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Abstract—Recent advances in energy transfer tech-
nology is boosting the development of renewable sensor
networks. To sustain such a network, a mobile robot
travels from node to node to recharge each sensor before
its battery runs out. Consider each node’s recharge as
a real-time task; the robot needs to serve these tasks
by their deadlines. This represents a class of challenging
mobility scheduling problems, where the nodes’ deadlines
and spatial distribution are often at odds with each other.
In this paper, we focus on the scenario where nodes have
heterogeneous energy consumption rates, and our goal is
to maximize the percentage of nodes alive. We formulate
this scheduling problem and prove its NP-completeness.
To solve this problem, we propose a spatial dependent
task scheduling algorithm, which quantifies the impact
of scheduling proximate tasks on the other tasks. With
extensive simulations, we reveal the trade-offs of existing
solutions under a wide range of network scenarios. Our
evaluation results show that our algorithms out-perform
classical TSP scheduler by up to 10% and 85% in terms
of coverage ratio and average tardiness, respectively.

Keywords—Mobile Charger Scheduling, Real-Time,
Spatial Dependent Task

I. INTRODUCTION

Mobile robots are widely used in wireless sensor
networks [1–3], such as data mules [4–6] and event
response [7]. Typically, a robot processes tasks by
visiting nodes one by one in the network. In this
paper, we investigate one instance of such mobility
scheduling problems: the mobile charging application,
where a mobile robot recharges each sensor node to
replenish its battery storage. Compared with existing
energy harvesting technologies like solar power, mobile
charging provides more robust energy delivery in case
of high workloads, and is less affected by evening
or cloudy weather when solar energy is unavailable.
Sensor network applications usually require a certain
percentage of alive nodes and nodes may have different
energy consumption rates. To address these realistic
issues, we consider the mobile charger scheduling
problem: given each recharge as a real-time task, find
the traveling path that allows the mobile robot to

process these tasks so that the percentage of alive
nodes is maximized. As both deadlines and spatial
distributions of nodes affect the selection of traveling
path, this problem is very challenging.

We firstly formulate the mobile charger scheduling
problem, then prove its NP-completeness. The solution
to this problem depends on the relative ratio between
the traveling time of the charger and the battery lives
of the sensor nodes. If the traveling time to traverse
the network is much shorter than the battery lives of
the sensor nodes, then no nodes require more than
one recharge in each round. The scheduling problem is
reduced to the Traveling Salesman Problem with Time
Window[8], which was studied before. On the other
hand, if the traveling time is larger than some or all
of the sensor nodes’ battery lives, this problem gets
more complicated because each time a sensor node
is charged, its deadline is reset. In this case, we aim
at finding schedules responding to such dynamically
generated deadlines[6], and maintain high percentage
of alive nodes over time. To reveal the complexity
of the problem, we investigate the performances of
existing solutions, such as the Earliest Deadline First
(EDF) and Traveling Salesman (TSP) types of algo-
rithms. We show EDF scheduler rescues urgent nodes,
but does not take spatial distribution of nodes into ac-
count. Whereas, TSP scheduler minimizes the traveling
cost, but fails to respond to the most urgent node in
time. Therefore, it is essential to consider spatial and
temporal constraints together in this scenario.

To address this problem, we propose a spatial de-
pendent task model to quantify the impact of schedul-
ing proximate tasks on the other tasks. Intuitively, the
traveling time for recharging nearby urgent nodes is
less than faraway urgent nodes. Therefore, we can
optimize the recharging schedule based on the prox-
imity and density of nodes. With the spatial dependent
task model, we design the Spatial Dependent Task
scheduler. It first identifies clusters of nodes such
that recharging them maximizes the network energy
level, then computes the traveling path to reach these



clusters, such that more nodes can be recharged without
incurring much detour.

We implemented a comprehensive simulation
framework, and conducted extensive trace-driven ex-
periments to test different scheduling algorithms under
various settings. The simulation uses energy consump-
tion data traces, which are collected from real sensor
network deployments. Experimental results show that
our SDT scheduler outperforms the classical shortest
route scheduler (TSP) by up to 10% coverage ratio,
and reduces the average tardiness by up to 85%. The
contributions of this paper are listed as follows:

• We define the mobile charger scheduling prob-
lem based on realistic sensor network con-
straints, and prove its NP-completeness.

• We propose the Spatial Dependent Task
scheduling algorithm that finds a good trade-
off between spatial distribution and real-time
urgency of recharge requests.

• With energy consumption traces from real
sensor network deployments, extensive simula-
tions are conducted to compare our algorithms
with five representative baseline solutions. Sig-
nificant improvements in both coverage ratio
and average delay are achieved.

