
The Shortest Separating Cycle Problem

Esther M. Arkin1, Jie Gao1, Adam Hesterberg2, Joseph S. B. Mitchell1, and
Jiemin Zeng1

1 Stony Brook University, Stony Brook, NY, USA. esther.arkin, jie.gao,
joseph.mitchell. jiemin.zeng@stonybrook.edu

2 Massachusetts Institute of Technology, Boston, MA, USA. achester@mit.edu

Abstract. Given a set of pairs of points in the plane, the goal of the
shortest separating cycle problem is to find a simple tour of minimum
length that separates the two points of each pair to different sides. In
this article we prove hardness of the problem and provide approximation
algorithms under various settings. Assuming the Unique Games Conjec-
ture, the problem cannot be approximated within a factor of 2. We pro-
vide a polynomial algorithm when all pairs are unit length apart with
horizontal orientation inside a square board of size 2 − ε. We provide
constant approximation algorithms for unit length horizontal or vertical
pairs or constant length pairs on points laying on a grid. For pairs with no
restriction we have an O(

√
n)-approximation algorithm and an O(logn)-

approximation algorithm for the shortest separating planar graph.

Keywords: Shortest separating cycle, traveling salesman problem

1 Introduction

Given a set P = {(pi, qi)|1 ≤ i ≤ n} of pairs of points in the plane, we seek a
shortest separating cycle T , a tour where for every pair of points, one point is
inside the tour and the other is outside. Each pair (pi, qi) can be represented by
a line segment connecting pi and qi. Therefore each segment is cut by the tour an
odd number of times. Throughout this paper, we use whichever interpretation
is more intuitive.

p2

q2

q1

p1
p3

q4

q3

p4

q5

p5

p6

q6

Fig. 1. The shortest separating
cycle problem.

The motivation for this problem originates
from data storage and retrieval in a distributed
sensor network [16, 18]. Consider an applica-
tion in which sensors are installed at parking
spots to detect if the spot is empty, while mo-
bile users roaming around in the city are in
need of such information. We would need to
have a data processing, storage and retrieval
scheme to allow allow mobile users anywhere
to quickly retrieval data of interest. The solu-
tion of always delivering the query to the data source may suffer from a single
point of failure and traffic bottleneck. Therefore a natural solution is to adopt

geographical hashing. In [18] each data is hashed to two storage sensors by its
type. While a piece of data i is delivered from one storage site pi to the other
storage location qi using multi-hop routing it is convenient for all the nodes on
the relay path to also cache the data item. For a mobile user seeking data of a
particular type i, the user can issue a query which only needs to visit a node that
has cached the data. Say if the user query travels along a tour that separates pi
and qi, the query will hit the cached data for sure – as any path connecting pi
and qi is intersected by the tour. In this retrieval scheme one can easily query
for a collection of data of multiple types 1, 2, · · ·n, as long as the query follows
a tour that separates each pair of nodes pi and its corresponding hashed stor-
age node qi. This becomes precisely the separating cycle problem [18]. Finding
the shortest separating cycle is natural, as the shortest tour minimizes energy
consumption and delay.

In computational geometry, this problem is related to many traveling sales-
man problem (TSP) variants, including the red-blue separation problem, TSP
with neighborhoods, and one-in-a-set TSP (also known as group TSP), that
have been well studied [2, 12]. All of these problems are known to be NP-hard
in the Euclidean plane as they all contain the classical TSP as a special case.
The shortest separating cycle problem is different from any of these problems. In
the red-blue separation problem, given a set of red and blue points in the plane,
the aim is to find the shortest tour that separates the blue points from the red
points. In our problem, the points in the pairs need to be separated but they
are not assigned colors. Thus part of the challenge is to determine which point
of each pair is inside the tour and which one is outside.

In the TSP with neighborhoods (TSPN), given a set of regions, the goal is
to find the shortest tour that visits each region. One may attempt to connect
a line segment for each pair in our input and apply an algorithm for TSP with
neighborhoods where the neighborhoods are line segments. However, this does
not necessarily give a valid solution since the TSP with neighborhoods solution
might reflect on the edge and not enclose an endpoint in its cycle such as in
Figure 2(i).

