
FailureSense: Detecting Sensor Failure using
Electrical Appliances in the Home

Sirajum Munir
Department of Computer Science

University of Virginia
Charlottesville, VA 22903

munir@cs.virginia.edu

John A. Stankovic
Department of Computer Science

University of Virginia
Charlottesville, VA 22903
stankovic@cs.virginia.edu

Abstract—With the proliferation of inexpensive sensors,
sensors are increasingly being used in smart homes. Recent
experience on long term sensor deployment in residential
homes [1] has identified the potential risk of various types of
sensor failure. Motivated by real examples, we develop new
schemes to detect not only fail-stop failure, but obstructed-
view and moved-location failures that are not the traditional
fault detection foci. Our proposed solution, FailureSense,
uses a novel idea of using electrical appliances to detect
sensor failure at home. We learn the regular patterns of
sensor firing with respect to appliance activation events and
report a failure when we observe a significant deviation
from the regularity. By using data from three real home
deployments of over 71 days and 2818 recorded turn on
and off events of 19 monitored appliances, we observe
that FailureSense can detect obstructed-view, moved-location,
and fail-stop failures with 82.84%, 90.53%, and 86.87%
precision, respectively, with an average of 88.81% recall.

Index Terms—Sensor failure detection, sensor reliability.

I. INTRODUCTION

With the proliferation of inexpensive, wireless, battery
powered, and do-it-yourself sensors, sensors are increas-
ingly being used in smart homes for various applications,
including home health care, energy management, and se-
curity. Recent experience [1] on large scale and long term
sensor deployment in residential homes has identified that
although the failure rate of a single sensor is low, when
we consider hundreds of simultaneously deployed sensors
over long periods, that leads to weekly or even daily
sensor failure. Table I shows some sensor failure statistics
from some deployments in [1]. The deployments had a
wide range of sensors ranging from 47 to 217 deployed
for 25 to 44 weeks. From Table I we see that the average
number of sensor failures per day is at least one for each
home and for one home it is more than 30. Sensors just
don’t die, they experience failure in a variety of ways.
For example, sensors installed on furniture are moved or
covered and produce invalid data. Sensors get dislodged
not only due to regular usage, but due to guests, cleaning
services and other non-residents. Detecting these types
of failures is not the traditional fault detection foci, but
will be increasingly important as some predict that smart
homes will have hundreds of sensors deployed in the near
future.

Motivated by real examples, we develop new schemes
to detect not only fail-stop failure, but obstructed-view
and moved-location failures that are very difficult to
detect even if sensors are made highly reliable and are not
addressed well enough to date. Fail-stop failure happens
when a sensor fails and stops reporting. It may happen
due to a hardware failure or power outage. Obstructed-
view failure happens when a sensor’s field of view is
compromized. A motion sensor experiences obstructed-
view failure when it is blocked because some furniture
is placed in front of it, or a magnetic sensor may be
obstructed because an appliance with a motor is placed
near it. A sensor experiences moved-location failure if it
is moved to a different location. It may happen if the
sensor gets dislodged and someone puts it in a different
place. It may also happen if it is mounted on furniture
and the furniture is moved to a different place.

State of the art techniques [2] [3] that detect fail-
stop failure cannot detect moved-location failure as the
sensor is still responding, but the reported values are
incorrect. SMART [4] and RFSN [5] detect non-fail-
stop failure, where a sensor doesn’t die completely, but
reports incorrect values. But SMART requires non-trivial
effort in training. Also, it is not scalable in detecting
multiple failures if multiple sensors fail within a short
period of time. But as shown in Table I, the potential
risk of multiple sensor failures within a short period of
time can be high as we observed more than 30 sensors
to fail per day on average in one of the homes. Our
solution can detect multiple sensor failures even if they
fail simultaneously and it requires less training effort than
SMART. Another state of the art solution, RFSN requires
sensor redundancy to detect sensor failure. Deploying
redundant sensors in a home not only increases the cost
of deployment, it creates unnecessary channel contention
and hurts the aesthetics of the rooms. Our solution doesn’t
require sensor redundancy, although it is permitted.

We propose a novel technique, called FailureSense
that detects not only fail-stop failure, but obstructed-
view and moved-location failures by monitoring the usage
of electrical appliances in the home. The idea behind
the proposed solution is, a significant portion of our
activities involve handling electrical appliances. When

House Deployment
Duration
(days)

Sensors
Deployed

Sensor Downtime
(#days*#sensors)

Avg
Sensor
Failure per
Day

House G 308 217 11346 37
House H 273 67 786 3
House I 224 157 5789 26
House J 175 47 432 3

TABLE I. SOME STATISTICS OF SENSOR FAILURE FROM FOUR
REAL-HOME DEPLOYMENTS. COMPUTED FROM [1].

someone turns on an electrical appliance, e.g., light, fan,
microwave, stove, dishwasher, washing machine etc., he
has to be physically present to turn it on. We realize
that this assumption may not hold for all the electrical
appliances, e.g., someone can turn on the TV by a remote,
but still it holds for a significant portion of electrical
appliances in the home and a careful selection of the
appliances suffices. Thus, whenever someone turns on the
selected appliances, there will be a positive correlation
between the appliance activation event and the firing
of the motion sensor that is covering that area. Since
the movements of the residents are constrained by the
floorplan of the house, with sufficient training data, we
learn all the regular intervals between sensor firing and
appliance activation and report a failure when we see a
significant deviation from the regular behavior.

