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Many applications in wireless sensor networks require communication performance that is both consistent
and of high quality. Unfortunately, performance of current network protocols can vary significantly because
of various interferences and environmental changes. Current protocols estimate link quality based on the
reception of probe packets over a short time period. This method is neither efficient nor accurate enough
to capture the dramatic variations of link quality. Therefore, we propose a link metric called competence
that characterizes links over a longer period of time. We combine competence with current short-term
estimations in routing algorithm designs. To further improve network performance, we have designed a
distributed route maintenance framework based on feedback control solutions. This framework allows every
link along an end-to-end (E2E) path to adjust its link protocol parameters, such as transmission power and
number of retransmissions, to ensure specified E2E reliability and latency under dynamic link qualities.
Our solutions are evaluated in both extensive simulations and real system experiments. In real system
evaluations with 48 T-Motes, our overall solution improves E2E packet delivery ratio over existing solutions
by up to 40% while reducing transmission energy consumption by up to 22%. Importantly, our solution also
achieves more stable and better transient performance than current approaches.
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1. INTRODUCTION

Extensive studies [Abdelzaher et al. 2008; He et al. 2006; Lu et al. 2002; Buttazzo 2006]
suggest that predictable end-to-end (E2E) reliability and delay are critical for many
wireless sensor network applications, such as surveillance and emergency response, to
meet performance guarantees. However, these wireless sensor networks are exposed to
various interferences from their environments, which causes the network performance
to vary dramatically and unpredictably. Therefore, it is both important and challenging
to provide good network performance consistently.

Low-power wireless link qualities in sensor networks can vary at a wide range of
timescales. For example, when packet loss occurs because of Wi-Fi interference, link
quality can degrade in a matter of seconds, whereas environmental changes can affect
link quality at much longer timescales. In wireless sensor networks, many network
protocols estimate link quality based on recent probe packets over a short time period,
such as the widely used expected number of transmission (ETX) metric [Bicket et al.
2005; Fonseca et al. 2007; Woo et al. 2003]. These solutions can achieve high reliability
as long as the estimations accurately reflect the link quality when a packet is actu-
ally transmitted. Unfortunately, short-term estimations may not accurately reflect the
performance in indoor environments [Hackmann et al. 2008; Srinivasan et al. 2008].
In our experiments on an indoor testbed, we have observed two types of links, which
we refer to as stable and unstable links. Although the link quality of a stable link
remains around a certain level, the quality of an unstable link often changes dramat-
ically within a few seconds or minutes. Current short-term link estimations are not
effective in differentiating between these two types of links, as both may maintain
good qualities over a short time period. Moreover, current short-term estimations are
not efficient for unstable links, as the high frequency of link measurement that they
require leads to increased energy consumption and interference. Further, such links
may not estimate their qualities accurately, and when selected for routing, they may
not be discarded the moment their qualities drop dramatically. As a result, E2E com-
munication quality drops and energy consumption due to retransmission increases. In
addition, the network may experience cascading route changes: newly selected routes
introduce interference to other nearby routes, triggering even more packet loss, energy
consumption, and route changes. The cascading route changes can result in significant
E2E quality variations and energy consumption.

To address this problem, it is essential to differentiate between stable and unstable
links, and give preference to stable links. We notice that these two types of links
have different qualities over long-term periods, in the tens of minutes. Therefore,
we propose a new link metric, competence, to characterize the long-term link quality.
The competence metric can help choose those good and stable links for routing and
drop those currently good but unstable ones. However, a system using only long-term
estimations would react too slowly to link quality changes. To react quickly and provide
stable performance, we combine competence with current short-term estimations in
novel routing algorithm designs, selecting links that are good in both the short and the
long term.

To assist in achieving stable network performance, especially stable reliability and
latency, we also design a route maintenance framework based on competence. Our
framework integrates feedback control solutions at both the link and network layers.
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In the link layer maintenance, nodes use per-link transmission power control and re-
transmission control. Under certain dynamics, they help unstable links achieve stable
performances at a specified level and help stable links become more robust. The per-link
performance level requirement is injected by the network layer maintenance. The net-
work layer maintenance uses a feedback loop along an active path to translate a given
E2E performance specification into per-link requirements to minimize total transmis-
sion energy consumption along the path. This loop also distributes these requirements
to link layer control modules at each node.

We evaluated the designs on an indoor testbed with 48 T-Motes, which showed that
our solution improves packet delivery ratios (PDRs) over existing solutions by up to
40% and reduces power consumption by up to 22%. In addition, real system experi-
ments demonstrated more stable performance with less variance and better transient
performance than existing solutions. For the evaluation of E2E latency, we employed
extensive trace-driven analysis. Analysis results show that our solution meets specified
E2E latency requirements by regulating transmission power levels and the number of
retransmissions of each sensor node along routing paths.

The contributions of our work are as follows:

—We have established that long-term link estimation is important to achieve stable
and efficient networking in the presence of interference and environmental changes.
We propose the competence metric to characterize the long-term quality of links for
wireless sensor networks.

—We demonstrate that with a control-based design, reliability of existing solutions
can be further improved, and more stable and better transient performances can be
achieved.

—We evaluate our solutions in a 48-node wireless sensor network testbed under real
scenarios to demonstrate that stable network performances can be achieved under
various interference and environmental changes.

We present related work in Section 2. We introduce the competence metric design
with an empirical study in Section 3. In Section 4, we present competence-enhanced
routing. In Section 5, we describe our feedback control framework design. In Section 6,
we evaluate this system on an indoor wireless testbed and in simulations. We draw the
conclusions in Section 7.

2. RELATED WORK

There are a number of wireless networking protocols that use various techniques to
deal with the dynamics of wireless communication quality. At the MAC layer, short-
term link quality estimation [Kim and Noble 2001; Woo et al. 2003; Fonseca et al.
2007; Zhao and Govindan 2003; Miluzzo et al. 2008; Wachs et al. 2007] is critical,
but we established that the long-term link quality estimation is also important, as link
qualities can vary dramatically. We propose a metric called competence to quantify long-
term link quality and help design routing algorithms and a framework to achieve stable
E2E performance. Kim and Noble [2001] use statistical results to choose the short-term
best link estimation filter dynamically for mobile systems. In our work, the competence
metric focuses on the long-term link estimation, which is used alongside the short-term
link estimation. We also use it in control designs to achieve stable network performance.
Srinivasan et al. [2008] propose a β factor to quantify the short-term correlations among
successes and failures of transmissions. Competence is different, because it emphasizes
the long-term communication quality.