II. RELATED WORK

Mobile charger scheduling algorithms were pro-
posed to sustain the operation of sensor networks [9–
11]. There have been many variants of the mobile
charger scheduling problem, depending on the sets of
assumptions and optimization goals adopted. Zhang et
al. [12] propose algorithms to minimize the number
of mobile chargers necessary to keep all the sensor
nodes alive in a 1-d space. In [13], the authors assume
that the charging time for sensor nodes is much longer
than the mobile charger’s traveling time, and thus the
scheduling algorithms are less focused on the spatial
aspects of the problem. In [14] and [15], the authors
assume that the mobile charger can recharge all the
sensor nodes lying within a distance, and their opti-
mization goal is to minimize the time it takes for each
round of recharge. In their recent paper [16], He et al.
consider the heterogeneous power of the sensor nodes.
They divide the sensor nodes into different groups,
and apply TSP algorithms to recharge nodes within
each group. In [6, 17], Somasundara et al. formulate
the mobile element scheduling problem, which is very
close to our problem formulation in that the deadlines
of the nodes are generated periodically. They formulate
it into an integer programming problem, and propose
several heuristic algorithms.

In this study, our optimization goal is maximize
the number of active nodes. Whereas, in most of the
previous research, the goals are to optimize recharge

efficiency while regarding the sensor node deadlines as
hard deadlines. However, in many realistic scenarios,
especially when the charging workload is heavy, not
all the deadlines of sensor nodes can be satisfied. In
this scenario, the deadlines are considered soft, and our
algorithm design goal is to maximize the percentage
of active nodes. Besides, we assume that the charging
time is zero, meaning that the mobile charger finishes
charging a node as soon as it arrives at its location. Our
algorithms can be easily extended to constant non-zero
charging times, by increasing the traveling time by a
constant amount.

Traveling Salesman Problem is one of the most in-
tensively studied problems in Computational Geometry
[18][19]. The one variant that relates to our problem
most closely is the Traveling Salesman Problem with
Time Window (TSP-TW). In [20], the author sum-
marizes the insertion and mutation heuristics to find
schedules. In [21], Bar-Yehuda et al. firstly provide
an O(log n) approximation algorithm in 1-d case, then
design an algorithm that depends on how densely the
vertices are located. In [8] and [22], the authors study
the Max-Prize Path (Orienteering) problem, where the
problem goal is to find a path that visits the maximum
number of nodes before a common deadline. In [23],
Bansal et al. design an O(log n) algorithm for the
deadline-TSP, which is a more general problem than
the orienteering problem, since each node has its own
deadline.

However, the mobile charger scheduling problem
is different from the TSP-TW. In the TSP-TW, all
the deadlines are known and fixed before scheduling.
Many existing approximation solutions rely heavily on
this assumption [21][8][22][23]. On the other hand,
for the mobile charger scheduling problem, the future
deadlines are not known as a priori. Before scheduling,
the mobile charger only knows the current deadlines,
which are the time moments when the sensors drain
out their residual energy. However the next deadlines
are determined only after the sensor nodes receive
recharge. As a result, the solutions to TSP-TW cannot
achieve the same performance bound when applied in
our problem. In spite of that, the solutions to the TSP-
TW problem provide valuable inspirations for us. We
adopt the basic ideas of schedule insertion, density- and
path-based target search in our SDT scheduler design.

III. PROBLEM DESCRIPTION

In this section, we firstly formulate the mobile
charger scheduling problem. Then we proceed to prove
its hardness by reducing the Traveling Salesman Prob-
lem (TSP) to it.

A. Problem Formulation

Network Model: The wireless sensor network is
modeled by a list of nodes vi ∈ V, i = 1, 2, ..., N ,



where N = |V |. The network is deployed in a 2-D
Euclidean plain. We use the matrix D to represent the
traveling costs between nodes, where dij is the distance
between the nodes vi and vj . There is a single mobile
charger with unit traveling speed traversing the network
to conduct recharge. We use a vector xk to represent
the location of the mobile charger at the end of time
interval k. xki = 1 if the mobile charger recharges node
vi, and xkj = 0 for j 6= i.

The length of time interval k is represented by
∆tk = xk−1T · D · xk, which is the mobile charger’s
traveling time. Depending on the different distances be-
tween two nodes, the traveling time ∆tk also changes.
k = 1, 2, ...,W , where W represents the number of
steps we conduct scheduling.

