
Demo of the Medical Device Dongle: An Open-Source
Standards-Based Platform for Interoperable Medical

Device Connectivity∗

Philip Asare
Electrical and Systems

Engineering
University of Pennsylvania
Philadelphia, United States

asare@seas.upenn.edu

Danyang Cong
Santosh G Vattam

Computer and Info. Science
University of Pennsylvania
Philadelphia, United States

{cdanyang,
vattam}@seas.upenn.edu

BaekGyu Kim, Oleg
Sokolsky, Insup Lee

Computer and Info. Science
University of Pennsylvania
Philadelphia, United States
{baekgyu, sokolsky,
lee}@seas.upenn.edu

Shan Lin
Dept. of Computer Science

Temple University
Philadelphia, United States

shan.lin@temple.edu

Margaret Mullen-Fortino
University of Pennsylvania

Health System
Philadelphia, United States

margaret.fortino-
mullen@uphs.upenn.edu

ABSTRACT
Emerging medical applications require networked coordina-
tion between medical devices. However, most of the medical
devices in use today do not support wireless communica-
tion or network connectivity. Currently, hospitals interested
in coordinated medical care would have replace existing de-
vices with expensive new devices. We believe that existing
medical devices can be extended to support interoperable
network connectivity. We demonstrate the Medical Device
Dongle (MDD), an open-source platform that enables such
extensions to current medical devices. The MDD can at-
tach to any device that has a data output interface (RS-232
or USB) and enables it to connect wirelessly and in an in-
teroperable manner for various applications. We show how
multiple medical devices, including pulse oximeters and infu-
sion pumps, can be connected and controlled together using
an open-source platform, standards-based connectivity pro-
tocols, and model-driven software. The demo setup consists
of medical devices attached to an MDD Agent, an MDD
Manager device, and a mobile phone running monitoring
applications. The MDD components can communicate over
Bluetooth, WiFi and Ethernet.

∗
This research was supported in part by NSF CNS-0834524, NSF

CNS-0930647, NSF CNS-1035715, and NIH 1U01EB012470-01. POC:
Insup Lee, lee@cis.upenn.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Wireless Health ’11, October 10 - 13, 2011, San Diego, USA
Copyright 2011 ACM 978-1-4503-0982-0 ...$10.00.

Categories and Subject Descriptors
J.2 [Computer Applications]: Life and Medical Sciences; D.2.12
[Software Engineering]: Interoperability; H.4.3 [Information Sys-
tems Applications]: Communications Application

General Terms
Design

1. INTRODUCTION
Emerging medical applications require coordination be-

tween medical devices [2]. In [2], for example, a smart
alarm running on the central patient monitor needs data
from all vital sign monitors connected to a patient in order
for the alarm to correctly notify the practitioner of safety
risks. Other applications may require medical devices to
communicate directly with each other. Regardless of how
coordination is done, all devices must be capable of network
connectivity and support the same set of protocols to ensure
interoperability. Unfortunately, many of the existing medi-
cal devices in use were not originally designed for network
connectivity [3]. Many of these devices, however, provide a
communication port (usually RS-232 or USB) for data ex-
change with a single computer. Such devices can adapted
for network connectivity by providing a peripheral that con-
nects to their output ports.

Such peripherals do exist [4], and even though they use a
standard protocol like IEEE 11073-PHD [1], these peripher-
als are more likely to support personal health devices that
typically are not used in the coordination applications we are
interested in. Also, the implementation of the protocols are
closed source making such peripherals unsuitable as testbeds
or platforms for research in interoperability. The aim of the
Medical Device Dongle (MDD) is therefore two-fold: (1) to
enable existing devices connect and communicate using a
standard protocol to allow and support development of dis-
tributed medical applications, (2) to provide a platform and
testbed for research in medical device interoperability.

2. MDD OVERVIEW
Applications of interest typical require that medical de-

vices connected to a patient must interact with a central
point (usually called the supervisor). This supervisor man-
ages the coordination between the devices and runs appli-
cations that use these connected medical devices. There
are, therefore, two versions of the the MDD, designed to fit
into this multiple-devices-single-manager architecture: one
for devices connected to the patient (the agent MDD); and
another for the supervisor (the manager MDD). The MDD
can be implemented physically as a peripheral that connects
to a device or logically as software components running on
the device (with access to the device’s network interface).
The main part of the MDD is this collection of software
components, which we call MDDWare. This demo shows
the agent MDD implemented as a physical peripheral and
the manager MDD implemented is a physical device in one
case and logical software components in another.

