
D
w

stributed Computation

ay th Communication De

YUAN-CHIEH CHENG, Member, IEEE

THOMAS G. ROBERTAZZI, Member, IEEE
SUNY at Stony Brook

A linear network of communicating processors is examined. The
objective is to solve a computational problem in a minimal amount

of time. The processors in the networks may be equipped either

with front end processors for communication off-loading or without
front end processors. The cases of equal division of processing load
and optimal division of processing load are discussed for both the
network with front-end processors and the network without front
end processors. An example of the inclusion of solution time, the

time taken for processors to report the solution back to the problem

originator, is also presented.

Manuscript received October 26, 1987; revised March 4, 1988.

IEEE Log No. 24688.

This work was supported in part by the SDIOiIST and managed by the
United States Office of Naval Research under Grant N00014-85-KO610
and in part by the NSF under Grant No. NCR8703689.

Authors’ address: Department of Electrical Engineering, College of
Engineering and Applied Sciences, SUNY at Stony Brook, Stony
Brook, NY 11794-2350.

0018-925118811 100-0700 $1.00 Q 1988 IEEE.

I . INTRODUCTION

In recent years there has been an increasing interest in
distributed intelligent sensor networks [1- 121. This
interest has been generated by the requirements of
military surveillance systems and other civilian
applications.

An intelligent sensor network is a collection of units
with sensing, computational, and communication ability.
Thus one has a network of communicating processors
with sensing capability. The processors’ function is to
cooperatively monitor the environment and be able to
ascertain its salient features. These intelligent sensors
may be dedicated deployable units or may be resident on
moving platforms.

networks is the tradeoff between communication and
computation. In a hostile environment where low
probability of intercept considerations are important, one
may want to minimize communication among intelligent
sensors. But on the other hand, when time is an
important consideration, one may want to minimize the
total time taken in order to get the solution and one may
want to spread observations to as many intelligent sensors
as possible.

Several authors ha l e recognized the importance of the
compute versus communicate issue for distributed
intelligent networks. As it is put in [IO]:

One major issue in distributed intelligent sensor

The question of ‘what to compute’ and ‘what to communicate’ are
at the core of the distributed fusion system design problem. They are,
unfortunately, very complex questions and with our present
understanding i t is easier to make lists of subsidiary questions than to
answer the primary ones. Consequently, very little has appeared in
the literature and what has tended to be descriptive rather than
prescriptive. Thus we find many proposals for distributed systems,
but little design methodology.

There has been a great deal of work on only
communication and on only computation, but not that
much on both communication and computation.

In this paper, a linear network of communicating
processors is considered. The objective is to solve a
computational problem in a minimal amount of time. The
motivation is a situation where one processor receives a
burst of measurement data (the processing load) and
distributes the processing load to other sensors to obtain
the benefits of parallel processing. Different processors
may have different processing speeds and each link
between processors may have a different channel
capacity. The problem is that of determining the best
distribution of processing load among the sensors.

This paper is organized as follows. In section 11, the
case of equal division of processing load in a distributed
intelligent sensor network is discussed. In section 111, the
case of optimal division of processing load is considered
where front end processors are available to subsume the
task of communication. In section IV, the case without
front end processors is examined. Finally in section V,
the time required to compile solutions is considered.

700 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 24, NO. 6 NOVEMBER 1988

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:13 from IEEE Xplore. Restrictions apply.

11. EQUAL DIVISION OF PROCESSING LOAD

Consider a linear network of identical communicating
processors. Every processor can communicate with only
its right and left immediate neighbors. All links have
identical channel capacities. The processors may be
equipped either with or without front end processors.
Both cases are discussed in the following.

A. Linear Network Without Front-End Processor

Consider first the case that processors are equipped
without front end processors, so that the processors can
not compute and communicate at the same time. Suppose
that the processor at the left end of the chain receives a
burst of measurement data, which is its processing load.
There are two cases of interest. In the first the entire
measurement data is required by each processor. In the
second the measurement data is divided equally among
the processors.

the other N - 1 processors, the total process time T, is
If the entire measurement data is to be transmitted to

T,.p T , = (N - l)Tcm + -
N

where T,.,, is the time to transmit the entire measurement
data over the channel, and Tc.p is the time it takes for one
processor to process the entire processing load. By
differentiating both sides of (l) , the number of processors
at which T, is minimized is found:

/- I-

where p is defined as T,.,,ITCp, the ratio of communication
time over computation time. Note that too few processors
leads to insufficient parallelism and too many processors
leads to excessive communication delays.

