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A linear network of communicating processors is examined. The 
objective is to solve a computational problem in a minimal amount 

of time. The processors in the networks may be equipped either 

with front end processors for communication off-loading or without 
front end processors. The cases of equal division of processing load 
and optimal division of processing load are discussed for both the 
network with front-end processors and the network without front 
end processors. An example of the inclusion of solution time, the 

time taken for processors to report the solution back to the problem 

originator, is also presented. 
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I .  INTRODUCTION 

In recent years there has been an increasing interest in 
distributed intelligent sensor networks [ 1- 121. This 
interest has been generated by the requirements of 
military surveillance systems and other civilian 
applications. 

An intelligent sensor network is a collection of units 
with sensing, computational, and communication ability. 
Thus one has a network of communicating processors 
with sensing capability. The processors’ function is to 
cooperatively monitor the environment and be able to 
ascertain its salient features. These intelligent sensors 
may be dedicated deployable units or may be resident on 
moving platforms. 

networks is the tradeoff between communication and 
computation. In a hostile environment where low 
probability of intercept considerations are important, one 
may want to minimize communication among intelligent 
sensors. But on the other hand, when time is an 
important consideration, one may want to minimize the 
total time taken in order to get the solution and one may 
want to spread observations to as many intelligent sensors 
as possible. 

Several authors ha l e  recognized the importance of the 
compute versus communicate issue for distributed 
intelligent networks. As it is put in [IO]:  

One major issue in distributed intelligent sensor 

The question of ‘what to compute’ and ‘what to communicate’ are 
at the core of the distributed fusion system design problem. They are, 
unfortunately, very complex questions and with our present 
understanding i t  is easier to make lists of subsidiary questions than to 
answer the primary ones. Consequently, very little has appeared in 
the literature and what has tended to be descriptive rather than 
prescriptive. Thus we find many proposals for distributed systems, 
but little design methodology. 

There has been a great deal of work on only 
communication and on only computation, but not that 
much on both communication and computation. 

In this paper, a linear network of communicating 
processors is considered. The objective is to solve a 
computational problem in a minimal amount of time. The 
motivation is a situation where one processor receives a 
burst of measurement data (the processing load) and 
distributes the processing load to other sensors to obtain 
the benefits of parallel processing. Different processors 
may have different processing speeds and each link 
between processors may have a different channel 
capacity. The problem is that of determining the best 
distribution of processing load among the sensors. 

This paper is organized as follows. In section 11, the 
case of equal division of processing load in a distributed 
intelligent sensor network is discussed. In section 111, the 
case of optimal division of processing load is considered 
where front end processors are available to subsume the 
task of communication. In section IV, the case without 
front end processors is examined. Finally in section V,  
the time required to compile solutions is considered. 
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11.  EQUAL DIVISION OF PROCESSING LOAD 

Consider a linear network of identical communicating 
processors. Every processor can communicate with only 
its right and left immediate neighbors. All links have 
identical channel capacities. The processors may be 
equipped either with or without front end processors. 
Both cases are discussed in the following. 

A. Linear Network Without Front-End Processor 

Consider first the case that processors are equipped 
without front end processors, so that the processors can 
not compute and communicate at the same time. Suppose 
that the processor at the left end of the chain receives a 
burst of measurement data, which is its processing load. 
There are two cases of interest. In the first the entire 
measurement data is required by each processor. In the 
second the measurement data is divided equally among 
the processors. 

the other N - 1 processors, the total process time T, is 
If the entire measurement data is to be transmitted to 

T,.p T ,  = ( N  - l )Tcm + - 
N 

where T,.,, is the time to transmit the entire measurement 
data over the channel, and Tc.p is the time it takes for one 
processor to process the entire processing load. By 
differentiating both sides of ( l) ,  the number of processors 
at which T,  is minimized is found: 

/- I- 

where p is defined as T,.,,ITCp, the ratio of communication 
time over computation time. Note that too few processors 
leads to insufficient parallelism and too many processors 
leads to excessive communication delays. 