At the network layer, the existing routing protocols [Gu and He 2007; Woo et al.
2003; Intanagonwiwat et al. 2003; Polastre et al. 2005; Dunkels et al. 2007; Cerpa
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Fig. 1. The testbed network layout.

et al. 2005; Kim et al. 2003] have developed mechanisms to select good links when link
quality changes. In this work, we have demonstrated that selection of long-term good
links is also critical for high reliability and reducing cascading route changes. In our
routing algorithm design, we use the competence metric in addition to previous link
metrics to achieve better performance.

Many control-based designs have been proposed for E2E quality of service (QoS) in
computing systems. These studies present elegant designs in different systems with
their specific constraints, such as data servers [Abdelzaher et al. 2008], distributed
real-time embedded systems [Lu et al. 2005; Shankaran et al. 2008; Lu et al. 2002],
wireless sensor networks [He et al. 2006; Chipara et al. 2006], topology control [Santi
2005; Puccinelli et al. 2011], and Internet protocol design [Schulzrinne and Casner
1993; Comer 2000]. Our control design is unique in its coordination of pairwise control
at the link layer and E2E control at the network layer, based on reliability and energy
constraints in wireless sensor networks.

For QoS in wireless sensor networks, many studies [Chakrabarti and Mishra 2001;
Chen and Heinzelman 2005; Zhou et al. 2011; Asare et al. 2012] discuss challenging is-
sues, where there is accurate knowledge about the network state. Other studies focus on
selecting the path for real-time routing. Liu et al. [2012] proposes a framework for quan-
tifying the probabilistic path delay in real time for distributed resource-constrained
devices. The work uses multitimescale estimation to capture the highly varying na-
ture of link delay. Some other works focus on average path delay [Xue et al. 2011;
Felemban et al. 2005]. Xue et al. [2011] propose the SDRCS communication scheme
for real-time traffic sensing in wireless sensor networks, using geographical forward-
ing without considering the link probabilistic nature delay. Unlike these works, this
article focuses on providing stable E2E delay that meets the real-time requirements of
wireless sensor network applications. Our solution employs a feedback control–based
design to maintain delay stability over dynamic link qualities.

3. THE COMPETENCE METRIC FOR QUANTIFYING LONG-TERM QUALITY

3.1. Empirical Study

We built a wireless testbed in our computer science building, as shown in Figure 1. It
consists of 48 T-Motes with Chipcon CC2420 low-power radios. For sensing purposes,
we placed these nodes at various heights along the wall. Some of them are close to the
doors, and some of them are on the top of the office cubicles.

In the first experiment, we programmed three source nodes to broadcast at a rate
of 20 packets per second, whereas all of the other nodes just listened and recorded
the packets that they received. We scheduled transmissions to avoid collisions. The
link-level retransmission and acknowledgement functionalities were disabled.
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Fig. 2. Stable link versus unstable link.

Fig. 3. Link quality variation under different interference.

We made three observations based on these experiments:

—There are two kinds of links in the deployed system—stable links and unstable
links— given the specific transmission rate. An example of such links is shown in
Figure 2.

—There are three main causes for the link quality variations of unstable links. We
distinguished these causes in the testbed through successfully reproducing pat-
terns of PDRs in different scenarios. These patterns are shown as small fluctuation
(Figure 3(a)), large disturbance (Figure 3(b)), and continuous large fluctuation
(Figure 3(c)). The small fluctuations in Figures 3(a) are mainly caused by multipath
fading of wireless signals. The large disturbances in Figure 3(b) are caused by shad-
owing effects of humans, doors, and other objects. The continuous large fluctuations
in Figure 3(c) are caused by Wi-Fi interference. The duration of these disturbances
can vary from fractions of a second to tens of minutes. The variance in link qualities
is largely due to a combination of instances of these three patterns.

—We also identify that there are temporal and spatial impacts of human-related ac-
tivities on link quality. The quality of links in an office decreased in the morning
when people walked in and started using Wi-Fi. The quality of links in the lounge
demonstrated a noticeable variation at noon when people had lunch. Moreover, simi-
lar trends were observed from links situated near each other, because human-related
activities have an impact on these links at the same time. However, the degree of im-
pact is different, depending on many factors such as the distance to the interference
source. Similar results were observed in indoor [Hackmann et al. 2008; Srinivasan
et al. 2008] and outdoor environments [He et al. 2006; Selavo et al. 2007].

3.2. Competence Metric Design

These experiments motivated us to study the stability and transient performance for
wireless sensor networks in the presence of significant and rapid (sometimes within a
matter of seconds) changes in communication quality. Stability and transient perfor-
mance are two of the main foci of control theory [Abdelzaher et al. 2008; Hellerstein
et al. 2004], so we review the metrics with control theory before presenting our design.
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Fig. 4. Transient performance metric in control theory.

Figure 4 presents the basic metrics for studying transient performance in control
theory. When a certain change occurs in the system, the controlled variable deviates
from the reference value. The reference value defines the level at which the controlled
variable is expected to stabilize. The system is in a steady state when the controlled
variable lies within the range between reference ± steady state error. Otherwise, the
system is in a transient state. Another important metric is settling time, which defines
the amount of time the system takes to stabilize to a steady state when disturbances
occur. The values of reference, steady state error, and settling time are specified as the
control goals of the system.

These concepts and metrics are foundations of stability and transient performance
analysis. However, directly applying these metrics is not reasonable, as the distributed
wireless network system is open and involves many uncertainties. For example, classic
control systems adjust the control variable to converge to a single reference value,
within the bounds defined by a very small steady state error (2% of reference value is
a reasonable design for a closed, well-modeled control system [Hellerstein et al. 2004]).
For wireless communication quality, however, a single reference value with a very small
steady range is not feasible, as fading of wireless signals can cause the PDR to vary
more than 20% (Figure 3(a)). Therefore, we need a different way to quantify stability
in wireless sensor networks.

We formally define a performance metric: competence. Competence is a long-term
performance metric that is based on a short-term performance measure s. s is a binary
function indicating whether the current signal is within a desired range. The metric
c(t) for competence value at time t is defined in Equation (1):

c(t) = α · c(t − 1) + (1 − α) · s, 1 > α > 0 (1)

s =
{

1 y(t) ∈ [Tlower, Tupper]
0 otherwise.

We define Tupper and Tlower as the upper and lower bounds that specify a desired range
for a network performance measure, such as communication quality. An exponential
weighted moving average (EWMA) filter is used on the binary function s that indicates
whether the current communication quality is within the specified range or not. α is a
smoothing factor indicating the weight of history when calculating the current value.
y(t) is the currently observed communication quality, like PDR. The value of c(t) is
between 0 and 1. If the communication quality always falls into a specified range, the
value of c(t) is always 1.