There are several advantages in using the power in-
frastructure to monitor electrical appliance usage to detect
a sensor failure. First, the power infrastructure does not
fail as often as sensors do. Correlation based techniques
rely on sensor redundancy and can’t detect a failure when
the redundant sensors also fail. Relying on the power
infrastructure will significantly reduce this dependency.
Secondly, some electrical appliances are turned on in a
periodic fashion, e.g., we turn on lights in our rooms
almost every night. So, we can compute the failure detec-
tion latency of sensors based on electrical appliance usage
of the residents. Thirdly, with much emphasis on energy
saving and smart energy management, power meters may
provide real-time appliance specific energy usage in the
near future. We already have several COTS devices, e.g.,
TED [6], and eMonitor [7] in the market and as these
technologies become more popular, our solution can get
a free ride and detect sensor failure almost free of cost.

This work has three major research contributions.
First, to the best of our knowledge, we are the first to
show that activation events of the electrical appliances
in the home can be useful for detecting not only fail-
stop failure, but importantly obstructed-view and moved-
location failures that are common in smart homes and
barely addressed in real deployments or in the literature
to date. Second, our solution requires minor training
effort, it is scalable in detecting multiple sensor failures
even if they fail simultaneously, and it doesn’t require
sensor redundancy, thus saves cost of redundant sensor
deployment, avoids unnecessary channel contention, and
improves the aesthetics of the rooms at homes. Third,
by using data from three real home deployments of over
71 days and 2818 recorded turn on and off events of
19 monitored appliances, we observe that our solution
can detect obstructed-view, moved-location and fail-stop

failures with 82.84%, 90.53%, and 86.87% precision,
respectively, with an average of 88.81% recall.

II. RELATED WORK

Several techniques have been proposed to address fail-
stop failure. In Memento [2], nodes in the network coop-
eratively monitor each other to implement a distributed
fail-stop failure detector by using other protocol’s beacons
as heart-beat messages. LiveNet [8] uses passive sniffers
co-deployed in the network to reconstruct network topol-
ogy and disambiguate failures observed at application
level. In Sympathy [3], each live node generates two types
of data: it’s own periodic traffic and Sympathy generated
traffic. Code running at the sink detects a failure when
a node generates less own traffic than expected. These
techniques are mainly suitable for low-level debugging
and detecting fail-stop failure, but not designed to detect
non-fail-stop failure, e.g., obstructed-view and moved-
location failures in an event-driven system.

A sensor may experience non-fail-stop failure in var-
ious ways and a taxonomy of common sensor data faults
is defined in [9]. SMART [4] detects non-fail-stop failure
by analyzing the relative behavior of multiple classifier
instances trained to recognize the same set of activities
based on different subset of sensors. SMART requires
non-trivial effort in training and it is not scalable in
detecting multiple sensor failure if they fail within a short
time frame. RFSN [5] detects non-fail-stop failure by
exploiting the correlation between neighboring sensors.
But it requires sensor redundancy to build meaningful
correlation and it doesn’t work if the neighboring sensors
are compromised or failed. FIND [10] detects non-fail-
stop failure under the assumption that sensor readings
reflect the relative distance from the nodes to the event.
It works where the measured signals attenuates with
distance, e.g., a system that captures acoustic signals. It
also requires redundant sensors to compare relative dis-
tances. Compared to these solutions, our solution detects
obstructed-view, moved-location, and fail-stop failures
without redundancy with much less training effort.

Detection and classification of electrical appliance
activation is not our main focus. Several techniques are
available for this purpose that use single-point sensing
[11] [12] [13], distributed sensing [14], or a combination
of these two [15]. We prefer to use single-point sensing
for our work, because it doesn’t rely on the deployed
sensors for which we are trying to assess failure.

III. APPROACH

Our approach for detecting sensor failure has two
major steps: first, based on an empirical study we learn
and model the regular behavior of a sensor with respect
to electrical appliance activation at home. Second, we
monitor sensor behavior continuously and report a failure
when we see a significant deviation from the regularity. In
this section, we describe our assumptions, data collection
procedure, empirical study to model regular behavior of

House # Days # Motion
Sensors

Electrical
Appliances

Turn
on/off
Events

A 15 15 10 660
B 35 8 8 1921
C 21 5 1 237

TABLE II. SUMMARY OF DATA COLLECTION FROM THREE
REAL-HOME DEPLOYMENTS.

sensor firing with respect to appliance usage, and how we
use this model to detect a sensor failure.

A. Assumptions

We assume that sensors do not fail during the training
period. We also assume that sensors and electrical appli-
ances are stationary, i.e., they are not moved from their
original position in the training period. This assumption
does not hold for all the electrical appliances. But as long
as it holds for some appliances in each room, like light
switches, our solution will work.

B. Deployment and data collection

To learn how motion sensors fire with respect to turn
on/off events of electrical appliances, we use data from
two publicly available datasets [1] (Houses A and B) and
collect data from one real-home deployment (House C).
Overall we use 15 days of data from House A, 35 days
of data from House B, and collect 21 days of data from
House C. The number of motion sensors, the number of
electrical appliances monitored, and the number of turn
on and turn off events of the monitored appliances in
each house is shown in Table II. Houses A and C are 4-
person homes whereas House B is a 3-person home. The
floorplan along with the positions of the motion sensors of
House A is shown in Figure 1. The deployment at House
C is mainly targeted to detect obstructed-view failure.
Since we do not have any control over the deployment at
Houses A and B, and to detect obstructed-view failure,
we need to obstruct some sensors’ view, we deploy a few
sensors at House C and obstruct their views.