For the one-in-a-set TSP, we are given a collection of sets and the problem
asks for the shortest tour that visits at least one element in each set. Any one-
in-a-set TSP solution to our input can be easily modified to become a separating
cycle. However, a separating cycle does not need to visit every point it is includ-
ing or excluding so the one-in-a-set TSP solution may be excessively long. An
example of this can be seen in Figure 2(ii).

Our Results In this paper we are the first to study the shortest separating cycle
problem and provide both hardness and approximation results. In particular,
we consider special cases where the orientation of the input pairs, the distance
between the input pairs, and the configuration of the domain are restricted. We
vary the size of the square board the input points are confined within as well
as the range of orientations the input pairs have from strictly horizontal and/or
vertical to any orientation. Some cases have additional restrictions such as how

2

far each pair of points are from each other and whether or not the input points
must lie on a grid. The results are summarized in Tables 1.

(i) (ii)

Fig. 2. Shortest Separating Cycle is different from
TSPN or one-in-a-set TSP. (i) The TSP with neigh-
borhoods solution (solid) is not a valid separating
cycle and is a much shorter tour than the short-
est separating cycle (dashed). (ii) The one-in-a-set
TSP solution (dashed) is a much longer tour than
the shortest separating cycle (solid).

In general, despite the ap-
parent similarity and connec-
tion to many other TSP vari-
ants which have easy constant-
factor approximation results,
the shortest separating cycle
problem is a lot harder. Many
ideas that were used in typi-
cal TSP algorithms are not ap-
plicable here. Indeed, Indeed,
we show that the problem is
hard to approximate for a fac-
tor of 1.3606 unless P=NP and
is hard to approximate better
than a factor of 2 assuming the
Unique Games Conjecture. We
provide a polynomial time al-
gorithm when all pairs are unit
length horizontal segments inside a square board of size 2−ε. We provide approx-
imation algorithms for unit length horizontal or vertical segments or constant
length segments on points laying on a grid. These scenarios are of particular
interest to the application setting in a sensor network. Last, for arbitrary pairs
we have an O(

√
n)-approximation algorithm and an O(log n)-approximation al-

gorithm for the shortest separating planar graph problem, in which the objective
is to compute an embedded planar graph of minimum total edge length so that
the two endpoints of each pair are in different faces.

Unit Length Unit Length Unit Length Constant Length
Board Size Horizontal Horizontal &Vertical Arbitrary Orient. Arbitrary Orient.

Points on Grid

2− ε in P 4-approx NP-hard NA

M = O(1) O(1)-approx (M2 + 1)/4-approx Hard to approx NA

n O(1)-approx O(1)-approx Hard to approx O(1)-approx

Table 1. Approximation algorithm and hardness results for different settings.

Related Work

TSP. The traveling salesman problem is one of the most well known geometric
problems in history. It is one of the first problems known to be NP-hard [7, 15].
In a metric setting Christofides provided a 3/2 approximation algorithm [5]. In
the Euclidean setting, the problem is known to admit a PTAS, independently
shown by Arora [2] and Mitchell [12].

TSP with Red Blue Separation. The red blue separation problem in the
plane admits a PTAS (by [12] or by [3]).

3

TSP with Neighborhoods. TSP with neighborhoods was first studied by
Arkin and Hassin [1] in which O(1)-approximation algorithms were developed
when the neighborhoods are translates of a convex polygon or when the neigh-
borhoods are unit disks. For general (nondisjoint) connected neighborhoods, an
O(log n)-approximation algorithm is known where n is the number of neighbor-
hood regions [11, 8], and it is NP-hard to approximate within a 2− ε ratio [17].
For fat regions of bounded depth, there is a PTAS [13] (even in doubling met-
rics [4]), while for general connected regions of bounded depth, or for convex
regions, an O(1)-approximation is known in two dimensions [14].

One-of-a-set TSP or Group TSP. The one-of-a-set or group TSP is the
TSPN in which the neighborhoods are discrete sets of points (and thus discon-
nected). Safra and Schwartz [17] show the 2D problem is NP-hard to approximate
to within any constant factor; for groups that are sets of k points, they also give
approximation lower bounds (Ω(

√
k)). Slav́ık [19] gives a (3/2)k-approximation,

based on linear programming methods.

