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Abstract
Carpooling has long held the promise of reducing gas

consumption by decreasing mileage to deliver co-riders. Al-
though ad hoc carpools already exist in the real world
through private arrangements, little research on the topic
has been done. In this paper, we present the first systematic
work to design, implement, and evaluate a carpool service,
called coRide, in a large-scale taxicab network intended to
reduce total mileage for less gas consumption. Our coRide
system consists of three components, a dispatching cloud
server, passenger clients, and an onboard customized de-
vice, called TaxiBox. In the coRide design, in response to
the delivery requests of passengers, dispatching cloud
servers calculate cost-efficient carpool routes for taxicab
drivers and thus lower fares for the individual passengers.

To improve coRide’s efficiency in mileage reduction, we
formulate a NP-hard route calculation problem under differ-
ent practical constraints. We then provide (i) an optimal
algorithm using Linear Programming, (ii) a 2 approximation
algorithm with a polynomial complexity, and (iii) its corre-
sponding online version. To encourage coRide’s adoption,
we present a win-win fare model as the incentive mechanis-
m for passengers and drivers to participate. We evaluate
coRide with a real world dataset of more than 14,000 taxi-
cabs, and the results show that compared with the ground
truth, our service can reduce 33% of total mileage; with our
win-win fare model, we can lower passenger fares by 49%
and simultaneously increase driver profit by 76%.
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1 Introduction
Among all transportation modes, taxicabs play a particu-

larly prominent role in residents’ daily commutes in many
metropolitan areas [2] [6]. Based on a recent survey in New
York City [15], over 100 taxicab companies operate more
than 13,000 taxicabs, with stable demand of 660,000 pas-
sengers per day, and transport more than 25% of all transit
passengers, accounting for 45% of all transit fares paid. To
fulfill such delivery requests, these taxicabs travel a total of
roughly 800 million miles per year [6]. Unfortunately, with
25 MPG, these taxicabs consume about 32 million gallons
of gas every year, more than the total annual gas consump-
tion in some middle-sized countries (e.g., Central African
Republic [13]), therefore leading to severely harmful
tailpipe emissions and energy consumption. On the other
hand, in carbon emissions trading under the Kyoto Proto-
col [18], governments will provide economic incentives for
achieving reductions in the emissions of carbon pollutants.
Thus, for both environmental and economic purposes, it is
imperative to find a practical initiative to support the same
delivery requests for taxicab transportation from passengers
with lower total mileage and less carbon emissions.

In this paper, we argue that a taxicab carpool service is a
promising solution. The key advantage of a carpool service
is that it can pool groups of several passengers heading in
the similar direction into one rather than several taxicabs. In
other words, a carpool service provides a valid solution for
delivering the same number of passengers with lower total
mileage and thus less gas. The economic incentive for
drivers is that groups of passengers can pay a higher aggre-
gated fare, whereas the incentive for passengers is that every
passenger will pay less than in a non-carpool situation. With
an effective fare model, we can achieve a win-win situation.
Furthermore, carpools can also improve the availability of
taxicab service during rush hours and after major events.

Admittedly, taxicab carpooling is not a new concept and
has been around for years. But existing taxicab carpool ar-
rangements are negotiated by individual drivers and
passengers in an ad hoc manner without a facilitating infras-
tructure. Until now, we have lacked a systemic study of
carpooling in large scale taxicab networks. We note that
many studies have focused on taxicab scheduling [4] [9]
[10] [11] [19] [23] [24] or novel systems taking advan-
tage of taxicab mobile traces [3] [5] [12] [17] [20] [21]
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[22] [25] [26] , but little research, if any, has been done on
taxicab carpool services with a software and hardware
co-design. In this paper, we present the first systematic s-
tudy of how to design, evaluate, and implement taxicab
carpool services in real world scenarios. Specifically, the
key contributions of this paper are as follows:

• To the best of our knowledge, we conduct the first car-
pool service that considers the mutual benefits for
passengers and drivers in large-scale taxicab networks
and provide a comprehensive study of how to fill the
same passenger delivery requests with less total
mileage and thus less gas consumption. To achieve our
goal, we develop customized hardware, TaxiBox, with
multiple sensors and onboard devices (such as CDMA
communication module, MIC, camera, and carpool
fare meters). Using TaxiBox, we design a taxicab
carpool system, coRide, to gather requests from pas-
sengers, to inform drivers of carpool requests, to
calculate carpool routes for drivers, and to estimate
carpool fares for passengers.

• In coRide, we introduce a mathematical concept deliv-
ery graph to represent a carpool route schedule for
delivering passengers. Given requests provided by pas-
sengers, we seek an optimal delivery graph to achieve
the minimum total mileage. We show that this opti-
mization is NP-hard by linking it to the classic
traveling salesman problem, and provide (i) an optimal
solution with integer programming, (ii) a 2-factor ap-
proximation solution with a polynomial complexity,
and (iii) an online algorithm to accommodate online
streaming requests. In addition, we consider different
real world constraints, e.g., passenger travel periods,
number of available taxicabs, and taxicab capacities.

• Based on the carpool route, we propose a win-win
carpool fare model to encourage both drivers and pas-
sengers to participate in carpooling. In this model,
given a carpool benefit due to mileage reduction, pas-
sengers and a driver will share this benefit based on a
ratio dynamically adjusted by the supply and demand
relationships in a taxicab network.

Our evaluation effort is comprehensive. We test coRide
on a real world 10 GB dataset consisting of 1 week of GPS
traces from more than 14,000 taxicabs in a Chinese city
Shenzhen with a population of 10 million. The evaluation
results show that compared with the ground truth, our car-
pool service can reduce the total mileage by as much as
33%, and our win-win fare model can lower passenger fares
by 49% and increase driver profit by 76% at the same time.

The rest of the paper is organized as follows. Section 2
introduces the related work. Section 3 proposes the motiva-
tion for the design. Section 4 presents the coRide system
overview. Section 5 describes our customized device, Taxi-
Box. Section 6 explains the algorithms for carpool route
calculation. Section 7 presents a win-win carpool fare mod-
el. Section 8 validates our services with a big dataset,
followed by the conclusion in Section 9.

2 Related Work
The premise of taxicab carpooling is not new, but in real

world it is normally negotiated privately by drivers and pas-
sengers in an ad hoc manner. We lack a systematic design to
balance benefits of all the involved parties, e.g., drivers, pas-
sengers, and taxicab operators. Two types of previous work
are directly related to our work: research on taxicab systems
and on ad hoc carpools.

2.1 Taxicab Systems
The increasing availability of GPS devices has encour-

aged a surge of research intended to improve the efficiency
of large-scale taxicab networks. First, several systems are
proposed for the benefit of passengers or drivers, e.g., al-
lowing passengers to query the expected duration and fare
of a planed taxicab trip based on the history of previous
trips [4] and query real-time taxicab availability to make
informed transportation choices [19], as well as recom-
mending optimal pickup locations or routes [8] [9] [23].
Second, taxicab traces can also help taxicab network opera-
tors better oversee taxicabs and provide efficient service to
passengers, e.g., discovering spatial and temporal causal in-
teractions to provide timely and efficient service in certain
areas with disequilibrium [10] [11], and detecting anoma-
lous taxicab trips to discover driver fraud or road network
changes [24]. Third, traces from experienced taxicab drivers
can help other drivers improve their driving performance,
e.g., navigating newer drivers to smart routes based on those
of experienced taxicab drivers [17] [21]. Fourth, large scale
taxicab traces enable us to better understand traffic condi-
tions of cities, e.g., semantics of origin-destination
flows [25], traffic congestion and volumes [3], and traffic
patterns between regions with different functions [20]. Fi-
nally, large scale traces also can help in city planning, e.g.,
detecting flawed urban planning [26] or improving map
inference [5] [12].

Yet existing research on taxicab systems focuses on
scheduling individual taxicabs, assuming that one taxicab
can accommodate only a single delivery request at a time.
In contrast, our system allows shared delivery. Technically,
we focus on carpool route calculation and a win-win fare
model, neither of which has been investigated before.