We use eki to represent the residual energy stor-
age node i at the end of time interval k. The en-
ergy consumption of node i is represented by eki =
max(0, ek−1i − ∆tkrk−1i ). When a node is being
recharged, its residual energy storage increases to its
full capacity Emax. During the time interval k, we
assume a node’s energy consumption rate rki to be a
constant.

In this paper, we adopt the assumption that the
charging time is zero, which means that each time the
mobile charger arrives at a node vi, it charges ck units
of energy to the node immediately. However, the node’s
residual energy eki cannot exceeds its battery capacity
Emax. Since the charging time is zero, in our problem
formulation there will be no cost associated with the
value of ck. In sum, the residual energy of the network
can be described using the following equation:

eki = max(0, ek−1
i − (xk−1T ·D · xk)rk−1

i + xki ck). (1)

Optimization Goal: A sensor network needs to
maintain certain percentage of active nodes in order
to achieve high level of monitoring. In this paper, our
primary goal of algorithm design is to maximize the
average coverage ratio of the sensor network over any
given any scheduling window [0, TW ]. In other words,
we continue scheduling until

∑W
k=1 ∆tk ≥ TW and∑W−1

k=1 ∆tk < TW is the time window we conduct
scheduling.. The coverage ratio is defined as the per-
centage of nodes that have non-zero battery storage.
Specifically, the coverage ratio can be calculated using
the following equation:

BC =

W∑
k=1

|ek|0/N. (2)

In some cases, when the charging workload is
small, the mobile charger is able to ensure 100%
coverage ratio. Under this condition, the optimization
goal will be to maximize the overall residual energy of
the network, which is shown in the following equation:

BE =

W∑
k=1

|ek|1/N. (3)

Since our primary optimization goal is coverage
ratio BC , we will assign a small weight to the overall
residual energy BE . When the coverage ratio is main-
tained to be 100%, the overall residual energy gains
more importance.

Mobile Charger Scheduling Problem: Given a sen-
sor network V with parameter Emax, N , rki , and D,
and a single mobile charger with unit traveling speed,
find a schedule of the mobile charger that maximizes
the average coverage ratio over any given time window∑W

k=1 ∆tk. The mobile charger scheduling problem is
formulated as follows:

max
xk,ck

= BC + βBE

=
∑W

k=1(|e
k|0 + β|ek|1)/N

s.t. e0i = Emax, i = 1, 2, ...N
eki = max(0, ek−1

i − (xk−1T ·D · xk)rk−1
i + ckx

k
i ),

i = 1, 2, ...., N, k = 1, 2, ...,W,
eki ≤ Emax, i = 1, 2, ...., N, k = 1, 2, ...,W,
1T
Nxk = 1, k = 1, 2, ...,W
xki ∈ {0, 1}, i = 1, 2, ...., N, k = 1, 2, ...,W,
0 ≤ ck ≤ Emax, k = 1, 2, ...,W.

(4)
This is a problem of maximizing a convex function

over a convex set, which cannot be solved using
standard convex optimization techniques. Besides, the
constraint xki ∈ {0, 1},∀k adds additional complexity
to the problem. Furthermore, due to the changes in
environment in realistic applications, it will be difficult
to have an accurate estimation of the energy consump-
tion rates rki . Therefore, the mobile charger needs to
be able to adjust its schedules adaptively according to
the network’s dynamic needs. In this paper, we aim
to design light-weighted algorithms that respond to
the environment dynamics automatically and achieves
good performance.

B. Problem Hardness

To prove the NP-completeness of the mobile
charger scheduling problem, we will reduce the Travel-
ing Salesman Problem to it. The decision version of the
mobile charger scheduling problem and the Traveling
Salesman Problem are stated as follows.

Decision Version of the mobile charger scheduling
problem: given a set of sensor nodes V deployed in a
2-D plain, each node vi ∈ V has battery capacity Emax

and constant energy consumption rate ri. At time zero,
all the sensor nodes have full battery storage, and the
mobile charger starts at node v0. The question asks
whether or not there exists a schedule such that the
mobile charger can charge and maintain all the nodes
alive during the time window [0, L].

Decision Version of the Traveling Salesman Prob-
lem: Given a list of vertices V ′, a starting point



v′0 ∈ V ′, and a distance limit L, the question asks
whether there exists a route no greater than L that visits
each vertex exactly once.

Theorem 1. The Decision Version of the mobile
charger scheduling problem is NP-complete.

Proof: Firstly, we will show that this problem
belongs to NP. Given any schedule, we calculate the
times of recharge t1, t2, ...tW for each time interval k.
We define a virtual recharge time t0 = (e0i−Emax)/ri.
Then we proceed to compare the adjacent recharge
gaps ∆tk, k = 1, 2, ...W with the node’s battery life
Emax/ri. If all the recharge gaps are smaller than the
battery life, it means the node vi will never run out
of energy. We repeat this process for all nodes in V
to determine whether the schedule can maintain 100%
coverage ratio. This certifier has a polynomial-time
computational complexity of O(|V |2), so the mobile
charger scheduling problem belongs to NP.