2 Hardness

The shortest separating cycle problem is NP-hard by a trivial reduction from the
traveling salesman problem (TSP). For any TSP instance with cities at location
wi, we place a pair of points pi, qi very close to each wi. In order to separate
the points, the tour will need to visit each city wi. Thus the shortest separating
cycle problem is as hard as TSP. In the following we show stronger results that
the problem is hard to approximate.

2.1 Inapproximability for Any Length Segments

Theorem 1. The shortest separating cycle problem with no restrictions on the
distance and orientation of input pairs is NP-hard to approximate better than a
factor of 1.3606. It is hard to approximate better than a factor of 2 assuming the
unique games conjecture.

Proof. Our reduction is from minimum vertex cover. Given a graph G = (V,E),
the goal of the minimum vertex cover problem is to find a minimum cardinality
subset of vertices V ∗ ⊆ V such that every edge in E is incident to at least one
vertex in V ∗.

Now we will create a set of pairs in the plane. First we place each vertex in V
along a circle with a center w′ and designate another location w′′ at a distance
Ω(nm) from w′. Here, n = |V | and m is a constant. For every vertex v ∈ V ,
we place m endpoints overlapping a single point at w′ and their corresponding
endpoints in a

√
m ×

√
m grid pattern around v (as shown by dark dots in

Figure 3). Finally, w′ and w′′ are connected by a long segment. The result is a
“wheel” composed of vertices and edges in G with “spokes” towards the center,
a hub at w′, and a large arm from w′ to w′′.

4

Fig. 3. Reduction from vertex cover.

For every edge e(u, v) ∈ E, we place m endpoints in a
√
m×
√
m grid pattern

in a
√
m − 1 square around u and their corresponding endpoints overlapping

a single point ue near the grid. Another grid of m endpoints is placed in a
similar grid around v with their corresponding points overlapping on a point ve.
These points are shown in hallow dots in Figure 3. These hallow grid points are
extremely close to the dark grid points. Finally, ue and ve are connected by a
segment. Therefore, for every gadget that represents an edge, exactly one set of
grid points must be inside the cycle.

Let’s first consider the super long arm from w′ to w′′, and the pairs created
by edges of G. First the separating cycle will need to include some points from
the edge gadgets. If the separating cycle also visits w′′ (to include it inside),
there is an additional cost of length of O(nm), which is so prohibitive and must
be avoided. So the separating cycle will include the points at w′ in the interior to
separate w′ and w′′. This implies that the dark dots connected to w′ by spokes
need to be outside the cycle. Now let’s consider a set of hollow grid points near
a set of dark grid points. As the dark grid points need to be outside, then the
hallow points need to be visited invidually to include them inside the cycle. Since
points in a grid are unit distance away from each other, a path that visit a grid
of points has a length of at least m.

The optimal solution visits the minimum number of vertices in V while also
separating all pairs of points which is a minimum vertex cover of G. The parity
of the segment chains ensure that when one point of a grid is collected, all points
in that grid must be collected.

The length of an optimal separating cycle in this instance is O(|OPTV C |m+
n
√
m) where |OPTV C | is the size of the optimal solution of the corresponding

vertex cover problem. If m ≥ n, then the cost of navigating between grids at the
vertices of V dominates the cost of the optimal solution. The rest of the cost,
O(n
√
m) is from traveling between vertices and collecting w′.

Now we assume that we are given a δ-approximation to our construction of
the shortest separator problem. This path has distance at most O(δ|OPTV C |m+
δn
√
m). To convert this solution into a solution for the corresponding vertex

5

cover problem, any grid points collected at a vertex translates to a vertex selected
in the vertex cover. This means that any additional vertex above the optimal
solution of the vertex cover problem translates to an additional O(m) length
in the given approximation of the shortest separator instance. If we let m =
Ω(δ2n2), then the approximation solution visits at most δ|OPTV C | vertices and
is a δ-approximation for vertex cover. Therefore, the lower bounds for the vertex
cover problem apply to the shortest separator problem. This problem cannot be
approximated with a factor better than 1.3606 unless P = NP or 2 assuming
the unique games conjecture.

3 Algorithms

We describe exact and approximation algorithms for the shortest separating
cycle problem under different scenarios.