There are several research works on link quality estimations, using filter design
[Kim and Noble 2001] and other indications [Fonseca et al. 2007]. These works provide
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Fig. 5. Link distribution on link competence.

valuable results for network protocol designs. However, considering that the commu-
nication quality may vary significantly within seconds, it is not effective or energy
efficient to use more probes for a more accurate estimation. The competence metric is
new in focusing on characterizing long-term stability of the communication quality at
a desired level. It is a complementary technique to previous link estimations. Given
the different spatial and temporal patterns of different links, it is beneficial to use the
long-term characterization of communication qualities. We note that long term and
short term mentioned here are relative to the sampling period. This work is motivated
by the empirical observations obtained from real system experiments, as shown in
previous sections.

The long-term characterization is represented by a large smoothing factor, such as
α = 0.9, in the EWMA filter. We note that EWMA is just one of various mathematical
techniques [Montgomery 2005] to emphasize long-term quality. On the other hand,
because wireless communication quality can be highly variable, competence uses two
bounds [Tlower, Tupper] to specify a desired performance level, allowing small variation
of the signal between specified bounds. In other words, this range eliminates any
insignificant changes of quality.

The distribution of links from our first experiment on the competence metric is
plotted in Figure 5, with a specified link quality range [80%, 100%] and α = 0.9. Here,
30.5% of the links are competent (competence ≥ 0.8), and 69.5% of the links are not.
These competent links have stable qualities within the specified bounds.

We also employ settling time, which is another important metric adopted from the
classical control theory [Hellerstein et al. 2004], to quantify transient performance for
wireless sensor networks. Settling time represents the amount of time a performance
measure takes to deviate from and then return to a desired performance level. It
quantifies a system’s capacity to react to changes and return to normal performance
level in the time dimension, especially when feedback control designs are applied.
We use reliability as an example to demonstrate how settling time st is calculated in
Equation (2):

st = t2 − t1, t2 > t1
y(t1), y(t2) ∈ [Tlower, Tupper]
∧∀t ∈ (t1, t2), y(t) /∈ (Tlower, Tupper).

(2)

The β factor [Srinivasan et al. 2008] is a recent metric to quantify the correlations
among successes and failures of transmissions at packet level. Different from the β
factor, settling time focuses on performance resilience at a desired level with unexpected
disturbances.

To explain the importance of stability and transient performance, we consider the
example of VigilNet [He et al. 2004], which is a military surveillance system deployed
on battlefields. In this application, data packets are required to be delivered to a
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Fig. 6. Performance evaluation of MultiHopLQI over 24 hours.

base station with a bounded reliability, say [80%, 100%]. This range is much bigger
than the range defined by steady state error in classic control theory, and this range is
required by the application. The lower PDR bound is chosen for guaranteeing a specified
surveillance quality. For tracking mobile targets, data packets must be delivered above
a certain rate. If the PDR is less than a lower bound, say 80%, important traces
of the target may be missing. Moreover, missing important traces may lead to the
inability to distinguish two targets moving closely together. Although the upper PDR
bound can be set as 100%, most of multihop communication paths in this application
are set lower for the sake of energy efficiency. Achieving perfect quality consumes
significantly more transmission energy than a reasonable communication quality (95%)
due to significantly increased control overhead. In this scenario, a reasonably good
communication quality meets the application goals. Similar ideas apply for a number
of environmental data collection applications [Girod et al. 2006; Selavo et al. 2007].
Generally, perfect communication quality is unnecessary for these applications as long
as constant good performance quality is achieved. An acceptable settling time is also
required for VigilNet to successfully capture the traces of a target in case the system
performance is compromised or disturbed. If the settling time is too long, a high speed
target on the edge of the surveillance area may pass across without being detected. In
other applications, the settling time is also an important measure of how consistently
the system can perform under significant changes.

We conducted another set of experiments to study the performance of existing pro-
tocol MultiHopLQI [2006] under the presence of unstable links. We ran the default
configuration of MultiHopLQI on our indoor testbed for 24 hours. There were eight
source nodes, each generating one packet per 10 seconds. These packets were sent to a
base station via multihop paths. As suggested by previous studies [Paek and Govindan
2007; Kim et al. 2007], this traffic load should not cause packet loss due to queue
overflow.

We made three observations from this experiment:

—The E2E PDR varies significantly, especially during the daytime, as shown in
Figure 6(a). The plotted data represents the E2E PDR from a source to the sink.
In this example, we observed that E2E PDR is around 90% in the evening hours.
However, between the hours of 8 AM and 8 PM, the PDR drops to around 75%, with
dips as low as 55% to 60%. Given the desired communication range [80%, 100%], the
E2E competence measure is poor during the day. This result clearly shows that cur-
rent link estimation is not effective when link qualities change dramatically. When
these links are selected for routing, they may not be discarded the moment their
qualities drop dramatically. As a result, E2E communication quality drops.

—The total number of parent switches increases significantly during the day, as shown
in Figure 6(b). This result implies that nodes do not stick to the good and stable
links but often choose unstable links. When the qualities of unstable links drop,
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the number of parent switches increases. Furthermore, cascading route changes
occur: new routes can cause interference with other nearby routes, triggering even
more packet losses, energy consumption, and route changes. Such route changes
do not improve but degrade the E2E PDR. These cascading route changes should
be avoided in network protocol design for highly dynamic networks. Figure 6(c)
presents the total number of retransmissions. As a result of selecting unstable links
and cascading route changes, the number of retransmissions required during the
daytime increases substantially, which consumes more energy.

—This E2E PDR deviated from the desired range 27 times. For example, a drop of E2E
PDR occurs between 1 PM and 2 PM, which lasts for about 60 minutes. Overall, the
stability and transient performance of current protocol is not satisfactory.

4. COMPETENCE-ENHANCED ROUTING

In this section, we explain how we adapted the distance vector (DV) algorithm to
exploit the competence metric for improved route performance in highly dynamic en-
vironments. First, we review the DV algorithm, which is based on a cost function
describing the resource needed to perform an operation, such as energy. Let us denote
the cost of a link from node i to node j as Aij and the cost of the minimum cost route
from node i to the destination as Bi. The DV algorithm can efficiently calculate Bi for
all nodes by first having all nodes i calculate Aij for all neighbors j. Then, each node
chooses its parent node to be the neighbor k that minimizes that value Bi = Aik + Bk.
The DV algorithm can be performed in a distributed fashion by having each node i
broadcast its own estimate of Bi every time it changes. The algorithm starts when the
sink node broadcasts the value Bsink = 0. All neighbors of the sink estimate their own
values of Bi, and the process repeats until the values at all nodes converge. If we define
Aij to be the ETX on the link from i to j, then Bi is the cost of the route from node
i to the base station with the smallest number of expected transmissions. Here, ETX
represents the widely used “expected number of transmission” metric [Woo et al. 2003]
in wireless sensor networks, which typically employs an EWMA filter to emphasize on
the short-term link quality.