Then we conduct the reduction from the TSP
problem. Given any instance of Traveling Salesman
Problem V ′, L and v′0, we construct an instance of
mobile charger scheduling problem V , ri in the fol-
lowing way: Set V = V ′, and the distances between
nodes in V are set to be the same as those in V ′. The
energy consumption rates of all the nodes in V are set
to be Emax/L, and the time window is set to W = L.

In what follows we show that the solutions to
the two problems are equivalent in two steps. Step
1: If there exists a solution C ′ to the TSP problem
instance V ′, L, we apply the same route C ′ to the
mobile charger scheduling problem V . Following the
schedule C ′, the mobile charger visits each sensor node
exactly once in one cycle, which takes time at most L.
Since all the sensor nodes have the same battery life
L, the schedule C ′ ensures that all the sensor nodes
are recharged before their batteries drain out. In other
words, C ′ is a feasible solution for the mobile charger
scheduling problem V .

Step 2: If C is a feasible solution for the mobile
charger scheduling problem V , we can see that each
sensor node must be recharged at least once. Otherwise
the coverage ratio will be smaller than 100%. Then we
make a minor change to route C to make it a feasible
solution to the TSP instance V ′. We firstly scan the
route C to see if any vertex is visited more than once.
For any vertex v′i that is visited before, we update the
route C by making a short cut that connects its previous
vertex vpi and next vertex vai directly. According to
the triangle inequality, this operation will not increase
the length of C. We repeat this process to update C
until no more duplicated vertices exist. This process has
polynomial time complexity of O(|V ′|). In this way,
we ensure that C visits all nodes in V ′ exactly once,
and the total length of C is no more than L. Therefore
C is a feasible solution to the TSP problem instance
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V ′.

We show that the mobile charger scheduling prob-
lem can be reduced from the traveling salesman prob-
lem, which means it is a NP-hard problem. In sum, the
mobile charger scheduling problem is NP-complete.

IV. MOTIVATING EXAMPLE

In this section, by testing the classical EDF and TSP
schedulers using simple examples, we demonstrate that
both spatial and temporal closeness must be considered
in the mobile charger scheduling problem. Figure 1a,
1b, and 1c show three scenarios: (a) a network of
nodes with the same energy consumption rate, (b) a
network with a cluster of nodes that have high energy
consumption rates, and (c) a network with two clusters
of nodes that have high energy consumption rates.
The result is shown in Figure 1e. The EDF and TSP
schedulers are defined as follows:

Earliest Deadline First (EDF) scheduler: In
the EDF[24] scheduler, the mobile charger always
recharges the node vi with the shortest deadline eki /r

k
i .

Shortest Path (TSP) scheduler: The TSP
Scheduler[25][19] firstly uses a heuristic to generates
an approximately shortest path that visits all nodes,
then the mobile charger follows this path to recharge
each node it encounters.

Spatial Considerations: To achieve good schedul-
ing performance, the scheduler needs to find short
routes that reduce the traveling time and improves
recharge efficiency. This is illustrated in Figure 1a,
where all the sensor nodes have the same energy con-
sumption rate. In this case, the TSP scheduler achieves
99% coverage ratio. However, if the EDF scheduler
is applied instead, the average coverage ratio will be
degraded to around 82%. This is because the mobile
charger’s schedule is driven purely by deadlines. It



travels back and forth to save the dying nodes without
considering the nodes’ location information.

Temporal Considerations: The mobile charger
scheduling problem is also a real time scheduling
problem because each sensor node has its own deadline
that needs to be satisfied. Therefore, a good scheduler
needs to take into account the time constraints. As an
example, we apply the EDF scheduler to the scenario
in Figure 1b. In this case, the mobile charger spends
most of its time recharging nodes with high energy
consumption rates, and achieves good performance.
However, if we apply the TSP scheduler in this same
network, the coverage ratio is reduced to around 84%.
This is because it fails to take into account the different
urgency of nodes.

In scenario 1c, which has two clusters of nodes
with high energy consumption rates, neither scheduler
performs well. When the EDF scheduler is applied, the
mobile charger travels between the two clusters back
and forth, which results in long traveling times. After
some time, many low-power nodes in the network run
out of battery, and a dramatic drop in coverage ratio
occurs. On the other hand, when the TSP scheduler is
applied, the high power nodes do not receive enough
recharge, while the lower power nodes receive recharge
more than needed. As a result, the coverage ratio fluc-
tuates at a lower level. This example demonstrates that
both spatial and temporal aspects of the network need
to considered when designing a scheduler. Otherwise
the recharge performance will be greatly compromised.

