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Data-Driven Robust Control for a Closed-Loop
Artificial Pancreas

Nicola Paoletti, Kin Sum Liu, Hongkai Chen, Scott A. Smolka, and Shan Lin

F

Abstract—We present a fully closed-loop design for an artificial pan-
creas (AP) that regulates the delivery of insulin for the control of Type I
diabetes. Our AP controller operates in a fully automated fashion,
without requiring any manual interaction with the patient (e.g. in the
form of meal announcements). A major obstacle to achieving closed-
loop insulin control are the “unknown disturbances” related to various
aspects of a patient’s daily behavior, especially meals and physical
activity. Such disturbances can significantly affect the patient’s blood
glucose levels. To handle such uncertainties, we present a data-driven,
robust, model-predictive control framework in which we capture a wide
range of individual meal and exercise patterns using uncertainty sets
learned from historical data. These uncertainty sets are then used in
the insulin controller to achieve automated, precise, and personalized
insulin therapy. We provide an extensive in silico evaluation of our robust
AP design, demonstrating the potential of the approach. In particular,
without the benefit of explicit meal announcements, our approach can
regulate glucose levels for large clusters of meal profiles learned from
population-wide survey data and cohorts of virtual patients, even in the
presence of high carbohydrate disturbances.

1 INTRODUCTION

T YPE 1 diabetes (T1D) is a chronic autoimmune disease
in which the pancreas is unable to produce a sufficient

amount of insulin to regulate blood glucose (BG) levels. In
healthy subjects, pancreatic β cells are responsible for the
release of insulin in amounts commensurate with current
BG levels. Circulating insulin promotes glucose uptake in
muscle and adipose (fatty) tissue. This regulatory process
maintains BG within healthy ranges, normally between 70-
200 mg/dL. In T1D, T-cell mediated autoimmune destruc-
tion of β cells occurs, leading to high BG levels.

In the U.S. alone, more than 29 million people suffer
from diabetes, among which approximately 5% have T1D
[1]. An estimated 1 million T1D patients worldwide wear
an insulin pump to keep their BG levels under control.
Insulin pumps are devices for the continuous infusion of
insulin, in a manner which provides more accurate therapy
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and superior BG profiles compared to traditional insulin
injections. Insulin pumps deliver basal insulin, a low and
continuous dose that covers insulin needs outside of meals,
and bolus insulin, a single high dose for covering meals.

The concept of closed-loop control of insulin, a.k.a. the
artificial pancreas (AP), involves a continuous glucose mon-
itor (CGM) that provides glucose measurements (with a
typical period of 5 minutes) to a control algorithm run-
ning inside the insulin pump or on a peripheral device
(e.g. smartphone or tablet) connected to the pump. The
controller adjusts the insulin therapy to maintain healthy
BG levels, thereby avoiding hyperglycemia (BG levels above
the healthy range) as well as hypoglycemia (BG levels below
the healthy range).

While some temporary postprandial (i.e., after-meal)
hyperglycemia is admissible, untreated and prolonged hy-
perglycemia can lead to critical health issues, including
cardiovascular disease, kidney damage, and blindness. Hy-
poglycemia can cause even more serious effects, including
coma and death [2].

AP systems have been extensively studied in the last 20
years [3], but only recently cleared for clinical trials [4] and
commercialization. The recently FDA-approved MINIMED
670G by Medtronic [5] is the first commercial AP system,
and can automatically regulate the basal insulin rate. It is
referred to as a “hybrid closed-loop” device as patients need
to enter the amount (in grams) of mealtime carbohydrates
(CHO) to receive the appropriate bolus insulin dose. This
manual procedure is a burden to the patient and inherently
dangerous as incorrect information can lead to incorrect
insulin dosing and, in turn, harmful BG levels.

Besides meals, another important source of uncertainty
in BG control is physical activity (exercise), which acceler-
ates glucose absorption and thus requires a reduced insulin
dosage [6]. To build fully automated closed-loop AP systems,
it is essential to design insulin control algorithms that are
robust to the patient’s eating and exercising behavior.

In this paper, we propose a data-driven, robust
model-predictive control (robust MPC) framework for the
closed-loop control of insulin administration, both basal
and bolus, for T1D patients under uncertain meal and
exercise events. Such a framework seeks to eliminate the
need for meal announcements by the patient, thereby fully
automating insulin regulation. We capture the wide range
of individual meal and exercise patterns through uncertainty
sets learned from historical data.
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Following [7], we construct uncertainty sets from data
so that they cover the underlying (unknown) distribution of
the data with a priori probabilistic guarantees. Leveraging
such information, our robust MPC system computes the
insulin-administration profile that minimizes the worst-case
performance with respect to these uncertainty sets, thereby
providing a principled way to deal with uncertainty.

Besides uncertainty, another challenging aspect of
closed-loop control is state estimation, which is needed to
recover the full physiological state of the patient model
(used in MPC) from CGM measurements. Not only are
these measurements noisy, but there is also a delay between
glucose appearance in the blood and in the sensor (the CGM
detects glucose in the interstitial fluid) [8]. Moreover, we
need to estimate, along with the state, the current unknown
meal and exercise inputs. For this purpose, we designed a
moving-horizon state estimator (MHE) [9] that, similar to
MPC, exploits a prediction model to find the most likely
estimate given the observations. Crucially, MHE enables one
to estimate both state and disturbances, unlike more tradi-
tional methods based on Kalman filters that only support
restricted classes of disturbances [10].

To the best of our knowledge, our robust MPC design for
an AP is the first to combine data-driven techniques with
a robust insulin controller, and to support both meal and
exercise uncertainties. In summary, our main contributions
are the following.

• We formulate a closed-loop AP design based on
robust MPC to optimize BG levels under meal and
exercise uncertainties.

• We apply data-driven techniques to construct uncer-
tainty sets that provide probabilistic guarantees on
the robust MPC solution.

• We design an MHE that is able to estimate the patient
state as well as meal and exercises disturbances.

• We provide an extensive in-silico evaluation of our
design, including one-meal simulations, two-day
high carbohydrate intake scenarios, and one-day
simulations of meal disturbance models learned from
population-wide survey data sets (CDC NHANES).
We further evaluate our design on a cohort of virtual
patients obtained from a clinically validated T1D
simulator [11]. Overall, our robust closed-loop AP is
able to keep BG within safe levels between 77% and
97% of the time.

This paper extends our previous conference paper [12]
by including the following.

• A more realistic model of the CGM sensor (Eqs. 2–5).
• Several new experiments (see Sections 5.2, 5.3, 5.5,

and 5.7).
• A detailed description of the differential-equation

model of glucose regulation (Section 3).
• A self-contained explanation of the method for con-

structing uncertainty sets from both patient data and
arbitrary distributions (Sections 4.2 and 4.3).

• The procedure used to process meal information
from the CDC NHANES database (Section 5.3).

The paper is structured as follows. Section 2 intro-
duces our robust AP design. Section 3 illustrates the gluco-
regulatory model and how this is affected by meal and

Data-driven 
learning

Robust MPC
Plant

(virtual T1D 
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CGM
output
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and exercise
disturbances

insulin
+

State
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sensing
noise
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exercise data

uncertainty
sets estimated

plant state

Fig. 1. Robust artificial pancreas design.

exercise disturbances. Section 4 formalizes the robust MPC
and MHE problems, including the construction of uncer-
tainty sets. Section 5 presents the results of our experimental
evaluation. Section 6 considers related work. Section 7 offers
our concluding remarks.