3.1 Board Size 2 − ε, Horizontal and Vertical Unit Segments

In this scenario, all n input segments are inside a square board of size 2− ε for
some ε > 0 and are restricted to have horizontal or vertical orientations. Without
loss of generality we assume all the endpoints of different input segments do not
share a common x-coordinate or y-coordinate. This can be done by perturbing
the input slightly.

First, all unit length boxes which contain at least one endpoint of each seg-
ment are found. This can be executed in polynomial time by checking all possible
combinatorial configurations of unit length boxes. The total number of combi-
natorial types of such squares is O(n2) since we can assume without loss of
generality that the square always has two input endpoints (from two different
segments) on its boundary. Aside from the two points on the boundary, each
such box actually contains exactly one endpoint of each input segment. For the
two boudary points we enumerate all combinations of including these boundary
points inside the box. The convex hull of all endpoints inside the box is a can-
didate separating cycle. We can enumerate all such boxes to find the shortest
separating cycle.

If a unit length box that strictly contains one endpoint of every segment
cannot be found, then the board is divided into four squares each of size 1− ε/2
and are colored in a checker board pattern. The square are named S1, S2, S3, S4

in a counter clockwise manner. Consider two squares along the diagonal (named
S1 and S3, see Figure 4(ii)). We create a tour that walks along the perimeter of
their union. To accommodate corner cases, we consider the top and left border
of S3 to be open edges. This generates a curve T ′ of length 8− 4ε.

Theorem 2. For the shortest separating cycle problem with a square 2− ε do-
main where input pairs are exactly one apart and have either horizontal or ver-
tical orientation, our algorithm outputs a cycle that is a 4-approximation to the
optimal solution.

6

B

S2

S4

S1

S3
T ′

(i) (ii)

Fig. 4. The two cases in our algorithm for the shortest separating cycle on a 2 − ε
board. Case (i): Exactly one endpoint of each input pair can be enclosed in a unit
square. Case (ii): The curve T ′ traverses around S1 and S3.

Proof. There are two cases in the algorithm which outputs two different types
of cycles. In case (i), the optimal solution fits inside a unit length box B. Every
segment has one endpoint inside B and B will be discovered in the first phase of
the algorithm. The convex hull of the points inside B is the shortest separating
tour that contains all points in B.

For case (ii) we know the optimal tour cannot be completely contained by a
unit box and therefore must have length at least 2. We first argue that T ′ is a
valid separating cycle. Since each segment has unit length, the two endpoints of
each segment cannot fit inside any single square of size 1− ε/2 and thus cannot
both lie inside S1 ∪ S3 nor inside S2 ∪ S4. Therefore each segment must have
exactly one endpoint inside S1 ∪ S3. Therefore, T ′ is a valid separating cycle.
Since T ′ has length 8 − 4ε and the optimal tour has length at least 2, T ′ is a
4-approximation of the optimal solution.

3.2 Constant-Size Boards

We can extend the checkerboard strategy for any constant board size M , where
M is an integer. The only modification is that in the second case, a larger
checkerboard of M × M unit squares is used. The squares are colored in a
checkerboard manner, and partitioned into white squares and dark squares. To
make the tiling a perfect partition of the plane, we consider each square pixel
to include its top edge, except for the NE corner, and to include its left edge,
except for the SW corner. Again any unit length vertical or horizontal segment
has two endpoints in different colored squares. Thus a tour T ′ that separates the
white squares from the dark squares would be a valid separating cycle. Such a
tour can always be found by taking a cycle along the boundary of the outermost
ring of the dark squares, and iterating towards the center. All the tours can be
joined into a single tour of the same length. See Figure 5 for an illustration.

Theorem 3. We consider the case of the shortest separating cycle problem with
an M ×M square domain and where the input pairs are restricted to be exactly
one apart with either horizontal or vertical orientation. Our algorithm including
the checkerboard strategy is an (M2 + 1)/4-approximation.

7

Fig. 5. Constant sized square board with cycles along the perimeter of the dark squares.