V. ALGORITHM DESIGN

In this section we present the development of the
innovative Spatial Dependent Task (SDT) Scheduler.
The SDT scheduler firstly identifies the most urgent
node cluster as the recharge goal, then optimizes the
traveling path of the mobile charger based on path
priority so that more nodes can be recharged while
not incurring much overhead. By doing so, we aim
to achieve a balance between the needs to respond
to urgent nodes quickly, and to reduce the traveling
time. In what follows, we firstly quantify the mutual
influence among spatially distributed recharge tasks
using Cosine Rule. We discover that there exist two
conditions, termed Node Cluster and Nodes Near Path,
which can be used to improve scheduling performance.
Based on these observations, we design the high per-
formance Spatial Dependent Task (SDT) Scheduler.

A. Spatial Dependent Task Model

In the mobile charger scheduling problem, the
processing times (traveling time) of different recharge
tasks are mutually dependent, which distinguishes it
from many other real time scheduling problems. We
can quantify the mutual dependency of the spatially
distributed recharge tasks. As we can see in Figure 2a,

(a) Cluster Dependency (b) Path Dependency

Fig. 2: Task Spatial Dependency

the traveling time for node vj changes from dsj to
dij if the mobile charger moves from node vs to vi
first. According to Cosine Rule, the value of dij is
determined by the following equation:

dij =
√
d2si + d2sj − 2dsidsjcosγ. (5)

Equation 5 can be applied to determine how the
traveling times of the recharge tasks evolve as the
mobile charger travels in the network. In what follows,
we introduce the node cluster and nodes near path
based on this equation.

1) Cluster Dependency: When the sensor nodes are
densely distributed in a small area, recharging one node
can reduce the traveling time of nearby nodes. For
instance, in Figure 2a, if the mobile charger recharges
vi, then the traveling times of all other nodes around
vi will be greatly reduced as well. We take the node vj
in this figure as an example. We can see ∠vivsvj ≈ 0
and dsj ≈ dsi. According to Equation 5, dij ≈ 0.
This means that the traveling time for node vj will be
decreased to near zero if the mobile charger recharges
node vi first.

Inspired by this observation, we propose that when
looking for targets, the mobile charger should take into
account the energy information of the nodes’ neigh-
bors. The closer two nodes are located to each other,
the larger mutual influence they have. Specifically, the
cluster priority of a node vi is defined as follows:

P c
vi(k) =

∑
vj∈cluster(vi) w(j) ∗ (Emax − ekj )∑

vj∈cluster(vi) w(j)
/
√
dsi.

(6)
In this equation, Emax− ekj is an estimation of the

amount of energy node vj can receive. This is then
weighted by the term w(j) = (dcluster−dij)/dcluster,
which is an estimation of the mutual influence on
traveling time for neighboring nodes. cluster(vi) is
defined as the set of nodes located in the neighborhood
of node vi. In this paper, the neighborhood is defined as
a circular disk with radius dcluster centered around vi.
Finally, the cluster priority is divided by

√
dsi, which

is to penalize clusters lying far away.

2) Path Dependency: When nodes are lying close
to the mobile charger’s traveling path, as shown in
Figure 2b, these nodes can be inserted to the recharge
schedule without incurring much extra overhead. For
example, if the mobile charger travels from node vs



to vj directly, the traveling time is dsj . Instead, if the
mobile charger recharges both node vi and vj , then the
total traveling time is dsi+dij , which is approximately
the same as dsj . Specifically, according to Equation 5,
when γP = ∠vsvivj ≈ π, we have:

dsj =
√
d2si + d2ij − 2dsidijcosγP

≈
√
d2si + d2ij + 2dsidij

= dsi + dij .