2.2 Ad Hoc Carpool
Limited ad hoc taxicab carpools exist in both developed

and developing countries. For example, in New York City,
up to four passengers can carpool together in a single taxi-
cab ride during 6 AM to 10 AM on a weekday, along three
preset routes in Manhattan at a flat fare of $3 or $4 per pas-
senger, significantly less than the regular metered rates [16].
In Beijing, ad hoc taxicab carpooling is also allowed with
the consent of both passengers and drivers, and every pas-
senger pays 60% of the regular fare. Further, some door to
door shuttle services are also available in major airports,
and can enable shared rides to or from airports [1]. Howev-
er, in the aforementioned carpool services, both time and
locations are preset and the services are arranged on the
spot by passengers or drivers in a small-scale ad hoc man-
ner, and no infrastructure is provided to improve the
efficiency of carpooling.
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3 Motivation
In this section, based on two datasets about traces and

fares of 14,000 taxicabs in a Chinese city Shenzhen with a
population of 10 million, we first introduce the basic prop-
erties of large scale taxicab networks in dense urban areas.
Then, we present evidence about the inefficiencies of
current taxicab networks, demonstrate opportunities for car-
pools to address these inefficiencies, and identify challenges
to facilitating carpooling in current taxicab networks.
Details of the datasets appear in Section 8.

3.1 Properties of Taxicab Networks
In developed countries such as US, taxicabs are usually

used to serve passengers to airports, and personal vehicles
are used for other activities, excepting extreme large cities
such as New York City. But in developing countries, due to
high costs of owing personal vehicles, taxicabs and other
public transportation are popular for daily activities. In
dense urban areas such as Beijing, taxicabs are affordable
for local traveling with an initiate fare about 2 USD for a 3
KM trip, and are more comfortable than other public trans-
portation with cheaper fares (such as buses or subway). Due
to the popularity and the affordability of taxicab services,
the number of taxicabs in a taxicab network of a large city is
typically more than 10,000. Thus, these taxicabs can be eas-
ily found on streets at the most of time and locations (except
in rush hours or in hot pickup spots) and are commonly
used for shopping, traveling to and from the work or
schools, and other daily activities.

3.2 Inefficiencies of Taxicab Networks
For society, the key inefficiency of taxicab networks is

the large gas consumption of a long-travel distance. Fig-
ure 1 summarizes statistics about taxicab network studied.
We observe that these taxicabs travel a total of 1.2 billion k-
ilometers per year, consuming about 100 million liters of
gas to deliver 200 million passengers and causing harmful
tailpipe emissions.

Collection Period 6 Months 
Collection Date 01/01/12-06/30/12

Numbe of Taxicabs 14,453
Number of Passengers 98,472,628
Total Travel Distance 594,031,428 (KM)

 Total Fare 2,255,052,932 (CNY)
 Average Travel Distance 6.032 (KM)

Average Fare 22.9 (CNY)

Taxicab Network Summary

Fig 1. Statistics
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Fig 2. Delivery Distance
For drivers, the key inefficiency is low profits, which are

decided mainly by delivery distances (i.e., the mileage with
paying passengers). Intuitively, drivers should earn more
profit in rush hours, but this is not the case in large cities
with severe congestion. In regular hours without conges-
tion, the total distance (i.e., also including total mileage
without paying passengers) is high, but the percentage of
delivery distance is low, since it is not easy to find a passen-
ger. In rush hours with congestion, in contrast, the
percentage of delivery distance is high (i.e., easy to find a
passenger), but the total distance is low due to the slow pace
of traffic. Figures 2 shows the average delivery distance. It

shows delivery distances at different times of day (i.e., rush
and non-rush hours) are not significantly different.

For passengers, key inefficiencies are high fares and low
availability. According to statistics about New York C-
ity [6] [15], the average fare is 11.44 USD for a 2.8 mile trip
with an 11-minutes travel time, which is 5.8 times higher
than the average public transit fare (bus or subway) on aver-
age. In our statistics, the average fare of 22.9 Chinese Yuan
(CNY) for taxicabs is 11 times of a bus fare of of 2 CNY on
average. These two datasets also provide some evidence
about the low availability of taxicab services. First, in the
time intervals between deliveries presented in by Figure 3, a
small interval indicates that a taxicab will pick up a new
passenger right after it drops off an old passenger, i.e., low
availability. In Figure 3, the average time interval in rush
hours is small, less than 3 minutes, indicating a low avail-
ability of taxicab services. Second, low availability can also
be seen in the taxicab occupancy ratios in Figure 4, where a
high occupancy ratio indicates fewer empty taxicabs. The
ratios in Figure 4 indicate that more than 80% of taxicabs
are occupied on average during rush hours. Thus, Figures 3
and 4 indicate the low availability of taxicabs during rush
hours.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

35

40

In
te

rv
al

sb
et

w
ee

n
D

el
iv

er
ie

s(
m

in
s)

24 Hours of a Day

Fig 3. Delivery Intervals

0 2 4 6 8 10 12 14 16 18 20 22 24

30

40

50

60

70

80

90

100

T
ax

ic
ab

O
cc

up
an

cy
R

at
e

(%
)

24 Hours of a Day

Fig 4. Occupancy Rate

3.3 Opportunities for Taxicab Carpool
We show the opportunities that carpools provide to ad-

dress the above inefficiencies. A key factor ensuring the
success of carpooling is the frequency with which passen-
gers from the same origin go to similar destinations, which
can be shown by (i) travel distances of shared routes and (ii)
distances between destinations. Both long-distance shared
routes and small distances between passengers’ destinations
indicate good carpool opportunities. We first show some ex-
amples of shared routes and close destinations. Based on
the datasets, we show 200 continuous deliveries from an air-
port in Figure 5 where in ordinary services, most passengers
go downtown and others go to several hot spots.

Delivery Start
Delivery End

Airport

Downtown

Common
Route

Hot Spot

Fig 5. Deliveries From Airport
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Further, with 1,000 taxicab deliveries from the airport,
Figure 6 shows the percentage distribution of distances of
shared routes, where we observe that more than 90% of de-
liveries share at least 5 KM with another delivery, and that
more than 50% of deliveries share at least 20 KM with an-
other delivery. The percentage distribution of distances
between destinations is given in Figure 7, where we observe
that almost 60% of deliveries have a destination closer than
1 KM to that of another delivery, and almost 80% of deliv-
eries have a destination closer than 5 KM to another
destination. From Figure 6 and 7, we observe that a fair
amount of deliveries share long distances, and have
destinations close to each other.
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Fig 6. Shared Distance
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Fig 7. Close Destinations

3.4 Benefits for Taxicab Carpool
From the above figures, we observe a good opportunity

for carpools to benefit multiple parties. For passengers, a
taxicabs carpool can increase the availability of taxicab
services in extreme weathers, peak hours or hot pickup loca-
tions, reducing the waiting time for passengers; in addition,
multiple passengers in a carpool can share the fare together,
reducing the fare paid by individual passengers. For taxicab
drivers, a taxicab carpool can increase profits, since the ag-
gregated carpool fare is higher than regular service fare with
the same travel distance. For operators, a taxicab carpool
can provide more transportation capacity and enable more
efficient gas consumption. Note that taxicab carpools do not
aim to completely replace the traditional taxicab services,
but serve as a key supplement for the situations where regu-
lar taxicab services are insufficient in peak hours or extreme
weathers, or situations where some passengers would like to
take transportation that is cheaper than traditional taxicab
services yet more convenient than bus and subway.

3.5 Passenger Sensitivity for Taxicab Carpool
According to a carpool survey taking at Beijing [7], 75%

of interviewees are willing to carpool; 57% of interviewees
have carpooled at least once; 73% of interviewees accept a
simple carpool fare model that every passenger pays 60% of
regular service fare for the shared distance, leading to more
profits for drivers; several key concerns about carpooling
pointed out by more than half of interviewees are as follows
(i) prolonged travel time (64%), (ii) hard to find passengers
to carpool (50%), and (iii) unable to print duplicated re-
ceipts for all passengers (50%). Based on the above survey,
we find that most passengers are willing to accept carpools
and to share the benefits of carpools with co-riders and the
driver, but we still face several challenges to enable a practi-
cal carpool service in large-scale taxicab networks, which
we will introduce next.

3.6 Challenges for Taxicab Carpool
We present three challenges and some possible solutions

for implementing carpool services in the current taxicab
networks.

Acquisition of Detailed Status about Taxicabs: To find
the most suitable taxicab, a dispatching center should ac-
quire detailed information about taxicabs, e.g., how many
seats are left, which is difficult to obtain in current taxicab
networks, where only the general taxicab status (e.g., loca-
tions, speeds, with passenger or not, etc) can be obtained by
dispatching centers through real-time GPS record upload-
ing. Thus, an onboard device should be installed in taxicabs
to let dispatching centers monitor the detailed status of
taxicabs and find the most suitable taxicab.

