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Abstract

Unbalanced loads on feeders increase power system investment and operat-
ing costs. Single-phase lateral loads phase swapping is one of the popular
methods to balance such systems. In this paper, six algorithms for phase
balancing are studied, including a Genetic Algorithm, Simulated Annealing,
a Greedy Algorithm, Exhaustive Search, Backtracking algorithm and a Dy-
namic Programming algorithm. The novel dynamic programming algorithm
in particular produces optimal solutions for this N P-complete problem effi-

ciently.
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1. Introduction

Over the past 15 vears. research has been conducted on three phase feeder
balancing. Phase balancing aims to reduce the unbalance of loads on three
phases which can bring severe voltage drops in the feeders. The majority
of electric power systems utilize, in the electric distribution system. feeders
which carry three phases of alternating current/voltage. It is desirable for
electric utilities and providers of electric power distribution systems to have
approximately equal loads on each phase. This is a problem as even if loads
are initially balanced, with time loads increase, decrease. are added or re-
moved from each phase. causing an unbalance of loads. Even during the same
day there may be much variation of load on each phase of a feeder. There
are two major phase balancing methods: there is feeder reconfiguration at
the system level and there is phase swapping at the feeder level [1]. Phase
swapping is not as well developed in the literature as feeder reconfiguration.
This paper is about phase swapping algorithms.

Why does one wish phases to be in balance? Phase unbalance can limit
the amount of power transferred on a feeder as on an unbalanced feeder one
phase mayv reach its maximum carrving capacity measured in amperes (i.e.

ampacity) while the other two phases are then underutilized and unable to



carry their full or even nearly their full amount of current. This is poor
utilization of the existing power distribution network and may result in un-
necessary feeder expansion and upgrades which raise utilitv costs. Because
one phase may be near its maximum ampacity, phase unbalance can also
lead to preventive breaker/relay tripping and shutdown of a feeder whose
restoration also involves a cost to the electric utility.

Periodically crews rebalance feeders. This can be done during periods of
maintenance or restoration. One suburban Northeast U.S. utility rebalances
feeders if the percentage of unbalance exceeds 15%. Generally it takes 10 to
15 minutes to switch a load so the overall job may take an hour plus travel
time to the location. Work by a crew of two emplovees can cost several
hundred dollars. However preparatory work such as scheduling can bring the
total cost to several thousand dollars for one tap change. Three factors are
considered in making a decision to rebalance a feeder: the monetary cost of
making the tap change(s). the expected increase in feeder balance and the
temiporary interruption of power to the customer. Tap change generally fall
into two situations: a new customer is to be connected or the phase balance
for existing feeders has become significantly unbalanced. Once a feeder is

re-halanced it will initiallv be in balance but drift into unbalance as time



goes on.

Even in more limited electric power svstems. the same problems may
arise. For instance Gaffney [2] reports problems with effective phase balanc-
ing in electric power svstems in the tactical battlefield environment, largely
because of insuflicient operator training and experience. David [3] [4] pro-
poses automatic phase balancing but does not propose an algorithm for this
purpose.

The variables in the phase balancing problem are the phases each load is
connected to and the goal is to minimize the degree of unbalance on feeders.
Several algorithms have been used to solve phase balancing problem. In
1999 Zhu, Bilbro and Chow introduced simulated annealing to the problem
[1]. In 2000 and 2004. Chen and Cherng and Gandomkar applied a genetic
algorithm to the problem [5] [6]. In 2007. Huang. Chen. Lin. et. al used an
immune algorithm to solve the problem {7].

Many combinatorial optimization problems have no known eflicient algo-
rithms capable of always producing optimal solutions. For those problems
that computer scientists have been shown to he N P-complete. there is con-
vincing evidence that no correct. efficient algorithms can exist. An eflicient

algorithin for any one of the hundreds of known .V P-complete problems would



imply efficient algorithms for all of them. implying that all are equally hard
to compute.