I

If the processor should decide to divide the processing
load equally into N smaller parts and share this with the
other N - 1 processors, it will transmit N - 1 parts to its
right immediate neighbor and compute the part left over.
Upon receiving the N - 1 parts, the neighbor then
transmits the N - 2 parts to its immediate neighbor and
computes the part left over. The process repeats itself and
stops at the Nth processor. The timing diagram for N = 5
of the process is shown in Fig. 1 . For each processor its
graph shows communication time above the horizontal
axis and computation time below it.

at the last processor, the total process time T, is
Since TcpIN is always overlapped with T J N except

N - 1 TCP T,.,, + - ' -- -
2 N (3)

By differentiating both sides of (3) , T, can be minimized
when

1- I-

(4)

In the above discussion, the time it takes for every
other processor to report its solution back to the starting
processor is assumed to be very short and can be ignored.
In some application this may not be true. The inclusion
of this time in the case of parallel processing is examined
next.

The same linear network as mentioned before is
considered. When the last processor that received the
measurement data finishes its computation, it starts
sending back the solution to its left immediate neighbor.
The transmission takes time T,. Upon receiving the
solution, the neighbor transmits the solution and its own
solution to its left immediate neighbor. This transmission
takes 2Ts. The process repeats itself until all the solutions

Communication

Processor 7 Computatlon

t-- Computation

Communication ~ - _ _ _ Processor 2

E--- nu ____ Communication
Processor 3

Computation

Communication

Computation
-~ ___ Processor 4

Communication

-computation I---- Fig. 1.

Processor 5

CHENG & ROBERTAZZI: DISTRIBUTED COMPUTATION WITH COMMUNICATION DELAY 70 I

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:13 from IEEE Xplore. Restrictions apply.

are sent back to the starting processor. The timing
diagram for N = 5 is shown in Fig. 2. The time to
transmit solutions is shown at the right of the diagram
above the axis. The total time T I takes for the whole
process is

Processor 1

N - 1 T C P (N - l) N
2 N 2

T,,, + - + Ts ~

- - -

1 Communication

I Computation

To minimize T , , (5) can be differentiated at both sides
and becomes

Processor 2

N 3 T s + N2T,., - 2T,, = 0. (6)

Solution Time
1 1

Equation (6) may be solved numerically for N to
minimize T,.

B. Linear Network With Front End Processor

For the linear network of processors that are equipped
with front end processors, the processors can
communicate and compute at the same time. The total
processing time taken for both of the previous cases is
actually the same as for the linear network without front
end processors. Solution time may or may not be
ignored. The timing diagram for N = 5 of a linear
network with front end processors and the inclusion of
solution time is shown in Fig. 3.

From the timing diagrams (Fig. 2 and Fig. 3), the
total processing time is the total communication time plus
the computation time of the last processor for both the
network with front end processors and the network
without front end processors. Their T, are thereby the
same.

Solution Time
I - 1 Processor 2

n n - t- Processor 4

Processor 5

Fig. 2.

Communication

Computatlon
Processor 1

Processor 3 - e/.J--

Processor 5 /____-
Fig. 3.

702 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 24, NO. 6 NOVEMBER 1988

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:13 from IEEE Xplore. Restrictions apply.

I l l . OPTIMAL DIVISION OF PROCESSING
LOAD.
PROCESSOR

LINEAR NETWORK WITH FRONT END

In section 11, it was shown that the linear network of
processors equipped with front end processors has the
same minimal total processing time as the network
without front end processors. In this section and the next
section, the optimal division of processing load division
is examined and the performance of this approach for
both the network with front-end processors and the
network without front end processors is compared.

We consider a linear network with front end
processors where each of the processors in the network
may have different computing capabilities and the channel
capacity between processors may be different.

A. Origination at Network Boundary

Suppose that the processor at left end of the chain
receives a burst of measurement data and is to share the
data with the other N - 1 processors. The starting (or the
first) processor then divides the processing load into N
smaller parts optimally instead of equally as in section 11.
It keeps the fraction of the processing load for itself
and transmits the remaining measurement data to its right
immediate neighbor. Upon receiving the measurement
data, the neighbor (the second processor) keeps the
fraction &* of what it has received to process and
transmits the remaining to its right immediate neighbor
(the third processor). For the ith processor, it keeps the
fraction &i of what it has just received and transmits the
remaining to the i + 1 st processor. The process repeats
itself until the Nth processor is reached. The timing
diagram of the entire process is shown in Fig. 4.