Carpool Route Calculation: After finding the most
suitable taxicab, a dispatching center should calculate the
optimal carpool route based on multiple received requests in
a centralized way, and send the calculated route to a driver.
This route should be efficient in terms of the total distance
to deliver all assigned passengers. In addition, the calcula-
tion of routes should be fast enough to enable a responsive
taxicab carpool service.

Fare Estimation and Calculation: With a carpool route
schedule, dispatching centers should notify passengers with
fare details of several carpool options for their approval. A
win-win carpool fare model that estimates fares is missing
in the taxicab business. Further, current fare meters can cal-
culate only a single fare, and a more advanced fare meter
that can record multiple concurrent trips is desirable for
carpooling.

To address the above challenges, we aim to develop a
carpool system, coRide, as a hardware and software
co-design with an front-end onboard device, TaxiBox, and a
back-end cloud server to upgrade current taxicab networks.
coRide employs multiple sensors and external devices at-
tached to TaxiBox to effectively manage taxicab networks.
We will provide an overview of coRide and the TaxiBox
design in Sections 4 and 5, respectively.

4 The coRide System Overview
In this section, we present a system overview of coRide,

which consists of three key parts: a cloud server, passengers
client, and the onboard TaxiBox as shown in Figure 8.

Mobile 
App

Onboard TaxiBox

Carpool 
Selection

Phone 
Call Route 

Calculation
(Section 6)

Fare 
Estimation
(Section 7)

Delivery 
Requests

Carpool 
Schedules

Physical and 
Delivery Status

Cloud Server

Onboard Sensing

External Devices

Central Control

Passenger Clients

(Section 5)

MoMoMMobMoMMMoMM ile 
ApApAppApApApA

CCC
Seeee

Phone ne enenee n
Caalall Deeee

Reeee

PPaPassssenengegerr ClClCliieie tntntss

coRide

Fig 8. coRide System Overview
4.1 Passenger Clients

Passenger participation is required by our design, which
can be encouraged by our win-win fare model discussed lat-
er. Assuming that passengers will be willing to participate,
they will provide delivery requests to the dispatching center.
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The most common way to provide delivery requests is to
call the dispatching center by phone to provide the number
of passengers, pickup time, origin, destination, and possible
delivery deadline. Further, mobile apps can be used to pro-
vide delivery requests without calling the center. Based on
the delivery requests provided by passengers, the dispatch-
ing center will return a carpool option with a reduced fare
for their approval, along with a non-carpool option with a
regular fare for comparison.

4.2 Onboard TaxiBox
When a carpool is approved by passengers, a dispatching

center will locate a suitable taxicab for the carpool based on
the current status of taxicabs and then send a carpool route
schedule to this taxicab’s TaxiBox. The driver will respond
to this carpool request by changing the status of the taxicab
and then performing the carpool route schedule. These
functions are performed by three key components of
TaxiBox, which will be introduced in detail in Section 5.

4.3 Dispatching Cloud Server
In this paper, we will focus on function designs for a cloud

server at dispatching centers with an emphasis on taxicab
carpool services rather than regular services. In our carpool
service design, a cloud server is mainly in charge of

(i) receiving delivery requests from passengers;

(ii) calculating carpool routes based on delivery requests;

(iii) estimating carpool fares for passengers to approve;

(iv) sending carpool routes to suitable taxicabs;

(v) obtaining the physical and delivery status of taxicabs.

In the rest part of the paper, we present the detailed Taxi-
Box design in Section 5; for the dispatching cloud server,
we describe two key functions, the carpool route calculation
and fare model in Sections 6 and 7, respectively.

5 TaxiBox Hardware
In this section, we present our hardware design, and then

show the deployment about TaxiBox, and final propose the
capability of taxicabs with TaxiBox.

5.1 TaxiBox Design
As shown by Figure 9, our onboard device, TaxiBox,

consists of three main parts: central control system, onboard
sensing system, and external devices.

Fig 9. TaxiBox Hardware Design

The central control system has two key parts, the power
module and the CPU module. For the power module, we
employ TPS54160 from Texas Instruments, which is a 60V,
1.5A, step down SWIFT DC/DC converter with an integrat-
ed high-side MOSFET. For the CPU module, we use a 32
bit 72 MHz processor STM32F103 from ARM Cortex-M3
processors with A/D Convertors of 12-bit accuracy.

The onboard sensing system has open interfaces to mul-
tiple sensors, and the current hardware is attached with (i)
alcohol and smoke sensors, (ii) a ± 2g triaxial acceleration
sensor, and (iii) a camera and a microphone. Based on the
above onboard sensors, a dispatching center is capable of
monitoring the comprehensive physical status of a taxicab
on streets.

Various external devices can be integrated into our Taxi-
Box. Some external devices in the current TaxiBox design
include (i) a display and a speaker integrated to the display;
(ii) a traditional fare meter for fare calculation and receipt
printing; (iii) backup power for a situation in which the
main power is not available; (iv) an emergency button; (v) a
GPS module with a separate GPS antenna; and (vi) a
CDMA 1X communication module with a separate antenna.

In some existing taxicab networks, the communication
modules usually use GPRS (e.g., for GPS coordinates up-
loading) between taxicabs and dispatching centers. But in
our design, taxicabs typically have a larger dataset to upload
to or download from a dispatching center. Thus, a CDMA
1X, instead of GPRS, communication module is attached to
TaxiBox, since CDMA employs different channels for voice
and data communications, which clearly has advantages in
terms of communication speed and stability, compared to G-
PRS that employs the same channel for data
communications.

5.2 TaxiBox Deployment
We have deployed our TaxiBox in 98 taxicabs as shown

by Figure 10. The alcohol and smoke sensors are installed
in the ceiling of taxicabs for better sensor function. The
camera is in front of passengers so as to take pictures from a
better angle. The main part of TaxiBox is hidden above the
glove box. The display is installed above the air-conditioner
control panel for easier access by drivers. The 3 axis
acceleration sensor is hidden under the glove box.

Fig 10. TaxiBox Deployment
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5.3 TaxiBox Capability
In this section, based on the hardware we deployed in

taxicabs, we introduce the capabilities of TaxiBox.

Taxicab Physical Status Sensing: Dispatching centers
should be fully aware of the status (e.g., location, speed,
etc.) of taxicabs to provide better carpool service. With GPS
and CDMA 1X modules onboard, a taxicab can periodically
upload its real-time physical status to a dispatching center.
The onboard traditional fare meter and TaxiBox with a dis-
play can function together as a smart meter that can record
the status of several trips, i.e., the delivery distance and fare
for different passengers onboard, whereas the traditional
fare meter can only record a single delivery distance. Fur-
ther, a speaker is integrated into the display so dispatching
centers can issue a voice schedule or voice navigation.

Taxicab Delivery Status Sensing: In addition to a taxi’s
physical status, a dispatching center is also interested in the
real time status of its deliveries. The status of deliveries
includes delivery distance, with passengers or not, fare, du-
ration, start time, end time, pickup and dropoff location,
which all can be obtained by TaxiBox and uploaded to
dispatching centers.

6 Route Calculation in Cloud Server
In this section, we first propose preliminaries about our

carpool work, then define a carpool route calculation
problem, and finally propose its solution.

Carpools can be classified into four categories, (i) one o-
rigin to one destination (1 → 1); (ii) one origin to many
destinations (1 → N); (iii) many origins to one destination
(N → 1); and (iv) many origins to many destinations
(N → N).

For the sake of presentation, we will focus on 1 → N be-
cause (i) 1 → 1 is a special case of 1 → N; (ii) N → 1 can be
solved with 1 → N by reversing origin and destination; and
(iii) N → N can be solved with a special 1 → N with
constraints on the order in which to visit all origins and des-
tinations. Without loss of generality, we use 1 → N model
(e.g., carpool passengers from an airport) as an example for
the design.

6.1 Preliminaries
For a carpool, a passenger will provide a delivery request

with an origin, a destination, a start time and an optional
end time (A possible end time serves as a deadline for deliv-
ery, but our model works with an unknown end time). Thus,
given several requests for carpooling from the same origin
as in Figure 11(a), we shall analyze distances between their
destinations, which can be shown as a complete graph. We
construct this complete graph as shown in Figure 11(b) by
(i) treating both origin and destinations as vertices, and (ii)
linking all vertices to each other with directed edges,
associated edge weights with pairwise mileage costs.