The DV algorithm can easily be adapted to exploit the competence metric. We propose
two solutions: (1) a node can choose its parent k as the node with the most competent
link from among all nodes j with low values Bj , or (2) a node can choose its parent k as
the node with lowest value of Bj from among all nodes j to which it has a competent
link. The choice between these schemes depends on application requirements, as well
as the quality of links and the dynamics of the environment.

In scheme 1, a node periodically selects a neighbor k to be its parent node. This
neighbor is selected via two steps. First, the node selects the lowest value B̂ from among
the values of all neighboring nodes. It then selects the set of all neighbors j with values
close to the lowest value: j : Bj ≤ R · B̂, where R is a specified range parameter, such as
120%. Second, the node selects the neighbor with the highest competence value among
this set of neighbors as the forwarding node.

In scheme 2, a node first periodically selects the highest competence value of all of its
neighbor nodes. It then selects the set of all neighbors j with competence values close
to the highest one: j : Competence j ≥ T · Competencelowest, where T is a specified range
parameter, such as 80%. Subsequently, the node selects its parent to be the neighbor
with the lowest value Bj from among all nodes j in this set.

Routing scheme 1 uses the competence metric to break ties between routes that
are otherwise equivalent in terms of cost and performance. The definition of a tie is
defined by the parameter R. This algorithm allows the routing scheme to tolerate
small variations as specified by the competence bounds but reacts to big variations
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via parent switches. This scheme should be used when performance is more important
than robustness to network dynamics. This would likely be true in networks where
network dynamics affect the routing algorithm but do not overwhelm it.

Routing scheme 2 chooses routes that are the least susceptible to network dynamics
and breaks ties using the cost metric ETX. The definition of a tie is defined by the
parameter T and can be used to find cheap routes as long as they have competence
levels similar to the best route. This scheme should be used when competence is more
important than routing cost. Such would be the case in highly dynamic networks,
or when guaranteeing performance at all times is more important than maximizing
performance.

There are other factors that may influence the performance gain of our routing de-
sign, such as the network density. In a sparse network, nodes may not have many
competent links available to choose from among the low-cost links, but even in the
worst case, the performance will be similar to the original algorithm without compe-
tence consideration. We also note that stable routing may potentially put traffic loads
on competent routes, causing these nodes’ batteries to deplete sooner.

5. ROUTE MAINTENANCE FRAMEWORK

In a sparse highly dynamic network, the number of competent links can be limited.
The routing structure needs to use some other links. Efficiently making use of these
links is the key to reduce unnecessary route changes and improve reliability. With
link quality improvement techniques [Lin et al. 2006; Polastre et al. 2004; Cao et al.
2007; Katti et al. 2006], some links can become competent links or more competent
than before. However, those techniques have their cost in terms of energy consumption
and overhead. We found that the cost is associated with long-term quality of links at a
specified level. Due to the high overhead to deal with variations, maintaining a stable
link within certain bounds costs less than maintaining an unstable link within the
same bounds. Actually, maintaining a stable link within high bounds can cost less than
maintaining an unstable link within low bounds. Therefore, we propose a route main-
tenance framework based on competence to maintain routes and optimize maintenance
cost. Given a selected path, this framework globally assigns different performance lev-
els to links along an active path and locally maintains assigned performance levels.
This two-level maintenance design is both necessary and efficient, as a single link layer
solution would lead to (1) local nonoptimal decisions, (2) unbalanced cost at different
links, and (3) fluctuating E2E performance due to uncoordinated control along a path.

In competence-enhanced routing, we use values of the competence metric as a rout-
ing metric, whereas in the route maintenance framework, we use the bounds of the
competence metric as parameters for E2E performance control. The architecture of
this maintenance framework is shown in Figure 7. The control modules are located
at two layers: the network layer and the link layer. At the network layer, there are
a performance monitor with specified requirements, a competence controller, and a
route monitor. At the link layer, there are a link monitor and controllers. We focus on
reliability as the performance requirement in this work. The performance requirement
consists of specified competence bounds on E2E PDR. Given the specified bounds, the
performance monitor calculates competence based on observed E2E PDR. When compe-
tence drops below a certain threshold, E2E PDR error is passed to the route controller.
With an E2E feedback loop along this path, the route controller collects costs from each
link and allocates the stable link performance requirements to optimize transmission
energy consumption. Then the link performance requirements are injected to link con-
trol modules along this path. At the link layer, both the transmission power control
and the retransmission control are used to enforce the link performance requirements,
which are adaptive and low-cost solutions to control single-link reliability.
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Fig. 7. Control architecture.

Table I. Main Terms

Term Definition

AT ime Time required for one attempted transmission

tpi Transmission power level on link i

pi Quality of link i

Ii Interference on link i

T E2E delay deadline

f Frame size

l Preamble size

NumDij Number of packets transmitted from node i using the power level j

TE j Transmission energy consumed per bit

LD Length of data packet

The main terms that are used in this work are described in Table I.

5.1. Link Layer Competence Maintenance

We use power control and retransmission control as two general techniques for the
link layer maintenance design. The link layer control design is shown in Figure 8. The
controlled variables are the transmission power level and the number of link-level re-
transmissions. These two controllers work independently. The link competence monitor
measures PDR competence. If PDR competence drops below a certain threshold, control
actions are triggered. The set points and bounds for PDR are specified by network-level
maintenance.

PDR(x) = 1 − [1 − p]x (3)

urt(t) = urt(t − 1) + log ePDR(t − 1)
log(1 − p(t − 1))

(4)
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Fig. 8. Link layer maintenance.

The retransmission control model is based on Equation (3). The p stands for the prob-
ability of successful transmission for a single attempt. We assume that the success
probabilities of transmissions are independent of each other. The input x is the maxi-
mum number of retransmissions. The controller form is derived from Equation (3) and
shown in Equation (4). urt(t) is the representation of the maximum number of retrans-
missions x. This controller takes PDR error ePDR(t) as input and adjusts the number of
retransmissions urt(t) as output.