The phase balancing problemn we describe in this paper can readily be
shown to be equivalent to integer partitioning. a well-known N P-complete
problem. Thus an efficient algorithm for phase balancing which always pro-
duced optimal solutions would imply efficient algorithms for all problems
in NP. which computer scientists considered extremely unlikely. However
heuristic algorithms that produce near optimal solutions with reasonable ef-
ficiency are possible, and are often developed for this purpose. [8]

In this paper. six algorithms are applied to the phase balancing prob-
lem: Exhaustive search and a Backtracking algorithm({section 2). Greedy
Algorithm (section 3}, Simulated Annealing (section 4). Genetic Algorithin
(section 5) and Dynamic Programming (section 6). Selected parameterized
illustrations of the use of each algorithm appear in each algorithm discus-
sion/ section. A svstematic comparison of the algorithms is made in section
7. The conclusion appears in section 8.

We purposefully did not consider particle swarm optimization (PSO) and
differential evolution (DE) algorithms in this paper. We note that these

methods are most appropriate for complex problems with ill-defined search



spaces. as opposed to classical combinatorial optimization problems like ours.
which is essentially a variant of the knapsack problem.

The key lesson of our paper is that heuristic techniques such as simulated
annealing and genetic algorithms (and DE and PSO) are superseded by the
dynamic programming and combinatorial search methods we employ. which
give optimal results instead of heuristic ones. The primary lesson of this
paper is that our new dynamic programming algorithin gives optimal results

in reasonable time.

2. Objective function and stopping criteria

There are various kinds of objective functions such as cost functions in
[1] and the loss function in [5]. Also. loads could be connected to two phases.
Here we consider that all the loads are connected to single phase. The load
range is set as integers between 1 and 100. Larger loads range can be scaled
to this range. In this test. the objective function is the phasing unbalance

index (PUT) which is used in many phase balancing papers [7} [9] [10%:
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PUT = « 100% (1)

Here. I,. I and I. are the current on phase 1. 2 and 3. 1,,, is the mean



value of the current on each single phase.
The stopping criteria is: when the objective value reaches 1/500 times of

the initial value. Other stopping criterias are of course possible.

3. Exhaustive search and a backtracking algorithm

For n loads, each load is connected to one phase throughout the paper.
Since there are n loads. and each load can be on one of three phases. there
are 3" ways to assign the loads to different phases. Under exhaustive search
we calculate minimum objective functions for any potential number of tap
changes. One then selects the solutions which satisfy the stopping criteria
and finds the mininmun number of tap changes among them.

Here we present a backtracking algorithin which can obtain an optimal
solution as exhaustive search does, but has a smaller computational com-
plexity [8]. Suppose one wants the most balanced sohition using at most ¢
tap changes. This can be done with backtracking in O((2n)") since each tap
change has two phase choices. which is better than the exhaustive search for
small #. In this solution, the state space will be a vector of length #: The

candidates for the /th position will be the possible tap changes greater than

the last one in terms of load indexes.
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The pseudo code appears below. Here S, is the set of candidate nodes in
the decision tree for k tap changes:
Backtrack - DFS(A k)
if A= (ay,a02,---.a4) is a solution. report it.
else
k=k+1
compute Sy
while S, # @ do
ay = an element in Sy
Sp = Sp — ay,

Backtrack - DFS(A k)

4. Greedy Algorithm

4.1. Greedy Algorithm

A greedy algorithin is any algorithm that finds a local optimal solution at
every step. It gives a global optimal solution to many problems. but not all
problems. It does not give a globally optimal solution to the phase balancing

problem.



4.2. Greedy Algorithm for Phase Balancing

The steps are:

[on

. Input the loads and initial phases.

3%}

. Calculate total loads on each phase.

3. Select one load from the phase with largest total load and move it to
the phase with smallest total load. The load is selected so it can minimize
the difference of the total loads on those two phases.

4. Calculate the objective value and see if it satisfies the stopping criteria.

If yes. finish. If not. return to step 3.

4.3. Results

In figure 2, 100 randomly generated loads and phases are used for testing.
The figures are the average of 300 runs. The horizontal axis is the number of
tap changes the program needs and the vertical axis is the probability they

appeared in 300 runs.

5. Simulated Annealing

5.1, Simulated Annealing Algorithm
The iutuition behind the simulated annealing algorithm comes from the
process of molten metals. The svstem is slowly cooled in order to achieve its
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lowest encrgy state. The basic idea of the method is that. in order to avoid
being trapped in local minima. the algorithm usually accepts a "move” to a
better solution but occasionally accepts a “move” that worsens the objective
function with probability of:

P’,.Obf&(f(‘e:pt - f?—AE/k,I (‘))

Here e is the irrational number (=2.71828...). AE is the change between
the objective values for two different solutions. k is a constant relationship
between temperature and energy, and T is “temperature”.