Subfigures (a) and (b) in Figure 11 give an example of
how to create a complete graph based on 9 delivery requests
from the origin a. A weight on an edge (e.g., Mi j) indicates
the real world mileage between two locations. Given the
complete graph, we can obtain a carpool route based on a
delivery graph, which is defined as follows.

D1:[a, b];   
D2:[a, c];   
D3:[a, d];   
D4:[a, e];   
D5:[a, f];   
D6:[a, g];
D7:[a, h];
D8:[a, i];
D9:[a, j];

(a) Requests (c) Delivery Graph (no carpool)

a

c

b

i

d
e

f
g

h

j

(b) Complete Graph G

Mij
c

b

i d

e
fg

h

j

a

Origin a

Maj

Fig 11. Complete Graph

Definition 1: Delivery Graph: With a complete graph G
given by delivery requests, a delivery graph is a subgraph of
G where (i) the origin vertex can reach all destination ver-
tices; and (ii) no branches exist at any vertex other than the
origin vertex (i.e., spoke topology)

With the above definition, we can see that a delivery
graph uniquely indicates a carpool route where the total car-
pool mileage is equal to the sum of all its edges’ weights. In
Definition 1, the condition (i) is to make sure that with a
carpool route, all passengers can be delivered from the ori-
gin to their destinations; the condition (ii) is to make sure
that every passenger will take only one taxicab during the
carpool, i.e., without relay. Subfigure (c) in Figure 11 gives
an example of a delivery graph without carpool, i.e., all pas-
sengers are delivered by separate drivers with separate
mileages, e.g., Ma j.

a

c

d

g

e f
j

b

h

i

(b) Subgraph

a

c

d

g

e

f j

b

h

i

(a) Delivery Graph

Taxi 1

Taxi 2 Taxi 3

a

d

f

(c) Relay

Taxi 1

Taxi 2

Origin

Destination

Relay

Fig 12. Delivery Graph with Carpool

The examples of a delivery graph DG with carpool are
given in Subfigure (a) of Figure 12. In DG, the origin vertex
a can reach all destination vertices, and no branches exist at
any destination vertex. A delivery graph (e.g., DG) indicates
a real world carpool by specifying (i) a passenger assign-
ments for taxicabs, and (ii) a delivery order for a taxicab’s
passenger assignment. For example, DG shows that three
taxicabs fulfill passenger requests with destinations on three
paths (the total weight on edges of a path indicates the real
world mileage): Taxi 1 delivers passengers to b, with a
mileage Mab; Taxi 2 delivers passengers to c, d, e and f ,
with a mileage Mac +Mcd +Mde +Me f ; Taxi 3 delivers pas-
sengers to g, h, i and j, with a mileage
Mag +Mgh +Mhi +Mi j.

Subfigure (b) of Figure 12 gives an example of carpools
prohibited by coRide. To carpool by this subgraph, we have
to at least use two taxicabs to deliver passengers to c, d, e
and f : the first taxicab delivers passengers with destination
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c, d, and e, but carries only the passenger with destination f
from origin a to an intermediate vertex d; the second taxicab
has to pick up this passenger at vertex d (a relay), and then
deliver him or her to destination f as shown in Subfigure (c).

We argue that the carpool service with a relay is not
practical in real world scenarios, because (i) the relayed
passenger has to pay multiple times to different drivers, and
(ii) the coordination between taxicabs would lead to a large
layover delay. Therefore, in our work, coRide supports only
the delivery graphs with spoke topology to indicate a practi-
cal real world carpool route schedule for drivers to deliver
passengers without a relay.

6.2 Carpool Route Calculation Problem
Based on the delivery graph proposed in the last subsec-

tion, we propose our carpool route calculation problem:
Given a complete graph based on delivery requests, find
the minimum weight delivery graph.

The complete graph can be easily constructed based on
delivery requests provided by passengers; as a subgraph, a
delivery graph specifies passenger assignments and delivery
orders to fulfill all delivery requests; the minimum total
weight of a delivery graph indicates it fulfills all requests
with a carpool spending the minimum total mileage. To per-
form a practical carpool, we also consider three constraints
for our design.

(i) Taxicab Capacity c; it shows how many passengers
can be pooled into one taxicab.

(ii) Number of Available Taxicabs n; it shows how many
taxicabs can be used for carpool at the origin.

(iii) Travel Period [ts
i , t

e
i ]; it shows the earliest pickup time

ts
i and the latest dropoff time te

i for a delivery request i.
Based on the above discussion, our carpool route calcu-

lation problem is related to a multiple traveling salesmen
problem (called mTSP where multiple salesmen start from a
depot to visit different cities with the minimum total dis-
tance [14]) yet with the special carpool constraints. An
mTSP is generally solved with Integer Linear Programming
to the optimal solution. But for our large scale carpool route
calculations, the optimal solution results in a long running
time, since it is NP-Hard. Thus, a practical approximation
algorithm should be used to obtain a delivery graph within a
reasonable time.

Another key feature of our carpool route calculation
problem is that instead of booking a carpool trip a day or
two in advance, some passengers may provide online deliv-
ery requests just tens of minutes before the starting time of
their deliveries. So an online algorithm should be employed
to pool new passengers into existing carpools or to start a
new carpool.

Therefore, the design agenda about our solution to the
carpool route calculation problem given as follows:

(i) we use Integer Linear Programming to formulate our
carpool route calculation to obtain the optimal solution in
Section 6.3;

(ii) for a practical (quicker) solution, we propose a
2-factor approximation algorithm to obtain a sub-optimal
solution in Section 6.4;

(iii) to consider online requests, we present our online al-
gorithm in Section 6.5.

6.3 Optimal Solution
In the literature, the optimal solution for mTSP is given

by Integer Linear Programming. Thus, we formulate our
Carpool Route Calculation with following definitions.
(1) G = (V,A): a weighted complete graph where vertex a is
the origin vertex where a carpool starts and V ′ = V −{a} is
the set for destinations, and a weight on A indicated as ci j is
the real world mileage cost from vertex i to vertex j ;
(2) xi j = 1 if edge (i, j) ∈ A is used; xi j = 0 otherwise;
(3) [ts

i , t
e
i ]: a travel period for a passenger to vertex i;

(4) n: the number of available taxicabs;
(5) c: the taxicab capacity;
(6) yi: total number of dropped passengers before vertex i;
(7) qi: total number of dropped passengers at vertex i;
(8) pi: time arriving at vertex i;
(9) wi: latest starttime of dropped passengers before vertex i;
(10) T (i, j): travel time between vertex i and vertex j.

min ∑
(i, j)∈A

ci jxi j

s.t. ∑
i∈V

xi j = 1 ∀ j ∈V ′ (1)

∑
j∈V

xi j ∈ {0,1} ∀i ∈V ′ (2)

∑
j∈V ′

xa j ≤ n ∑
i∈V ′

xia = 0 (3)

yi +qi ≤ c ∀i ∈V ′ (4)

If xi j = 1 ⇒ yi +qi ≤ y j ∀i, j ∈V ′ (5)

pi ≤ te
i ∀i ∈V ′ (6)

If xi j = 1 ⇒ pi +T (i, j)≤ p j ∀i, j ∈V ′ (7)

max{wi, ts
i }+T (a, i)≤ te

i ∀i ∈V ′ (8)

If xi j = 1 ⇒ wi ≤ w j ∀i, j ∈V ′ (9)

∑
i/∈S

∑
j∈S

xi j ≥ 1 ∀S ⊆V ′ (10)

xi j ∈ {0,1} ∀i, j ∈V (11)

where (1) ensures that exactly one taxicab visits a destina-
tion; (2) ensures that exactly one taxicab leaves one
destination for the next delivery, or the carpool is over and
no delivery needs to be made; (3) is about the constraint on
the number of available taxicabs; (4) and (5) are about the
taxicab capacity constraint; (6), (7), (8) and (9) are about
the travel period constraint; (10) is to prevent the formation
of subtours not including origin vertex a. Note that although
every taxicab has disjoint vertices in a delivery graph, they
can share the same route in the real world when performing
the carpool.