In order to obtain maximum parallelism and a
minimum time solution all the processors must stop
computing at the same time. This can be proved by
induction (see Appendix I). This can be seen intuitively

I

as one should keep all processors utilized up until the last
moment for maximum efficiency. The starting processor
should compute its fraction of the processing load during
the entire processing period, so that the total processing
time T, equals the processing time of the starting
processor. From Fig. 4 it can also be seen that the
processing time a, w, T</, of the ith processor equals the
transmission time, (1 - a] - a2 - . . . - a,)z,T,,,,, from
the ith processor to the i + 1 st processor plus the
processing time, a, + w, + Tl / l , of its right immediate
neighbor (the i + 1st processor), where a,s are the actual
fraction of processing load of the ith processor and can
be expressed as a function of &,s:

The total computing time of the ith processor equals

a,w,TIP = (1 -a1 -CY*- . . . - C X ,) Z , ~ ' ~ , , ,

+ ~ , + I w , + I T c p .

Substituting (8) into (9) yields

(9)

where w,s are inversely proportional to the speed of the
ith processor and z,s are inversely proportional to the
channel speed between the ith and the i + 1 st processor.
From (10) and through some simple algebra, &, may be
expressed as

Communication
Processor 1 I

I Computation

. _________ Processor N- 1

I t---- Processor N

Fig. 4

CHENG & ROBERTAZZI: DISTRIBUTED COMPUTATION WITH COMMUNICATION DELAY 703

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:13 from IEEE Xplore. Restrictions apply.

(12)

where p, as defined before, equals TCmIT,,, and Gi is a
function of Gi+ I . From (1 1) &,,- I can be solved as

Thi &,s can be solved recursively through (12) and (13).
The total processing time is

T, = CX~,WIT,,. (14)

In Fig. 5 the minimum total processing time is plotted
against the number of the processors in the linear network
with w, = 1, T',, = 1, p = 0.5, and the five
performance curves are obtained with z , = 0.1, 0.2, 1,
5 , and 10, respectively. As shown in the figure, the
longer the communication delay, the longer the total
processing time. Note that minimum total processing time
levels off after a certain number of processors.

B. Origination f rom Network Interior

Suppose that a processor in the middle of the linear
network, instead of the one at the end, receives a burst of
measurement data and is to share the data with N , other
processors to its left and N , processors to its right in the
network. Since every processor in the network has only
one front end processor, the starting processor can
transmit in only one direction at a time. As in the
unidirectional transmission case above, the starting
processor first divides the processing load into smaller
parts, then it transmits the fraction Pc of the total
processing load to its left immediate neighbor and the
fraction P, of the total processing load to its right
immediate neighbor, and keeps the remaining fraction
1 - P I - PI for itself to compute at the same time. Upon
receiving the data, the left neighbor (the left first

processor) transmits the fraction 1 -
received to its left immediate neighbor and keeps the
remaining load for itself to compute. The whole process
at the left side repeats itself until the N,th processor is
reached. The right neighbor (the right first processor)
performs the same operation as the left first processor,
and the process at the right side stops when the N,th
processor is reached. The timing diagram of the entire
process is shown in Fig. 6.

As in the unidirectional case, in order to achieve
maximum parallelism and a minimum time solution all
the processors must stop computing at the same time, and
the starting processor should compute its fraction of the
processing load during the entire processing period. The
total processing time is equal to the processing time of
the starting processor. From the timing diagram, it can be
seen that the processing time (1 - P I - P,) woT,, of the
starting processor equals the transmission time PlzIOTcm of
the fraction P I of the measurement data transmitted to its
left immediate neighbor plus the processing time
P I & I 1 wl lTcp of the left first processor. The processing
time PI&-ll wI1 Tcp of the left first processor also equals the
transmission time PrzroTcm from the starting station to its
right immediate neighbor plus the processing time

are shown below:

of what it has

wrITCp of the right first processor. Both equations

where bo and &,, are the fraction of what the left and
right ith processors have received for themselves to
compute, respectively, wl , , w,, are inversely proportional
to the computing speed of the left and right ith
processors, respectively, and zIi, z,, are inversely
proportional to the channel speed between the ith and the
i + 1 st processor of both the left and right sides of the

l 1 1 P 0 5
1 0 -

E 0 9 -

0 8 -

0 7 -

LL 0 6 -
id

U'

r

:

2 0 5 -

-
d

E 0 4 - ;
c 0.3 -

0 2 -

0 1 -

0 2 4 6 8 10 12 I ? 16 I8 20

Total Number of Processors

Fig. 5. Origination at network boundary with front end processor

704 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 24, NO. 6 NOVEMBER 1988

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:13 from IEEE Xplore. Restrictions apply.