Simulated annealing is applicable to problems where one solution can be
transformed into another by a “move” and there is an objective function

available for evaluating the quality of a solution.

5.2. Simulated Annealing Algorithm for Phase Balancing

The steps are:

1. Input the loads and initial phases. Calculate the objective value.

2. Randomly select one load. move its phase to a randomlyv sclected
phase. Caleudate the objective value.

3. Calculate the difference between the values in previous two steps. If
the difference is negative. accept the “move”. If not, accept the move with

10



the probability in equation 2.

4. Repeat step 2 until it meets the stopping criteria.

5.3. Results

In figure 3, 100 randomly generated loads and phases are used for testing.
The horizontal axis is time axis. the vertical axes are objective values and
numbers of tap changes. It can be seen that bevond a certain number of tap
changes there is only a minimal improvement on the objective function (law

of “diminishing returns”).

6. Genetic Algorithm

6.1. Genetic Algorithm

Genetic algorithms belong to a larger family of algorithms known as
evolutionary algorithms. They apply concepts from the theory of hiologi-
cal evolution. such as natural selection, reproduction, genetic diversity and
propagation. species competition/cooperation. and mutation. to search and
optimization problems.

A genetic algorithm starts from the initial population (initial phases of

the loads from some random solution) which are represented by a string of
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binary numbers. In each generation, crossover, mutation and selection are

applied to the population in order to converge to the best solution.

6.2. Coding

In GA. a population is a set of solutions (chromosomes) for the objective
function. In the population. the variables are encoded by use as binary
numbers. For phase balancing problem, 2 bits are considered since once needs
to represent 3 phases. “007, “017 and “10” represent phase 1, 2 and 3
respectivelv. After mutation or crossover. 117 will be changed to “007, =017

and “107 with equal probability if it is generated.

6.3. Objective function
In the G A process. the value of the objective function mirrors the property

of a solution. Better solutions have larger objective values.

6.4. Crossover

The crossover operator will proceed as follows. A crossover point is se-
lected randomly for each of two solutions. A crossover probability is then
invoked (P, from 0.6 to 0.8) to decide whether to make a swap of bits. An
example is shown as follow:

String 1: 110/10011

12



String 2: 101j01110
Crossover point
String 1: 101/01110

String 2: 101j10011

6.5. Mutation

The mutation operation is implemented by randomly selecting any binary
bit with a prespecified probability (about 0.01) and reversing it. The purpose
of mutation in G'As is preserving and introducing diversity. Mutation should
allow the algorithm to avoid local minima by preventing the population of
chromosomes from becoming too similar to each other. thus slowing or even
stopping evolution.

An example is shown as follow:

Before: 11010011

Mutation point

After: 11000011

6.6. Selection

The selection operator creates new populations or gencrations by selecting

individuals from the old population. The selection is probabilistic but biased
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towards the best solutions as special deterministic rules are used. In the new
generations created by the selection operator, there will be more copies of
the best individuals and fewer copies of the worst. A common technique for
implementing the selection operator is the roulette wheel approach.

In this process, the individuals of each generation are selected for survival
into the next generation according to a probability value proportional to
the ratio of individual fitness (i.e. value of objective function) over total
population fitness; this means that on average the next generation will receive

copies of an individual in proportion to the importance of its fitness value.

6.7. Results

As shown in figure 4 and 5. 100 random generated loads and phases are
used for testing. The figures are the average of 300 runs. In first graph.
the horizontal axis is the number of generations for the genetic algorithm
and the vertical axis is the corresponding objective value. In second graph.
the horizontal axis is the number of tap changes the program needs and the
vertical axis is the probability they appeared in 300 runs.

We also simulated an immune algorithm which is similar to genetic al-
gorithm in the use of crossover. mutation and sclection. It was found to
perform similar to our genetic algorithm.
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7. Dynamic Programming

7.1. A Dynamic Programming Algorithm to Solve the Phase Balancing Prob-
lem

An “optimal” algorithm for phase balancing is now presented. The phase
balancing problem is N P-complete even with two phases and no cost per
tap change, because it is equivalent to the integer partition problem and the
integer partition problem is .V P-complete. The hardness of integer partition
depends upon large numbers. because it is not strongly N P-complete. For
the phase balancing problem. the loads range between 1 and several thousand
amperes. Assume that there are n loads. where the ith load has weight u;
and is currently assigned to feeder [;. We assume the weights of all loads are
integers. and the total load T = >""  uy. As will be scen the algorithm runs
faster with smaller T. Loads can be scaled to bring this about. The solution
produced by the dynamic programming algorithm are optimal but it should
be noted that the scaling is a source of approximation.