X10 motion sensors are used in all homes since they
are inexpensive. We collect the timestamp and sensor
ID of each sensor firing. Several electrical appliances
are available in homes. But we use only lights in all
homes since almost every room has at least one light
and light switches are usually stationary. Since energy
disaggregation is not our focus, ZWave Light Switches,
Zwave Plugs, and X10 contact sensors are deployed to
figure out when lights are turned on/off. We collect the
timestamp and appliance ID of each of the turn on and
turn off events of these electrical appliances.

C. Empirical Study and Sensor-Appliance Behavior
Model

Based on a total of 71 days of collected data from
three multi-person homes having 2818 turn on and off
events of 19 monitored appliances, we try to understand
the sensor firing pattern with respect to the usage of
electrical appliances. We monitor the interval between

Fig. 1. Floorplan and positions of motion sensors in House A

appliance turn on/off and sensor firing events, and observe
regularity in intervals for some sensor-appliance pairs.

As we mentioned before, for most of the electrical
appliances, when they are turned on, someone has to be
physically present to turn them on. So, if there is a motion
sensor nearby, it should fire before the turn on event and
after the turn on event. If the appliance is turned on the
same way all the time, it would take the same amount
of time for the sensor to fire before and after the turn
on event. However, in reality, people may not access the
electrical appliances the same way all the time. Since
the movements of the residents are constrained by the
floorplan of the house, there are only a few ways to
reach to the electrical appliances. If we can collect enough
training data, we are able to capture different possible
ways the residents can reach the electrical appliances. For
some electrical appliances we should observe the similar
behavior for the turn off events too.

To characterize the sensor firing pattern with respect
to appliance usage, we define 3 parameters: IA, IB ,
and window. Let IA (Interval After) be the smallest
interval between a turn on/off event of an appliance and
a sensor firing where the sensor firing happens after the
turn on/off event. Similarly, let IB (Interval Before)
be the smallest interval between a turn on/off event of
an appliance and a sensor firing where the sensor firing
happens before the turn on/off event. Note that IA and IB
are different for different sensor-appliance pairs. We use
a window of 5 minutes and don’t consider any sensor
firing before/after 5 minutes of the turn on/off events of
the appliances. We keep it fixed for all the homes and in
all the experiments. Our subsequent analysis shows that
IA and IB are useful features to detect fail-stop failure,
obstructed-view failure, and moved-location failure.

As an example to see how these parameters reveal
sensor firing patterns with respect to appliance usage,
let’s consider some sensors and electrical appliances from
House A. The floorplan and the position of all the motion
sensors of House A are shown in Figure 1. We choose
the bathroom light and the mudroom light as appliances.
We discretize IB values into 3 seconds bins and plot the
frequency distribution of IB in Figure 2. Note that only
the D1 sensor is in the bathroom, and other sensors are in
different rooms when looking at Figures 2(a), 2(b), and
2(c). If D1 suffers from fail-stop failure, obstructed-view

(a) D1 (b) E1 (c) H2 (d) C4 (e) E2
Fig. 2. Frequency distribution of IB of sensors (a) D1, (b) E1, and (c) H2 with respect to the bathroom light and of sensors (d) C4, and (e) E2
with respect to the mudroom light of House A.

failure or it is moved to some other room, the frequency
distribution of IB of D1 with respect to the bathroom light
is going to change. IA also shows a similar distribution.
The bathroom light clearly helps in detecting the failure
of D1 sensor. It may also help in detecting failure of
other sensors, e.g., E1. For other sensors, we may need
to consider other appliances.

Capturing regularity in intervals can be challenging
since a sensor-appliance pair can have multiple regular
intervals. To capture all the regular intervals of a sensor-
appliance pair, based on the empirical study, we use
a Gaussian Mixture Model (GMM) to represent the
distribution of IA and IB . A GMM has q components,
where each component captures one regular interval.

The probability density function of a GMM is a
weighted sum of the q component Gaussian densities as
shown in the following equation:

p(x|λ)=
q∑
i=1

wig(x|µi,Σi), (1)

where x is a D variate observation, wi are the mixture
weights and g(x|µi,Σi) are the Gaussian densities of
the components, where i = 1, 2, 3, ..., q. Each component
density follows a Gaussian distribution with mean vector
µi and covariance matrix Σi as shown in the following
equation:

g(x|µi,Σi)= 1

(2π)D/2|Σi|
1/2

e−
1
2
(x−µi)

′(Σi)
−1(x−µi) (2)

Mixture weights satisfy the constraint that
∑q
i=1 wi = 1.

The complete GMM is parameterized by the mean vec-
tors, covariance matrices, and mixture weights from all
the component densities. These parameters of the GMM
are collectively represented by the following notation:

λ={wi,µi,Σi}i=1,2,3,...,q. (3)
In our case, we have separate Gaussian Mixture Mod-

els for IA and IB and our x is a single variate observation
of IA or IB . The parameters of the mixture model
(λ) are estimated using the Expectation Maximization
(EM) algorithm from the training data. When choosing
λ, we try using 1-4 components and choose the one that
minimizes the Akaike Information Criterion (AIC), which
is a measure of relative goodness of fit of a statistical
model. Note that it is not necessary for all the sensor-
appliance pairs to follow their IA and IB according to
GMM. We just need enough appliances so that each
sensor is covered by at least one appliance, which we
find an easy requirement for all the three houses based
on the empirical study.