U Processor r,, ~-~

Processor r,,- , 1

Communication _-
T Computation

Processor 0

Processor 1 } = - - - - - r

Processor 1, --.-E

I

--U- - -~ ~-

Fig. 6 .

I’ t Processor 1

starting processor. The 0th processor is the starting
processor.

as

PI =

From (15) and (16), both P/ and pr can be expressed

Wo(z rOP + G u , . l b v r I)

(WO + z /op + & / I W/l 1 (Z,-,P + 41 W’rI 1 + & I W / I WO

and

of the left and right ith processor can be calculated and
from (17) and (18) P, and Pr can be solved. The total
processing time is then

K = (1 - P I - P r) W o T , , .

against the position of the processors in a linear network
of 21 processors with W, = 1, T,, = 1, p = 0.5, and
the five performance curves are obtrained with z, = 0.1,
0.2, 1, 5 , and 10, respectively. As shown in the figure,
the longer the communication delay the longer the total
processing time, and the total processing time is
minimized when the starting processor is at the center of
the linear network, though this is a shallow minima.

i 19)

In Fig. 7 the minimum total processing time is plotted

From Fig. 6 it can also be seen that both the left side and
right side of the starting processor are identical to the
unidirectional case discussed earlier in this section with
the left first processor and the right first processor as their
starting processor, respectively. Thus and &,, are
readily obtained from (12) and (13) recursively with
corresponding wIi , zlr and wrr, z r l . Thus from (7) and (8)
the actual fraction a[l and arl of the total processing load

IV. OPTIMAL DIVISION OF PROCESSING
LOAD. LINEAR NETWORK WITHOUT FRONT
END PROCESSOR

A linear network without front end processors is now
considered. Each of the processors in the network, as
those of the network in Section 111, may have different

CHENG & ROBERTAZZI: DISTRIBUTED COMPUTATION WITH COMMUNICATION DELAY 705

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:13 from IEEE Xplore. Restrictions apply.

I p - 0 5
U = 1 0 1

L
e 0 6 - -
B 4

E 0 5 -

E 3 0 4 -
E
2 0 3 -

0 2 -

0 1 -

0 0 / I I I I I , 1 I I I

0 2 4 6 8 10

The Position of the Starting Processor

Fig. 7. Origination from network interior with front end processor.

computing capabilities and the channel capacity between
processors may be different.

A. Origination at Network Boundary

Suppose that the processor at the left end of the chain
receives a burst of measurement data and is to share the
data with the other N - 1 processors. The starting (or the
first) processor then divides the processing load into N
smaller parts optimally. It first transits the fraction 1 - &,
of the measurement data to its right immediate neighbor
and then computes the fraction 6, of the processing load
itself. Upon receiving the measurement data, the neighbor
(the second processor) transmits the fraction 1 - G2 of
what it has received to its right immediate neighbor (the
third processor) and then keeps the remaining (Y2 for itself
to compute. For the ith processor, it transmits the fraction
1 - &, of what it has just received to the i + I st processor
and keeps the remaining 6, for itself to compute. The

706

Processor 1 b

process repeats itself until the Nth processor is reached.
The timing diagram of the entire process is shown in Fig.
8.

minimum time solution all the processors must stop
computing at the same time. This can also be proved by
induction. The starting processor should remain
operating, i.e., transmitting first to the second processor
and then computing its fraction of the processing load,
during the entire processing period. The total processing
time, T,, thus equals the transmission time plus the
computing time of the starting processor. From Fig. 8 it
can be seen that the computing time of the ith processor,
(Y~W,T~ ,) , equals the transmission time (1 - a , - a2 - . . .
- ai)z, + T,.,,, from the i + 1 st to the i + 2nd processor
plus the computing time a i+ , T , , of the i + 1 st processor,
where a,s are the actual fraction of processing load of the
ith processor and can be expressed as a function of 6;s
((7) and (8)). The total computing time of the ith