2 SYSTEM OVERVIEW

The design of our proposed data-driven robust artificial
pancreas is illustrated in Figure 1. The robust MPC compo-
nent (described in Section 4) is responsible for computing
the insulin administration strategy (both basal and bolus)
that optimizes, over a finite time horizon, the predicted
BG profile against worst-case realizations of the meal and
exercise disturbances.

Uncertainty sets describe the domains of the distur-
bances and are derived by the data-driven learning compo-
nent (see Section 4.2), starting from a dataset about the pa-
tient’s meal and exercise schedules. Uncertainty sets can be
also updated online as new data (estimated or announced)
come along, in this way enabling the continuous learning of
the patient’s behavior.

In this work, we analyze our robust artificial pancreas
design in silico. Thus, the plant is given by a system of
differential equations (see Section 3) describing the gluco-
regulatory dynamics of a virtual T1D patient, as well as the
effects of insulin and random disturbances.

In order to approximate real-life settings, we assume
that the state of the plant (BG) cannot be observed by
the controller, but that we can only access (noisy) CGM
measurements. We designed a moving-horizon state estimator
(described in Section 4.1) that, based on a bounded history
of CGM measurements and estimations, computes the most
likely plant state. Importantly, this component also provides
estimates for the unknown disturbances, which can be used
to update the uncertainty sets, even though in this paper we
will evaluate our AP design on fixed uncertainty sets.

3 PLANT MODEL

3.1 Disturbances

To account for uncertainty in meal consumption, we con-
sider the inputDt

G, which describes the rate of CHO ingestion
at time t. Following [13], physical activity is represented by
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inputs MM t, the percentage of active muscular mass at time
t, and O2 t, the percentage of maximum oxygen consumption
which can be combined to reproduce arbitrary kinds of
physical activity.

MM t corresponds to the ratio between the active mus-
cular mass and the total muscular mass, with typical values
being MM t = 0% at rest and MM t = 25% for a two-legged
exercise. O2 t describes the oxygen consumed relative to
the maximum oxygen consumption of the subject, and
thus, represents a subject-independent measure of exercise
workload. Typical values are 8% at rest, 30% for light
activity, 60% for moderate activity, and 90% for intense
activity [14]. In our scenario, these meal and exercise inputs
are not observed or measured, and are thus represented by
a disturbance vector dt = (Dt

G,MM t,O2 t). The effects of
these inputs on blood glucose are described in the patient’s
gluco-regulatory model, presented below.

3.2 Patient Model

We consider the nonlinear ODE gluco-regulatory model of
Jacobs et al. [13], which extends Hovorka’s well-established
model [15] to capture the effect of exercise on BG. The
model describes the dynamics of glucose and insulin in the
human body, i.e., their absorption, metabolism, excretion
and transport between compartments (tissues and organs),
and is regarded as one of the most physiologically realistic
models. In addition to insulin, Jacobs’ model also allows
for the automated control of glucagon, i.e. the hormone
antagonistic to insulin that protects against hypoglycemia.
In our work, however, we leave aside glucagon because the
single-hormone insulin therapy is the most common one.

Model parameters (available in [16]) represent the physi-
ological characteristics (e.g. transport or consumption rates)
of a single virtual subject, even though we also simulate
virtual cohorts of patients as described at the end of this
section.

At time t, the inputs to the system are the subcuta-
neous insulin infusion rate ut (mU/min), and disturbances
dt = (Dt

G,MM t,O2 t). The output corresponds to the CGM
measurement. The state-space representation of the system
is as follows:

ẋ(t) = F
(
x(t), ut,dt

)
, t ∈ R≥0 (1)

y(k) = h (x(k)) + εk, k ∈ Z≥0 (2)

where x is the 14-dimensional continuous state vector that
evolves according to the ODE system F, given below. Eq. 2
describes the CGM measurement y, which is collected at
discrete time instants k and derived from x using the
measurement model h. Also, y is subject to an additive mea-
surement noise εk, which is non-white and non-Gaussian,
but follows a Johnson’s SU -distribution [17]. Specifically, εk

is generated by an autoregressive moving average (ARMA)
process which was estimated in [17] using real patient data
collected by the FreeStyle Navigator

TM
CGM and YSI 2300

Stat Plus
TM

analyzer. The model of the sensor noise is given
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Fig. 2. Schema of the gluco-regulatory ODE system and its four main
subsystems. White circles: ODE variables; black boxes: disturbances;
white rounded box: insulin input; solid black arrows: flows of glucose or
insulin; dashed green/red arrows: positive/negative interactions between
variables.

by:

e0 = w0 (3)

ek = 0.7 · (ek−1 + wk) (4)

εk = ξ + λ sinh
ek − γ
δ

(5)

where each wk is sampled i.i.d. from N (0, 1), and ξ, λ, γ, δ
are the SU -distribution parameters estimated from data.

Figure 2 illustrates a high-level schema of the ODE sys-
tem F. The ODE system F, illustrated in Figure 2, consists
of the following subsystems:

Gut absorption: the model uses a chain of two compartments,
G1 and G2 (mmol), to describe digestion of ingested CHO,
given by the disturbance Dt

G [11]:

Ġ1(t) =
−G1(t)

Tmax
+Ag ·Dt

G, Ġ2(t) =
G1(t)−G2(t)

Tmax
(6)

where Ag (unitless) is the CHO bio-availability, and Tmax

(min) is the time of maximum appearance rate of glucose.
The gut absorption rate Ug(t) = G2(t)/Tmax characterizes
the flow of glucose into the blood compartment Q1 (given
below).

Glucose kinetics: describes the glucose masses in the accessi-
ble (where BG measurements are made) and non-accessible
compartments, respectively through variables Q1 and Q2

(mmol) as follows:

Q̇1(t) =− F01c − x1 ·Q1(t) + k12 ·Q2(t)− FR
+ Ug(t) + EGP0 · (1− x3(t)) (7)

Q̇2(t) =x1(t) ·Q1(t)− k12 ·Q2(t)− x2(t) ·Q2(t)

where F01c and FR (mmol/min) are parameters for the non-
insulin mediated glucose uptake and renal glucose clear-
ance, respectively; variables x1, x2, x3 describe the effect of
insulin on glucose (see the insulin dynamics subsystem); and
parameter EGP0 (mmol/min) is the glucose production at
a theoretical zero-insulin concentration. BG concentration,
G (mmol/L), is the main variable we aim to control, and
is derived from Q1 as G(t) = Q1(t)/VG, where VG is the
glucose distribution volume.

C (mmol/L) corresponds to the glucose detected by the
CGM sensor and thus, the measurement function h of Eq. 2
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maps the state vector x(t) to C(t). C has a delayed response
w.r.t. the blood concentration G, and is given by:

Ċ(t) = ka int · (G(t)− C(t)) (8)

where ka int is the transport rate parameter.