We present an algorithm which runs in O(nT?) to find the minimum
number of changes to reach a particular quality criteria.

Denote the total load on phase / by L;. Because there are 3 phases, there

are about T2 sets of possible values for L. L,. and Lj. This is as both 1,
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and L, are integers between 0 and T. and Ly =T — Ly — L. L3 would be
specified after one has L, and La.

The algorithm will enumerate all possible partitions of T into L. L,. and
Ly, and in partieular for each such partition P find way to move from the
current state to P using the fewest number of changes. One can evaluate
each of these O(T?) partitions according to the objective function, eliminate
all which are not good enough. and then find the minimum cost good-enough
transformation.

Define C'r,y.i] to be the minimum cost (in terms of number of moves)
to realize a balance of Ly = &, L, = y and implicitly Ly =T — L; — L, after
reassignments to the first ¢ loads (from 1 to i).

We define the following recurrence relation:

Clo,y, 0= Min[Clo—1. y i—11+t(i. 1), Clo+l. y—1 i1+t (02). Cla+ oy oi— 10 3))]
(3)
Here t(i.1) is the cost of moving the iy, load to phase 1. Clroy. il is the
minimum nunber of tap changes to move from the initial loads to [r.y. T; —

3

. 1
¥ ]j}
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J=1
If /s, load stays on phase |
t(i.l) =0 (5)
If 44 load leaves phase |
til) =1 (6)

Assume the ith load is initially on line 1. Then the optimal solution either
leaves load ¢ on line 1 (incurring no cost for the move), or moves it to line
2. or moves it to line 3 (both of which incur a cost of 1 operation}. We need
similar recurrences for the cases where load i is on line 2 or line 3. The basis
of this recurrence is that C[Ly. L5.0] = 0. Clrg. yo. 0] = oc for all vy # L;
and yy # Lo (meaning no other states are achievable with zero moves).

Lastly. one caleulates objective values for all (T, + 1)? possible [r. y, n]
using equation 1 and get the minimum tap changes from Clr.y.n]. Thus.
one does not need to calculate objective values for other C'le, y.il. i € [L.n—
1} which significantly reduces running time. In other words. the dynamic
programming algorithin naturally produces a minimal solution for all number

of tap changes desired. efficiently.



7.2. Results

As in figure 6. 100 randomly generated loads and phases are used for
testing. The figure is the average of 300 runs. The horizontal axis is the
number of tap changes the program recommends and the vertical axis is the

probability they appeared in 300 times running.

8. Comparison

Two factors affect the results: the objective value and the number of
tap changes. The objective value represents the unbalance of the loads on
feeders. Meanwhile, each tap change costs some amount of money. So the
aim is to get the desired objective value with a number of tap changes which
i3 as small as possible.

Table 1 compares the performance of the six approaches in terms of run-
ning time and the number of tap changes for a single run of each program
written in Matlab. Table 2 illustrates the performance improvement of each
algorithm. The table shows wins (7). losses (L) and ties (T) of the algorithm
in the first column compared to the algorithm listed for each column.

From the previous two tables. one can see that DP and G A are probably

the better algorithms for the Phase Balancing problem. So to further comn-
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pare the performance of DP and G A, we have two tables. Table 3 and table
1 are two tables made from 20 examples of DP. Everv examiple has 10 loads
and the integer load range is 1 to 10. The columns differ in the number of tap
changes. The rows are the different runs. The numbers in the table are the
objective values. Table 5 is made from 20 examples of the genetic algorithm,
every one with the same initial loads and phases as DP has. The vertical axis
is the number of runs. The first column holds the best objective values that
the (G4 obtained and the second column includes the corresponding number
of tap changes the GA needed for those objective values. From these two
tables. one can see that in some cases the best objective values that the two
algorithms can get are same and DP needs less tap changes and other times
G'A loses both in terms of the objective value and number of tap changes.
Another test as in figure 7 is a gathering of 30 examples. In each example,
both the DP and the G'A are give same set of loads and initial phases and
then we record the result they give in terms of the number of tap changes.
Every example has 10 loads and the integer load range is 1 to 10. DP lost
very few times but DP gave better objective values in those examples.
Since most of the time DP and G A4 have the same performance in termns

