
+
⌈

2(∆−1)
min{r,k}

⌉
+ 1. Furthermore, the lower bound of

optimal max refresh time
⌈

2∆−1
min{2r,k}

⌉
implies that this greedy algorithm produces a⌈

min{2r,k}(∆−1)
k

⌉
+ 2-approximation of the optimal. ut

Lemma 7. In the multi-antenna case, the optimal solution for the Min Max Weighted
Refresh Time Scheduling problem has O(S∗) ≥ ∆p

7 logmmin{r,k} .
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Proof. First of all, notice that Lemma 1 and Lemma 2 still hold in the multi-antenna
scenario. Only the proof of Lemma 1 is di�erent. �at is inserting ei may remove more
than one occurrence for any ej , but no more than min{r, k} occurrences. With at most
min{r, k} occurrences, we still can give a su�ciently large D that yields contradiction.
Now we get an inequality, T (S) ≥ ∆p/min{r, k}. Combining with Lemma 2, we get

∆p

7 logmmin{r,k} as a lower bound for optimal.
Before ending this proof, let us clarify why an edge now can appear at most

min{r, k} times in the same time slot. It is because that for edges that have common
endpoints, if we require these edges appear in the same time slot, then they must use
di�erent radios with di�erent channels. Di�erent radios represent di�erent interfaces
in the endpoints and di�erent channels mean no interference occurs. Hence, there are
at most min{r, k} duplicate edges in a time slot. ut

�eorem 8. In the multi-antenna case with b = min{
√
∆pmin{r, k},

√
k}Wsum/∆

2
p,

our algorithm for the Min MaxWeighted Refresh Time Scheduling problem has an expected
approximation factor

– O(∆p

√
k · logm logWmax/ log logWmax), if k ≤ r;

– O(r∆p/
√
k · logm logWmax/ log logWmax), if k > r and k ≤ r∆p;

– O(
√
r∆p · logm logWmax/ log logWmax), if k > r∆p.

Proof. In the multi-antenna se�ing with k channels, Lemma 7 still holds. �at is,
∆p

7 logmmin{r,k} serves as a lower bound for the optimal solution. On the other hand,
Lemma 4 also holds for general k and b = min{

√
∆pmin{r, k},

√
k}Wsum/∆

2
p. �e

only di�erence is the following. By the linearity of expectation and the key idea of the
proof of �eorem 7, the number of slots for bucket i, in expectation, is bounded by
O
(

4h2

∆p min{r,k} +
4h2

k

)
. Using h = min

{√
∆pmin{r, k},

√
k
}

, we get

O

(
4h2

∆pmin{r, k}
+

4h2

k

)
= O(8).

�e analysis for the number of edges in gaps of edge ei remains the same. Hence,
when Wsum = Ω(wi logwi), in expectation,

wiTi = wiO

(
∆2
p

hwi

)
O

(
4h2

∆pmin{r, k}
+

4h2

k

)
= O

(
h

(
∆p

min{r, k}
+
∆2
p

k

))
.

Similarly, when Wsum = o(wi logwi), wiTi = O
(

logwi

log logwi
h
(

∆p

min{r,k} +
∆2

p

k

))
.

As a result, the expected upper bound is

wiTi = O

(
logWmax

log logWmax
h

(
∆p

min{r, k}
+
∆2
p

k

))
.

Its approximation factor is bounded from above by

O

(
logWmax

log logWmax
min{

√
∆pmin{r, k},

√
k} ·

(
1

min{r, k}
+
∆p

k

)
logmmin{r, k}

)
.
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�en by case analysis, we get the expected approximation factors, which is stated
in �eorem 8. ut

6 Conclusion and Future Work

�ere are a few directions to explore in future work. One direction is to consider
the physical model (SINR model) as our interference model. Another direction is to
generalize the problem. In general, the problem of fair scheduling with con�icting
constraints (low delay and interference) goes beyond scheduling wireless links. We
expect our techniques can be applied to a broader se�ing.
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A Appendix: Omitted Proof

A.1 Proof on Schedule Periodicity

Given any in�nite schedule S with a �nite maximum refresh time, we can �nd a
periodic schedule with max refresh time for each edge ei no worse than that in S. Let
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the max refresh time of all edges in S be L. Consider the family of all possible schedules
of the edges of G with no interference with length L. �e number of these schedules is
�nite.