Insulin kinetics: it models the absorption of the fast-acting
insulin ut, i.e. our control input, and its transport through
compartments Q1a, Q1b, Q2i and Q3 (mU) [18]:

Q̇1a(t) =K · ut − kia1 ·Q1a(t)− Vmax,LD ·Q1a(t)

km,LD +Q1a(t)
(9)

Q̇1b(t) =(1−K) · ut − kia2 ·Q1b(t)−
Vmax,LD ·Q1b(t)

km,LD +Q1b(t)

Q̇2i(t) =kia1 ·Q1a(t)− kia1 ·Q2i(t)

Q̇3(t) =kia1 ·Q2i(t) + kia2 ·Q1b(t)− ke ·Q3(t)

This model assumes a slow insulin absorption pathway con-
sisting of compartments Q1a (subcutaneous insulin mass)
and Q2i (non-accessible insulin), and a fast pathway that
includes only Q1b (subcutaneous). Parameter K is the
proportion in which the input insulin ut is distributed
into the two pathways. Q3 is the plasma insulin mass,
from which we derive the plasma insulin concentration I
(mU/L) as I(t) = Q3(t)/VI , where VI is the insulin dis-
tribution volume. Vmax,LD (mU/min) and km,LD (mU) are
the Michaelis-Menten constants characterizing local insulin
degradation.

Insulin dynamics: it defines the effects of plasma insulin
levels on blood glucose through variables x1, x2, x3. Vari-
able x1 (min−1) promotes glucose distribution; x2 (min−1)
promotes glucose disposal; and x3 (unitless) inhibits en-
dogenous glucose production.

ẋ1(t) =ka1 · (−x1(t) +MPGU (t) ·MPIU (t) · SIT · I(t))

ẋ2(t) =ka2 · (−x2(t) +MPGU (t) ·MPIU (t) · SID · I(t))

ẋ3(t) =ka3 · (−x3(t) +MHGP (t) · SIE · I(t)) (10)

where MPGU , MPIU and MHGP (unitless) are factors de-
pending on the patient’s physical activity (described below);
SIT , SID, and SIE are parameters for the insulin sensitivity
on glucose distribution, disposal and production inhibition,
respectively. The overall subsystem promotes removal of
BG mass from Q1 and Q2 and thus, decreases the BG
concentration G.

Physical activity: this subsystem consists of two state vari-
ables (not shown in Figure 2): the glucose uptake due to
active muscular tissue UA (mg/min), and the actual per-
centage of maximum oxygen consumption O2m (unitless):

U̇A(t) =kUA · (UA(t)−UA(t)) (11)

Ȯ2m(t) =kO2 · (O2m(t)−O2 t)

where O2 t is the disturbance describing the target work-
load, and UA(t) = f (O2m(t)) is the target value of UA,
computed as a function of O2m, where f is estimated in [19]
using quadratic regression.

The effects of exercise on peripheral glucose uptake
(MPGU ), on peripheral insulin uptake (MPGU ), and on

hepatic glucose production (MHPG) depend on UA and
O2m as follows:

MPGU (t) =1 + kPGU ·UA(t) ·MM t (12)

MPIU (t) =1 + kPIU ·MM t

MHPG(t) =1 + kHPG ·UA(t) ·MM t.

Initial conditions: The initial state of the system is derived
at a steady-state BG level of 7.8 mmol/L [20], assuming
no meal and exercise. We use a nonlinear equation solver
(MATLAB’s fsolve) to find x(0) and basal insulin level
ū such that ẋ(0) = F

(
x(0), ū,d0

)
= 0 (see Eq. 1), where

the disturbances d0 are given by D0
G = 0, MM 0 = 0 and

O2 0 = 8 (oxygen consumption at rest).
Following [13], we further assess the physiologic feasi-

bility of the initial conditions by checking that: 1) in absence
of insulin, the steady-state BG is above 300 mg/dL, and
2) delivery of a high insulin dose (15 U/h) results in a
steady-state BG below 100 mg/dL.

Virtual patient cohort: In Section 5.5, we validate our robust
AP design on a virtual cohort of T1D patients, where each
patient has a different parameterization of the ODE model.
Specifically, we sample ODE parameters from the distribu-
tions of [11, Table 2], which are part of a T1D simulator vali-
dated with clinical data and based on Hovorka’s model [15].

4 ROBUST MPC
Since we want to optimize the BG profile against worst-case
realizations of the disturbances (constrained by the uncer-
tainty sets), at each time step t, the robust MPC computes
the insulin infusion ut as the solution of the following non-
linear min-max optimization problem:

min
ut,...,ut+Nc−1

max
dt,...,dt+Np−1

Np∑
k=1

d(x̃(t+ k)) + β ·
Nc−1∑
k=0

(∆ut+k)2

(13)
subject to

ut+k ∈ Du, k = 0, . . . , Nc − 1 (14)

ut+k = ū, k = Nc, . . . , Np − 1 (15)

dt+k ∈ U t+k, k = 0, . . . , Np − 1 (16)
x̃(t) = x̂(t) (17)
˙̃x(t+ k) = F (x̃(t+ k), ut+k,dt+k), k = 0, . . . , Np − 1

(18)

where Nc and Np are the control and prediction horizon (in
minutes), respectively; (14) states that the control input u
must belong to some set Du of admissible insulin inputs;
(15) imposes that u is fixed to the basal insulin rate ū
outside the control horizon; (16) states that, at any time point
t + k in the prediction horizon, disturbances dt+k must be-
long to the corresponding uncertainty sets U t+k; constraints
(17) and (18) restrict how the robust MPC computes the
predicted state vector x̃: for the initial state, it uses the
estimated plant state at time t, x̂(t), while subsequent states
are predicted using the plant model (1). We set control and
prediction horizons to Nc = 100 min and Np = 180 min,
respectively.
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We design the cost function so as to optimize the follow-
ing two objectives:

1: Minimize the sum of squared distances between the
predicted BG level x̃G(t+k) and a target trajectory R(t+k):

d(x̃(t+ k)) = γ(t+ k) · (x̃G(t+ k)−R(t+ k))
2 (19)

where γ(t+k) = γ if x̃G(t+k) < R(t+k) and 1 otherwise.
Recall that xG(t) = G(t) in the glucose kinetics subsystem.
Parameter γ ≥ 1 allows defining asymmetric cost functions
where predicted BG values below the target are penalized
more than those above the target. Glucose control is nat-
urally asymmetric given that hypoglycemia leads to more
severe consequences than (temporary) hyperglycemia, and,
as shown in [21], asymmetric costs effectively contribute
avoiding hypoglycemia.

2: Minimize step-wise changes in the control input (∆ut+k)2

to penalize abrupt therapy changes, where ∆ut+k = ut+k−
ut+k−1, and ut−1 corresponds to the control input in the
previous iteration, or to the basal insulin rate ū if t = 0.

In our setup, we fix the target trajectory to R(t+k) = 7.8
mmol/L for all time instants and set penalty β to 1/50. We
set the asymmetric cost penalty to γ = 2, after experiment-
ing with different values (see Section 5.7)

Optimization method
We solve (13) using nonlinear optimization techniques. We
reduce the problem into two nested optimization problems,
where the objective function value of the outer minimization
problem for a control sequence ut, . . . , ut+Nc−1 is the result
of maximizing w.r.t. disturbances dt, . . . ,dt+Np−1 the cost
function of (13) with fixed ut, . . . , ut+Nc−1. To solve both
minimization and maximization problems, we employ the
interior point method of MATLAB’s fmincon.