In order to obtain maximum parallelism and a

Communication

1 Processor 2

I

-----rr _____

Fig. 8.

t--- Processor N

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 24, NO. 6 NOVEMBER 1988

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:13 from IEEE Xplore. Restrictions apply.

processor equals

(yiwlTc,, = (I - (~ 2 - . . . - a ,) ~ i + l T ~ , ~

+ i = 1 , 2 , ..., N - 2. (20)

Substituting (8) yields

&,w,T,, = (1 - & ,) (I -&,+I)Z,+IT, ‘,,I

+ (1 - ~ ,) ~ , + I w , + l T c p ’

i = 1 , 2 , ..., N - 2 (21)

and

& N - I W N ~ I T ~ ~ = (1 - & N ~ I) W N T ~ ~ (22)

where w,s are inversely proportional to the speed of the
ith processor and zis are inversely proportional to the
channel speed between the ith and the i + 1 st processor.
From (21) and through some simple algebra, &, may be
expressed as

(l - & i + l) z i p + &i+I” i+l
(y. =

(wi + (1 - Ai+ I) z i p + + 1 wi+ 1

i = 1 , 2 , ..., N - 2 (23)

where p equals Tc,,,ITCr, and &, is a function of &,+
From (22) b N p l can be solved as

(24) (Y N - 1 = wN .
wN- I f bvN

So the his can be solved recursively through (23) and
(24) . The total processing time is

T, = (1 -(y1)z1T,.,,, + ~ l w l T c , , . (25)

In Fig. 9 the minimum total processing time is plotted
against the number of the processors in the linear network
with wi = 1 , Tcp = 1, p = 0.5, and the five
performance curves are obtained with zi = 0.1, 0.2, 1,

0 1 -
0 0

5, and 10, respectively. As shown in the figure, the
longer the communication delay, the longer the total
processing time. The minimum total processing time
levels off after a certain number of processors. For the
same parameters the total processing time is longer than
the network with front end processors.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~ ~ ~ ~ ~

B. Origination from Network Interior

Suppose that a processor in the middle of the linear
network, instead of the one at the end, receives a burst of
measurement data and is to share the data with N I other
processors to its left and N, processors to its right in the
network. It may transmit the measurement data to both
sides of the network. The starting processor can transmit
in only one direction at a time. As in the unidirectional
transmission case above, the starting processor first
divides the processing load into smaller parts, then it first
transmits the fraction p, of the total processing load to its
left immediate neighbor and the fraction p, of the total
processing load to its right immediate neighbor, and
keeps the remaining 1 - PI - p,. fraction for itself to
compute. Upon receiving the data, the left neighbor (the
left first processor) transmits 1 -
has received to its left immediate neighbor and keeps the
remaining for itself to compute. The whole process at
the left side repeats itself until the N,th processor is
reached. The right neighbor (the right first processor)
performs the same operation as the left first processor,
and the process at the right side stops when the N,th
processor is reached. The timing diagram of the entire
process is shown in Fig. 10.

As in the unidirectional case, in order to achieve
maximum parallelism and a minimum time solution all
the processors must stop computing at the same time.
This can also be proved by induction. The starting
processor should remain operating i.e., transmitting first

fraction of what it

0 1 -
0 0

CHENG

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~ ~ ~ ~ ~

& ROBERTAZZI: DISTRIBUTED COMPUTATION WITH COMMUNICATION DELAY 701

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:13 from IEEE Xplore. Restrictions apply.

Procersor ra

Procasror ra- .t------------+r 1
I
I
I

Procerror r,

processor rl

Communication
I Computation

processor 0

processor 1 I k-

Processor I ,- 1

U
--.___ ____

Fig. 10.

Procersor I

to the left processor, then to the right processor and then
computing its fraction of the processing load, during the
entire processing period. The total processing time T,
equals to the transmission time plus the computing time
of the starting processor. From the timing diagram, it can
be seen that the computing time (1 - P! - P,)woT,, of the
starting processor equals the transmission time
Pr (1 - hrl)zr1 T,.,, of the right first processor plus the
computing time Prhrl w,, Tcp of the same processor. The
transmission time, from the starting processor to the right
first processor, PrzroTcm plus the computing time
(1 - P I - P I) woTcp of the starting processor equals the
transmission time PI(1 - & l l) z l l Tcm of the left first
processor plus the computing time P,&w,,w~lT,, of the
same processor. Both equations are shown below:

(1 - P/-Pr)woTcp = P r (1 -hri)ZrlTcrn + Pr(yrIwr1Tcp

(26)

P r z r o T c m + (1 - P I - Pr)woTcp

= P/Cl -h/I)z/ITcrn + P/&/Iw/ITcp (27)

where hII and hri are the fraction of what the left and
right ith processors have received for themselves to

compute, respectively, wli , w,, are inversely proportional
to the computing speed of the left and right ith
processors, respectively, and zli, z,, are inversely
proportional to the channel speed between the ith and the
i + 1st processor on both the left and right sides of the
starting processor. The 0th processor is the starting
processor.

as
From (26) and (27), both P/ and Pr can be expressed

P r = (W O (] - & / ~) Z ~ O P + ~ / I W / I W O) / [((I - G r l) z r o P

+ h r I W r I +wO)((l - & r l) z / o ~

+ &/I W / I + W O) + (z r o p - W0)WOl (28)

From Fig. I O it can also be seen that both the left
side and right side of the starting processor are identical
to the unidirectional case discussed earlier in this section
with the left first processor and the right first processor as

708 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 24, NO. 6 NOVEMBER 1988

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:13 from IEEE Xplore. Restrictions apply.

their starting processor, respectively. Thus &/i and (Yri are
readily obtained from (23) and (24) recursively with
corresponding w!;, z / , , and w,,, z,.~. From (7) and (8) the
actual fraction cqi and cir, of the total processing load of
the left and right ith processor can be calculated, and
from (28) and (29) P I and pr can be solved. The total
processing time is then

Tt = (1 - P/- PrIwoTcp + P/2/0Tcrn + PrZrOTcm. (30:

In Fig. 1 1 the minimum total processing time is
plotted against the position of the processors in the linear
network of 21 processors with wi = 1, Tc/, = 1,
p = 0.5, and the five performance curves are obtained
with z, = 0.1, 0.2, 1, 5, and 10, respectively. As shown
in the figure, the longer the communication delay, the
longer the total processing time, and the toal processing
time is minimized when the starting processor is at the
center of the linear network, though, as with the network
with front end processors, this is a shallow minima. By
comparing Fig. 7 and Fig. 11, it can be seen that the
network with front end processors performs better than
the one without.

V. OPTIMAL DIVISION OF PROCESSING
LOAD. INCLUSION OF SOLUTION TIME

In both Sections 111 and IV, the time taken for every
other processor to report its solution back to the starting
processor is assumed to be very short and can be ignored.
As in the equal division of processing load case, in some
applications this may not be true. There are many
possible ways for the other processors to report their
solutions back to the starting processor. As an example,
the inclusion of this solution time in a linear network
with front end processors is discussed here.

processors as in Section 111 where all the processors in
We consider the same linear network with front end ~

the network may have differing computing capabilities
and the channel capacities between the processors may be
different. The processor at the left end receives a burst of
measurement data and is to share the measurement data
with the other processors in the network. The entire
process is similar to the one in Section 111 except for the
inclusion of solution time. When the Nth processor
finishes its computation, i t starts sending back the
solution to its left immediate neighbor. The transmission
takes time T,. Upon receiving the solution, the neigbor
transmits the solution and its own solutions to its right
immediate neighbor. This transmission takes 2Ts. The
solution sending process repeats itself until all the
solutions are sent back to the starting processor. The
timing diagram of the entire process is shown in Fig. 12.

In order to obtain maximum parallelism and a
minimum time solution, the starting processor should
compute its fraction of the processing load during the
entire processing period, and the computing time a, w, T(/ ,
of the ith processor should overlap exactly with the
transmission time (1 - al - a? - . . . - ~ ,) z , T ~ , , ~ from the
ith to the i + 1 st processor plus the cumulative solution
transmission time (N ~ i) z , - I T, + z,T, from the
previous processors plus the computation time of the ith
processor. With a, defined as the actual fraction of the
total processing load, the equations are shown below.

aIwIT<, , = (1 -aI)z lT<,rz + CYZ1t'2T,/, + z,r.s
and for the ith processor,

For the first processor,

(31)

a, w, TC,) = (1 - a , - a2 - ' . . - a, 1 z , r,)), + a, + I N', + 1 T<.,,

+ z,T, + (N - i) ~ , -IT, . i = 2. 3 N

(3 2)

O ' 0 0 \ I O

The t'osition of the Stat-tlng Processor

Fig. 1 1 . Origination at network interior with no front end processor.