(7)

This means node vi can be recharged incidentally
with small overhead when the mobile charger is trav-
eling to node vj . In order to quantify the benefits,
we need to consider both the distances between nodes
and their battery storage. We quantify the benefit of
recharging a node vj near the path as Emax − ekj −
xk−1TDxk|r|k1 . In this equation, Emax − ekj is the
amount of energy that node vj can receive. D is the
node distance matrix, and xk−1TDxk is the traveling
time for node vj . |r|k1 represents energy consumption
rate of the entire network. The physical interpretation
of this function is the net increase of the energy of
the network when the mobile charger charges node vj .
Based on this function, we can define the path priority
and the mobile charger’s traveling graph. Assume
the mobile charger recharges nodes along the path
l = [v∗1 , v

∗
2 , ..., v

∗
n], and the distance between node v∗i

and v∗j be dv∗
i ,v

∗
j

then the priority of this path l is
defined as follows:

P p
l (k) =

∑
vj∈l

(Emax − ekj − dv∗
j−1,v

∗
j
|r|k1). (8)

Given a target node vt, our next step is to find a
path for the mobile charger to travel. Our goal of path-
finding is to maximize the benefit defined in Equation
8, while not incurring much detour from reaching vt.
To achieve this goal, we define the traveling graph that
the mobile charger can travel so that length of detours
can be reduced. Specifically, assume the mobile charger
is located at node vs and has a schedule to recharge
node vt. A directed edge edge(vi, vj) exists from node
vi to vj if and only if ∠tij < γp and djt < dit. Intu-
itively, this means the mobile charger can only travel
to nodes lying in the fan-shaped area centered around
the segment vivt, and has closer distance to the target
node vt. Using this definition, the traveling graph is a
Directed Acyclic Graph (DAG). Finally, we assign the
path priority defined in Equation 8 to each of these
edges, and apply the critical path algorithm on this
graph to find the path that has maximum overall path
priority. Note that although polynomial-time longest
path algorithm does not exist in general graphs, a linear
time complexity longest path algorithm, which is based
on Dijkstra’s algorithm, is available for DAG [26].

B. Spatial Dependent Task Scheduler

Based on the cluster priority and path priority, we
design the Spatial Dependent Task scheduler. It consists

Algorithm 1 Spatial Dependent Task Scheduler

Input: Initial location of MC s
Output: schedule: v1, v2...vt

1: for all vi ∈ V do
2: calculate P c

vi(k)
3: end for
4: vt ← max

vi∈V
P c
vi(k)

5: Update edges of travelling graph
6: Use Longest Path algorithm to find highest priority

path l from vs to vt in V
7: return [l, vt]

of two basic steps: 1) create a schedule using the clus-
ter priority, and 2) optimize the schedule by selecting
travelling path with highest path priority. Specifically,
the SDT scheduler is defined in Algorithm 1.

The SDT scheduler firstly searches for the node
vt with highest cluster priority defined in Equation 6.
After vt is found, the edges of the travelling graph
is updated, and priorities of the edges are computed
according to the definition of travelling graph and
path priority in Section V-A2. Finally, Critical Path
Algorithm (longest path algorithm) is applied to search
for the path that has the maximum path priority from
the mobile charger’s location vs to the target node
vt. The mobile charger will follow this schedule to
recharge sensor nodes. When it arrives at the node vt,
it will invoke the SDT scheduler again for the next
schedule.

VI. EVALUATION

A. Experiment Set-Up

In order to test the mobile charger schedulers, we
implement a simulation framework, with the param-
eters collected from realistic systems. We randomly
generate the sensor nodes’ energy consumption rates.
At the start of each scheduling interval, we randomly
pick an consumption rate value from the history record
of real sensors from [27]. We assume the energy
consumption rates remain static during each schedul-
ing interval. The average energy consumption rate is
around 0.12W . For high workload sensors, we scale the
energy consumption rate to 6 times of normal ones. We
assume the battery capacity is 10KJ , and the mobile
charger is moving at a constant speed of 0.35m/s.

To achieve comprehensive evaluation, we test the
scheduling algorithms under various different scenar-
ios. Each network has 225 sensor nodes, and is de-
ployed in grid topology. The areas of deployment
regions range from 0.25km2 to 4km2. To simulate
the performances under high workloads, we divide the
network into 9 equal-size clusters, and assign from
0 to 4 clusters of nodes to have high workloads. In
each experiment, we conduct W = 10000 times of



scheduling. The coverage ratio and other evaluation
metrics are recorded at the end of each scheduling in-
terval, which are used for the calculation of the statistic
values like average and standard deviation. Although
the total scheduling time window [0,

∑W
k=1 ∆tk] will

have different lengths for different algorithms, the
effects on the final statistics will be small because W is
a large value. We repeat this experiment three times for
each scheduling algorithm in order to get an average
value.

B. Baseline Algorithms

Besides the TSP and EDF scheduler introduced in
Section IV, we compare two more existing solutions
in this section.