D. Appliance Selection

For each appliance, we compute the probability of
each sensor firing within the window of appliance acti-

vation events. For each sensor, we choose top k appli-
ances with which the sensor firing is most probable. We
associate these appliances with these sensors. It means
that the failure detection of these sensors only depends
on these appliances. The higher the value of k, the
lower are the failure detection latency and precision of
failure detection. The value of k can be chosen based on
application requirement. We use k = 2 in the evaluation
since the instrumented appliances were limited in our data
collection.

E. Online Failure Detection

After modeling the regular behavior of sensor firing
during the offline training phase, we monitor the sensor-
appliance behavior in terms of IA, IB online and report a
failure when we observe a deviation from the distribution
according to some thresholds (described below). More
specifically, at runtime, we detect sensor failure using the
following steps:

1) Appliance Monitoring: For the selected appli-
ances, we monitor when the appliances are turned on/off.

2) Sensor Monitoring: When a selected appliance is
turned on, we monitor the firing of the associated sensors
within the duration of window.

3) Probability Computation: Based on appliance
usage and sensor firing, we compute iA and iB , which
are the observed values of IA and IB , respectively. We
also compute pA and pB , the probabilities of observing
these iA and iB using equations (4) and (5) as follows:

The probability of observing IA = iA is,
pA = p(IA = iA|iA ≤ window) ∗ p(iA ≤ window) (4)

The reason for having these two separate terms is
because we only consider IA and IB values within
window at the time of modeling GMM. We compute p(
iA ≤ window) directly from the training data, and p(IA
= iA | iA ≤ window) is computed from the GMM using
equation (1). Similarly, the probability of observing IB =
iB is, pB = p(IB = iB |iB ≤ window) ∗ p(iB ≤ window) (5)

4) Failure Decision: We decide the state of the
sensor from the values of pA and pB . If pA ≤ T lowA
and pB ≤ T lowB for N times in a row, we report a
failure of the associated sensor, where T lowA , T lowB , and
N are thresholds. If pA ≥ ThighA or pB ≥ ThighB for M
times in a row, we report that the sensor is working fine,
where ThighA , ThighB , and M are thresholds. Also, to avoid
flooding of reports, after sending one status report, we
suppress all the subsequent reports related to that sensor
for the next 6 hours.

(a) (b) (c) (d)
Fig. 3. Effect of N , T low

A , T low
B on (a) precision, (b) recall, (c) median latency of failure detection and effect of M , Thigh

A , Thigh
B on (d) recall

in detecting three types of failure in three houses.

F. Threshold Selection

The performance of FailureSense largely depends
on the selection of the thresholds. Overall, we use 6
thresholds: T lowA , ThighA , T lowB , ThighB , N , and M at the
time of deciding sensor failure status. These thresholds
are specific to sensor-appliance behavior and a static
threshold may not work for all possible sensor-appliance
pairs in all homes. So, we compute these thresholds by
taking into account specific sensor-appliance behavior
from the training data. Note that the computation is fairly
automatic and it doesn’t require any user involvement
other than turning on/off appliances while they perform
their activities of daily living. The goal is to choose
threshold values that maximize precision and recall while
minimizing failure detection latency.

1) Selection of T lowA , T lowB , and N : We report a
failure of the associated sensor if we observe pA ≤
T lowA and pB ≤ T lowB for N times in a row. So, as N
increases, the latency to detect a failure also increases. As
N increases, we report fewer number of failures which
reduces the recall of detecting a failure, but increases the
precision. As T lowA or T lowB increases, the frequency of
reporting a failure increases, which in turn increases the
recall, but decreases the latency and precision.

We compute mean (µ) and standard deviation (σ)
of the pA, pB values. We change N from 1 to 4
and change T lowA , T lowB using µ and σ of the pA, pB
values, respectively, while keeping the other thresholds
unchanged and show the impact on average precision,
recall, and median latency in Figures 3(a), 3(b), and 3(c),
respectively in detecting the three types of failure in three
houses (experimental setup along with how precision and
recall are computed is specified in the next section). We
see that as N increases, precision and latency of failure
detection increase, but recall decreases. Also, as T lowA
and T lowB increase, recall increases, but precision and
latency decrease, as expected according to our analysis.
We choose N = 3 and select T lowA , T lowB to (µ - 2 ∗ σ)
of the pA, pB values, respectively, which provides high
precision at a little loss of recall with a reasonable median
latency. Other threshold values can be chosen if that
satisfies application requirement.

2) Selection of ThighA , ThighB , and M : We report the
associated sensor is working fine when pA ≥ ThighA or pB
≥ ThighB for M times in a row. As these three thresholds
ThighA , ThighB , and M are not used in reporting a failure,

they don’t have any impact on precision and latency of
failure detection. But they do have impact on recall. As
M increases, we deliver fewer number of reports saying
that the sensor is working fine, which increases recall of
failure detection. As ThighA or ThighB increases, sensors
pass the thresholds fewer number of times, which again
increases recall.