I 

If the processor should decide to divide the processing 
load equally into N smaller parts and share this with the 
other N - 1 processors, it will transmit N - 1 parts to its 
right immediate neighbor and compute the part left over. 
Upon receiving the N - 1 parts, the neighbor then 
transmits the N - 2 parts to its immediate neighbor and 
computes the part left over. The process repeats itself and 
stops at the Nth processor. The timing diagram for N = 5 
of the process is shown in Fig. 1 .  For each processor its 
graph shows communication time above the horizontal 
axis and computation time below it. 

at the last processor, the total process time T,  is 
Since TcpIN is always overlapped with T J N  except 

N - 1  TCP T,.,, + - ' -- - 
2 N (3) 

By differentiating both sides of ( 3 ) ,  T,  can be minimized 
when 

1- I- 

(4) 

In the above discussion, the time it takes for every 
other processor to report its solution back to the starting 
processor is assumed to be very short and can be ignored. 
In some application this may not be true. The inclusion 
of this time in the case of parallel processing is examined 
next. 

The same linear network as mentioned before is 
considered. When the last processor that received the 
measurement data finishes its computation, it starts 
sending back the solution to its left immediate neighbor. 
The transmission takes time T,. Upon receiving the 
solution, the neighbor transmits the solution and its own 
solution to its left immediate neighbor. This transmission 
takes 2Ts. The process repeats itself until all the solutions 
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are sent back to the starting processor. The timing 
diagram for N = 5 is shown in Fig. 2. The time to 
transmit solutions is shown at the right of the diagram 
above the axis. The total time T I  takes for the whole 
process is 

Processor 1 

N - 1  T C P  ( N  - l ) N  
2 N 2 

T,,, + - + Ts ~ 

- - - 

1 Communication 

I Computation 

To minimize T , ,  ( 5 )  can be differentiated at both sides 
and becomes 

Processor 2 

N 3 T s  + N2T,., - 2T,, = 0. (6) 

Solution Time 
1 1 

Equation (6) may be solved numerically for N to 
minimize T,. 

B. Linear Network With Front End Processor 

For the linear network of processors that are equipped 
with front end processors, the processors can 
communicate and compute at the same time. The total 
processing time taken for both of the previous cases is 
actually the same as for the linear network without front 
end processors. Solution time may or may not be 
ignored. The timing diagram for N = 5 of a linear 
network with front end processors and the inclusion of 
solution time is shown in Fig. 3. 

From the timing diagrams (Fig. 2 and Fig. 3), the 
total processing time is the total communication time plus 
the computation time of the last processor for both the 
network with front end processors and the network 
without front end processors. Their T,  are thereby the 
same. 

Solution Time 
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Processor 5 
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I l l .  OPTIMAL DIVISION OF PROCESSING 
LOAD. 
PROCESSOR 

LINEAR NETWORK WITH FRONT END 

In section 11, it was shown that the linear network of 
processors equipped with front end processors has the 
same minimal total processing time as the network 
without front end processors. In this section and the next 
section, the optimal division of processing load division 
is examined and the performance of this approach for 
both the network with front-end processors and the 
network without front end processors is compared. 

We consider a linear network with front end 
processors where each of the processors in the network 
may have different computing capabilities and the channel 
capacity between processors may be different. 

A. Origination at Network Boundary 

Suppose that the processor at left end of the chain 
receives a burst of measurement data and is to share the 
data with the other N - 1 processors. The starting (or the 
first) processor then divides the processing load into N 
smaller parts optimally instead of equally as in section 11. 
It keeps the fraction of the processing load for itself 
and transmits the remaining measurement data to its right 
immediate neighbor. Upon receiving the measurement 
data, the neighbor (the second processor) keeps the 
fraction &* of what it has received to process and 
transmits the remaining to its right immediate neighbor 
(the third processor). For the ith processor, it keeps the 
fraction &i of what it has just received and transmits the 
remaining to the i + 1 st processor. The process repeats 
itself until the Nth processor is reached. The timing 
diagram of the entire process is shown in Fig. 4. 