CHENG & ROBERTAZZI: DISTRIBUTED COMPUTATION WITH COMMUNICATION DELAY

(3 3)

709

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:13 from IEEE Xplore. Restrictions apply.

Processor 1 I Communication
1 Computation

n n ____ t Processor N--2

Processor 2

t-----p 7 Processor N- 1

r 1
1

Processor N t- n
Fig. 12.

where w , s are inversely proportional to the speed of the
ith processor and zis are inversely proportional to the
channel speed between the ith and the i + 1 st processor.

There are totally N linear equations and N unknowns,
so the a,’s that minimize the total processing time can be
determined, and the total processing time is

T, = a, w,T,,. (34)

There are other ways of reporting the solution back to
the starting processor. For instance, the solution time may
be of fixed length when transmitted from each processor,
or solution time may be proportional to the length of the
data processed by a particular processor. Similar sets of
linear equations can be formed, and a,s and T, can thus
be solved as well.

VI. CONCLUSION

In this paper a linear network of intelligent processors
is examined. The interaction between communication and
computation is the most interesting aspect of this work. It
is of practical interest and the optimal division of
processing load can be determined relatively simply. It is
also interesting that minimum time solutions do not
require large number of processors in the network.

APPENDIX I

equipped with a front end processor for communication
off-loading.

PROOF. Consider the two rightmost, the N - 1 st and
the Nth, processors. The N - 1st processor keeps a
fraction of data that it has received and transmit the
remaining 1 - a fraction to the Nth processor. There are
two possibilities, either the N - I s t or the Nth processor
will stop computing first. Both cases are discussed below.

Case I
The Nth processor stops first

T, = UT,/’ (3 5)

aTcp 2 (1 - a)(T[.,?, + TcI,) (36)

where T, is the total processing time for these two
processors, T,.,,, is the time to transmit the entire
measurement data over the channel, T(p is the time it
takes for one processor to process the entire processing
load, aTcp is the computing time of the N - 1st
processor, and (1 - a)(Tc,n + Tc7,) is the sum of the
transmission time from the N - 1 st to the Nth processor
and the computing time of the Nth processor.

From (36) we have

and from (35)
It is demonstrated that for a minimum time solution

all processors must stop at the same time. For simplicity
the values of w,5, which are inversely proportional to the
speed of the ith processor, and z,s, which are inversely

i + 1 st processor, are assumed to be one. This is done
without loss of generality. The problem is assumed to
originate from the left boundary and all the processors are

min(T,) = min(a)T,,,

T,.,,, + TC,,
T,.,,, + 2 TC/,

= () T<,l
proportional to the channel speed between the ith and the

(38) = (1 - min(a))(T<.,,, + TCy1)

where min(x) is the minimum of x. It can be seen from

710 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 24, NO. 6 NOVEMBER 1988

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:13 from IEEE Xplore. Restrictions apply.

(38) that it is preferable to stop the processors
simultaneously rather than have the Nth stop first.

Case I1
The N - 1 st processor stops first

From (40) we have

and from (39)

min(T,) = (1 - max(a))(T,.,, + T,)

= max(a)T,,

where max(x) is the maximum of x. From (42) it is
apparent that i t is preferable to stop the processors
simultaneously rather than stop the N - 1st processor
first. Together with Case I this shows that the minimal
time solution results when both processors stop
simultaneously .

One can extend the above result to the N - 2nd
processor by replacing the N - 1 st and Nth processors by
an equivalent processor with processing time aTC,, (35).
In this way the result can be generalized to an entire

network of processors. For other linear networks
mentioned in the paper, the proof is similar.

APPENDIX I1

When front end processors are not included for
communication off-loading there are certain parameter
values for which distributing the computational load to
other processors does not result in a time savings. To see
this, consider two adjacent processors. The time taken by
the first processor is

(1 -al)ZTcnl + a,w,Tcp. (43)

(1 -a1)zTC,,, + (1 -a1)w2TCp.

The time taken by the second processor is

(44)

Consider these two equations as functions of a l . The
second equation has a negative slope. The first equation
has a positive slope if w,T,, > zT,.,, and a negative slope
if w I TCp < zT,,,, . In the former case there is a value of
a , , 0 < a I < 1, which minimizes the computational
time. In the latter case computational time is minimized
when a I equals one. This corresponds to no distribution
of the computational load.