We compute mean (µ) and standard deviation (σ)
of the pA, pB values. We change M from 1 to 4 and
change ThighA , ThighB using µ and σ of the pA, pB
values, respectively, while keeping the other thresholds
unchanged and show the impact on average recall in
detecting the three types of failure in three houses in
Figure 3(d) (experimental setup is described in the next
section). This figure shows that increasing M increases
recall. Increasing ThighA , ThighB also have a similar impact,
as expected according to our analysis. We choose M =
2 and select ThighA , ThighB to µ of the pA, pB values,
respectively for the evaluation. Setting ThighA , ThighB to (µ
+ 2∗σ) of the pA, pB values slightly increases the recall.
However, choosing such high threshold values drastically
reduces the number of reports saying that the sensor is
working fine, which may not be appropriate for some
sensors.

This analysis is useful in choosing thresholds to meet
application requirements. Note that we do not compute
separate thresholds for detecting different types of failure.
We compute a single set of thresholds using the above
technique and that works in three houses we tested in
detecting all the three types of failure. At the time of
reporting a sensor failure, we do not specify the type of
sensor failure.

IV. EVALUATION

The evaluation is based on data collected from three
real homes. The data collection procedure is described in
Section III-B. We use 15 days of data from House A, 35
days of data from House B, and collect 21 days of data
from House C. The performance of FailureSense is eval-
uated through a post-facto analysis using these datasets,
instead of deploying the FailureSense system in another
home. Hence, the implementation of FailureSense is a
Matlab program that analyzes the collected sensor data
and reports a sensor failure using the strategy specified
in Section III. It also means that FailureSense is agnostic
to the purpose of sensor deployment and the applications
that are using the sensor data.

Fig. 4. Precision of detecting fail-stop failure at House A (sensors C1
- H2), House B (sensors I1 - I8), and House C (sensors J1 - J5).

We evaluate the performance of our algorithm in terms
of precision (% of failure reports where the sensor is actu-
ally failed) and recall (% of failed sensor reported). The
way we compute these metrics are, when FailureSense
reports a sensor status, we compare with the ground truth
state of the sensor and determine whether this report is
a true positive (TP, i.e., we report a failure when it has
failed), false positive (FP, i.e., we report a failure when
it has not failed), true negative (TN, i.e., we report a
sensor has not failed when it has not failed), or false
negative (FN) (i.e., we report a sensor has not failed when
it has failed). Then we compute precision = TP/(TP + FP)
and recall = TP/(TP + FN). We compare our solution
with the state of the art solutions in terms of sensor
redundancy, training effort, and scalability in detecting
multiple sensor failure at the same time. The experimental
setup is different for different types of failure.

A. Performance Results

1) Fail-stop failure: We simulate the behavior of fail-
stop failure by discarding all the readings of the failed
sensor after it fails. We evaluate it on all the sensors of all
the three houses containing 28 sensors. We perform 3 fold
cross validation for the evaluation. More specifically, for
Houses A and C, we train on 10 days of data and test on
5 days of data. For House B, we train on 24 days of data
and test on 11 days of data. The reason for using only 15
days of data from house C is because, the sensors’ views
were obstructed at the 16th day to evaluate obstructed-
view failure (c.f. Section IV-A2). The sensor failure day
is chosen to be the first day of the testing period when
computing true positive and false negative, and the last
day of the testing period when computing false positive
and true negative. Whether it is the first or the last day, we
randomly choose 100 timestamps within that day, fail the
sensor at these timestamps, and show the average results.

The precision of detecting fail-stop failure is shown
in Figure 4. The average precision is 86.87%. The recall
is 100% for all the sensors except sensors F1 and F2, for
which it is 0. The average recall is 92.86%. We see that
our solution detects failure of all the sensors except F1
and F2 of House A. The reason why the solution fails
to detect the failure of sensors F1 and F2 is because
F1 and F2 are in the bedroom of House A and the

dataset of House A doesn’t contain turn on/off events
of any electrical appliances in the bedroom. That’s why
sensors F1 and F2 are not associated with any electrical
appliances and we can not detect the failures of F1 and
F2. Also, the precision is really low for sensor I2 of House
B. I2 is deployed in one bedroom of House B and this
is the only room where instead of using light switches,
a lamp is instrumented with a Zwave plug. We are not
sure if this is the reason or if this is due to the behavior
of the residents, but there were no regularity in intervals
for I2 with respect to the lamp. That’s why although our
solution can detect when the sensor fails, it suffers from a
low precision. However, we see that the solution performs
well for most of the sensors in three houses.

2) Obstructed-view failure: We evaluate the perfor-
mance of detecting obstructed-view failure by simulating
the sensor obstruction in Houses A and B, and by
physically obstructing the views of sensors in House C.
It is different from the fail-stop failure detection in that
the failure takes place for a transient period. In House B,
we train our solution with 15 days of data and test on
the next 20 days of data. Within these 20 days, for each
sensor, we randomly choose a 10 day period for which we
assume that the sensor view is obstructed and we discard
the sensor readings of these 10 days. Since the obstruction
can happen at any time, we randomly choose this 10 day
period 100 times for each sensor and show the average
results. Similarly, for House A, we train our solution with
10 days of data and test on the next 5 days of data. Within
these 5 days, for each sensor, we randomly choose a 3
day period of obstruction when we discard the sensor
readings. We perform it 100 times and show the average
results. At House C, after 15 days of data collection, we
obstruct the views of the 5 motion sensors. This is a
controlled experiment and we consider arbitrary positions
for placing sensors in the home since X10 motion sensors
are do-it-yourself sensors that end users just buy and
place the sensors in their homes without any professional
expertise. The way we obstruct them is shown in Table
III. We train with the first 10 days of data, evaluate false
positive and true negative on the next 5 days of data, we
fail the sensors on the 16th day of data collection at 12:00
PM, and evaluate true positive and false negative on the
next 5 days of data.