RSS = β · tp + γ (5)

The goal of transmission power control is to achieve high p(t) while saving transmis-
sion energy. A control model designed in Lin et al. [2006] is shown in Equation (5). The
RSS refers to the signal strength of the link, tp represents the transmission power
level applied at the transmitter of the link, and β and γ are link-specific time-varying
parameters that depend on the environment.

utp(t) = utp(t − 1) + Kp[es(t) − es(t − 1)]
+ Kies(t) + Kd[es(t) − 2es(t − 1) + es(t − 2)]

(6)

Based on this adaptive control model, we extend it using a proportional-integral-
derivative (PID) control [Hellerstein et al. 2004] shown in Equation (6). This controller
takes signal strength error es(t) as input and adjusts transmission power level utp.
Kp, Ki, and Kd are proportional, integral, and derivative gains of the controller. To
obtain the lowest settling time and highest reliability, we tuned this PID controller
on different unstable links during unstable periods in the daytime and stable peri-
ods at nighttime. We obtained two different sets of gain values in these two periods.
The integral gain tuned for the unstable periods is noticeably larger than that of the
stable periods, which compensates for the quality fluctuations and optimizes settling
time. The transmission power controller uses a gain scheduling approach. The link
competence monitor triggers the switches of gain values. When competence measure
becomes lower than the setpoint, the controller starts using the gains for the unstable
period. When competence measure becomes higher than the setpoint, the controller
employs the gains for the stable period. We also use a conservative threshold for robust
link quality estimation and nonlinearity of power control in the indoor environment
suggested by Hackmann et al. [2008] and Souryal et al. [2007].

5.2. Network Layer Competence Maintenance

For the good and stable links, high and stable performance is maintained with a very
small cost using link layer maintenance. However, maintaining equally high perfor-
mance for the unstable links is costly due to control overhead. To maintain E2E perfor-
mance while optimizing total transmission energy consumption, our algorithm assigns
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competence bounds to links along an E2E path.

E2E PDR(k) =
k∏

i=1

PDR(xi) (7)

The relation between E2E PDR and link PDR along a k-hop path is presented in
Equation (7). xi represents the number of transmissions at hop i. This equation
also indicates the relation between the bounds of E2E competence and link-level
competence.

Cost(xi) = Ctpi ·
xi∑

i=1

i · (1 − p)(i−1) · p (8)

In Equation (8), the expected energy consumption of the link layer control at link
i is represented as a cost function of the transmission power level and the number
of retransmissions xi. We note that Ctpi is a constant for an attempt of transmission
(including multiple retransmissions). The value of Ctpi depends on the transmission
power level used.

k∑
i=1

(Cost(xi) + overheadi) (9)

The total transmission energy consumption of an E2E path is presented in Equation (9).
There are two types of costs for each link. The Cost(xi) is the energy consumption for
transmission on link i given the number of transmission xi, as shown in Equation (8).
The overheadi is the energy consumption for control overhead on link i, such as energy
consumption for feedback packets, which can be measured at each link.

Our goal is to minimize the total cost along a path while meeting the specified
performance level. When the path is first established, we give every link on the path
the same competence bounds. To optimize total transmission energy consumption,
high competent links should have high bounds and low competent links should have
low bounds. Mathematically, this problem is presented as follows:

min
k∑

i=1

(Cost(xi) + overheadi)

s.t. E2E PDR(k) ≥ F
0 ≤ pi ≤ 1, xi ∈ N.

(10)

F specifies the desired E2E PDR. This is a nonlinear optimization problem that can be
approached by KKT conditions [Boyd and Vandenberghe 2004]. We skip the construc-
tion and calculation details. However, the complexity of this problem after applying
KKT is still exponential. Fortunately, we find that functions PDR(xi) and Cost(xi) have
an approximate linear relation in their small range. We plot the relations in Figure 9.
Each curve in this figure represents the relation between PDR and Cost at a fixed p. We
can use a linear model as shown in Equation (11) to describe this relation, especially
when p is larger than 0.5, which is the range of link qualities of the most useful links:

Cost(xi) = ai · PDR(xi) + bi. (11)

In this linear model, ai and bi are functions of pi. Given pi, values of ai and bi are
fixed using a least square approximation. Based on this linear model, the complexity
of this optimization problem is now linear rather than exponential. As a result, we can
tell that when ai · PDR(xi) are equal to each other, the total cost is minimized. The
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Fig. 9. Approximate linear relation.

Fig. 10. E2E feedback loop.

minimal cost is
k
√

F
∏k

i=1 ai

k . Correspondingly,

PDR(xi) =
k

√
F

∏k
i=1 ai

ai
. (12)

Based on Equation (12), nodes can calculate their new bounds: desired PDR. To do this,
every node needs to know its ai and

∏k
i=1 ai. ai is obtained from a local table storing

values of a and b, given p. The latter can be calculated and delivered to nodes via a
feedback loop, as shown in Figure 10. In this feedback loop, a control packet is sent
from source node to sink node periodically. This packet is used to calculate

∏k
i=1 ai

hop by hop. The performance monitor at the sink node monitors the E2E PDR and
compares it with the specified PDR level. If there is an error, the performance monitor
notifies the competence controller about the current error. The competence controller
takes

∏k
i=1 ai and the path length as inputs and calculates k

√
F

∏k
i=1 ai. This value is then

sent back as feedback to every node along the path via control packets. Nodes then
calculate desired PDR bounds according to Equation (12). Finally, link control mainte-
nance can calculate the maximum number of transmissions xi based on Equation (12).
Our control-based design has limitations. For instance, control contention may affect
system performance. However, the control contention rarely happens when traffic load
is low, which is the case for many wireless sensor network applications. Our evaluation
demonstrates that the control-based approach works well in real systems. To address
another potential concern, although distributed control consumes resources and in-
troduces delay in large-scale networks, in most existing wireless sensor networks the
number of nodes reporting to the same base station is less than a few hundred. When
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Fig. 11. An example of WSN topology.

multiple routes pass through the same link, the link and network layer’s maintenance
keep the parameters for every route.

5.3. Stable Delay Routing

The aforementioned competence-enhanced routing increases the network performance
in terms of consistent and high-quality communication links in dynamic environmental
conditions. In this section, we continue to adapt the network performance in terms of
E2E delay to meet stable communication requirements for many applications [Ahmad
et al. 2008]. Sparse wireless sensor networks have a limited number of competent links,
and for low rate transmission networks, the links delay is mainly affected by the trans-
mission time rather than queuing time. Assuming that the interference and the power
levels are independent on each link throughout the path (TDMA-based coordination
schemes are used to eliminate interference caused by concurrent transmissions), such
that each link Li has its interference level Ii, transmission power level tpi, and link
quality level pi. There is a requirement to make E2E delay on this path no more than
value T . For example, note the case in Figure 11. Some of the network paths are stable,
whereas others are unstable (i.e., suffer from interference). The goal in this example
is to send packets from source node to destination node using a stable path. In this
example, the stable path delay equals the sum of delay that occurs on the links using
this path. In general, the delay on a path that passes through node 1 to node k at time
period t is equal to

dp(t) =
k−1∑
i=1

di(t), (13)

where di(t) is the amount of time required to transmit one packet from node ni to node
ni+1 in the path at time period t.