In order to obtain maximum parallelism and a 
minimum time solution all the processors must stop 
computing at the same time. This can be proved by 
induction (see Appendix I).  This can be seen intuitively 

I 

as one should keep all processors utilized up until the last 
moment for maximum efficiency. The starting processor 
should compute its fraction of the processing load during 
the entire processing period, so that the total processing 
time T, equals the processing time of the starting 
processor. From Fig. 4 it can also be seen that the 
processing time a, w, T</, of the ith processor equals the 
transmission time, (1  - a ]  - a2 - . . . - a,)z,T,,,,, from 
the ith processor to the i + 1 st processor plus the 
processing time, a, + w, + Tl / l ,  of its right immediate 
neighbor (the i + 1st processor), where a,s are the actual 
fraction of processing load of the ith processor and can 
be expressed as a function of &,s: 

The total computing time of the ith processor equals 

a,w,TIP = (1 -a1 -CY*- . . .  - C X , ) Z , ~ ' ~ , , ,  

+ ~ , + I w , + I T c p .  

Substituting (8) into (9) yields 

(9) 

where w,s are inversely proportional to the speed of the 
ith processor and z,s are inversely proportional to the 
channel speed between the ith and the i + 1 st processor. 
From (10) and through some simple algebra, &, may be 
expressed as 
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(12) 

where p, as defined before, equals TCmIT,,, and Gi is a 
function of Gi+  I .  From ( 1  1) &,,- I can be solved as 

Thi &,s can be solved recursively through (12) and (13). 
The total processing time is 

T, = CX~,WIT,,. (14) 

In Fig. 5 the minimum total processing time is plotted 
against the number of the processors in the linear network 
with w, = 1, T',, = 1, p = 0.5, and the five 
performance curves are obtained with z ,  = 0.1, 0.2,  1, 
5 ,  and 10, respectively. As shown in the figure, the 
longer the communication delay, the longer the total 
processing time. Note that minimum total processing time 
levels off after a certain number of processors. 

B. Origination f rom Network Interior 

Suppose that a processor in the middle of the linear 
network, instead of the one at the end, receives a burst of 
measurement data and is to share the data with N ,  other 
processors to its left and N ,  processors to its right in the 
network. Since every processor in the network has only 
one front end processor, the starting processor can 
transmit in only one direction at a time. As in the 
unidirectional transmission case above, the starting 
processor first divides the processing load into smaller 
parts, then it transmits the fraction Pc of the total 
processing load to its left immediate neighbor and the 
fraction P, of the total processing load to its right 
immediate neighbor, and keeps the remaining fraction 
1 - P I  - PI for itself to compute at the same time. Upon 
receiving the data, the left neighbor (the left first 

processor) transmits the fraction 1 - 
received to its left immediate neighbor and keeps the 
remaining load for itself to compute. The whole process 
at the left side repeats itself until the N,th processor is 
reached. The right neighbor (the right first processor) 
performs the same operation as the left first processor, 
and the process at the right side stops when the N,th 
processor is reached. The timing diagram of the entire 
process is shown in Fig. 6.  

As in the unidirectional case, in order to achieve 
maximum parallelism and a minimum time solution all 
the processors must stop computing at the same time, and 
the starting processor should compute its fraction of the 
processing load during the entire processing period. The 
total processing time is equal to the processing time of 
the starting processor. From the timing diagram, it can be 
seen that the processing time ( 1  - P I  - P,) woT,, of the 
starting processor equals the transmission time PlzIOTcm of 
the fraction P I  of the measurement data transmitted to its 
left immediate neighbor plus the processing time 
P I & I 1  wl lTcp of the left first processor. The processing 
time PI&-ll wI1  Tcp of the left first processor also equals the 
transmission time PrzroTcm from the starting station to its 
right immediate neighbor plus the processing time 

are shown below: 

of what it has 

wrITCp of the right first processor. Both equations 

where bo and &,, are the fraction of what the left and 
right ith processors have received for themselves to 
compute, respectively, wl , ,  w,, are inversely proportional 
to the computing speed of the left and right ith 
processors, respectively, and zIi, z,, are inversely 
proportional to the channel speed between the ith and the 
i + 1 st processor of both the left and right sides of the 
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Fig. 5. Origination at network boundary with front end processor 

704 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 24, NO. 6 NOVEMBER 1988 

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:13 from IEEE Xplore.  Restrictions apply.



U Processor r,, ~-~ 

Processor r,,- , 1 

Communication _- 
T Computation 

Processor 0 

Processor 1 } = - - - - - r  

Processor 1, --.-E 

I 

--U- - -~ ~- 

Fig. 6 .  