The condition for distribution of the computational
load, w,T,,, > ZT,.,,,, intuitively means that the
communication time over the link between the processors
must be less than the computation time of the first
processor in order to achieve a net savings through
distribution of the processing load.

CHENG & ROBERTAZZI: DISTRIBUTED COMPUTATION WITH COMMUNICATION DELAY 71 1

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:13 from IEEE Xplore. Restrictions apply.

REFERENCES

Chong, C.Y., Mori, S . , and Wishner, R.P. (1982)
Distributed estimation in distributed sensor networks.
Presented at the American Control Conference, Arlington,
Va., 1982.

Distributed estimation in networks.
Presented at the American Control Conference, San
Francisco, Calif., 1983.

Distributed estimation in the MITILL DSN testbed.
Presented at the American Control Conference, San
Francisco, Calif., 1983.

Multiobject tracking algorithm for a distributed sensor
network.
In Proceedings of the 3rd MITIONR Workshop on
Distributed Information and Decision Systems, Sept. 1980.

Strawman design for a DSN to detect and track low flying
aircraft.
In Proceedings of the Distributed Sensor Nets Conference,
Carnegie-Mellon University, Pittsburgh, Pa., Dec. 1978, pp
41-52.

Overview of the distributed sensor networks program at
Lincoln Laboratory.

Chong, C.Y., Tse, E . , and Mori, S . (1983)

Delaney, J.R., Lacoss, R.T., and Green, P.E. (1983)

Hughes, R.P., and Tenny, R.R. (1980)

Lacoss, R . , and Walton, R. (1978)

Lacoss, R. (1982)

In Proceedings of the Distributed Sensor Networks
Workshop, M.I.T. Lincoln Lab, Jan. 1982.

Dispersed sensor processing mesh project.
In Proceeding 303, Advisory Group for Aeronautical
Research and Development Conference on Tactical Airborne
Distributed Computing and Networks, Roros, Norway, 1981.

Distributed sensing for acoustic surveillance.
Presented at Melcon ’83, Mediterranean Electrotechnical
Conference, Athens, Greece 1983.

Detection with distributed sensors.
IEEE Transactions on Aerospace and Electronic Systems,

Megna, V.A. (1981)

Morgen, S.D., and Paulicks, D. (1983)

Tenny, R.R., and Sendell, N.R., Jr. (I 98 I)

AES-17, 4 (July 1981), 501-510.
Tong, R.M., Tse, E., and Wishner, R.P. (1981)

Distributed hypothesis formation in sensor fusion systems.
In Proceedings of the 20th IEEE Conference on Decision
and Control, 1981, 1421-1424.

Distributed processing in estimation and detection.
Presented at the IEEE 1979 Conference on Decision and
Control, Fort Lauderdale, Fla., 1979.

Verriest, E., Friedlander, B. , and Mod, M. (1979)

Wesson, R., Hayes-Roth, F., Buge, J.W., Stast, C., and
Sunshine, C.A. (1981)

Network structure for distributed situations assessment.
IEEE Transactions on Systems, Man and Cybernetics, SMC-
I / , 1 (Jan. 1981), 5-23.

Yuan-Chieh Cheng was born in Taichung, Taiwan, in 1962. He received the B.E.
degree in electronic engineering from Tamkang University, Tamsui, Taiwan, in 1984,
and the M.S. degree in electrical engineering from SUNY at Stony Brook, New York,
in 1986. He is currently a Ph.D. candidate In electrical engineering at Stony Brook.

performance evaluation of communication and computer systems and parallel
architecture. He is a member of the Institute of Electrical and Electronics Engineers.

Yuan-Chieh Cheng’s research interests include stochastic and queueing processes,

Thomas G. Robertazzi (S’75-M181) received the Ph.D. from Princeton University,
N.J . , in 1981 and the B.E.E. from Cooper Union, N.Y., in 1977.

Dr. Robertazzi is presently an Assistant Professor of electrical engineering at
SUNY at Stony Brook. He was with Manhattan College during 1982-1983. His
research interests involve the performance evaluation of computer and communication
systems. He is a member of the Institute of Electrical and Electronics Engineers, the
Association for Computing Machinery, and the Operations Research Society of
America

7 12 lEEE TRANSACTIONS ON AEROSPACE AND ELECrRONIC SYSTEMS VOL. 24, NO. 6 NOVEMBER 1988

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:13 from IEEE Xplore. Restrictions apply.