Nearest Insertion The Nearest Insertion Algorithm
achieves 2-approximation ratio for the TSP[19]. This
heuristic is also applied in the TSP with Time Window
(TSP-TW)[28] and the Dynamic Vehicle Routing[20].
In this paper, we apply this heuristic to improve the
EDF scheduler, which is termed EDF-I. Specifically,
assume the mobile charger is located at node vs and the
target node found by EDF is vi. Then EDF-I searches
the node vj that minimizes the detour Wj = dsj +dji.
If Wj is smaller than the life time of vi, then the node
vj will be recharged before vi. Otherwise the mobile
charger will not insert any node.

Maximum Response ratio First (MRF) This sched-
uler defines the priority of each task to be dependent on
both its processing time and waiting time. MRF is able
to prevent indefinite postponement[24]. In this paper,
we define a node vi’s priority using the response ratio
Wi = wtki /dsi, where the waiting time wtki is defined
as the length of time since the previous recharge.

C. Coverage Ratio

1) The Influence of Workload: We firstly evaluate
the algorithm performance when the networks are de-
ployed in an area of 1km2, with from 0 to 4 clusters of
heavy-workload nodes. The results are shown in Figure
3. When the number of clusters increases, we can
easily find that TSP scheduler’s performance degrades
seriously, from 100% of coverage ratio to 76%. The
reason is that TSP scheduler recharges all sensor nodes
at the same frequency, regardless of the fact that they
have different energy consumption rates. When all the
nodes have the same energy consumption rate i.e.,
the case with zero cluster of heavy-workload nodes,
TSP achieves good performance because it reduces the
overall traveling time. However, when the nodes have
increasingly polarized energy consumption rates, i.e.,
the case with four clusters, more and more nodes fail
to receive sufficient energy and thus run out of energy,
while others are recharged more than needed. As a
result, TSP’s performance drops dramatically. On the
other hand, we can see that when the number of clusters
ranges from 2 to 4, SDT scheduler outperform TSP by
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Fig. 3: The Influence of High-Workload Clusters

10%. This shows that when the workloads in certain
areas of the network increase, SDT scheduler is able to
adjust schedules accordingly, and spends most of the
time on the nodes that have heavy workloads. As a
result, the coverage ratio is improved.

We can also see that the standard deviations of
coverage ratio of MRF, EDF and EDF-I are large.
For example, when the network has 1 cluster of high
power clusters, MRF, EDF and EDF-I have standard
deviations of 4%, 9% and 8%, respectively. This shows
that during the recharge process, the coverage ratio
is fluctuating. On the other hand, the SDT scheduler
achieves only 2% standard deviation, which indicates
much better stability in coverage ratio. This reveals the
drawbacks of applying greedy-search-based schedulers
to the mobile charger scheduling problem: The mobile
charger is driven by the local optimum of its goal, while
ignoring the other areas of the network. For example,
when EDF is applied, it will spend most of its time
recharging nodes with high power consumptions, until
a large number of lower-power nodes begin to die,
which results in a large drop in coverage ratio.

2) The Influence of Network Scale: As the network
scale increases, the time it takes for the mobile charger
to travel between sensor nodes also increases. In this
experiment, we compare the algorithm performance
under different network scales from 0.25km2 to 4km2.
We can see that SDT achieves over 97% coverage ratio
when the network scale ranges from 0.25km2 to 2km2,
which outperforms all other algorithms. It shows that
SDT maintains good performance gracefully under
cases that require more traveling time.

When the sensors are deployed in an area of 4km2,
then the TSP scheduler achieves the best performance
among all, which is 91%. This is because when the
TSP scheduler is traveling along efficient routes, which
reduces the influence of the increase of traveling dis-
tance. This benefit is more evident when the network
scale grows large.

We can also see that the Insertion heuristic provides
a valuable improvement on scheduling performance.
EDF-I has a better performance than EDF when the
network scale is from 0.25km2 to 2km2. When the net-
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work scale is 4km2, they have similar performance, at
87% of coverage ratio. The reason is that the insertion
heuristic is able to improve the recharge efficiency by
recharging a node lying close to the mobile charger’s
existing schedule. However, the costs of detours in-
curred by insertion are not negligible in large scale
networks. Therefore, performance degradation occurs.

3) Relation Between Spatial and Temporal Close-
ness: To further explore the differences among these
scheduling algorithms, we deploy sensor nodes ran-
domly within an area of 1km2, with 2 clusters of
heavy-workload clusters. We plot the relations between
deadlines and processing times for SDT, EDF, TSP and
MRF in Figure 5. In these figures, each point represents
the traveling time and deadline of a node when it is
being recharged. We use negative deadlines to indicate
that the sensor nodes are already our of battery when it
is recharged, and the absolute values of such negative
deadlines represent the length of tardiness.