Sensor
ID

House
ID

How sensor view is obstructed

J1 C It is mounted at the wall of the living room. A
couch is moved that blocks its view.

J2 C It is mounted at the wall of the dining room.
Some moving boxes are placed in front of it.

J3 C It is mounted at the wall of the kitchen. A cabinet
is opened that blocks its view.

J4 C It is mounted at one cabinet of the kitchen. Its
view is blocked when the cabinet is opened.

J5 C It is mounted at the refrigerator. We assume that
it gets dislodged and someone puts it at the top
of the refrigerator.

TABLE III. EXPERIMENTAL SETUP FOR obstructed-view FAILURE
DETECTION.

The precision of detecting obstructed-view failure is
shown in Figure 5. The average precision is 82.84%. The
recall is 100% for all the sensors except F1, F2, I2, J3,

Fig. 5. Precision of detecting obstructed-view failure at House A
(sensors C1 - H2), House B (sensors I1 - I8), and House C (sensors J1
- J5).

C2, and D1. For sensors F1, F2, I2, and J3, the recall is 0.
For sensors C2 and D1, the recalls are 80% and 85.71%,
respectively. The average recall is 84.49%. We see that
we can not detect the failure of sensors F1, F2, I2, and
J3. The reasons for F1, F2, and I2 are, as described in
Section IV-A1, F1 and F2 are deployed in the bedroom
of House A and the dataset does not contain any turn
on/off events of any electrical appliances of that room,
and sensor I2 is deployed in one bedroom of House B and
there were no regularity in intervals for I2 with respect to
the lamp instrumented with a Zwave plug in that room.
The reason for not being able to detect the failure of
sensor J3 is, although the view of J3 is obstructed and
it can not see any motion, it used to fire every time a
light switch, which is close to J3, is turned on/off. It may
be because the light switch is instrumented with a contact
sensor and turning the light switch on/off causes a change
in the magnetic field of the contact sensor and causes a
small light in front of the contact sensor to blink. We are
not sure exactly what caused J3 to fire every time the light
switch is turned on/off. But it shows a potential caveat of
applying the solution. Appliance selection can be tricky
and if the appliance is close, it may cause disturbances.

3) Moved-location failure: We simulate the behavior
of moved-location failure as in [4] by replacing the failed
sensor’s data with the data produced by the sensor at its
new position. We evaluate it in Houses A and B since the
deployment in these houses spans the whole house. We do
not use House C in this evaluation as it has a small scale
deployment mainly targeted to evaluate obstructed-view
failure detection. We perform 3 fold cross validation for
the evaluation, as described in fail-stop failure detection.

The precision of detecting moved-location failure is
shown in Figure 6. The average precision is 90.53%. The
recall is 95% or more in all these cases, except in E2
→ H1, C2 → C6, H1 → H2, E1 → D1, and I8 → I3,
where the recalls are 91.83%, 55.30%, 0, 85.71%, and
83.71% , respectively. The average recall is 89.09%. We
select a pair of sensors and move the first one to the
position of the second one, e.g., in the first case of Figure
6, sensor G1 is moved to H1’s location. The positions of
sensors along with the floorplan of House A are shown
in Figure 1. The dataset doesn’t offer us the floorplan of
House B. However, from the description, we know that
all the sensors of House B in Figure 6 are in different

Fig. 6. Precision of detecting moved-location failure at House A
(sensors C1 - H2) and House B (sensors I1 - I8).

rooms. Our solution works well if sensors are moved
from one room to another room. However, if a sensor
is moved slightly within the same area, it doesn’t cause
a significant deviation from the distribution of IA and IB
and the solution doesn’t perform well. This is why when
C2 is moved to C6 and H1 is moved to H2, the recalls are
low. Note that small sensor displacement may not make
any difference in application semantics. On these cases,
this type of minor movement is not a movement failure
and is not detected as such.

B. Comparison with state of the art

State of the art solutions that detect failure relevant to
this work either use correlation based technique (RFSN
[5]) or use a classifier based approach (SMART [4]). We
compare our solution with both types of strategies.

1) Comparison with RFSN: Reputation-based Frame-
work for Sensor Networks (RFSN) [5] detects misbe-
havioring sensors by allowing each sensor to maintain
reputation of the neighboring ones. It doesn’t work when
there is no sensor redundancy as each sensor needs to
monitor the correlation with the neighboring sensors to
detect sensor failure. Even if there is sensor redundancy,
if the neighboring sensors are compromised or failed, then
building of the reputation metrics may fall into jeopardy.
To detect the failure of a sensor, our solution doesn’t rely
on any neighboring sensors and it works in presence of
no redundant sensors.

We evaluate the performance of RFSN and Failure-
Sense when multiple sensors experience fail-stop failure
at House A and show it in Figure 7. There are 15 motion
sensors deployed at House A. We vary the number of
failed sensors from 1 to 15. For i number of sensor
failures, we randomly select i sensors, run the experiment
100 times and show the average % of sensor failure
detected by both algorithms in Figure 7. As shown in
Figure 4, FailureSense fails to detect the failure of F1
and F2 sensors, whereas RFSN fails to detect a failure
when all the redundant sensors also fail. It shows that
FailureSense maintains an average of 86.69% sensor
failure detection across all fail-stop sensor failures where
RFSN performance degrades when more sensors fail.