Rather than develop our own interoperability protocol, we
based the MDD on the IEEE 11073 protocol. The MDD is
also designed to support other medical device and interoper-
ability protocols, especially those geared towards maintain-
ing patient safety. We chose 11073 because it is an IEEE
standard and supports the multiple-devices-single-manager
model. The network architecture is based on the older point
of care (PoC) standard, while the connectivity and commu-
nication protocol is based on the personal health devices
(PHD) protocol. We chose PHD for the main protocol be-
cause it has better and more recent documentation than the
previous PoC standard. It is important to note that we did
not implement the full standard, but only those parts we
deemed sufficient for medical device connectivity and com-
munication. In particular, we implemented: 1) manager and
agent finite-state machines for maintaining connectivity and
providing GET and SET services for message exchange and
command execution; 2) the Medical Device System (MDS)
object from the domain information model (DIM) for device
description; 3) the Medical Device Encoding Rules (MDER)
from the communication model for encoding messages. We
call this implementation 11073-MDD. The MDD turns any
medical device with a data output interface (RS-232 or USB)
into an 11073-MDD-compliant device.

3. DEMO SCENARIO

Figure 1: Device Connectivity Architecture

Supposing the patient room is an Intensive Care Unit
(ICU), medical devices are connected to the patient to mea-
sure vital signs such as pulse oximetry (SpO2), heart rate or
to administer treatment such as insulin infusion. Figure 1
shows the scenerio of our demo, which consists of three main
parts: 1) Mutiple medical devices: the data source for the
manager; 2) Agent MDD: the intermediary between medical
devices and the MDD manager; and 3) Manager MDD: An
embedded device or smartphone. The relevance of MDD in
such a scenario is highlighted as follows:
Agent MDD. The agent MDD behaves like a translator be-
tween the manager MDD and the medical device. It trans-
lates any data from the device into IEEE 11073-PHD com-
patible formats and transmits the data to the MDD Manager
over a network interface.
Manager MDD. The medical device manager is in charge
of coordination of different devices. It monitors the connec-
tion of the supervisor to agent devices and is responsible for
sending and receiving messages on behalf of medical appli-
cations such as a smart alarm [2] running on the supervisor
directly connected to the manager as shown in Figure 1.

Figure 2: MDD Implementation Setup

Setup. Figure 2 shows one basic demo setup with a Nellcor
Pulse-oximeter, the MDD Agent (Beagleboard) and an An-
droid phone running a logical MDD Manager and a medical
application. Another demo (not shown here) has the An-
droid phone communicating with a stand-alone manager de-
vice using the MDD Interface (as shown in Figure 1). Each
MDD (agent or stand-alone manager) is a BeagleBoard run-
ning Linux (Ubuntu 10.04 LTS)and is capable of Bluetooth
and WiFi communication.

4. REFERENCES
[1] ISO/IEC/IEEE Health informatics–personal health device

communication–part 20601: Application profile–optimized
exchange protocol. ISO/IEEE 11073-20601:2010(E), pages 1
–208, 1 2010.

[2] A. L. King, A. Roederer, D. Arney, S. Chen, M. Fortino-Mullen,
A. Giannareas, W. Hanson, III, V. Kern, N. Stevens, J. Tannen,
A. V. Trevino, S. Park, O. Sokolsky, and I. Lee. GSA: a
framework for rapid prototyping of smart alarm systems. In
Proceedings of the 1st ACM International Health Informatics
Symposium, IHI ’10, pages 487–491, New York, NY, USA, 2010.
ACM.

[3] K. Lesh, S. Weininger, J. M. Goldman, B. Wilson, and G. Himes.
Medical device interoperability-assessing the environment. In
Proceedings of the 2007 Joint Workshop on High Confidence
Medical Devices, Software, and Systems and Medical Device
Plug-and-Play Interoperability, HCMDSS-MDPNP ’07, pages
3–12, Washington, DC, USA, 2007. IEEE Computer Society.

[4] C.-Y. Park, J.-H. Lim, and S. Park. ISO/IEEE 11073 PHD
standardization of legacy healthcare devices for home healthcare
services. In Consumer Electronics (ICCE), 2011 IEEE
International Conference on, pages 547 –548, Jan. 2011.