Now, let’s construct a periodic schedule S′ from S. We divide S into sub-schedules
of length L each. Since the con�guration of these sub-schedules of length L is �nite
and S is in�nitely long, there exists a subschedule M that repeats at some point in S.
Extract the subschedule of S that starts from the �rst appearance of M and ends right
before the second appearance of M . We now repeat this sub-schedule periodically and
call it S′.

Since each sub-schedule has length L, any edge ei appears at least once in each
sub-schedule. �us, all the gap between two successive time slots of the same edge ei
in S′ also happens in the original schedule S. Hence, the constructed periodic schedule
has a maximum refresh time for each edge ei which is no worse than that in the original
schedule S. ut
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Fig. 3. Unit disk network with random node placement. �e node degree is kept similar or
increases when the scale of network increases to thousand of edges.

In this section, we evaluate our unweighted and weighted channel assignment algo-
rithms under di�erent scenarios in the single antenna case. Without loss of generality,
we can assume that the smallest weight is 1 and all other weights are rounded to integer
values. We consider model networks such as random node placement and perturbed
grid placement with unit disk communication capacity, and also a real testbed network
(denoted the Tmote network) which consists of 48 TMotes in a building that uses the
ChipCon CC2420 radio. We vary network parameters such as node degree, the number
of channels, weight distributions and measure the performance of our algorithms using
the maximum fresh time divided by maximum (weighted) degree and ∆p as the metric.
For each network, we ran our algorithm 50 times to compute the average performance.
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�e network topology in Figure 3 is constructed by throwing random nodes with
a uniform circular range in a 2D unit square. �is imitates random node placement
in the wild. For each evaluation, we generate 50 networks. In Figure 3.a, we increase
the number of nodes in the unit square from 50 to 600 while keeping the average
degrees the same (by scaling down the communication range of each node), so every
node continues to have a similar number of interfering counterparts even when the
network scale increases. �e almost �at slopes of curves indicate that our algorithm
still works as e�ciently for large graphs as for small graphs when those graphs have
similar densities. Besides, the result shows that when we have a reasonable number
of channels, our algorithm can e�ciently assign channels to a large network while
keeping the latency low. In Figure 3.b, we increase the number of nodes but keep
the communication range the same, i.e., when the number of nodes increases, the
network becomes denser. �at means a lot of implicit interferences occur. �erefore,
the maximum refresh time increases unavoidably. Still, when we have a reasonable
number of channels, our algorithm can keep the max refresh time moderate.

(a) Unit disk network with perturbed grids (b) Tmote network with 48 Nodes

Fig. 4. Visualization of the network topologies

Random node placement o�en leads to many small holes in the network. To make
the network more robust, perturbed grid placement is preferred which gives a more
stable node degree among the network while reducing the number of gaps inside.
�erefore, we o�en see an almost grid placement in real-world sensor networks. In
order to evaluate on such wireless networks, we use a perturbed 7× 7 grid placement
network shown in Figure 4.a and also a Tmote network as shown in Figure 4.b. In the
Tmote network, these nodes are deployed on walls and ceilings of a building. We collect
traces of 3,600,000 packet transmissions using IEEE 802.15.4 standard for each pair of
nodes. With the transmission traces, we de�ne two nodes are connected if and only if
the packet reception rate of its link is over 90%.

In Figure 5, we evaluate our algorithm on these two networks when weight distri-
butions are uniform and power-law. In both networks, our algorithm can e�ciently
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Fig. 5. Performance of weighted channel assignment on perturb grid and Tmote network with
varying number of channels and weight distributions.

use channels to reduce the refresh time. However, when the weight distribution is
power-law, the bene�t diminishes because some implicit interference is unavoidable.
Note that some edges have very high priorities and they contribute to the weighted
degree which makes the maximum weighted degree pre�y high. �e ratio of the maxi-
mum weighted degree to the total weight is 0.32 for the perturbed grid and it is 0.12
for the Tmote network. �e node with the maximum weighted degree creates more
unavoidable interferences in the perturbed grid. Hence, the performance of the Tmote
network is be�er than the one of the perturb grid. On the other hand, for both networks
under the uniform distribution, the ratios are the same, 0.06, which is quite small and
leaves room for improvement of our algorithm. When we vary the number of channels
from one to two, our algorithm improves the most. It is almost twice as be�er than the
case of only one channel.