Since we use a nonlinear predictive model and nonlinear
solvers, our method is not guaranteed to find a solution
(saddle point) of the min-max problem. Nonlinear min-max
MPC problems are in general intractable and thus require
one to weaken the problem statement (e.g., by approxi-
mating the set of model states reachable under all possible
disturbances) or the model dynamics (e.g., by linearizing
the dynamics) [22]. Our approach addresses a weakened
version of the problem in that it finds sub-optimal solutions
to both the inner maximization and outer minimization
problems, but does not approximate the nonlinear predic-
tive model. Importantly, using nonlinear solvers, we can
bound the maximum number of candidate solutions to be
evaluated, and thus we can arbitrarily reduce the runtime
of our method (sacrificing the quality of the final solution).

To further improve efficiency, we reduce the number
of decision variables by assuming that, in the prediction
model, control inputs change with period 10 min, and
disturbances with period 30 min. We employ a heuristic to
select the initial point x0 for the search of the sub-optimal
insulin therapy, which considerably affects the performance
of the nonlinear solver. Specifically, we choose x0 as the
control strategy with best performance among 1) the strat-
egy constantly equals to the basal rate; 2) the strategy that
linearly transitions (for the control horizon duration) from
the previous control input to the basal rate; 3) strategies that
linearly transition to the basal rate starting from an insulin

rate such that the total insulin dosage (for the prediction
horizon duration) is 1 U, 2 U, 3 U, and 4 U, respectively.

Non-robust variant
We introduce a non-robust variant of the controller that
will serve as the baseline controller in our experimental
evaluation of Section 5. This controller has no knowledge
of meals and exercise, and thus is equivalent to fixing the
disturbances to their default values at rest in the prediction
model. Such a controller mimics the behavior of hybrid
closed-loop artificial pancreas systems where only basal
insulin is automatically regulated and the patient is respon-
sible for bolus insulin. The optimization problem of the non-
robust controller reduces to:

min
ut,...,ut+Nc−1

Np∑
k=1

d(x̃(t+ k)) + β ·
Nc−1∑
k=0

(∆ut+k)2 (20)

s.t. (14, 15, 17, 18) and dt+k = (0, 0, 8), k = 0, . . . , Np − 1.

Note that the constraints on the insulin therapy are the same
of the robust controller (14-15) meaning that the non-robust
controller is free to synthesize bolus-like therapy profiles.

4.1 State Estimation

This component allows to recover an estimate of the current
state, which is used in the following iteration by the robust
MPC as the initial state for its predictions (see Eq. 17).
We designed a moving-horizon state estimator (MHE) [9]
that works in a finite-horizon fashion similar to MPC, and
allows estimating the current state by reconstructing a state
trajectory from previous estimations and a bounded history
of observed CGM measurements.

To distinguish from the system variables x and d, we
denote the corresponding estimator variables with χ and δ,
respectively.

For an estimation window of size N , MHE is based on
simulating a model of the plant from time t − N to t and
aims at finding the model trajectory χ(t − N), . . .χ(t) that
minimizes the discrepancies between simulated and esti-
mated states, and between simulated and measured outputs
(CGM). Then, the current state estimate x̂(t) is chosen as the
final state of the optimal trajectory, i.e., x̂(t) = χ(t).

Crucially, our estimator also works as a meal and physi-
cal activity detector: in addition to the plant state, we com-
pute the most likely sequence of disturbances δt−N , . . . , δt,
corresponding to decision variables in our optimization
problem as they are unknown inputs of the model. The
MHE problem boils down to the following non-linear op-
timization problem:

min
χ(t−N),...χ(t),

δt−N ,...,δt−1

µ · ‖χ(t−N)− x̂(t−N)‖2 + ρ ·
N−1∑
k=0

‖vt−k‖2

(21)
subject to

χ̇(t− k) = F (χ(t− k), ut−k, δt−k), k = N, . . . , 1 (22)

vt−k =
(
y(t− k)− E[εt−k]

)
− h(χ(t− k)), k = N − 1, . . . , 0

(23)
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where (22) states that χ evolves according to the same
ODE model of the plant, with ut−k being the insulin input
previously computed by the robust MPC; and (23) defines
the measurement discrepancy at time t− k, vt−k, as the
difference between the measured output, y(t− k), and the
simulated output, h(χ(t − k)). We take into account the
fact that our sensor model has a non-zero-mean noise (see
Eq. (2)) by subtracting from y(t− k) the expected value of
the sensor noise E[εt−k], which we obtained as the sample
mean of multiple realizations of the stochastic noise model
of Eq. (3–5). The problem is solved using the interior point
method of MATLAB’s fmincon non-linear solver.

The first addend of the cost function penalizes the dis-
crepancy between the initial state of the simulated trajec-
tory and the corresponding state estimation, where µ > 0
is a weighting factor. The second addend penalizes mea-
surement discrepancies, weighted by a factor ρ. In the
original formulation of the MHE [9], the cost function
includes discrepancies for all the states in the trajectory.
Our simplification comes from the fact that we do not
consider random noise in the model (but only in the mea-
surements), and thus, the trajectory χ(t − N), . . . ,χ(t) is
fully determined by the initial state χ(t − N) and by the
estimated disturbances sequence δt−N , . . . , δt. Further, this
greatly improves computational efficiency because variables
χ(t − N + 1), . . . ,χ(t) are strictly constrained by the ODE
in Eq. (22). In practice, this means that the decision variables
reduce to χ(t−N), δt−N , . . . , δt.

The MHE has an important probabilistic interpretation:
when N = t (unbounded horizon), the MHE problem
corresponds to maximizing the joint probability for the tra-
jectory of states χ(t−N), . . . ,χ(t) given the measurements
y(t−N), . . . , y(t) [9].

4.2 Building Data-Driven Uncertainty Sets

In this section, we describe how to build the uncertainty
sets used within the robust MPC and the state estimator
to restrict the domain of the admissible meal and exercise
inputs. We apply the approach of [7] where the authors
present a general schema for designing uncertainty sets
from data for robust optimization (of which robust MPC is
an instance). The key idea is to define an uncertainty set that
captures random realizations of the disturbance with de-
sired coverage probability, and then optimize against worst-
case realizations within this set. In this approach, we see
a disturbance as a random variable distributed according
to P∗, the true disturbance distribution, and we build the
corresponding uncertainty set using data, i.e., a random
sample S drawn from P∗. For instance, in our context,
elements of S are the CHO intakes at some time of the day
for a sample of the population. P∗ is the true population
distribution of CHO intakes at that time. Importantly, this
method requires no information about P∗ and provides a
probabilistic guarantee (an upper bound) on the likelihood
that the true realized cost — i.e., the cost assuming the true
distribution P∗ — is higher than the optimal worst-case cost
computed by the robust controller — i.e., the worst-case cost
w.r.t. the uncertainty set.

Let us characterize an uncertainty set U by means of
a so-called robust constraint f(d,x) ≤ 0, where d is the

unknown disturbances and x is the optimization variable,
corresponding in our case to the state vector plus insulin
input. The analytical form for the true distribution P∗ of d is
unknown. Given a confidence level ε > 0, U should satisfy
two conditions: (1) the robust constraint f is computation-
ally tractable. (2) U implies a probabilistic guarantee for P∗
at (significance) level ε, that is, for any solution x∗ ∈ Rk and
for any function f(d,x) concave in d for all x,

if f(d,x∗) ≤ 0 ∀d ∈ U , then P∗(f(d,x∗) ≤ 0) ≥ 1− ε.