I’ t Processor 1 

starting processor. The 0th processor is the starting 
processor. 

as 

PI = 

From (15) and (16), both P/ and pr can be expressed 

Wo(z rOP + G u , . l b v r I )  

(WO + z /op  + & / I  W/l  1 (Z,-,P + 41 W’rI 1 + & I  W / I  WO 

and 

of the left and right ith processor can be calculated and 
from (17) and (18) P, and Pr can be solved. The total 
processing time is then 

K = (1 - P I -  P r ) W o T , , .  

against the position of the processors in a linear network 
of 21 processors with W, = 1,  T,,  = 1, p = 0.5, and 
the five performance curves are obtrained with z, = 0.1, 
0.2, 1, 5 ,  and 10, respectively. As shown in the figure, 
the longer the communication delay the longer the total 
processing time, and the total processing time is 
minimized when the starting processor is at the center of 
the linear network, though this is a shallow minima. 

i 19) 

In Fig. 7 the minimum total processing time is plotted 

From Fig. 6 it can also be seen that both the left side and 
right side of the starting processor are identical to the 
unidirectional case discussed earlier in this section with 
the left first processor and the right first processor as their 
starting processor, respectively. Thus and &,, are 
readily obtained from (12) and (13) recursively with 
corresponding wIi ,  zlr and wrr,  z r l .  Thus from (7) and (8) 
the actual fraction a[l and arl of the total processing load 

IV. OPTIMAL DIVISION OF PROCESSING 
LOAD. LINEAR NETWORK WITHOUT FRONT 
END PROCESSOR 

A linear network without front end processors is now 
considered. Each of the processors in the network, as 
those of the network in Section 111, may have different 
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Fig. 7. Origination from network interior with front end processor. 

computing capabilities and the channel capacity between 
processors may be different. 

A. Origination at Network Boundary 

Suppose that the processor at the left end of the chain 
receives a burst of measurement data and is to share the 
data with the other N - 1 processors. The starting (or the 
first) processor then divides the processing load into N 
smaller parts optimally. It first transits the fraction 1 - &, 
of the measurement data to its right immediate neighbor 
and then computes the fraction 6, of the processing load 
itself. Upon receiving the measurement data, the neighbor 
(the second processor) transmits the fraction 1 - G2 of 
what it has received to its right immediate neighbor (the 
third processor) and then keeps the remaining (Y2 for itself 
to compute. For the ith processor, it transmits the fraction 
1 - &, of what it has just received to the i + I st processor 
and keeps the remaining 6, for itself to compute. The 
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Processor 1 b 

process repeats itself until the Nth processor is reached. 
The timing diagram of the entire process is shown in Fig. 
8. 

minimum time solution all the processors must stop 
computing at the same time. This can also be proved by 
induction. The starting processor should remain 
operating, i.e., transmitting first to the second processor 
and then computing its fraction of the processing load, 
during the entire processing period. The total processing 
time, T,, thus equals the transmission time plus the 
computing time of the starting processor. From Fig. 8 it 
can be seen that the computing time of the ith processor, 
(Y~W,T~ , ) ,  equals the transmission time ( 1  - a ,  - a2 - . . . 
- ai)z, + T,.,,, from the i + 1 st to the i + 2nd processor 
plus the computing time a i+ ,  T , ,  of the i + 1 st processor, 
where a,s are the actual fraction of processing load of the 
ith processor and can be expressed as a function of 6;s 
((7) and (8)). The total computing time of the ith 

In order to obtain maximum parallelism and a 
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processor equals 

(yiwlTc,, = ( I  - ( ~ 2 -  . . .  - a , ) ~ i + l T ~ , ~  

+ i = 1 ,  2 ,  ..., N - 2. (20)  

Substituting (8) yields 

&,w,T,, = ( 1  - & , ) ( I  -&,+I)Z,+IT, ‘,,I 

+ ( 1  - ~ , ) ~ , + I w , + l T c p ’  

i = 1 ,  2 ,  ..., N - 2 (21) 

and 

& N - I W N ~ I T ~ ~  = (1 - & N ~ I ) W N T ~ ~  (22) 

where w,s are inversely proportional to the speed of the 
ith processor and zis are inversely proportional to the 
channel speed between the ith and the i + 1 st processor. 
From (21) and through some simple algebra, &, may be 
expressed as 