Proof. Our proof is similar to the proof of Theorem 2. Either we can find a
unit length box containing at least one endpoint of each segment (in which case
we find the optimal solution), or the optimal tour has length at least 2. In the
second case we will take the tour T ′ along the perimeter of the union of the dark
squares. T ′ has length at most M2/2 if M is even, and at most (M2 + 1)/2 if
M is odd. Thus the approximation factor is at most (M2 + 1)/4.

3.3 Any Board Size, Horizontal and Vertical Unit Segments

If the board size M is a constant, we can apply the same checkboard idea as in
the previous section. But when M is large, we have to use a different idea to get
a constant approximation.

First, we overlay a grid of unit squares over the domain partitioning the
domain into light and dark squares in a checkerboard pattern. For each grid cell,
we consider the top edge, excluding the NE corner, and the left edge, excluding
the SW corner, as closed edges.

We refer to dark squares that have a point (from a pair) in them as “oc-
cupied”. Let S be the occupied squares. Let S′ be the 3-by-3 squares centered
on the squares of S. In the following we assume without loss of generality that
|S| ≥ 5. The case |S| ≤ 4 can have an arbitrarily small optimal value; but this
constant-size case can be easily handled.

Now we consider the shortest TSP with Neighborhoods (TSPN) tour on the
set S′ of enlarged squares and name the length as TSPN(S′). This tour connects
the regions in S′ but we must also separate the pairs of points in each region.
We further apply the constant factor approximation to each region in S′. Our
algorithm is simply this: Run a TSPN algorithm on S′ (for which there is a
PTAS [6]), and augment the tour with our approximation algorithm for square
regions of constant size.

Theorem 4. Our algorithm for the shortest separating cycle problem for in-
put pairs restricted to a separation of exactly 1 and only horizontal or vertical
orientation, is a constant approximation.

8

Proof. We have two cases regarding the size of S, |S| ≥ 5 and |S| ≤ 4. In the
first case, |S| ≥ 5, the length of the output is at most (1 + ε)TSPN(S′) +
O(|S|). Since the optimal solution must visit every enlarged square in S′, then
OPT = Ω(TSPN(S′)). Assuming no single point stabs all squares of S′ (i.e.,
assuming |S| ≥ 5), the standard packing argument shows that TSPN on a set
of nearly disjoint (i.e., constant depth of overlap), equal-sized squares requires
length proportional to the number of squares times the side length of the squares.
This leads us to claim that OPT = Ω(|S|). Therefore, (1+ε)TSPN(S′)+O(|S|)
is O(OPT) and our tour is a constant approximation.

For the case where |S| ≤ 4, our strategy only changes if a single point is
contained in all squares of S′. In this case, our entire input can be contained in
a 5× 5 square and we refer to our algorithm for constant sized domains.

3.4 Any Orientation, Bounded Aspect Ratio

We now assume that the distance between any two points (not restricted to
designated pairs) in S are greater than or equal to 1. The segments defined by
the pairs of points may have any orientation and their distances are bounded
by a constant. Let r = cL for some constant value of c ≥ 1 where L is the
length of the longest segment. The aim is to find a subset I of pairs of points
where the shortest distance between any two segments is greater than r and the
shortest distance between any input segment and it’s closest segment in I is less
than r. Then we find the TSPN path on line segments in I. Next, we divide the
region into neighborhoods by assigning the remaining segments to their nearest
segment in I. The TSPN tour of the segments, TSPN(I), is augmented with
detours that separate all of the segments in each neighborhood. The resulting
tour is a constant approximation of the optimal separating tour.

To find such an independent set, we randomly select neighborhoods of size
O(r) until all segments have been selected. A segment s is randomly chosen
and removed from the set of input segments along with all remaining segments
within distance (shortest distance) r of s. The segment s is placed in the set I.
This procedure is repeated until all segments are removed. The shortest distance
between any two segments in I is greater than r. The shortest distance between
any segment and it’s closest segment in I is less than or equal to r. Each segment
is assigned to it’s closest segment in I. The set of segments assigned to a segment
s in I is denoted as N(s).

A tour is constructed by first finding a TSPN tour on I. Then the path is
augmented by a shorter tour within each neighborhood of each segment in I.
When a tour reaches a segment s in I, then it makes a separating detour that
separates all of the segments in N(s). The length of a tour is bounded by O(L2)
since all of the segments in N(s) is within a neighborhood of radius 2r of s and
by a packing argument, there are O(L2) possible points in such a neighborhood.
In the worst case, the separating tour visits every point in the neighborhood and
includes or excludes each point as required. Note that the detour must exclude
segments that are not in N(s).