The data-driven schema that we follow uses a finite
set of data points S , which are seen as i.i.d. samples of
the true distribution P∗, and applies hypothesis testing to
construct uncertainty sets with the above guarantees. In
particular, for confidence level α < 1, the schema employs
the corresponding (1−α) confidence region to build U . With
the proper construction, the following theorem from [7, Sect.
3.2] holds.

Theorem 1. With probability at least 1 − α with respect to
the sampling, the resulting set U(S, ε, α) implies a probabilistic
guarantee at least ε for P∗.

In [7, Table 1], the authors show how different uncer-
tainty sets are built depending on the assumptions about P∗,
and, in turn, on the suitable statistical test. In this work we
consider box sets (i.e. multi-dimensional intervals), whose
construction need no assumptions on P∗. In particular, we
derive one box-type uncertainty sets for each time step of
the simulation (see Eq. (16)), thereby capturing the typical
daylong variations in meal and exercise behavior. For the
sake of simplicity, below we omit time dependence and
work with uncertainty sets for a generic time step.

Recall that d ∈ Rd denotes the random disturbance
vector and di denotes its components. Let S = {d̂1, . . . , d̂S}
be the set of samples (data points). The construction of the
box-type uncertainty sets is based on the hypothesis test for
the (1 − ε/d)-quantile of distribution P∗ [7]. For 0 < p < 1,
denote with QP∗

p (di) = inf{v : P∗(di ≤ v) ≥ 1 − p}
the (1 − p)-quantile of P∗ marginalized over di. Given
q̄i,0, qi,0 ∈ R,∀i = 1, . . . , d, we consider the multi-variate
hypothesis

H0 : QP∗
ε/d(di) ≥ q̄i,0 and QP∗

ε/d(−di) ≥ qi,0, ∀i = 1, . . . , d.

In other words, H0 describes the hypothesis that the last
(resp. first) ε/d-quantile of component di of the disturbance
vector is not below q̄i,0 (resp. not above q

i,0
). We proceed

by identifying values q
i

and q̄i such that H0 is rejected at
level α (see Theorem 1), i.e., such that di ∈ [q

i
, q̄i], for all

components i = 1, . . . , d, with probability at least 1− α.
Assuming that we have S random samples, define the

index s as

s = min

k ∈ N :
S∑
j=k

(
S

j

)( ε
d

)S−j (
1− ε

d

)j
≤ α

2d

 .

(24)
For each component di of d, denote with d(1)i , d

(2)
i , . . . , d

(S)
i

the sequence of di components in the sample set arranged
in increasing order. We have that H0 is rejected at level α if

d̂
(s)
i < q̄i or − d̂(S−s+1)

i < q
i
, ∀i = 1, . . . , d,



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, MONTH YEAR 7

which follows from the fact that, for each i, such defined
q̄i and q

i
respectively reject hypotheses QP∗

ε/d(di) ≥ q̄i,0 and
QP∗
ε/d(−di) ≥ q

i,0
at level α/2d [23]. By this construction,

Theorem 8 in [7] shows that if s defined by (24) satisfies
S − s+ 1 < s, then, with probability at least 1− α over the
sample, the box set

U =
{
d ∈ Rd : d̂

(S−s+1)
i ≤ di ≤ d̂(s)i , ∀i = 1, . . . , d

}
implies a probabilistic guarantee for P∗ at level ε.

Note that, even though the above sets are constructed
component-wise for each i = 1, . . . , n, i.e., by observing
samples from the marginal distributions of P∗, we do not
need to assume that P∗ has independent marginals.

To further shrink the size of U and make it less conserva-
tive, we employ the following two strategies. First, prior to
set construction, we classify the input data and partition
it into a number of clusters so as to obtain tighter sets
and more customized, patient-specific control strategies.
Second, based on Algorithm 1 of [7], we use bootstrapping
[24] to approximate the threshold of the test statistics, by
estimating the sampling distribution of the statistics through
re-sampling with replacement.

Our uncertainty set construction is still valid if we con-
sider a cluster S ′ ⊆ S , with probabilistic guarantees w.r.t.
the distribution of the sub-population to which S ′ belongs.
Suppose, for instance, that we are interested in building an
uncertainty set for a sub-population with low CHO intake,
e.g. DG < 5 mmol/min. Let S ′ = {d ∈ S | DG < 5} be
the corresponding subset of samples. Then, the uncertainty
set for S ′ has probabilistic guarantees for the conditional
distribution P∗(d | DG < 5). Further details about the
clustering are provided in Section 5.3.

We remark that the construction of uncertainty sets is
performed off-line and thus has no computational footprint
on the robust controller.

4.3 Building Uncertain Sets from Probabilistic Models
We show how to build uncertainty sets when meal and
exercise disturbances follow arbitrary distributions, a sce-
nario that we evaluate in some of our experiments (see
Sections 5.1, 5.2, and 5.4).

In this model, we assume that the start time of a meal,
tm, and the total amount of ingested carbohydrates, CHO ,
are random. Meal duration dm is fixed, during which car-
bohydrate ingestion happens at a constant rate. Similarly,
each exercise episode has random start time te, percentage
of muscular mass MM , and percentage of maximum oxygen
consumption O2 . Exercise duration de is random too.

ForX random variable, the intuition is to derive an inter-
val [X⊥, X>] that covers realizations of X with arbitrarily
high probability p. Let F be the corresponding cumulative
distribution function of X and Q(p) = inf{x ∈ R | F (x) ≥
p} be its p-quantile. Then, we choose X⊥ = Q ((1− p)/2)
and X> = Q ((p+ 1)/2), which leads to the desired cover-
age probability p. An example in our experiments is whenX
is normally distributed with mean µ and standard deviation
σ, written X ∼ N (µ, σ). In this case we set X⊥ = µ − 3σ
and X> = µ + 3σ, which gives a coverage probability of
≈ 99.74%. WhenX is instead uniformly distributed in [a, b],
written X ∼ Unif(a, b), then we choose the interval defined

Ut
|DG

= [Dt
G
⊥
, Dt

G
>
], D

t
G
⊥

= CHO⊥/d if t>m ≤ t ≤ t
⊥
m + dm, 0 o/w

Dt
G
>

= CHO>/d if t⊥m ≤ t ≤ t
>
m + dm, 0 o/w

Ut
|MM = [MM t⊥,MM t>], MM t⊥ = MM⊥ if t>e ≤ t ≤ t

⊥
e + d⊥e , 0 o/w

MM t> = MM> if t⊥e ≤ t ≤ t
>
e + d>e , 0 o/w

Ut
|O2 = [O2 t⊥,O2 t>], O2 t⊥ = O2⊥ if t>e ≤ t ≤ t

⊥
e + d⊥e , 8 o/w

O2 t> = O2> if t⊥e ≤ t ≤ t
>
e + d>e , 8 o/w

TABLE 1
Uncertain sets at time t for CHO ingestion rate DG, active muscular

mass MM and oxygen consumption O2 .

by X⊥ = a and X> = b, which covers all realizations with
probability 100%.