( l - & i + l ) z i p  + &i+I” i+l  
(y. = 

(wi + ( 1  - Ai+ I ) z i p  + + 1 wi+ 1 

i = 1 ,  2 ,  ..., N - 2 (23) 

where p equals Tc,,,ITCr, and &, is a function of &,+ 
From (22) b N p l  can be solved as 

(24) ( Y N - 1  = wN . 
wN- I f bvN 

So the his can be solved recursively through (23)  and 
(24) .  The total processing time is 

T,  = ( 1  -(y1)z1T,.,,, + ~ l w l T c , , .  (25)  

In Fig. 9 the minimum total processing time is plotted 
against the number of the processors in the linear network 
with wi = 1 ,  Tcp = 1, p = 0.5, and the five 
performance curves are obtained with zi = 0.1, 0.2,  1, 

0 1  - 
0 0  

5, and 10, respectively. As shown in the figure, the 
longer the communication delay, the longer the total 
processing time. The minimum total processing time 
levels off after a certain number of processors. For the 
same parameters the total processing time is longer than 
the network with front end processors. 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~ ~ ~ ~ ~  

B. Origination from Network Interior 

Suppose that a processor in the middle of the linear 
network, instead of the one at the end, receives a burst of 
measurement data and is to share the data with N I  other 
processors to its left and N, processors to its right in the 
network. It may transmit the measurement data to both 
sides of the network. The starting processor can transmit 
in only one direction at a time. As in the unidirectional 
transmission case above, the starting processor first 
divides the processing load into smaller parts, then it first 
transmits the fraction p, of the total processing load to its 
left immediate neighbor and the fraction p, of the total 
processing load to its right immediate neighbor, and 
keeps the remaining 1 - PI - p,. fraction for itself to 
compute. Upon receiving the data, the left neighbor (the 
left first processor) transmits 1 - 
has received to its left immediate neighbor and keeps the 
remaining for itself to compute. The whole process at 
the left side repeats itself until the N,th processor is 
reached. The right neighbor (the right first processor) 
performs the same operation as the left first processor, 
and the process at the right side stops when the N,th 
processor is reached. The timing diagram of the entire 
process is shown in Fig. 10. 

As in the unidirectional case, in order to achieve 
maximum parallelism and a minimum time solution all 
the processors must stop computing at the same time. 
This can also be proved by induction. The starting 
processor should remain operating i.e., transmitting first 

fraction of what it 

0 1  - 
0 0  
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to the left processor, then to the right processor and then 
computing its fraction of the processing load, during the 
entire processing period. The total processing time T, 
equals to the transmission time plus the computing time 
of the starting processor. From the timing diagram, it can 
be seen that the computing time (1  - P! - P,)woT,, of the 
starting processor equals the transmission time 
Pr (  1 - hrl)zr1 T,.,, of the right first processor plus the 
computing time Prhrl w,, Tcp of the same processor. The 
transmission time, from the starting processor to the right 
first processor, PrzroTcm plus the computing time 
( 1  - P I  - P I )  woTcp of the starting processor equals the 
transmission time PI( 1 - & l l ) z l l  Tcm of the left first 
processor plus the computing time P,&w,,w~lT,, of the 
same processor. Both equations are shown below: 

( 1  - P/-Pr)woTcp = P r ( 1  -hri)ZrlTcrn + Pr(yrIwr1Tcp 

(26) 

P r z r o T c m  + ( 1  - P I -  Pr)woTcp 

= P/Cl -h/I)z/ITcrn + P/&/Iw/ITcp (27) 

where hII and hri are the fraction of what the left and 
right ith processors have received for themselves to 

compute, respectively, wli ,  w,, are inversely proportional 
to the computing speed of the left and right ith 
processors, respectively, and zli, z,, are inversely 
proportional to the channel speed between the ith and the 
i + 1st processor on both the left and right sides of the 
starting processor. The 0th processor is the starting 
processor. 

as 
From (26) and (27), both P/ and Pr  can be expressed 

P r  = ( W O ( ]  - & / ~ ) Z ~ O P  + ~ / I W / I W O ) / [ ( ( I  - G r l ) z r o P  

+ h r I W r I  +wO)(( l  - & r l ) z / o ~  

+ &/I W / I  + W O )  + ( z r o p  - W0)WOl  (28) 