9

Theorem 5. The path our algorithm produces is a O(L2) approximation of the
optimal minimum perimeter separator.

Proof. Let T be the length of the path our algorithm produces, let OPT be
the length of the optimal solution and let TSPN(I) be the length of the TSPN
path on I. Our path is a separating tour because every segment is separated by
the tour within its neighborhood and excluded by the tour everywhere else. We
claim the length of such a tour is bounded above by TSPN(I)+O(|I|L2). Since
the TSPN path of I must enter and exit the neighborhood of every segment
in I, TSPN(I) = Ω(|I|). Therefore T = O(L2 · TSPN(I)). Since OPT =
Ω(TSPN(I)) and T ≥ OPT , then T = O(L2 ·OPT).

3.5 The General Case

For general pairs of points in the plane, we observe that an O(
√
n)-approximation

follows from known results on the Euclidean TSP in the plane. Specifically, we
first compute a minimum-size square, Q, that contains at least one point of each
pair. (This is easily computed, since the n point pairs determine only O(n3)
combinatorially distinct squares.) Now, within Q, we compute an approximate
TSP tour T (using any constant-factor approximation method for TSP) on the
points that are inside (or on the boundary of) Q, making sure the approximate
tour is a simple polygon. We obtain a valid separating cycle for the input pairs
as follows: Consider traversing T , starting from an arbitrary point. Each time
we reach a point along this traversal, we either make a slight detour to include
it (if it is the first time we have encountered a point from this pair), or make a
slight detour to exclude it (if it is the second encounter with a pair). In this way,
we obtain a valid separating cycle just slightly longer than T . By classic results
on the Euclidean TSP (see, e.g., Karloff [9]), we know that the length of T is
at most O(|Q|

√
n), where |Q| is the side length of the square Q. Since we know

that Ω(|Q|) is a lower bound on the length of an optimal separating cycle, we
have shown that in polynomial time one can obtain an O(

√
n)-approximation

for the general case of our problem.

3.6 Separating Subdivision Problem

We consider now a different version of the separating cycle problem – the sepa-
rating subdivision problem, in which the goal is to compute an embedded planar
graph of minimum length such that every input pair has its points in different
faces of the subdivision. We define the length of the graph to be the sum of the
lengths of all of its edges. We give an O(log n)-approximation algorithm. We out-
line the approach, deferring details to the full paper. We argue that an optimal
subdivision, S, can be converted to a special (recursive) “guillotine” structure,
increasing its length by a factor O(log n); then, we show that an optimal so-
lution among guillotine structures can be computed in polynomial time, using
dynamic programming. The conversion goes as follows. First, increasing the total
edge length of S by at most a constant factor, we can convert its faces to all be

10

rectilinear: we enclose S with its bounding box, and replace each face of S with
a rectilinear polygon, with axis-parallel edges that lie on the grid induced by the
input point pairs, while keeping all points within their respective faces. Then,
we partition each simple rectilinear face into rectangles, adding axis-parallel
chords that lie on the grid; this causes the total edge length to go up by a factor
O(log n); see [10]. Then, using the charging scheme of [10], we know that we can
convert the resulting rectangular subdivision to a guillotine rectangular subdivi-
sion, in which one can recursively partition the subdivision using axis-parallel
“guillotine” cuts that do not enter the interior of rectangular faces. Optimizing
the length of a guillotine rectangular subdivision is done with dynamic program-
ming, in which subproblems are axis-aligned rectangles all of whose boundary is
(by definition) included in the edge set of the subdivision. This implies that any
input pair of points that “straddles” the boundary of a subproblem, with one
point inside, one point outside, is already satisfied automatically with respect
to pair separation (the points lie in different faces/rectangles). This means that
the subproblem is only responsible for the separation of the point pairs both of
whose points lie within the defining rectangle of the subproblem. The algorithm
computes a minimum-length guillotine rectangular subdivision, separating all
point pairs. Since an optimal solution can be converted to the class of guillotine
rectangular subdivisions at a lengthening factor O(log n), we obtain the claimed
approximation.