2) Comparison with SMART: SMART[4] detects non-
fail-stop failure by analyzing the relative behavior of
multiple classifier instances trained to recognize the same

Fig. 7. Percentage of sensor failure detected by FailureSense and RFSN
when multiple sensor experiences fail-stop failure at House A.

set of activities based on different subset of sensors.
It requires activity labeling for each house to under-
stand how each sensor relate to each activity, which
is a non-trivial amount of work for the training. We
do not need activity labeling and our solution reduces
the training effort significantly (c.f. Section V-A). Also,
SMART requires training of the classifier instances for
all possible combinations of sensor failure as because
different combinations of sensor failure affect classifier
instances differently. If there are n sensors in a house,
their approach requires 2n − 1 combinations of node
failure analysis, which is not scalable. The authors admit-
ted this limitation and evaluated their solution assuming
single node failure. Our solution overcomes this limitation
as we do not need different training to detect different
combinations of sensor failure. We could not make a
direct comparison with SMART due to the unavailability
of datasets. Because, the dataset we have doesn’t have
activity labeled and the dataset that SMART uses doesn’t
have the turn on/off events of electric appliances. But
admittedly SMART is not scalable in detecting multiple
sensor failure at the same time and the scalability of our
solution is shown above.

V. DISCUSSION

In this section, we discuss several aspects of our
solution including the training effort, latency of failure
detection, availability of smart energy meters, dependency
on human behavior, and generalization of the solution to
detect failure of other types of sensors.

A. Training Effort

We need training effort to accomplish two tasks:
1) Appliance Activation Detection: We need to

know which appliances are turned on/off from the power
infrastructure. The training effort largely depends on the
selection of appliance activation detection technique. For
example, Electrisense [12] can automatically detect and
classify the use of electronic appliances at home from
a single point of sensing at the power wire using EMI
signature. It requires turning on/off five to six times per
appliance and some processing time to capture its EMI
signature, which is very little.
2) Learning Regular Appliance-Sensor Behavior: To

learn regular appliance-sensor behavior and build our
model, we need to collect 30-40 turn on/off events per

appliance. At this phase, the end-user just performs activ-
ities of daily living and our system captures timestamps
of appliance turn on/off events and sensor firings. The
duration of this phase may vary depending on appliance
selection and personal preference of using the appliances.
As an example, we observe that the average and standard
deviation of the frequency of turn on and turn off events
of bathroom light and mudroom light in House A are
16.20 ± 3.80 and 3.13 ± 3.80 per day. Based on the
empirical study on three houses, we conclude that it may
take about 10-15 days of data to build accurate models.

B. Failure Detection Latency

The failure detection latency depends on appliance
selection, the frequency of appliance usage, and the
selection of threshold values. As an example, for the
experimental setup in Section IV-A, the average me-
dian latency of detecting fail-stop, obstructed-view, and
moved-location failures are 20.03 hours, 17.69 hours, and
28.52 hours, respectively. The average median latency
for detecting these three types of failure is 22.08 hours,
which is reasonable for many applications, including re-
mote health monitoring and energy management systems.
However, for emergency health care and security services,
this latency may be inadequate. Usually people purchase
more expensive solutions for these applications.

C. Smart Energy Meter Requirement

Although our solution doesn’t require sensor redun-
dancy, it requires a smart energy meter that can detect
appliance activation events. This requirement may look
like another type of redundancy as such meters are
not widespread yet. However, based on a recent study
[16], the worldwide installed smart electricity meters will
grow at a compound annual growth rate of 26.6 percent
between 2010 and 2016 to reach 602.7 million. As people
are getting more and more conscious about energy usage
and monitoring, smart energy meters may become an
indispensable part of future smart homes.

D. Results with Actual Smart Energy Meter

Our results assume that smart energy meters can
detect appliance activation events with 100% accuracy. In
actual practice, although the state of the art techniques are
not 100% accurate, their accuracy is considerably high,
e.g., 93.82% of ElectriSense [12] and 90% of [13]. Our
solution also assumes that smart meters are more reliable
than the deployed sensors, which we found to be true
based on deployment experience with the eMonitor [7]
energy management and X10 motion and contact sensors.

E. Dependency on Human Behavior

The performance of our solution relies on the behavior
of the residents. If someone turns on all the lights and
never turns them off, then we will not be able to detect
sensor failures. However, based on data collected from
three real homes, we see that people actually turn on and
turn off lights almost everyday and thus it is reasonable to

assume such behavior. However, there may be exceptional
cases. For example, if there is a party, then appliances
may be used in a different way. To handle such excep-
tional cases, we plan to use Exception Flagging [17],
where our solution just ignores the data collected during
such period. If the behavior of the residents change after
the training period, then our performance may degrade.
Putting humans into the loop will allow the system to use
human feedback to distinguish between behavior change
and sensor failure. We consider it our future work.

F. Generalization to other types of sensors

We believe that our solution is generalizable to various
types of sensors:

1) Light Sensor: When a light switch is turned on,
the nearby light sensor should see a sudden increase of
light intensity within a regular period. If the light sensor
is failed, or covered, or moved to some other room, it will
not be able to see that change. We can use this property
to decide if the light sensor has failed.