From Fig. I O  it can also be seen that both the left 
side and right side of the starting processor are identical 
to the unidirectional case discussed earlier in this section 
with the left first processor and the right first processor as 
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their starting processor, respectively. Thus &/i and (Yri are 
readily obtained from (23)  and (24) recursively with 
corresponding w!;, z / , ,  and w,,, z,.~. From (7) and (8) the 
actual fraction cqi and cir, of the total processing load of 
the left and right ith processor can be calculated, and 
from (28) and (29) P I  and pr can be solved. The total 
processing time is then 

Tt = ( 1  - P/- PrIwoTcp + P/2/0Tcrn + PrZrOTcm. (30: 

In Fig. 1 1  the minimum total processing time is 
plotted against the position of the processors in the linear 
network of 21 processors with wi = 1, Tc/, = 1, 
p = 0.5, and the five performance curves are obtained 
with z, = 0.1, 0.2, 1, 5, and 10, respectively. As shown 
in the figure, the longer the communication delay, the 
longer the total processing time, and the toal processing 
time is minimized when the starting processor is at the 
center of the linear network, though, as with the network 
with front end processors, this is a shallow minima. By 
comparing Fig. 7 and Fig. 11, it can be seen that the 
network with front end processors performs better than 
the one without. 

V. OPTIMAL DIVISION OF PROCESSING 
LOAD. INCLUSION OF SOLUTION TIME 

In both Sections 111 and IV, the time taken for every 
other processor to report its solution back to the starting 
processor is assumed to be very short and can be ignored. 
As in the equal division of processing load case, in some 
applications this may not be true. There are many 
possible ways for the other processors to report their 
solutions back to the starting processor. As an example, 
the inclusion of this solution time in a linear network 
with front end processors is discussed here. 

processors as in Section 111 where all the processors in 
We consider the same linear network with front end ~ 

the network may have differing computing capabilities 
and the channel capacities between the processors may be 
different. The processor at the left end receives a burst of 
measurement data and is to share the measurement data 
with the other processors in the network. The entire 
process is similar to the one in Section 111 except for the 
inclusion of solution time. When the Nth processor 
finishes its computation, i t  starts sending back the 
solution to its left immediate neighbor. The transmission 
takes time T,. Upon receiving the solution, the neigbor 
transmits the solution and its own solutions to its right 
immediate neighbor. This transmission takes 2Ts. The 
solution sending process repeats itself until  all the 
solutions are sent back to the starting processor. The 
timing diagram of the entire process is shown in  Fig. 12. 

In order to obtain maximum parallelism and a 
minimum time solution, the starting processor should 
compute its fraction of the processing load during the 
entire processing period, and the computing time a, w, T( / ,  
of the ith processor should overlap exactly with the 
transmission time ( 1  - al  - a? - . . . - ~ , ) z , T ~ , , ~  from the 
ith to the i + 1 st processor plus the cumulative solution 
transmission time ( N  ~ i ) z , -  I T, + z,T, from the 
previous processors plus the computation time of the ith 
processor. With a, defined as the actual fraction of the 
total processing load, the equations are shown below. 

aIwIT<, ,  = ( 1  -aI )z lT<,rz  + CYZ1t'2T,/, + z,r.s 
and for the ith processor, 

For the first processor, 

(31) 

a, w, TC,) = (1 - a ,  - a2 - ' . . - a, 1 z ,  r, )), + a, + I N', + 1 T<.,, 

+ z,T,  + ( N -  i ) ~ ,  -IT, .  i = 2. 3 .  . . . .  N 

( 3 2 )  

O '  0 0  \ I O  

The  t'osition of the Stat-tlng Processor 

Fig. 1 1 .  Origination at network interior with no front end processor. 

CHENG & ROBERTAZZI: DISTRIBUTED COMPUTATION WITH COMMUNICATION DELAY 

( 3 3 )  

709 

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on November 10, 2008 at 21:13 from IEEE Xplore.  Restrictions apply.



Processor 1 I Communication 
1 Computation 

n n ____ t Processor N--2  

Processor 2 

t-----p 7 Processor N- 1 

r 1 
1 

Processor N t- n 
Fig. 12. 

where w , s  are inversely proportional to the speed of the 
ith processor and zis are inversely proportional to the 
channel speed between the ith and the i + 1 st processor. 