Since the traditional traveling salesmen problem is
NP-Hard, as a generalized version, our problem is also
NP-Hard (due to space constraint we omit the formal
proof). Therefore, when the number of destinations increas-
es, the running time to solve the above integer programming
increases exponentially. Although integer linear program-
ming is sufficient for a small number of destinations, we
need to accommodate the case where the number of
destinations is large with an efficient algorithm.
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6.4 Approximation Algorithm
In this section, we first propose an approximation

algorithm, and discuss the impacts of the three constraints.

6.4.1 Approximation Algorithm without Constraints
An approximation algorithm without constraints is under

a scenario where all passengers’ travel periods are not con-
sidered; the origin is with unlimited taxicabs for carpooling;
every taxicab has unlimited capacities.

We first present some rationales. Any carpool from the
same origin can be performed with two key steps: (i) we
shall assign passengers to different empty taxicabs; (ii) we
shall calculate a delivery order for a given passenger assign-
ment for a particular taxicab. In the followings, we will
describe how to make use of this rationale for our approxi-
mation algorithm in two steps and provide its
approximation ratio.
(i) Passenger Assignment: Based on a complete graph G
created with delivery requests, we will show how to assign
passengers in Figure 13.

a
c

d
g

e f
j

b
h i

(b) Minimum Spanning
Tree Ta of G

b

c d
e f

Taxi 1

Taxi 2

g h
i j

Taxi 3

(c) Passenger Assignment
by Ta

Subtree 1 Subtree 2 Subtree 3a

c

b

i

d
e

f
g

h

j

(a) Complete Graph G

Origin a

Fig 13. Passenger Assignment
To assign passengers to different taxicabs, we shall take into
account the distances between destinations given by G in
subgraph (a). The objective is to find a minimum weight
subgraph of G to assign destination vertices to different
paths (every path is used by an unique taxicab). Since the
minimum spanning tree (MST) is the minimum weight sub-
graph of G, in this paper we try to employ an MST to obtain
a passenger assignment. Subgraph (b) gives a G’s MST Ta
with three subtrees rooted at origin vertex a. Based Ta, we
assign the passengers, who have destination vertices in the
same subtree, into the same taxicab. For example, passen-
gers with destinations c, d, e and f are assigned into
Taxicab 2, as in Subgraph (c). Note that Ta is not a delivery
graph we try to obtain, because Ta has branches at destina-
tion vertices. Thus, we have shown how to conduct
passenger assignment based on a given complete graph.
(ii) Delivery Order Calculation: Based on the passenger
assignment in step (i), in Figure 14 we will show how to
calculate a delivery order among passengers assigned into
the same taxicab.

a
c

d
e f

a
c
d

e f
(a) a Subtree ST

from MSP Ta
(b) Doubling to
enable traversal

(c) Traversal Order

a c d

ef d

Fig 14. Delivery Order Calculation
As in step (i), a passenger assignment for a particular taxi-
cab is given by a subtree rooted at the origin vertex a. Thus,

we employ Subtree 2 (named ST ) in the MST Ta in subfig-
ure (a) as an example to show how to obtain a delivery
order. With an observation on ST , we found that ST only
gives a passenger assignment, but not a fixed delivery order
since ST has a branch that requires passenger relay, which is
prohibited by coRide. Thus, a new subgraph transformed
from ST should be created to calculate an order without re-
lay. In this paper, we use a depth-first traversal from root
vertex to decide a delivery order. But as we can see in sub-
figure (a), ST is a directed graph, and cannot be traversed
based on current edges. Thus, as in subfigure (b), we double
the edges in ST to create loops to enable a traversal
a → c → d → e → d → f . This order is not a delivery order
since it involves duplicated vertices, i.e., d, thus a longer
total mileage Mac +Mcd +Mde +Med +Md f .

To obtain a delivery order, we use a shortcut strategy to
eliminate duplicated vertices in a traversal. In Figure 15, we
show how to shortcut some edges about duplicated vertices,
thus further reducing a delivery mileage.

a
c
d

e f
(a) Shortcutting
edge ed and ef

a
c
d

e f

a
c
d

e f
(b) Shortcutting

edge fd, dc and ca
(c) Delivery Mileage
Mac+Mcd+Mde+Mef

a
c
d

g

e
f j

b
h
i

Taxi 1

Taxi 2 Taxi 3
(d) Delivery Graph

Fig 15. Shortcutting about Duplicated Vertices

As in subfigure (a) and (b), we shortcut edge ed and d f with
a new edge e f , and then shortcut edge f d, dc and ca with
another new edge f a. Note that based on triangle inequality,
the length of an added edge (e.g., Me f ) is always shorter
than the sum of edges it shortcutting (e.g., Med +Md f ). Fur-
ther, we delete the edge f a to obtain the delivery order
a → c → d → e → f and the total mileage cost of 4 edges
(Mac + Mcd + Mde + Me f ) as in subfigure (c). Therefore,
with a traversal, we have shown that how to calculate a de-
livery order based on a given passenger assignment. With
the above two steps, we finish our approximation algorithm
to obtain our delivery graph in subfigure (d).

Proof of Approximation Ratio: We have proved that our
traversal algorithm has a constant performance ratio of 2,
i.e., the total mileage obtained by our carpool schedule, is at
most 2 times the optimal mileage we obtained by the opti-
mal solution using integer programming. This is because (i)
with shortcutting, the weight of our delivery graph W (S) is
smaller than a weight of a Traversal W (T ′), i.e.,
W (S) < W (T ′); (ii) a traversal is exactly two times of a
MST, W (T ′) = 2W (T ); (iii) the MST is smaller than or e-
qual to the Optimal solution since the optimal solution is a
spanning tree and MST is the smallest spanning tree,
2W (T )≤ 2W (O). Thus, W (S)<W (T ′) =2W (T )≤ 2W (O)

, therefore
W (S)
W (O) < 2.

During the construction of the minimum spanning tree,
three constraints, i.e., Taxicab Capacity, Number of Avail-
able Taxicabs, Travel Period, have special impacts, which
will be introduced in the following three subsections.
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6.4.2 Impact of Number of Available Taxicabs n
In this section, we show how to solve a carpool problem

with constraints on the number of available taxicabs n.
We can reduce the total mileage by delivering passengers

separately, if they are heading in significantly different di-
rections. In a delivery graph G, every subtree rooted at the
origin is associated with a separate taxicab, which satisfies
all delivery requests in this subtree. For example, in Fig-
ure 16, the spanning tree has three subtrees (boxed), and
therefore we need three taxicabs to satisfy the deliveries.

a
c

d
g

e f
j

b
h i

Taxi 1: a→ b;
Taxi 2: a→c→d→e→f;
Taxi 3: a→g→h→i→j;

Fig 16. Minimum Number of Taxicabs for Deliveries

When constructing a spanning tree, we have to find one s-
panning tree whose number of subtrees rooted at origin is
not bigger than n. Figure 17 shows how to impose such a
constraint during a spanning tree construction.

Adding edge ab
indicates 2 taxis

a

cb

Adding edge cb
indicates 1 taxi

a

cb

Fig 17. Constraints on Number of Available Taxicabs n

In Figure 17, given n = 1, i.e., there is only one taxicab
available for origin a, suppose that after adding edge ac,
currently the minimum edge that should be added to the tree
is edge ab according to Prim’s algorithm. But adding edge
ab indicates that we need two taxicabs to fulfill the deliver-
ies, which is against to n = 1. Alternatively, we can add
edge cb and it will still fulfill the deliveries yet with one
taxicab.

6.4.3 Impact of Taxicab Capacity c
In this section, we consider how to solve a carpool prob-

lem with constraints on the taxicab capacity c.
Since the taxicab capacity is limited (e.g., 4 for a sedan

and 6 for a van), a delivery graph should not have infinite
depth for any delivery branch. It is clear that given a fixed s-
panning tree, the minimum taxicab capacity is equal to the
size of its biggest subtree rooted at origin, because a taxicab
has to deliver all passengers in this subtree from origin. Fig-
ure 18 gives an example, where the biggest subtree has four
vertex, therefore the minimum taxicab capacity is 4.

Taxi 1: a→ b;
Taxi 2: a→c→d→e→f;
Taxi 3: a→g→h→i→j;

1
4 13 2

a
c

d
g

e f
j

b
h i 4 13 2

Fig 18. Minimum Taxicab Capacity for Deliveries

When constructing a spanning tree, we have to control the
sizes of subtrees to make sure the size of the largest subtree

less than given capacity constraint c. Figure 19 shows how
to consider it during the construction of a spanning tree.