With this method, we can thus define intervals
[t⊥m, t

>
m], [CHO⊥,CHO>], [t⊥e , t

>
e ], [d⊥e , d

>
e ], [MM⊥,MM>],

[O2⊥,O2>] bounding the realization the above variables
describing start time, duration and intensity of the distur-
bance. Then, the box-type uncertainty sets at time t relative
to inputs DG (CHO ingestion), MM and O2 are defined as
per Table 1. In addition, when a meal or exercise episode
happens with probability lower than 1 (as in the experiment
at Section 5.4), we set the lower bounds of the corresponding
uncertainty sets to their values at rest (0 for DG and MM , 8
for O2 ).

5 RESULTS AND DISCUSSION

Hardware and runtime
We ran the experiments on a Windows 8 machine with an
Intel Core i7 processor and 32GB of DDR3 memory. We
used MATLAB version 2016b. With this configuration, the
average time to compute the insulin therapy over all the ex-
periments ranged from 4 to 18 seconds, which is well within
the CGM measurement period of 5 minutes. Given the
significant performance improvement of modern embedded
and mobile devices, we expect our algorithm to perform
similarly once deployed on such hardware platforms. In
this work we do not focus on optimizing the performance
on embedded platforms. For this purpose, methods for
learning function approximations of MPC trajectories could
be used [25].

Performance indicators
To measure the efficacy of our robust controller design over
multiple runs, we consider the following indicators (the
means below are intended as averages over multiples runs):

t<3.9, t3.9−11.1, t>11.1: mean percentage of time spent in,
respectively, hypoglycemia (BG < 3.9 mmol/L), normal
ranges (BG between 3.9 and 11.1), and hyperglycemia (BG
> 11.1). Clearly, we wish to maximize t3.9−11.1 and mini-
mize the other two indicators, keeping in mind that we can
tolerate some temporary postpandrial hyperglycemia while
hypoglycemia should be avoided as much as possible.

BGmin, BGmax: mean low and peak BG level, respectively,
in mmol/L. The controller should keep BGmin and BGmax

as close as possible to the target BG level.∑
u: mean total non-basal insulin (in U). It measures the

amount of insulin injected by the controller in order to cover
meals, and thus excludes the contribution of basal insulin.
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TABLE 2
Performance indicators for the one-meal experiments of Figure 3. The

best value of each indicator between the robust and the non-robust
controllers is highlighted in bold.

t<3.9 t3.9−11.1 t>11.1 BGmin BGmax
∑
u

1), Perfect 0% 99.69% 0.31% 7.15 9.91 4.38
1), Non-rob. 1.72% 75.47% 22.81% 5.56 12.13 8.5
1), Robust 1.99% 94.91% 3.11% 5.43 10.07 6.87
2), Perfect 0% 100% 0% 7.03 8.84 4.67
2), Non-rob. 0.39% 69.04% 30.57% 5.81 13.58 7.09
2), Robust 0.47% 77.54% 21.99% 5.11 12.15 7.1
3), Perfect 0% 100% 0% 7.22 9.3 5.06
3), Non-rob. 0% 76.52% 23.48% 6.7 12.48 5.86
3), Robust 1.01% 97.75% 1.24% 5.11 9 6.78

5.1 One-Meal Experiments
We consider 300-minute simulations comprising a single
meal, and three different synthetic scenarios (illustrated in
Figure 3 (a-c)), i.e. where meal disturbances follow arbitrary
distributions (see Section 4.3). For each scenario and con-
troller, we collect results for 50 repetitions.

Scenario 1, meals as expected: we assume a uniformly dis-
tributed meal with start time tm = unif(30, 90), total
amount of CHO (grams) CHO = unif(42, 78) and meal
duration fixed to 20 minutes, during which CHO ingestion
happens at a constant rate. This scenario allows us evaluat-
ing the adequacy of the controller when the plant behaves
according to a known distribution, in other words, when we
have accurate information for building uncertainty sets.

Scenario 2, outliers: in this case, random meals behave as
statistical outliers, i.e. they are constantly distant from the
expected value of the underlying distribution. To this pur-
pose, we build the uncertainty sets under the assump-
tion that meals are normally distributed with parameters
tm = N (60, 15) and CHO = N (60, 9). The uncertainty sets
are built so as to cover all possible realizations with z-score
between -3 and 3 (i.e. between -3 S.D. and +3 S.D. around the
mean). However, to reproduce outliers, meal disturbances
are sampled from the tails of the distributions (z-scores in
[−4,−3] and [3, 4]).

Scenario 3, late meals: here we consider the same settings as in
Scenario 1, but with each random meal delayed of one hour.
This models the situation where the controller has wrong
information about the meal schedule, since it expects the
meal to start, on the average, one hour earlier.

Results in Figure 3 show that our robust controller attains
very good performance, closely following the ideal behavior
of the perfect controller in the first and third scenarios,
where the virtual patient stays in normal ranges for>94% of
the time. In the outliers scenario, we register some postpran-
dial hyperglycemia, because this scenario is characterized
by frequent high CHO intake. Overall, the robust controller
is able to limit the time spent in hypoglycemia below 2% and
consistently outperforms the non-robust controller, staying
in normal BG ranges for 8.5% to 21.23% more. Performance
indicators are given in Table 2.

5.2 Regulation during Exercise
We evaluate the behavior of the robust controller when
the virtual patient is involved in physical activity, which,

contrarily to meals, contributes to decreasing BG levels.
Specifically, we simulate a scenario where a meal is fol-
lowed by physical activity, a situation that typically leads
to hypoglycemia because the BG decrease due to the meal-
time insulin dose is exacerbated by exercise. After a meal
constructed based on the meals as expected scenario, we
simulate a two-legged exercise consisting of two phases:

1) Moderate activity, with start time te = unif(40, 80),
duration de = unif(24, 36), active muscular mass
MM = unif(0.15, 0.35), and oxygen consumption
O2 = unif(45, 75); followed by

2) Light activity, where parameters stay as in the
previous phase except for 02 = unif(15, 45).

Results, reported in Figure 4, show that the robust con-
troller effectively prevents hypoglycemia (t<3.9 = 0.57%),
maintaining BG in range for 86% of the time. In contrast,
without any knowledge about plausible ranges for future
disturbances, the non-robust controller fails to predict the
occurrence of exercise after the meal, resulting in insulin
overshooting and critically low BG levels (t<3.9 = 11.87%).

We also performed a variant of this experiment that does
not include the initial meal, obtaining 100% of the time in
range for all controllers. Our results outperforms those of
Resalat et al. [13], that experimented with a similar scenario
for a dual-hormone MPC (300-minute simulation with a 45-
minute exercise at fixed 02 = 60 and MM = 0.8). While we
use their same plant model, their MPC design is different
in two ways: it can regulate both insulin and glucagon
(to prevent hypoglycemia) and is not robust, in that the
controller knows the true exercise onset time and intensity.
Despite that, however, their evaluation resulted into some
episodes of hypoglycemia and hyperglycemia, while our
controller is able to keep BG for 100% of the time in healthy
ranges without meal announcements.

5.3 One-Day Experiments using NHANES Survey Data

We test our robust controller with meal disturbances
extracted from real population data in the CDC’s Na-
tional Health and Nutrition Examination Survey (NHANES)
database [26].