There are totally N linear equations and N unknowns, 
so the a,’s that minimize the total processing time can be 
determined, and the total processing time is 

T, = a, w,T,,. (34) 

There are other ways of reporting the solution back to 
the starting processor. For instance, the solution time may 
be of fixed length when transmitted from each processor, 
or solution time may be proportional to the length of the 
data processed by a particular processor. Similar sets of 
linear equations can be formed, and a,s and T, can thus 
be solved as well. 

VI. CONCLUSION 

In this paper a linear network of intelligent processors 
is examined. The interaction between communication and 
computation is the most interesting aspect of this work. It 
is of practical interest and the optimal division of 
processing load can be determined relatively simply. It  is 
also interesting that minimum time solutions do not 
require large number of processors in the network. 

APPENDIX I 

equipped with a front end processor for communication 
off-loading. 

PROOF. Consider the two rightmost, the N - 1 st and 
the Nth, processors. The N - 1st processor keeps a 
fraction of data that it has received and transmit the 
remaining 1 - a fraction to the Nth processor. There are 
two possibilities, either the N - I s t  or the Nth processor 
will stop computing first. Both cases are discussed below. 

Case I 
The Nth processor stops first 

T,  = UT,/’ ( 3 5 )  

aTcp  2 (1 - a)(T[.,?, + TcI,) (36 )  

where T, is the total processing time for these two 
processors, T,.,,, is the time to transmit the entire 
measurement data over the channel, T(p is the time it 
takes for one processor to process the entire processing 
load, aTcp is the computing time of the N - 1st 
processor, and (1  - a)(Tc,n + Tc7,) is the sum of the 
transmission time from the N - 1 st to the Nth processor 
and the computing time of the Nth processor. 

From (36) we have 

and from (35) 
It is demonstrated that for a minimum time solution 

all processors must stop at the same time. For simplicity 
the values of w,5, which are inversely proportional to the 
speed of the ith processor, and z,s, which are inversely 

i + 1 st processor, are assumed to be one. This is done 
without loss of generality. The problem is assumed to 
originate from the left boundary and all the processors are 

min(T,) = min(a)T,,, 

T,.,,, + TC,, 
T,.,,, + 2 TC/, 

= ( ) T<,l 
proportional to the channel speed between the ith and the 

(38) = (1  - min(a))(T<.,,, + TCy1) 

where min(x) is the minimum of x. It can be seen from 
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(38) that it is preferable to stop the processors 
simultaneously rather than have the Nth stop first. 

Case I1 
The N - 1 st processor stops first 

From (40) we have 

and from (39) 

min(T,) = (1 - max(a))(T,.,, + T,) 

= max(a)T,, 

where max(x) is the maximum of x. From (42) it is 
apparent that i t  is preferable to stop the processors 
simultaneously rather than stop the N - 1st processor 
first. Together with Case I this shows that the minimal 
time solution results when both processors stop 
simultaneously . 

One can extend the above result to the N - 2nd 
processor by replacing the N - 1 st and Nth processors by 
an equivalent processor with processing time aTC,, (35). 
In this way the result can be generalized to an entire 

network of processors. For other linear networks 
mentioned in the paper, the proof is similar. 

APPENDIX I1 

When front end processors are not included for 
communication off-loading there are certain parameter 
values for which distributing the computational load to 
other processors does not result in a time savings. To see 
this, consider two adjacent processors. The time taken by 
the first processor is 

(1  -al)ZTcnl + a,w,Tcp. (43) 

(1 -a1)zTC,,, + (1 -a1 )w2TCp.  

The time taken by the second processor is 

(44) 

Consider these two equations as functions of a l .  The 
second equation has a negative slope. The first equation 
has a positive slope if w,T,, > zT,.,, and a negative slope 
if w I  TCp < zT,,,, . In the former case there is a value of 
a , ,  0 < a I  < 1, which minimizes the computational 
time. In the latter case computational time is minimized 
when a I  equals one. This corresponds to no distribution 
of the computational load. 

The condition for distribution of the computational 
load, w,T,,, > ZT,.,,,, intuitively means that the 
communication time over the link between the processors 
must be less than the computation time of the first 
processor in order to achieve a net savings through 
distribution of the processing load. 
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