4 Conclusion and Future Work

The shortest separating cycle is a new variant of the TSP family that has not
been studied before. This paper provides the first set of hardness bounds and a
number of approximation algorithms under different settings. The gap for the
approximation ratios and hardness results is still big and narrowing or closing
the gap is the obvious future work.

Acknowledgement.

E. Arkin and J. Mitchell acknowledge support from NSF (CCF-1526406). J.
Gao and J. Zeng acknowledge support from AFOSR (FA9550-14-1-0193) and
NSF (CNS-1217823, DMS-1418255, CCF-1535900).

References

1. E. M. Arkin and R. Hassin. Approximation algorithms for the geometric covering
salesman problem. Discrete Appl. Math., 55(3):197–218, Dec. 1994.

2. S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman
and other geometric problems. J. ACM, 45(5):753–782, sep 1998.

3. S. Arora and K. Chang. Approximation schemes for degree-restricted MST and
redblue separation problems. Algorithmica, 40(3):189–210, 2004.

11

4. T. H. Chan and S. H. Jiang. Reducing curse of dimensionality: Improved PTAS
for TSP (with neighborhoods) in doubling metrics. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Ar-
lington, VA, USA, January 10-12, 2016, pages 754–765, 2016.

5. N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical Report 388, Graduate School of Industrial Administration,
Carnegie Mellon University, 1976.

6. A. Dumitrescu and J. S. Mitchell. Approximation algorithms for TSP with neigh-
borhoods in the plane. Journal of Algorithms, 48(1):135 – 159, 2003. Twelfth
Annual ACM-SIAM Symposium on Discrete Algorithms.

7. M. R. Garey, R. L. Graham, and D. S. Johnson. Some NP-complete geometric
problems. In Proceedings of the Eighth Annual ACM Symposium on Theory of
Computing, STOC ’76, pages 10–22, New York, NY, USA, 1976. ACM.

8. J. Gudmundsson and C. Levcopoulos. Hardness result for TSP with neighborhoods.
Technical report, Technical Report LU-CS-TR:2000-216, Department of Computer
Science, Lund University, Sweden, 2000.

9. H. J. Karloff. How long can a Euclidean traveling salesman tour be? SIAM Journal
on Discrete Mathematics, 2(1):91–99, 1989.

10. C. Mata and J. S. B. Mitchell. Approximation algorithms for geometric tour and
network design problems. In Proc. 11th Annu. ACM Sympos. Comput. Geom.,
pages 360–369, 1995.

11. C. S. Mata and J. S. B. Mitchell. Approximation algorithms for geometric tour
and network design problems (extended abstract). In Proceedings of the Eleventh
Annual Symposium on Computational Geometry, SCG ’95, pages 360–369, New
York, NY, USA, 1995. ACM.

12. J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A
simple polynomial-time approximation scheme for geometric TSP, k-MST, and
related problems. SIAM Journal on Computing, 28(4):1298–1309, 1999.

13. J. S. B. Mitchell. A PTAS for TSP with neighborhoods among fat regions in
the plane. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’07, pages 11–18, 2007.

14. J. S. B. Mitchell. A constant-factor approximation algorithm for TSP with
pairwise-disjoint connected neighborhoods in the plane. In Proc. 26th Annual
ACM Symposium on Computational Geometry, pages 183–191, 2010.

15. C. H. Papadimitriou. The Euclidean travelling salesman problem is NP-complete.
Theoretical Computer Science, 4(3):237 – 244, 1977.

16. S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker.
GHT: A geographic hash table for data-centric storage in sensornets. In Proc.
1st ACM Workshop on Wireless Sensor Networks ands Applications, pages 78–87,
2002.

17. S. Safra and O. Schwartz. On the complexity of approximating TSP with neigh-
borhoods and related problems. Computational Complexity, 14(4):281–307, 2006.

18. R. Sarkar, X. Zhu, and J. Gao. Double rulings for information brokerage in sensor
networks. IEEE/ACM Trans. Netw., 17(6):1902–1915, Dec. 2009.

19. P. Slav́ık. The errand scheduling problem. Technical report 97-2, Department of
Computer Science, SUNY, Buffalo, 1997.

12