Many applications require desired specified E2E delays to achieve high QoS [Chipara
et al. 2006]. To meet the E2E requirement, we utilize transmission power control, as it
is a well-known mechanism to improve the link performance. The adjustment in power
level adapts link quality to the variation of the surrounding environment conditions
[Lin et al. 2006].

The cost function of the expected transmission energy consumption from node i to
satisfy link Li requirements is represented in Equation (8), where the power level Ctpi

and the number of transmissions xi do not have to be the same on each link throughout
the path.

The delay that occurs on the link Li can be expressed as the required time for one
attempt transmission (i.e., AT ime) times the expected number of transmissions required
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to transmit a packet successfully. Formally, we can model the delay on the link Li as

di(t) = AT ime

xi∑
i=1

i(1 − pi)i−1 pi. (14)

The total transmission energy consumption of an E2E path has two parts: the energy
consumption for transmission on link i given the number of transmissions xi, and the
overheadi, which is the energy consumption for control overhead on link i occurring
from the consumed energy for feedback packets. Our goal is to minimize the total cost
along a path while meeting the specified E2E path delay requirement. The total cost
along the path can be formulated as

min
k−1∑
i=1

(Cost(xi) + Overheadi)

s.t.
k−1∑
i=1

di(t) ≤ T

0 ≤ pi ≤ 1, xi ∈ N,

(15)

where T specifies the desired E2E delay. In addition, there is a nonlinear optimization
problem. Following the same approximation approach used in solving Equation (11),
the path delay is equal to

dp(t) =
k−1∑
i=1

AT ime.
Cost(xi)

Ctpi

. (16)

When dp(t) is equal to the E2E threshold T , then the required energy amount is the
lower bound of optimal energy amount. Thus, the minimal cost on each link Cost(xi) is

Cost(xi) = T

AT ime.
∑k−1

i=1
1

Ctpi

. (17)

Based on this minimal cost, the corresponding PDR(xi) is

PDR(xi) =
T − AT ime.bi.

∑k−1
i=1

1
Ctpi

αi.AT ime.
∑k−1

i=1
1

Ctpi

. (18)

Based on Equation (18), each node in the path can calculate the desired PDR(xi) to
satisfy the E2E path delay requirement.

Power control algorithms have been designed to adjust transmission power levels
to adapt to dynamic environmental changes. Efficient power consumption requires a
proper power level, which is used by nodes to transmit packets. The design of network-
level power control aims to generate appropriate power levels on each sensor node
along a routing path.

Many applications require E2E delay to be stable, and the delay needs to be assured
throughout the path. With our route maintenance model, the power level on each trans-
mitting sensor node can be adjusted to satisfy the specified E2E delay requirement.
Figure 12 shows the feedback loop. The adjustment process requires each transmitting
sensor node to be informed about the values of T

AT ime .
∑k−1

i=1
1

Ctpi

, whereas αi can be obtained

from a local table that stores the values of αi given pi.
When the calculated E2E delay exceeds the threshold T , delay error is calculated.

A feedback packet containing the delay error and path-related information is issued;
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Fig. 12. E2E delay control.

then, based on the feedback, each sensor node along this path calculates the required
PDR value using Equation (18).

5.4. Integration

Thus far, we have described multiple techniques at different layers to maintain sta-
ble network performances. These techniques include the competence-enhanced stable
routing algorithm in Section 4, the link quality control in Section 5.1, the network
E2E quality control in Section 5.2, and the stable delay control in Section 5.3. These
techniques span multiple layers in the TCP/IP (6LoWPAN) architecture. Specifically,
the stable routing algorithm lies in the network layer and the link quality control lies
in the link layer, whereas the E2E reliability and delay control lies in the transport
layer.

Although all techniques utilize the competence metric, some or all techniques can
be applied to different scenarios according to the available information at each node.
The stable routing algorithm and the long-term link estimation can directly be incor-
porated with existing protocols. The competence metric can obtain the stability of a
link as long as there are packets sent among neighbors over a long period of time.
However, when few packets are exchanged among neighbors, the proposed algorithm
may not work better than existing solutions. The link layer control can maintain link
quality on an individual link. It can also work together with the transport layer E2E
performance control for specified network performances. However, the E2E reliability
and delay control algorithms of the transport layer cannot work without the support of
link layer control solutions.

The Collection Tree Protocol (CTP) has demonstrated great performances in several
wireless sensor testbeds [Gnawali et al. 2009]. The CTP protocol uses data path valida-
tion and adaptive beckoning to deal with link dynamics. Since such a design can capture
rapid link quality changes and select routing paths accordingly, it can achieve high per-
formances even with unstable links. To achieve even more stable and energy-efficient
performances, we can integrate CTP with our design. We can add the competence met-
ric as a link metric together with the ETX. When selecting a routing path, the routing
algorithm will consider the competence metric besides ETX. The competence metric
is useful when dynamic link qualities occur on many links, causing increasing beacon
rates and frequent route changes in the network. In this scenario, our design provides
stable and good enough performance with low overhead in comparison to CTP, which
pursues high performance with high overhead.

6. EVALUATION

6.1. E2E PDR Analysis for Stable and Unstable Periods

The most widely used link metric is the ETX [Bicket et al. 2005; Woo et al. 2003;
Fonseca et al. 2007; MultiHopLQI 2006]. Many popular data collection protocols com-
bine the DV algorithm with link estimation techniques for wireless sensor networks.
For example, the MintRoute [Woo et al. 2003] algorithm uses eavesdropping and an
EWMA operator to estimate the probability of successful transmission over each link.
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Fig. 13. Experimental topology.

It then translates these probabilities into ETX values and uses a DV to find routes
that minimize the E2E ETX. The CTP [Gnawali et al. 2009] augments MintRoute
with explicit beacon messages to estimate link quality even when traffic rates are low.
MultiHopLQI uses the link quality indicator (LQI) defined by IEEE 802.15.4 [1999]
as an instantaneous link quality estimate, helping it react more quickly to changes
in link quality [MultiHopLQI 2006]. In Fonseca et al. [2007], a hybrid estimator inte-
grates routing feedbacks and link estimates together to achieve high reliability. These
protocols are currently state of the art in data collection for wireless sensor networks
and have been shown in empirical studies to have very high PDRs.