From Figure 5a, we can see that SDT achieves a
trade off between processing time and deadline. Due to
the application of cluster priority, the mobile charger
sometimes takes long trips to rescue urgent nodes,
while for most of the time it recharges nearby nodes
so that the travelling cost can be minimized. Besides,
we can also see that the traveling time of SDT is short,
which is similar to that of TSP. The reason is that SDT
applies path priority to optimize its schedules. Using
path priority, SDT automatically searches for nodes
that can be recharged without incurring much extra
traveling overhead. As a result, the traveling efficiency
is improved.

From Figure 5b, we can see that the EDF scheduler
frequently takes long trips to rescue urgent nodes,
because it focuses much on deadlines of nodes while
ignoring the node distances. EDF-I improves the per-
formance slightly by inserting nodes near the path.
However, since it inserts at most one node in each trip,
the performance improvement is not significant. On the
other hand, SDT inserts large amounts of nodes into
its schedulers so that it significantly reduces inefficient
trips.

From Figure 5c, we can see that the nodes sched-
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uled by TSP are clustered into two groups: one group
of nodes have large negative deadlines, and the other
large positive ones. Although TSP ensures short pro-
cessing times for all the nodes, a large number of
nodes are recharged after they have been starved for
about 5 hours. The reason is that TSP scheduler fails
to respond to these nodes’ heavy workloads quickly
enough. Instead, it spreads its charging power equally
among all the nodes, regardless of their different energy
consumption rates.

D. Average Tardiness

In order to evaluate the real-time performance of
the schedulers, we apply the average tardiness as a
metric. The tardiness Ti(t) of a node i is defined using
the following equation:

T k
i =

{
0 if eki > 0

t− tmi if eki = 0,
(9)

where tmi denotes the moment when node i’s residual
energy level drops to zero, if eki = 0. We compute
the average tardiness over all the sensor nodes and
over time. In Figure 6, we show the results of average
tardiness for the schedulers when network scale ranges
from 0.25km2 to 2km2, with two clusters of heavy
workload clusters.

In this figure we can see that the SDT scheduler
achieves the lowest tardiness among all the schedulers.
When the network scale is 0.5km2, 1km2 and 2km2,
the SDT scheduler reduces at least 85% of the tardiness
of the TSP scheduler. This demonstrates that compared
with TSP, SDT responds to the urgent nodes much
more quickly.

We can also see TSP scheduler’s average tardiness
is also significantly larger than MRF, EDF and SDT,
especially when the network scale is 1 or 2 km2. This
is because when using TSP under these cases, the nodes
with heavy workloads are receiving far less energy than
needed. As a result, they die out quickly and receive
insufficient recharges, which creates large tardiness.

Interestingly, the MRF scheduler results in large
average tardiness in our experiments, although in real-
time processor scheduling problem, the MRF scheduler
is supposed to eliminate process starvation [24]. When
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Fig. 5: Relation between Deadline and Traveling Distance

the network is deployed in 0.25km2, it has 2 minutes
of average tardiness, which is higher than all other
schedulers except TSP. The reason is that MRF focuses
too much time recharging nearby nodes. From Figure
5d, we can see MRF scheduler spends most of its
time recharging nearby nodes, until some faraway
urgent nodes force it to take long trips to rescue long
starved nodes. Therefore, we can see that although
MRF reduces tardiness in a single machine, it is not
necessarily able to reduce tardiness under the case that
tasks are distributed in space.

In summary, our simulations show that the proposed
algorithm SDT performs well in terms of both coverage
ratio and average tardiness under a variety of settings.
When the recharge workloads are light, TSP achieves
good performance. The EDF scheduler suffers from
large standard deviation in coverage ratio and tardiness,
showing that it cannot provide stable performance.
From the experiment results of EDF-I, we can see that
the Insertion heuristic is able to slightly improve the
scheduling performance in small scale networks. MRF
scheduler has satisfactory performance in coverage
ratio, but it is unable to reduce average tardiness

VII. CONCLUSION

In this paper, we formulate the mobile charger
scheduling problem as an optimization problem. Our
primary goal is to maximize the percentage of nodes
that are alive for monitoring purposes. We proved
that it is NP-complete by reducing it to the Traveling
Salesman Problem. In algorithm design, we focus on
the case when the traveling time is larger than some of
the battery lives of sensor nodes. we propose a spatial
dependent task scheduling algorithm, which quantifies
the impact of scheduling proximate tasks on the other
tasks. With extensive simulations that cover different
network scales and workloads, we demonstrate that
our algorithms have good performance. Our solution
outperforms the classical such as the TSP scheduler
by up to 10% and 85% in terms coverage ratio and
tardiness, respectively.
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