We consider the 2013 survey, comprising 8,611 partici-
pants, and retrieve meal information from the dietary in-
terview, where each participant reports the timings, types
and amounts of each meal during a typical day. Through a
moving average filter, we transform the meal events of each
participant into a one-day trajectory describing the CHO
intake rate, so that it can be mapped into the input distur-
bance DG. To avoid building a single uncertainty set built
from the whole database, which would result in a unrealistic
and overly conservative sets, we classify the trajectories into
10 groups using k-means clustering. Grouping meal data
into clusters aligns with the common pre-pump assessment
questionnaire conducted by medical personnel.

In this experiment, we focused on and evaluated a
cluster consisting of 274 people whose meal patterns are
characterized by a CHO-rich breakfast at around 9am, as
visible in the uncertainty set of Figure 5 (a). Research [27]
has shown that hyperglycemia occurs after breakfast and
timing of pre-breakfast insulin injection is important to



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, MONTH YEAR 9

1) Meals As Expected 2) Outliers 3) Late Meals
RandomU. sets

D
G

(m
m

ol
/m

in
)

(a) (b) (c)
Non-robust Robust PerfectTarget BG/Basal IIR

BG
(m

m
ol

/L
)

0 50 100 150 200 250 300

Time (min)

0

5

10

15

(d)

0 50 100 150 200 250 300

Time (min)

0

5

10

15

(e)

0 50 100 150 200 250 300

Time (min)

0

5

10

15

(f)

u
(m

U
/m

in
)

0 50 100 150 200 250 300

Time (min)

-100

0

100

200

300

(g)

0 50 100 150 200 250 300

Time (min)

-100

0

100

200

300

(h)

0 50 100 150 200 250 300

Time (min)

-100

0

100

200

300

(i)

Fig. 3. One-meal, 300-minute experiments (50 repetitions). Top: uncertainty sets and random realizations of disturbance DG (rate of CHO
ingestion). Middle: BG profiles (with solid black lines indicating the normal BG range). Bottom: synthetized insulin therapies. Thick solid lines
indicate average BG/insulin values, and are surrounded by an area spanning ± 1 S.D. Performance indicators are reported in Table 2.
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t<3.9 t3.9−11.1 t>11.1 BGmin BGmax
∑
u

Perfect 0% 94.83% 5.17 % 7.73 10.93 3.12
Non-rob. 11.87% 80.77% 7.37% 4.15 11.02 6.16

Robust 0.57% 86.29% 13.15% 5.75 11.65 5.4
Fig. 4. Regulation during random exercise following a meal (50 repe-
titions). a), b), and c) show uncertainty sets and realizations for rate
of CHO ingestion (DG ), active muscular mass (MM ), and oxygen
consumption (02 ). Legend is as in Figure 3.

maintain normal BG level. We want to investigate how our
data-driven approach can alleviate such negative effects au-
tomatically without patient’s involvement. From this cluster,
we build the corresponding uncertainty sets as explained in
Section 4.2 (choosing α = 0.2 and ε = 0.2).

Due to the poor quality of physical activity data in
NHANES, we generated synthetic exercise data consisting
of one random exercise episode for each patient, with ran-
dom start time (outside meal times) and one hour duration.
The intensity is randomly chosen among light, moderate,
and intense activity, with oxygen consumption and active
muscular mass sampled according to the ranges below:

• light: MM ∼ unif(0.1, 0.25), O2 ∼ unif(15, 45);
• moderate: MM ∼ unif(0.2, 0.35), O2 ∼ unif(45, 75);
• intense: MM ∼ unif(0.3, 0.5), O2 ∼ unif(75, 100).

Results for this cluster were obtained with 20 random
meal profiles and are reported in Figure 5 (d) and Table 3.
Our robust controller has a close-to-ideal performance, with
>95% of time spent in normal BG ranges. It outperforms the
non-robust controller, which fails to predict the correct BG
levels during sleep (time < 500 min), leading to excessive
insulin therapy and to dangerous overnight hypoglycemia.

We further experiment with uncertainty sets built from
two sub-sets of the selected cluster, shown in Figure 5
(b) and (c), comprising 92 and 91 records, respectively. In
this way, we can evaluate how the choice of tighter and
less conservative uncertainty sets (induced by the smaller
number of records) affect glucose control. We do not register
significant differences with the results of the full cluster: our
robust AP performs only slightly worse on the two sub-
clusters, yielding respectively 90.06% and 92.66% in range.
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Fig. 5. BG regulation for virtual patient learned from NHANES database (20 repetitions). Uncertainty sets in experiments 2) and 3) are derived from
a subset of the data used for 1). Legend is as in Figure 3. Performance indicators are reported in Table 3.

TABLE 3
Performance indicators for the experiments of Figure 5 with NHANES

data.

t<3.9 t3.9−11.1 t>11.1 BGmin BGmax
∑
u

1), Perfect 0% 100% 0% 6.37 8.92 33.65
1), Non-rob. 20.31% 71.29% 8.4% 2.28 11.71 32.84
1), Robust 1.18% 95.7% 3.12% 4.2 11.18 32.35
2), Perfect 0% 100% 0% 6.32 8.39 34.2
2), Non-rob. 20.91% 69.99% 9.1% 2.28 12.38 33.99
2), Robust 1.14% 90.06% 8.81% 4.15 12.48 32.55
3), Perfect 0% 100% 0% 6.3 8.55 33.63
3), Non-rob. 10.3% 64.18% 25.51% 2.77 13.61 27.2
3), Robust 2.57% 92.66% 4.76% 3.53 11.19 31.71

TABLE 4
High carbohydrate intake simulation parameters of [20]. Meals in the

plant are sampled uniformly based on the above intervals and
probabilities.

Chance of CHO Time of
occurrence (g) day (h)

Breakfast 100% 40-60 6:00-10:00
Snack 1 50% 5-25 8:00-11:00

Lunch 100% 70-110 11:00-15:00
Snack 2 50% 5-25 15:00-18:00
Dinner 100% 55-75 18:00-22:00

Snack 3 50% 5-15 22:00-00:00

5.4 High Carbohydrate Intake Scenario

We assess the behavior of the controller under irregular
meal timing and unusually high CHO intake, following the
protocol of [20], reported in Table 4. In this protocol, no
physical activity is considered and the closed-loop system
is simulated for two days. Uncertainty sets were derived
following Section 4.3. Results, obtained with 50 repetitions,
are shown in Figure 6.

Our robust controller resulted in 81.02% of time within
healthy BG ranges, against the 70.53% of the non-robust
controller. Hypoglycemia amounts to 1.95% of the total time,
but it consists only of minor episodes, as visible by the
standard deviation intervals in the plot and by the average
minimum BG (BGmin = 3.82 mmol/L) that falls only slightly
below the hypoglycemic level (3.9 mmol/L).
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t<3.9 t3.9−11.1 t>11.1 BGmin BGmax
∑
u

Perfect 0% 99.52% 0.48% 6.83 10.05 16.19
Non-rob. 0.7% 70.53% 28.77% 4.31 16 28.82

Robust 1.95% 81.02% 17.04% 3.82 14.61 33.13

Fig. 6. BG profile (top) and performance indicators (bottom) for the high
carbohydrate intake scenario (20 repetitions). Legend is as in Fig. 3.