2) Acoustic Sensor: When someone turns on TV,
radio, washing machine, coffee maker, electric shaver,
food processor, hair dryer, or a microwave oven, the
nearby acoustic sensor should see an increase of sound
intensity or even a sound pattern within a regular period.
We can use this property to assess the failure state of the
neighboring acoustic sensors.

3) Water Fixture Sensor: Sensors that are attached
to various water fixtures, e.g., contact sensor attached to
a faucet in the bathroom/kitchen and sensor attached to a
bathroom flush fire within a short time when water starts
to flow through the water fixture. We can use this property
for assessing the reliability of the water fixture sensors
as we can detect which water fixture is drawing water by
using smart water meter and motion sensors as in [18].

However, the solution may not be adequate detecting
failure of some other types of sensors, e.g., temperature,
humidity, and radio activity. But, a lot of home health
care and energy management systems use motion sensors,
acoustic sensors, and water fixture sensors to monitor
activities of daily living [19] [20] and occupancy patterns
[21] of the residents. Such systems will greatly benefit
from our solution.

VI. CONCLUSIONS

We develop and evaluate a novel failure detection
scheme for sensor network deployments found in smart
homes. The solution addresses not only fail-stop failures,
but importantly, obstructed-view and moved-location fail-
ures; new types of failures common in smart homes that
are very difficult to detect even if sensors are made highly
reliable and barely addressed to date in the literature
or in real deployments. Our solution is the first one to
detect these failures without requiring sensor redundancy
and with minimal training effort. Although our solution
has its own limitations, it is applicable to most of the
common types of sensors found in real deployments
thereby significantly improving the state of art and it
begins to address complicated and realistic sensor failures
with novel insights.

VII. ACKNOWLEDGEMENT

This paper was supported, in part, by NSF Grants
CNS-1319302 and CNS-1239483, and a gift from Parc,
Palo Alto.

REFERENCES

[1] T. W. Hnat, V. Srinivasan, J. Lu, T. I. Sookoor, R. Dawson,
J. Stankovic, and K. Whitehouse, “The hitchhiker’s guide to
successful residential sensing deployments,” in SenSys, 2011.

[2] S. Rost and H. Balakrishnan, “Memento: A health monitoring
system for wireless sensor networks,” in SECON, 2006.

[3] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler,
and D. Estrin, “Sympathy for the sensor network debugger,” in
SenSys, 2005.

[4] K. Kapitanova, E. Hoque, J. A. Stankovic, S. H. Son, and
K. Whitehouse., “Being SMART about failures: Assessing repairs
in smart homes,” in UbiComp, 2012.

[5] S. Ganeriwal, L. K. Balzano, and M. B. Srivastava, “Reputation-
based framework for high integrity sensor networks,” ACM Trans.
Sen. Netw., 2008.

[6] TED. http://www.theenergydetective.com.
[7] eMonitor. http://www.powerhousedynamics.com.
[8] B.-R. Chen, G. Peterson, G. Mainland, and M. Welsh, “Livenet:

Using passive monitoring to reconstruct sensor network dynam-
ics,” in DCOSS, 2008.

[9] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair,
S. Zahedi, E. Kohler, G. Pottie, M. Hansen, and M. Srivastava,
“Sensor network data fault types,” in ACM Trans. Sen. Netw.,
May 2009.

[10] S. Guo, Z. Zhong, and T. He, “Find: faulty node detection for
wireless sensor networks,” in SenSys, 2009.

[11] G. Hart, “Nonintrusive appliance load monitoring,” in Proceed-
ings of the IEEE, December 1992.

[12] S. Gupta, M. S. Reynolds, and S. N. Patel, “Electrisense: single-
point sensing using EMI for electrical event detection and clas-
sification in the home,” in UbiComp, 2010.

[13] S. N. Patel, T. Robertson, J. A. Kientz, M. S. Reynolds, and G. D.
Abowd, “At the flick of a switch: detecting and classifying unique
electrical events on the residential power line,” in UbiComp,
2007.

[14] Y. Kim, T. Schmid, Z. M. Charbiwala, and M. B. Srivastava,
“Viridiscope: design and implementation of a fine grained power
monitoring system for homes,” in UbiComp, 2009.

[15] X. Jiang, S. Dawson-Haggerty, P. Dutta, and D. Culler, “Design
and implementation of a high-fidelity AC metering network,” in
IPSN, 2009.

[16] IntelligentUtility report. http://www.intelligentutility.com/magazi
ne/article/253959/6027-million-installed-smart-meters-globally-
2016.

[17] R. Yang and M. W. Newman, “Learning from a learning thermo-
stat: Lessons for intelligent systems for the home,” in UbiComp,
2013.

[18] V. Srinivasan, J. Stankovic, and K. Whitehouse, “Watersense:
Water flow disaggregation using motion sensors.” in BuildSys,
2011.

[19] B. Logan, J. Healey, M. Philipose, E. M. Tapia, and S. Intille,
“A long-term evaluation of sensing modalities for activity recog-
nition,” in UbiComp, 2007.

[20] D. Cook and M. Schmitter-Edgecombe, “Assessing the quality
of activities in a smart environment,” Methods of Information in
Medicine, 2009.

[21] J. Lu, T. Sookoor, V. Srinivasan, G. Gao, B. Holben, J. Stankovic,
E. Field, and K. Whitehouse, “The smart thermostat: using
occupancy sensors to save energy in homes,” in SenSys, 2010.