Based on DV routing protocols, such as MultiHop LQI or MintRoute [Woo et al.
2003], we have implemented a DV routing algorithm in TinyOS as the baseline, a
competence-enhanced DV routing (C-DV), and a DV routing (MC-DV) that is both
competence enhanced and maintained. The DV routing algorithm adopts an ETX-
based link estimator using the EWMA filter, which is widely used in existing protocols.
C-DV adopts routing scheme 1 described in Section 4. We used the fixed transmission
power level 20 of the CC2420 radio for the DV and C-DV setup. We did not use radio
duty cycling. In MC-DV, the E2E PDR bounds are set as [80%, 100%]. The decay factor
α for competence calculation is 0.9. The implementation of MC-DV takes 22772B ROM
and 4238B RAM.

We have conducted controlled experiments at night with four nodes. The topologies of
these experiments are shown in Figure 13. Node 1 sends 1,000 packets to base station
4 at a rate of 1 pkt/sec. First we ran three algorithms when there was no interference
or human activity in this area, as shown in Figure 13(a). Then we ran another test
with intentional interference near node 2, as shown in Figure 13(b). Node 2 is hanging
4.5 feet high on the top of a cubicle and beside an office door. A student used Wi-Fi to
download files in the cubicle and walked in and out using the office door from time to
time.

The E2E PDRs are shown in Figure 14. From this figure, we can see that in the
stable periods when there is no interference or human activity, the three algorithms
have almost the same PDR. The E2E PDR of path 1-2-4 is 99.3%, and the E2E PDR
of path 1-3-4 is 96.2%. All three algorithms select the path 1-2-4 all the time, which
had constant good communication quality. In this case, the use of long-term estimation
and maintenance do not make a difference. However, in the unstable periods, three
algorithms have different PDRs. This is because with interference and shadowing, the
E2E PDR of path 1-2-4 was highly variable, ranging from 100% to 20%. However, the
E2E PDR of path 1-3-4 has a little variation (around 4%) due to weak interference
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Fig. 14. Experimental result.

(nodes 2 and 3 are located at the opposite sides of an office). DV keeps oscillating be-
tween the routing path 1-2-4 and 1-3-4 due to the short-term estimation. As a result,
when path 1-2-4 was selected and interference occurred near node 2, packets were lost.
The routing path of C-DV converged at 1-3-4 after a few oscillations and then the PDR
settles around 94.2%. In the MC-DV experiment, when path 1-2-4 was selected, the
route maintenance increased transmission powers and number of retransmissions at
nodes 1 and 2. However, the PDR was still bad when interference occurred close by.
Then, after MC-DV switched to path 1-3-4, its PDR was improved when transmission
powers and retries were increased at nodes 1 and 3. In addition, the routing path con-
verged to 1-3-4 quickly, and the E2E PDR settled at around 99%. From this controlled
experiment, we conclude that (1) the long-term estimation used in competence helps
choose stable links and improves PDR; (2) route maintenance helps improve PDR on
links that are weakly interfered or shadowed; and (3) in networks with only stable
links or only strongly interfered unstable links, the benefit of long-term estimation and
route maintenance is limited.

We also conducted nine multihop experiments in the testbed with 48 T-Mote Sky
nodes, with each experiment lasting 24 hours. We used three kinds of periodic traffic
loads for communications from sources to a sink, which are typical for environmental
monitoring. In traffic load 1 (L1), there were 3 source nodes, each of them sending a
data packet every 20 seconds. In traffic load 2 (L2), there were 8 source nodes, each of
them sending a data packet every 20 seconds. In traffic load 3 (L3), there were 8 sources,
each sending a packet every 10 seconds. We note that such traffic loads do not cause
message queue overflow. In this experiment, we focus on studying the performance
difference between stable periods at night and unstable periods during the day. We
divided the data obtained in each 24-hour experiments into two parts, corresponding
to a stable network period from 8 PM to 8 AM and an unstable network period from
8 AM to 8 PM, and plotted them in Figures 15 through 19.

In Figure 15(a) and Figure 16(a), we have plotted the observed average E2E PDR.
We have also plotted corresponding standard deviations over 12 hours. We have drawn
four main observations from these figures: first, DV has a much higher E2E PDR
and a smaller standard deviation in the stable periods than the unstable periods,
whereas the E2E PDRs of C-DV and MC-DV demonstrate much smaller performance
differences in both stable and unstable periods. Previous evaluations have shown that
ETX-based routing algorithms can achieve good performances in stable networks [Woo
et al. 2003]. Our evaluations have confirmed this. For example, the E2E PDR of DV
with traffic load 2 (L2) is 87.9% over 12 hours, including 8 continuous hours above
90%. However, E2E PDRs of DV in the unstable periods drop significantly. This result
shows that previous solutions do not work well in highly dynamic networks. Second,
the differences between E2E PDRs of C-DV in both stable and unstable periods and
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Fig. 15. Evaluation in stable periods.

Fig. 16. Evaluation in unstable periods.

the differences between E2E PDRs of MC-DV in the same periods are less than 5%.
The standard deviations of C-DV and MC-DV are also much smaller than those of
DV in all cases. This result demonstrates that C-DV and MC-DV achieve stable and
high E2E PDR in highly dynamic networks, outperforming DV. More specifically, with
light traffic L1, the average E2E PDR of C-DV is above 80% for more than 80% of the
time. The average E2E PDR of MC-DV is above 80% for more than 99% of the time.
Third, MC-DV outperforms DV and C-DV with light traffic L1. This demonstrates the
benefit of route maintenance for interference-free streams. Two factors that contribute
to performance of MC-DV with different traffic are interference among streams and
control contention. Interference among streams affects the qualities of links. There
were three streams with L1 load, and 8 streams in L2 and L3 loads. In addition, the
maintenance introduces extra control packets at both link and network layers. With
a heavier traffic load, the links near the base station may become unstable, whereas
with light traffic, the interference is free and stable links are selected. On the other
hand, control contentions may occur at streams near each other. For example, power
controllers on two parallel links increase power alternately when their transmissions
interfere, causing degrading PDR. These issues indicate that MC-DV may not work
very well with heavy traffic and large-scale networks. Fourth, in our experiments, we
found that not all observed E2E PDRs demonstrate obvious improvement. For other
sources, we have observed smaller performance improvement than that of DV, which
suggests that the improvement of competence-enhanced routing depends on the density
of competent links in the network. If a node has no competent links that it can use, the
stability of performance will not improve much. Overall, our competence-based link
characterization and feedback control–based stabilization are critical for achieving
better network performances in dynamic wireless sensor networks.

The 24-hour E2E PDR of all three algorithms under light traffic L1 is shown in
Figure 17. From this figure, we can see the average E2E PDRs of DV, M-DV, and
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Fig. 17. E2E PDR in 24 hours.

Fig. 18. Evaluation in stable periods.