Adding edge cb
requires capacity of 2

a

cb

Adding edge ab
requires capacity of 1

a

cb
Fig 19. Constraints on Taxicab Capacity c

In Figure 19, suppose c = 1 for simplicity, and suppose
that after adding edge ac, currently the minimum edge
should be added to the tree is edge cb according to Prim’s
algorithm. But adding edge cb indicates that we need taxi-
cabs with capacity of 2 to fulfill the deliveries, which is
against to c = 1. Alternatively, we can add edge ab and it
will still fulfill the deliveries yet with capacity of 1.

6.4.4 Impact of Travel Period
In this subsection, we analyze the carpool problem with

constraints on the travel periods of deliveries.
A travel period of a delivery i is specified by [ts

i , t
e
i ],

where ts
i is the earliest time that a delivery i can start, and te

i
is the latest time that delivery i must finish. The reason to
consider travel periods is that in practice, two deliveries
with non-overlapping periods cannot be carpooled together,
even though they have the same origin and destination.

To impose this constraint, for a minimum spanning tree Ta
and a delivery i with travel period [ts

i , t
e
i ] from origin vertex

a to destination vertex i, we need to ensure that a spanning
tree Ta can accommodate delivery i by satisfying:

max
k∈p

ts
k +T (a, i)≤ te

i ,

where p is a path on Ta from a to i, hence maxk∈p ts
k is the s-

tart time of last passenger, and T (a, i) is the travel time from
a to i in p of Ta. The left-hand side is expected arrival time
of delivery i according to this carpool, and the right-hand
side is the latest end time of delivery i, given by the passen-
ger. Thus, if the left-hand side is smaller than or equal to the
right-hand side, it indicates that Ta can accommodate i. Fig-
ure 20 gives an example of how to validate whether the
minimum spanning tree can accommodate a delivery or not.

Minimal Spanning 
Tree Ta 
a

cd

e

D1:[a, c, tsc=2, tec=7];   
D2:[a, d, tsd=2, ted=6];   
D7:[a, e, tse=3, tee=8];

Delivery Requests 

Travel Time
T(a,c)=3; T(d,c)=1; 

   T(a,d)=3; T(d,e)=0.5; 
T(a,e)=3; T(c,e)=1; 

Fig 20. Validation on Travel Period

In Figure 20, suppose that during the construction of a s-
panning tree, the next minimum edge should be added to the
spanning tree according to Prim’s algorithm is an edge de.
Based on delivery requests and travel time in Figure 20,
maxk∈p ts

k = max{2,2,3} = 3; T (a,e) = 3+ 1+ 0.5 = 4.5;
thus, maxk∈p={a→c→d→e} ts

k +T (a,e) = 7.5 ≤ te
e = 8. There-

fore, the edge de is a safe edge and can be added to the
spanning tree.
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6.4.5 Put All Constraints Together
A practical approximation algorithm shall construct a

minimum spanning tree that (i) accommodates all travel pe-
riods of its deliveries, (ii) has the biggest size of subtrees
not bigger than c, and (iii) has a number of subtrees not big-
ger than n. The details about how to impose the three
constraints have been given in pervious section. We note
that the order of imposing constraints should not be
changed, since it is easiest to find more taxicabs to fulfill
requests, relatively easier to find bigger taxicabs to fulfill re-
quests, and harder to require passengers to change their
schedules. If the conditions conflict with each other, we can
always find a feasible solution by using more taxicabs.

Note that with highly diverse travel periods or a small
taxicab capacity, lots of taxicabs will be used to satisfy de-
liveries individually, which is a delivery schedule based on
“fat” spanning trees with small yet many subtrees. In con-
trast, with a small number of available taxicabs, lots of
deliveries will be pooled into one taxicab and then be ful-
filled one by one, which is a delivery schedule based on
“thin” spanning trees with big yet fewer subtrees.

6.5 Algorithm for Online Requests
Instead of providing delivery requests a day or two be-

fore the delivery start time, some passengers may call a
dispatching center a hour, or even several minutes, before
the delivery start time to provide online requests. In coRide,
we response to online requests by adding them to an exist-
ing carpool schedule, or start a new carpool schedule based
on details of requests.

Given an online request k and a delivery graph DG about
existing carpool route schedules at an origin, we can
integrate k to DG by two methods:
(i) As a new leaf to an existing subtree of DG: we add k to
the leaf of a subtree of DG (k as the new and the only leaf
for this subtree), only if (a) this new subtree can accommo-
dates the travel period of k and (b) the size of this new
subtree is not bigger than the taxicab capacity c. This
method indicates that we pool this new passenger with
passengers of an existing carpool.
(ii) As a new subtree of DG: we add k to DG by construct-
ing a new subtree (k as the only one vertex in this subtree)
from the origin vertex of DG. This method indicates that we
start a new separate carpool for this new passenger.

a

c

d

g

e

f j

b

h

i

Existing Carpool 
Route Schedules  

ka
 Online Request

Online 
Algorithm

c d
g

fe
jb h iak

c d
g

fe
jb h ia k

Option 1

Option 2

Option 3

Option 4

c d
g

fe
jb h ia

k

c d
g

fe
jb h ia

k

Fig 21. Online Algorithm for Online Requests
In Figure 21, given the existing carpool route schedules and
an online request, coRide obtains four different carpool op-
tions for the passenger to select by pooling this passenger to
existing taxicabs (option 1, 2 and 3) or starting a new car-
pool (option 4). The key criteria for passengers to select a
carpool is the carpool fare as we present next.

7 The Win-Win Fare Model
Generally, a taxicab fare consists of three main parts: an

initial charge for every service; surcharge for luggage, wait-
ing time, etc; and main charge based on traveled distance.
In our model, we focus on how to consider a carpool benefit
into calculations of the main charge. Such a carpool benefit
shall be shared between the passengers (as a group) and the
driver, as well as among the passengers themselves. The ra-
tionale behind sharing the carpool benefits with drivers is
that we have to encourage drivers to participate in the
non-mandatory carpool application. We believe that negoti-
ating privately by passengers alone and sharing the benefits
only between passengers will severely hurt the interests of
drivers, since the total profit for all drivers will decrease
significantly.

7.1 Carpool Benefit
A carpool benefit B between the total non-carpool fare

and a fare paid for a carpool distance is given as follows:

B =
c

∑
i=1

τi − τ,

where c is the total number of passengers in this carpool; τi
is the separate non-carpool fare for passenger i; τ is the reg-
ular fare for a distance equal to the carpool distance (not the
carpool fare). Thus, the total non-carpool fare of all passen-
gers is given by ∑τi, and the regular fare for the carpool
distance is given by τ, and their difference is a carpool bene-
fit B. Given a carpool schedule, all three parameters are
obtainable, and thus B is also obtainable.

For example, Figure 22 shows three passengers (with
non-carpool fare τ1 = 17, τ2 = 32, τ3 = 45) carpooled to-
gether with a distance of a regular fare τ = 52, leading to
B = 42. Note that τ = 52 is a regular fare for a distance e-
qual to the carpool distance, and is not the actual carpool
fare all passengers will pay together under our model.

Origin

τ1=17
τ2=32

τ3=45

τ=52

Carpool
Route

Individual
Route

= (τ1+τ2+τ3) – τ
= (17+32+45) – 52 =42

Carpool Benefit B

∑τi=94

Fig 22. Carpool Benefit
To build a win-win fare model, we need to (i) share a

carpool benefit between the driver and all passengers as a
group and (ii) share the benefit within the passenger group.

7.2 Sharing % between Driver & Passenger
We use ρ to indicate the sharing percentage of the pas-

sengers (all passengers as a group) for a given carpool
benefit B, and hence 1− ρ is the sharing percentage of the
driver.
(i) For a carpool benefit B, all passengers as a group pay:

Total Fare Paid by Passengers =
c

∑
i=1

τi −ρ×B,

where ∑τi is the sum of regular fares by all passengers in a
non-carpool situation; ρ × B is the benefit to passenger
group.
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(ii) For a carpool benefit B, a driver collects:

Total Fare collected by Drivers = τ+(1−ρ)×B,

where τ is the fare a driver collects for the carpool distance;
(1−ρ)×B is the benefit for a driver to carpool. Note it is
easy to check that the total carpool fare paid by passengers
equals the amount collected by the driver in our model.