5.5 Validation with Virtual Patient Cohort

In the previous experiments we have evaluated our method
using a fixed parametrization of the patient model, that is,
a single virtual T1D patient, and random disturbances. In
this experiment, we validate our robust AP design on a
virtual cohort of 20 T1D patients generated using randomly
sampled model parameters from a validated T1D simulator,
as described in Section 3.2. Since we want to evaluate the
controller under different model parameters, in this experi-
ment we do not consider random disturbances, but a single
meal disturbance sequence. The sequence was randomly
sampled from the NHANES data used in Section 5.3. We
remark that the robust controller knows only the uncertainty
sets (shown in Figure 5 a) but not the true disturbances.

Results, reported in Figure 7, show that the robust con-
troller has very good performance on the cohort of virtual
subjects, attaining an average time in range of 94.26% and
only 0.31% of the time in hypoglycemia. These results align
with the performance of the single patient experiment of
Section 5.3.

5.6 Evaluation of State Estimator

We chose an MHE scheme for state estimation (see Section
4.1) after having evaluated extended Kalman filters (EKF) [28],
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t<3.9 t3.9−11.1 t>11.1 BGmin BGmax
∑
u

0.31% 94.26% 5.43% 4.01 10.89 23.84

Fig. 7. BG profiles (top) and performance indicators (bottom) obtained
by running the robust MPC controller on a cohort of 20 virtual patients.
CHO disturbances (red) are fixed and obtained from the NHANES
dataset used in Section 5.3.
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Fig. 8. BG estimation error of Moving Horizon Estimator (MHE) and
Extended Kalman Filter (EKF) (50 repetitions).

which are commonly employed for the state estimation
of non-linear systems. MHE overcomes some of the typi-
cal problems of Kalman filtering, namely, the inability to
accurately incorporate state constraints (e.g. non-negative
concentrations); poor use of the nonlinear model [29]; and
estimations that often diverge, or converge to wrong state
predictions [30]. Moreover, Kalman filters are only optimal
for linear models and zero-mean normally-distributed dis-
turbances (white Gaussian noise) [10], which cannot capture
the random meal and exercise episodes that we are inter-
ested in.

We compare the state estimation accuracy between our
MHE design and an EKF scheme, according to the meals
as expected scenario (see Section 5.1). In the EKF, to predict
the state estimate at time t, x̂(t), we use the model of
Section 3 as follows: ˙̂x(t) = F (x̂(t), ut,E[dt]), where ut is
the (known) insulin input and disturbances dt are replaced
with their expected value E[dt]. As visible in Figure 8, the
MHE outperforms the EKF, with a consistently lower state
estimation error. Specifically, the average BG estimation
error of EKF is 5.39 mmol/L, compared to an error of
1.09 mmol/L for MHE, meaning that EKF estimations are
completely unreliable for insulin control.

5.7 Asymmetric Costs

We evaluate glucose regulation under different asymmetric
costs. By choosing γ > 1 in the controller (Eq. 19), predicted
BG trajectories below the target BG level are penalized
more than those above the target. As discussed in [21], this
strategy contributes to reducing hypoglycemic episodes,
motivated by the fact that hypoglycemia leads to more
severe consequences than (temporary) hyperglycemia.

We tested the robust controller with γ = 1, 2, 4 (sym-
metric, 2x, and 4x penalty, respectively). Simulations were
conducted according to the outliers scenario (see Section 5.1),

TABLE 5
Performance of different asymmetric cost strategies.

t<3.9 t3.9−11.1 t>11.1 BGmin BGmax

γ = 1 1.5% 85.35% 13.15% 5.17 11.05
γ = 2 0% 80.13% 18.87% 5.4 11.38
γ = 4 0% 76.8% 23.2% 5.6 11.63

which typically generates hypoglycemic episodes and, thus,
is an ideal testbed for tuning γ. Table 5 reports the per-
formance indicators obtained by performing 20 repetitions
for each value of γ. While for γ = 1 (symmetric cost) we
observe some minor hypoglycemic episodes, hypoglycemia
is totally avoided for γ = 2, 4. Between these two values,
we chose γ = 2 since it yields smaller hyperglycemia. The
indicators for average BG peaks and valleys confirm that
glucose levels tend to increase with γ.

6 RELATED WORK

Earlier approaches to robust control for the AP (see e.g. [31])
are based on the theory of H∞ control [32], a technique
where the robust controller is synthesized offline as the
result of an optimization problem that minimizes the worst-
case closed-loop performance of the controlled system.
However, H∞ control only supports linear systems, thus
requiring linearization of physiological, non-linear gluco-
regulatory models, with inevitable loss of accuracy. Szalay et
al. [20] apply robust linear parameter varying (LPV) control,
a technique that consists on deriving a piecewise-linear
approximation of the non-linear plant and synthesizing a
robust H∞ controller for each linear region.

In contrast to the above techniques, our data-driven
robust MPC supports not just meal disturbances, but also
physical activity, and is based on non-linear optimization,
meaning that it does not require to approximate the sys-
tem dynamics, leading to more precise predictions. Further,
MPC is known to be superior for individualized control
strategies [33], even though is computationally more de-
manding than offline techniques like H∞ or LPV control,
but still feasible within the update periods typical of the
artificial pancreas (5-10 minutes). Finally, our data-driven
scheme supports continuous learning of the patient’s behav-
ior, thus enabling the synthesis of robust and adaptive in-
sulin therapies. On the other hand, H∞ and LPV controllers
are offline and need to be synthesized from scratch in order
to adapt to changing patient conditions.

In [34], the authors introduce a data-driven approach for
MPC-based insulin control, where the MPC combines mul-
tiple linear predictive models, e.g., describing the dynamics
under or without disturbances, using prior probabilities of
meal occurrence estimated from NHANES data [26]. We also
use data from the NHANES database but, in contrast to [34],
we learn uncertainty sets that ensure an a priori coverage
probability of the random meals, and apply these sets in a
robust MPC framework. Further, our robust MPC relies on
only one (non-linear) predictive model and supports both
meal and exercise disturbances.

A simpler strategy employed in a number of AP stud-
ies, see e.g. [35], [36], is that of PID control, where the
control input results from applying tunable gains to the
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error between the system output and a desired setpoint.
Synthesizing these gains to obtain robustness guarantees,
however, becomes difficult for systems with nonlinear and
probabilistic dynamics. To this end, the approach of [37]
enables the synthesis of PID gains maximizing the prob-
ability that blood-glucose levels stay within a safe range.
Being based on SMT solving and probabilistic reachability
analysis, the method provides provably correct results, but
unlike our work, does not consider data-driven disturbances
describing the patient’s behavior. Similarly, the work of
Kushner and others [38] leverages reachability analysis and
data-driven models to find optimal PID gains for the AP.
However, this method does not consider meal and exercise
disturbances, but rather focuses on the control of gluco-
regulatory models estimated from patient data.

7 CONCLUSIONS

Thanks to modern wearable devices, patient-specific data
about meals and physical activity is becoming readily avail-
able, making it possible to offer significantly enhanced per-
sonalized medical therapy for type 1 diabetes. Accordingly,
we presented a data-driven robust MPC framework for T1D
that leverages meal and exercise data to provide enhanced
control and state estimation. Our results show that learning
a patient’s behavior from data is key to achieving fully
closed-loop therapy that does not require meal and exercise
announcements.
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