MC-DV and their variations over 24 hours. The transition between stable period and
unstable period can be observed at DV, as its E2E PDR starts decreasing around 8 AM
and remains low until late afternoon. C-DV and MC-DV, on the other hand, have much
more stable E2E PDRs over time, although we can still observe a small performance
decrease during the stable period.

The transmission energy efficiency is presented in Figure 15(b) and Figure 16(b).
Transmission energy is estimated based on the total number of transmissions, the
packet length, the transmission power level used for each transmission, and the control
overhead. Several interesting observations can be made from these figures. First, the
energy consumption per delivered bit of all algorithms in unstable periods is higher
than stable periods because that many transmissions in unstable periods are wasted
without successfully delivering the packets. Then, as shown in Figure 16(b), in unstable
periods, the energy consumption per delivered bit of C-DV and MC-DV is much lower
than that of DV. This result suggests that C-DV and MC-DV are more energy efficient
than DV in both stable and unstable periods.

We have plotted the total number of parent switches in Figure 15(c) and Figure 16(c).
We have two main observations. First, the numbers of parent switches of all three
algorithms are similar in stable periods. This demonstrates that the characterization of
stable links does not increase the number of parent switches in stable periods. Second,
in the unstable periods the numbers of parent switches of DV are much higher than
these of C-DV and MC-DV. This result shows that C-DV and MC-DV have successfully
decreased the traffic oscillation that DV suffers in the unstable periods. We also note
that as the traffic load increases, interference caused by control packets in MC-DV may
increase.

We have also calculated the average competence on E2E PDR of these three algo-
rithms in both stable periods and unstable periods, and plotted them in Figure 18(a)
and Figure 19(a). The value of average competence represents how well E2E PDR stays
within the specified range in the long term. From these figures, we can see that average
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Fig. 19. Evaluation in unstable periods.

competence values of all three algorithms during stable periods are higher than corre-
sponding ones during unstable periods. This confirms that interference and dramatic
environmental changes influence the stability of E2E PDR within the specified range.
On the other hand, the competence values of MC-DV and C-DV are much higher than
DV during both stable periods and unstable periods. Furthermore, decreases of com-
petence values of MC-DV and C-DV during unstable periods are much less than the
ones of DV. These results demonstrate that our designs achieve more stable E2E PDR
than the previous design. We have calculated the average settling times and maximum
settling times of these algorithms, and plotted them in Figure 18(b) and (c) and Fig-
ure 19(b) and (c). The trends of average settling times and maximum settling times are
similar. From these figures, the settling times are almost twice as long during unstable
periods as they were during stable periods. Both C-DV and MC-DV have a much lower
average settling time than does DV in all experiments.

6.2. E2E Delay Analysis

Woo et al. [2003] offer a probabilistic approach for quantifying path delay to serve real-
time routing. Since the link-level delays are probabilistic rather than deterministic,
this approach proposes a multitimescale adaptation routing protocol.

We conducted simulations with real data traces. In this simulation, each node can
use different power levels to transmit packets; at the same time, each node faces a
different background interference level.

In WSN, the link quality is affected by the surrounding environment conditions. For
example, if the interference level increases, then the link quality is affected directly
due to this increase. In this section, we are motivated to study the effect of different
condition (i.e., interference levels).

In Figure 20, we can see that the measured delay of a path, which consists of three
hops. For the stable period, we fixed the interference amount that affects the path nodes
at −76.53dBm; for the unstable period, we varied the interference amount between
−76.53dBm and −75.6dBm. The average delay for stable period is around 7ms, and
the average delay for unstable period is around 12.7ms. The standard deviation for the
stable period appears to be much smaller than the standard deviation for the unstable
period. The variation of interference has a major effect on the path delay. Regulated
power transmission can lead to more stable delay behavior and simultaneously reduce
the delay variation.

To evaluate energy efficiency of our design, we calculated the total transmission
energy consumption of all nodes using the following equation:

CE =
k−1∑
i=1

⎛
⎝ max∑

j=min

(NumDij × TEj) × LD

⎞
⎠ , (19)
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Fig. 20. Delay in stable and unstable periods.

Fig. 21. Delay in stable period and unstable period with PC.

where i is transmitting node id, k is the path length, and j is the power level for the
transmitting node. NumDij is the number of packets transmitted from node i using the
power level j, and TEj is the transmission energy consumed per bit, which is based on
Chipcon CC2420 low-power radios. LD is the length of the data packet, and we fixed it
at 20 bits. In our simulation, the source node transmitted one packet each second under
two different periods. In the first period (the stable period), we did not use any power
control, whereas in the second period (the unstable period), we used our transmission
power control solution.

Figure 21 shows the delay for the stable period and unstable period for different
number of hops. For the 3-hops path in the stable period, the delay was around 7ms
with a standard deviation of 0.4, whereas in the unstable period with power control
to satisfy T = 9ms, the delay was close to 9ms with a standard deviation of 3.1. In
the 6-hops path, the stable period delay was around 13.2ms with a standard deviation
close to 0.4, whereas in the unstable period with power control to satisfy T = 15ms,
the delay was 15.8ms with a standard deviation of 2. Using the 9-hops path, the stable
period delay was close to 19.6ms with a standard deviation of 0.19, and for the unstable
period with power control to satisfy T = 20ms, the delay was around 19.7ms with a
standard deviation of 0.76. Finally, for the 12-hops path in the stable period, the delay
was 25.7ms with a standard deviation of 0.34, and using an unstable period with power
control to satisfy T = 30ms, the delay was around 28.7ms with a standard deviation
of 1.2.
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Fig. 22. Transmission energy consumption.

The results reveal that the standard deviations in stable periods are less than the
standard deviations in the unstable periods, therefore suggesting that our design reg-
ulated transmission power levels of nodes to better meet the E2E requirements.

In Figure 22, we divided a 1-hour period into intervals of 5 minutes and then cal-
culated the power consumption every 5 minutes for all nodes along the path. For the
3-hops path, the power consumption was around 1.8 × 106 microamps. In the 6-hops
path, the power consumption was around 3.53 × 106 microamps. For the 9-hops path,
the power consumption was around 5.3 × 106 microamps. Finally, for the 12-hops path,
the power consumption was around 7×106 microamps. We can see that the total power
consumption increases as the path length increases.

7. CONCLUSIONS

This article presents a competence metric to characterize the long-term communica-
tion quality. To achieve stable performances in E2E communication, we incorporate the
competence metric into routing protocol designs. We also propose a feedback control
framework that addresses dynamics at the link, network, and transportation layers.
Our evaluations with 48 T-Motes have demonstrated that our design achieves satisfac-
tory and stable network performances over time, outperforming existing protocols.
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