In real world scenarios, ρ can be dynamically decided
based on various factors about the supply and request rela-
tionship in a taxicab network. In this paper, we give an

example to define ρ = # of occupied taxicabs
# of total taxicabs in a certain area

during a time window to balance the carpool incentives be-
tween the driver and the passenger. Thus, for a large ρ, i.e.,
more occupied taxicabs, the more benefit will be given to
the passengers to encourage passengers to carpool; for a s-
mall ρ, i.e., more empty taxicabs, the more benefit will be
given to the driver to discourage passengers to carpool, bal-
ancing deliveries among other empty taxicabs. In Figure 22,

given ρ = 1
2 , total carpool fare collected by drivers is

52+ 1
2 ×42 = 73, which is equal to the total carpool fare for

all passengers, i.e., 94− 1
2 ×42 = 73.

7.3 Sharing % among Passengers
Among the total carpool benefits for all passengers, i.e.,

ρ×B, we shall decide a sharing percentage to show a car-
pool benefit for a particular passenger i, and thus model the
carpool fare for a passenger i. It is given as follows.

Carpool Fare Paid by a Passenger i = τi −ρ×B× τi

∑τi
,

where τi is the non-carpool fare a passenger i has to pay at a
non-carpool situation; ρ×B× τi

∑τi
is the carpool benefit for a

particular passenger i. In Figure 22, given ρ = 1
2 , the carpool

fare paid by a passenger 3 is 45− 1
2 ×42× 45

94 ≈ 34.

Currently, we use τi
∑τi

to share the carpool benefit among

passengers based on their non-carpool fare. In other words,
we differentiate passengers by their destinations to the com-
mon origin, not the delivery order. But the last dropped off
passenger typically will have a farther destination than other
passengers (since our carpool graph is based on the mini-
mum spanning tree), so he/she will share more carpool
benefit than other earlier dropped off passengers in our fare
model, which implicitly compensates to the passengers with
a longer traveling time. In more advanced designs, the shar-
ing percentages among passengers can also be directly
decided by the priority of services, e.g., based on the deliv-
ery order μi of passenger i in a carpool, the sharing
percentage can be defined as μi

Σμ j
.

7.4 Carpool Fare Model Evaluation
In this subsection, we numerically evaluate our fare mod-

el. Based on three delivery requests in Figure 22, Figure 23
shows the impact of different sharing percentages ρ on the
fare that every passenger paid and the fare the driver collect-
s. It shows when ρ increases from 0 to 1 (indicating a trend
of an undersupplied taxicab services in the real world), the
carpool incentive for the passenger increases from 0% fare
savings to 44% fare savings, whereas the carpool incentive
for the driver decreases from 80% more profit to 0% more

profit. By adjusting sharing percentage ρ according to taxi-
cab supply, our model can dynamically balance the carpool
incentives for drivers and passengers.
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Fig 24. Win-Win Model
Given requests with fixed non-carpool fares, a short car-

pool distance will increase the carpool benefit (the same
∑τi, but a smaller τ), which results in a win-win situation
(i.e., more profits for drivers and lower fares for passenger-
s). Taking the passengers with τ1 = 17 and τ2 = 32 in
Figure 22 as examples, physically, the lower bound of a fare
paid for the carpool distances should be
τmin = max{τ1,τ2}= 32. In addition, passengers may not s-
elect a carpool delivery where they pay a fare together more
than the sum of their regular non-carpool fares. So, logical-
ly, the upper bound for τ is τmax = τ1 + τ2 = 49. Figure 24
show impacts of different carpool route distances (by differ-
ent τ from τmax to τmin) on the savings percentages of
passengers and profiting percentages of drivers. First, it
shows a win-win situation as long as τ < τmax. Second, the
smaller τ, the higher the profit for drivers, the lower the fare
for passengers.

8 Evaluation of the coRide Service
We have installed the customized TaxiBox in a small

portion (98 taxicabs) of the taxicab network of a Chinese c-
ity Shenzhen with a population of 10 million to test the
functionality of TaxiBox. We quickly learned that it takes
time to install hardware in current taxicabs, and that it is
much more difficult than we had anticipated. Although the
taxicab operators requested that their drivers cooperate with
the deployment, drivers still were not enthusiastic about in-
stalling devices to taxicabs with no immediate benefits to
them. During the deployment, it was usual for drivers to not
appear or to arrive late and leave early due to business or
personal matters. It was also hard to persuade drivers to be
more involved in system testing, e.g., logging passenger
numbers for every delivery. How to provide an incentive for
them to be involved in system deployment and testing is a
key question we need to address.

For a large scale deployment of carpool services, through
the operators from which we obtained datasets, the dis-
patching center to collect delivery requests via phone call
has been established. But the detailed regulation law about
taxicab carpool are still under progress to being passed, and
hope to be completed within this year. Thus, a large scale
carpool service evaluation is hard to conduct for current
situation. Instead, we perform a large scale trace-driven e-
valuation of a real world dataset about one week of GPS
records of 14,453 taxicabs belonging to different taxicab
companies in Shenzhen.
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8.1 Datasets
The first dataset contains daily GPS trace data of the

taxicab network, and the second dataset is about deliveries.
The GPS dataset was collected by letting each taxicab up-
load its records 30 seconds on average to a centralized base
station, and the delivery dataset was obtained by an offline
method. Figure 25 gives details about these datasets.

Collection Period 01/01/12-06/30/12 Collection Period 01/01/12-06/30/12
Numbe of Taxis 14,453 Numbe of Taxis 14,453

Data Size 450GB Data Size 18GB
Record Number 3,888,000,000 Record Number 95,000,000

Plate Mumber Date and Time Plate Mumber Begin & End Time
Status Speed Delivery Distance Delivery Duration

Direction GPS Coordinates Delivery Fare Unload Distance

Description of Datasets
GPS Dataset Delivery Dataset

Format Format

Fig 25. Details of Datasets
In the GPS dataset, key attributes are taxicab status and

GPS coordinates, which can indicate whether a taxicab at a
certain location is empty or not. In delivery dataset, the key
attributes are delivery distance, duration and fare, which can
describe a taxicab delivery event. Further, the unload dis-
tance indicates the distance between the end location of the
last delivery and the begin location of this delivery. By
combining these two datasets, we can fully understand the
daily operational situation of the entire taxicab network and
conduct a valid evaluation. Due to the large size of the
datasets, we mainly found two kinds of errors. (i) Location
Error: GPS coordinates show that a taxicab is off the road.
(ii) Missing Records: a fair amount of GPS records are
missing. The errors may result from different reasons, e.g.,
GPS device malfunctions, software issues, etc. We perform
a preprocessing to clean datasets to rule out taxicabs with
more than 10% of missing or errant records.

Due to security and privacy reasons, we are allowed to
select one week of trace data from the half year dataset as a
sample for evaluation purposes.

8.2 Evaluation Overview
To show the effectiveness of carpool services, we com-

pare two carpool route calculation algorithms, the optimal
carpool and the approximation algorithm, indicated as
coRide, with the ground truth, which is the original GPS
traces from the dataset. To show the performance of coRide
to address online requests, we also plot the performance of
coRide online.

The above algorithms are evaluated based on three differ-
ent real world constraints. (i) Taxicab Capacity c to show
that how many deliveries can be pooled together in a single
taxicab. (ii) Number of Available Taxicabs n to show that
how many taxicabs can be used at an origin to fulfill all
delivery requests. (iii) Travel Period [ts

i , t
e
i ] to show the de-

livery start time and a tolerated end time. For travel period
constraints, since we can obtain the actual travel period
about every delivery in the dataset, we use a tolerated de-
tour time t (minutes) plus the actual end time of a trip to
show this constrain. For example, for an actual travel period
[ts

i , t
e
i ] in the dataset about delivery i, with a tolerated detour

time t, the travel period we used to test a spanning tree is
[ts

i , t
e
i + t], instead of the actual travel period [ts

i , t
e
i ].