of the unbalance factor. but G4 needs a larger number of tap changes. it was
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desired to investigate the size of the loads those two algorithin transferred.
that is. whether G A transfers more loads with relatively smaller size and
DP transfers loads with relatively larger size. Figure 8 and figure 9 show the
loads’ size VS the frequency that were transferred. From figure 8 and figure 9.
one can see that DP is somewhat biased to larger values of switched load size
and the loads that G A transfers are distributed evenly in load size because
G A transfers loads randomly but DP transfers loads with less tap changes
(less total load transfer). While most of the algorithms in the paper were
implemented in Matlab, running time of a faster (7 version of the dvnamic

programming algorithm appears in Table 6.

9. Conclusion

Dynamic programming does the best in terms of performances though
it is the slowest of the non-exhaustive algorithms. This is a very promis-
ing algorithim because of the algorithm’s optimality. It was found that even
though the genetic algorithm and dvnamic programming produced solutions
that were almost identical in terms of the unbalance factor to many sie-
nificant places. the genetic algorithm can require many more tap changes

than dyvnamic programming did {(often by more than a factor of two). This



suggests that the solution space contains a variety of optimal/near-optimal
solutions that differ significantly in the number of tap changes. The genetic
algorithin. at least as presently constituted. is not able to discern the best
solution as well as the dynanic programming algorithm. The good news is
that an optimal algorithm for phase balancing in dynamic programming is
available with reasonable complexity ( O(nT?) ). This is an interesting prob-
lem from both the viewpoint of algorithms and an interesting power system

application.
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Table 1: Performance comparison

Algorithms Running Time (ns)
Exhaustive Search 6642.97
Backtracking Algorithm 886.49
Greedy Algorithm 5.65
Simulated Annealing 1.45
Genetic Algorithm 72.15
Dynamic Progranmming 223.62

Table 2: Performance comparison 2

Algorithm DP GA Greedy SA
DP LOW /40T 42W/8T 45W/5T
GA 10L/40T 40W /6T /4L 42W/4T/4L
Greedy 8T/42L  4W/6T/40L J0W /4T /6L

SA  39L/1IT 4W/4L/42T 6W/4T/40L




Table 3: Objective function and number of tap changes for dynamic programming for ten

runs
Number of tap changes: 1 2 3
Ist Run 0.2750  0.0500 0.0500
2nd Run 0.0179 0.0179 0.0179
3rd Run 0.0678 0.0169 0.0169
4th Run 0.0500 0.0500 0.0500
5th Run 0.2558 0.0465 0.0465
6th Run 0.4769 0.1077 0.0154
7th Run 0.1053 0 0.0526
Sth Run 0.1321 0.0755 0.0189
9th Run 0.6154  0.2000 0.0154
10th Run 0.1077 0.0154 0.0154

[\]
(W1}



Table 4: Objective function and number of tap changes for dynamic programming for ten

runs
Number of tap changes: 4 5 6
1st Run 0.1250 0.2750 0.8000
2nd Run 0.0714 0.1786 0.4464
3rd Run 0.0678 0.0169 0.2203
4th Run 0.0500 0.0500  0.0500
5th Run 0.0154 0.0615 0.2462
6th Run 0.0154 0.0615 0.2462
7th Run 0.0526 0.2105 0.3634
8th Run 0.0189 0.1887 0.4151
9th Run 0.0154 0.1538 0.2462
10th Run 0.0615 0.1077 0.2000




Table 5: Objective function and number of tap changes for genetic algorithm for ten runs

Objective value Number of tap changes

Ist Run 0.0500 5
2nd Run 0.0714 5
3rd Run 0.0169 7
4th Run 0.0500 5
5th Run 0.0465 5
6th Run 0.0615 5)
7th Run 0.0526 5
gth Run 0.0755 5
9th Run 0.1077 5
10th Run 0.1077 5

Table 6: Running time for different number of loads with DP method in € program

Number of loads 10 50 100

Running time (sec) =0 1 5
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Figure 8: Tap change load size VS frequency for genetic algorithm
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Figure 9: Switched load size VS frequency for dynamic programming
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