From the three perspectives of society, passengers, and
drivers, we evaluate the performance of the above algo-
rithms by several metrics. From society’s perspective, with
the Percentage of Reduced Total Mileage, we investigate
how much mileage we can reduce by carpooling, given the
above constraints and different time lengths between the
time to provide delivery requests and time to start deliveries
for online requests. From passengers’ perspective, with the
Percentage of Reduced Fare paid by passengers, we show
the minimum fare they can pay, given tolerated detour
times. From drivers’ perspective, with the Percentage of
Increased Profit earned by drivers, we present the maxi-
mum fare they can collect, given tolerated detour times. In
addition, we also investigate two practical metrics, i.e., (i)
the running time of the optimal algorithm to show why this
optimal algorithm is not feasible in terms of running time,
and (2) the increased individual mileage due to carpooling
to show a possible negative effect of carpooling, i.e.,
increasing the travel time for passengers.

In the evaluation, for datasets about individual days of
the week, we first process datasets to obtains delivery re-
quests, and then based on the delivery requests we calculate
the carpool route by different algorithms. By processing
these requests on a daily basis, we show the performance
when passengers provide delivery requests 24 hours earlier
than the delivery start time, and for requests starting at one
day and ending at the day after, we classify them into the
day they start. For coRide online, we show its performance
when passengers provide requests at 1, 3, 6 and 12 hours
earlier than the delivery start time. The results are average
outcomes of 7 days of evaluations.
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Fig 26. Total Mileage vs. c
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Fig 27. Total Mileage vs. n

8.3 Reduced Total Mileage
In this subsection, we evaluate coRide via the percentage

of reduced total mileage at different parameters.

8.3.1 Taxicab Capacity c
Figure 26 plots the effect of taxicab capacity c on the

percentage of reduced total mileage with tolerated detour
time t = 5 and number of available taxicabs n = 16. With
the increase of taxicab capacity c, the percentage of reduced
total mileage for coRide carpool and the optimal carpool
also increases. For example, in coRide carpool, the percent-
age of reduced total mileage increases from 0% to 22%,
when taxicab capacity c increases from 1 to 4. This is be-
cause when taxicab capacity c increases, a delivery of a
taxicab can be pooled with more other deliveries, and thus it
can reduce the total mileage. It implies that a carpool func-
tions more effectively when taxicabs can carry more
passengers.
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8.3.2 Number of Available Taxicabs n
Figure 27 plots the effect of the different number of

available taxicabs n on the percentage of reduced total
mileage with tolerated detour time t = 5 and taxicab capaci-
ty c = 4. We observe that with the increase of number of
available taxicabs n, the percentages of reduced total
mileage in coRide carpool increase from −11% to 27%.
These are some negative percentages of reduced total
mileage when the number of available taxicabs n is small,
and a similar situation is also shown in the performance of
the optimal carpool. This is because that with fewer taxi-
cabs at an origin, we have to pool more unrelated deliveries
in this origin into the same taxicab, and drop them off one
by one, and it will increase the total mileage. But when the
number of available taxicabs n is larger than 8, we can
reduce the total mileage by carpools.
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Fig 28. Total Mileage vs. t

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

%
of

R
ed

uc
ed

T
ot

al
M

ile
ag

e
(%

)

Tolerated Detour Time t

coRide Online-24
coRide Online-12
coRide Online-6
coRide Online-3
coRide Online-1

Fig 29. Mileage (Online)
8.3.3 Travel Period [ts

i , t
e
i ]

Figure 28 plots the effect of different travel periods in
terms of different tolerated detour time on the percentage of
reduced total mileage with the number of available taxicabs
n = 16 and taxicab capacity c = 4. In Figure 28, we observe
that with the increase of tolerated detour time t in terms of
minutes, the percentages of reduced total mileage in coRide
carpool increase from 0% to 33%, while these of the opti-
mal carpool increase from 0% to 40%, leading to a 7%
performance gain. While in a carpool, with more detour
time, more mileage can be reduced by pooling more deliver-
ies together. The increase of t enables a larger travel period,
making more deliveries correlated with each other in time.

8.3.4 Online Requests
In the above coRide carpool, we process requests by

days, so it means we pool the delivery requests that passen-
gers provided by 24 hours in advance (named coRide
online-24). In Figure 29, we evaluate the performance of
coRide for online requests situations where (i) the half of
the passengers provides requests in advance of 24 hours,
and based on them, we build carpool graphs, (ii) the other
half of the passengers provides requests in advance of 1, 3,
6 and 12 hours (indicated as coRide online-1, etc), and we
use our online algorithm to optimally add these online re-
quests together to the existing carpool graphs every 1, 3, 6
or 12 hours, leading to new different carpool graphs. We
observe that coRide online-24 outperforms all others, indi-
cating the early the passengers provide requests, the better
the performance. This is because with more requests to be-
gin with, we can build a more effective spanning tree, but
for online requests, we only can add requests as leaves or
start a new branch at roots of carpool graphs.
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Fig 31. Mileage vs. t

8.3.5 Running Time of Algorithms
Figure 30 shows the running time of the optimal carpool

algorithm and coRide carpool algorithm at different carpool
passenger numbers p at a single origin. We observe that as
the passenger number p increases from 2 to 18, the running
time for coRide carpool algorithm is negligible compared to
the running time for coRide carpool algorithm. This is be-
cause that our carpool route calculation problem is NP-hard,
and the optimal carpool algorithm uses Integer Program-
ming to obtain the solution, which leads to a longer running
time, and is not practical for real world carpool route
calculation with a large number of passengers.

8.3.6 Percentage of Increased Individual Mileage
In this subsection, we evaluate the performance of

coRide carpool by the percentage of increased individual
mileage due to carpools with different travel periods. This
increased individual mileage also provides an indication of
the detour time a passenger will tolerate for carpooling with
others. Note that although the individual mileage increases,
the fare for individual passengers is actually reduced, since
more passengers will share the fare for common routes,
leading to a large carpool benefit, as showed by our Fare
Model in Section 7. Figure 31 plots the effect of different
travel periods in terms of t on the percentage of increased
individual mileage with n = 16 and c = 4. With the increase
of t from 1 to 10, the percentage of increased individual
mileage in coRide carpool increases from 0% to 30%, while
that of the optimal carpool has a similar trend. In coRide
and the optimal carpool, with more detour time, a high
mileage is added to individual deliveries, since after car-
pool, most of the passengers will have a new yet longer
route compared to the ground truth.
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8.4 Reduced Fare for Passengers
In this subsection, we evaluate the performance of

coRide carpool in terms of maximally reducing the fare for
individual passengers, based on the win-win fare model we
proposed in Section 7. Based on the datasets, we have the
ground truth for regular fares of individual passengers, and
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based on the carpool route, we shall have the carpool fare.
We let all the passengers and the driver to evenly share the
carpool benefit due to the mileage reduction of a carpool
route. In Figure 32, we observe that with the increase of tol-
erated detour time t, the percentages of reduced fare for
individual passengers in coRide carpool increase from 0%
to as much as 49%. In a carpool, with more detour time,
high mileage can be shared with other passengers, thus
leading to a large carpool benefit for fare reductions. It will
lead to an economic incentive for passengers to carpool.

8.5 Increased Profit for Drivers
In this subsection, we evaluate the performance of

coRide carpool in terms of maximally increasing the profit
for taxicab drivers based on our win-win fare model. With
the method similar to that of the last subsection, we can pro-
duce an increased profit by comparing the total carpool fare
collected by the taxicab driver, and the ground truth of the
regular fare about the first passenger picked up in the car-
pool, which gives the fare the driver will collect in the case
that no carpool is conducted. In Figure 33, we plot the ef-
fects of different travel periods in terms of t on the
percentage of increased benefits. It shows that with the in-
crease of tolerated detour time t, the percentage of increased
benefits for the drivers in coRide carpool increases from 0%
to as much as 76%, which leads to a considerable incentive
for taxicab drivers to take carpool trips.

9 Conclusion
In this work, we analyze, design, implement, and evalu-

ate a prototype taxicab carpool system coRide to reduce the
total mileage to deliver passengers. Our effort provides a
few valuable insights and guidelines, which are hoped to be
useful for realizing carpooling services commercially in
near future. Specifically, (i) we found unprecedented evi-
dence of inefficiencies of current systems, and opportunities
for new systems based on our real-world datasets; (ii) we
implement a customized hardware supporting the essential
functionalities for carpooling; (iii) we affirmed that compli-
cated route functions should be implemented in a
centralized cloud and near optimality can be achieved; (iv)
it is important to establish incentives for all the parties in-
volved (e.g., a win-win situation); and (v) finally our work
only addresses the technical frontier, and it is even more
critical to establish a right policy that would make a large
scale deployment feasible.
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