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Abstract 
The Quench Detection System (QDS) of RHIC detects 

the Superconducting (SC) magnet quenches by voltage 
sensing. The real-time voltage across the SC magnet is 
compared with a predicted voltage from a behavioral 
model, a deviation from which triggers the quench event 
and energy extraction. Due to the limitations of the 
magnet model, many false quench events are generated 
that affect the RHIC availability. This work is targeted 
towards remodeling the magnets through nonlinear 
system identification for the improvement in QDS 
reliability. The nonlinear electrical behavior of the SC 
magnets is investigated by statistical data analysis of 
magnet current and voltage signals. Many data cleaning 
techniques are employed to reduce the noise in the 
observed data. Piecewise regression has been used to 
examine the saturation effects in magnet inductance. The 
goodness-of-fit of the model is assessed by field testing 
and comprehensive residual analysis. Finally a new model 
is suggested for the magnets to be implemented for more 
accurate results. 

INTRODUCTION 
The RHIC SuperConducting (SC) magnets store an 

energy of 70MJ in the form of magnet currents during a 
full energy run. The SC magnets are susceptible to 
quenches that lead to the development of tiny resistive 
zones. An operating current near 5000A (for a dipole 
magnet) can dissipate this enormous energy at this tiny 
resistive point causing catastrophic damage.  

To safeguard against such failure, Quench Detection 
System (QDS) is employed. It monitors the SC magnets 
to detect the developing quenches and sends the magnet 
power dump signal and beam abort signal to the beam 
permit system [1]. Voltage sensing is employed for 
recognizing the developing quenches. The QDS consists 
of DSPs which store the electrical behavioral model of the 
SC magnets. The actual magnet output is compared to the 
model output, and a deviation is sensed as a developing 
quench, which generates a quench trigger. 

The SC magnets exhibit a highly nonlinear behavior 
due to saturation and hysteresis of steel yoke [2]. Due to 
mathematically intractable nature of this behavior, the 
magnet model parameters are manually calibrated, which 
inhibit the accurate tuning of the model. Also it consumes 
valuable time when RHIC is running at 4K temperature. 
Inaccuracies introduce deviation in the model output, 

which leads to false failures, and resulting in unnecessary 
machine downtime. Thus to improve QDS reliability, it is 
necessary that the model truly imitates the SC magnet 
behavior. The aim of this work is to facilitate automatic 
generation of accurate magnet models through nonlinear 
system identification that will improve the reliability and 
availability of QDS. 

Original Magnet Model 
The SC magnet circuit’s electrical behavior is modeled 

as a pure inductor with a series resistor. The pure inductor 
represents the SC magnet and the resistance represents the 
current leads to the magnet. The model is  

 

Here  is the current through the magnet, L is the 
nonlinear magnet inductance, R is the lead resistance and 

 is the calculated voltage from the model. This voltage 
is compared to the observed voltage  across the magnet 
in real time. When a quench develops, additional 
resistance will appear causing to deviate from . A 
difference more than 25 mV is triggered as a quench 
event.  

The parameter L is highly nonlinear in nature. It 
exhibits saturation i.e. its value decreases with increasing 
current. Also the L vs. I curve changes with the change in 
current ramp waveform. The model stores lookup table 
for L vs. I values, which have to be updated manually 
every time a new current waveform is introduced. An L 
vs. I lookup table is shown in Fig. 1. This gives us a rough 
idea of the nonlinear behavior of L. 

  

 

Figure 1: L vs. I lookup table values 

 ___________________________________________  
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SYSTEM IDENTIFICATION 
Our aim is to find an accurate inductance variation with 

the current change to construct accurate L vs. I tables to 
be used in the DSP model. We analyze the magnet current 
and voltage data for a magnet tap named 
For this particular voltage tap connected across dipoles, 
the R value is zero, so we are left with the following 
model  

                                  (1) 

One of the techniques that can be applied to solve for L 
is the linear regression, where the explanatory variable is 
the first derivative of the current and the response variable 
is voltage. We mine the voltage and current data from 
RHIC database using MATLAB® [3], which is found to 
be quite noisy. Particularly for the derivative of current, 
noise is highly amplified. Thus we attempt to clean the 
data first. We analyze the frequency spectra of the current 
and voltage data, and their variation over time through 
spectrograms shown in Fig. 2. 

 

 

Figure 2: Spectrograms of voltage and current signals  

Next we choose to filter the voltage and current data 
per the frequency characteristics in Fig. 2. The noise in 
the first derivative of current is now eliminated. Figure 3 
shows the filtered (green) and raw (black) signals for the 
magnet current, first derivative of the current and voltage 
signals. The periodic noise and spikes in the data are now 
removed. 

Now the data is ready for analysis after the preliminary 
processing. Consider the dI/dt waveform in Fig. 3. There 
are certain portions of the current where the first 
derivative of the current is either zero or has very low 
value. For a good fit of the linear regression model, the 
explanatory variable should have a substantial magnitude. 
Thus to apply the regression algorithm using Eq. 1, we 
eliminate small or zero values of dI/dt and corresponding 
values of V from the data. We have written a data 
classification algorithm to segment and identify the 
regions in current waveform where the first derivative is 
non-zero, second derivative is non-zero etc. The 

segmented portions of the magnet current are shown in 
Fig. 4. 

 

Figure 3: Raw and filtered I, dI/dt and V  

 

Figure 4: Current segmentation  

 

 

Figure 5: L vs. I curve from piecewise regression  

B1DSD9_5VT. 
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We use Eq. 1 for regression in region where the first 
derivative exists. Now we address the nonlinear variation 
of L with increasing current. One method to deal with this 
is to use piecewise regression, where the current is 
divided into very small data sets, and regression is applied 
to each set for finding L value. The L is assumed constant 
for this small dataset. Now we plot these values of L with 
I in Fig. 5 that shows the saturation characteristics of L 
similar to Fig. 1, but much cleaner.  

FIELD TESTING  
Before testing the model in the field, we look at the 

residuals that we obtain from our analysis. The residuals 
between the filtered voltage and the calculated voltage are 
shown in Fig. 6. As seen the maximum value of the 
residuals is about 8mV, which is well below the 25mV 
limit.  

 

Figure 6: Residuals between the filtered and fitted 
voltage 

 

The piecewise regression generates a smooth curve of 
about 200 data points for L vs. I curve (Fig. 5). However 
the DSP model can only store 35 values of L vs

. I data. It 

interpolates the L values for in-between I 
values. We 

generated L vs. I tables for DSP using this data, and a 
screen shot from the field testing on the same voltage tap 
is shown in Fig. 7. The difference signal (in blue) is the 
moving average of 100 values of the actual voltage 
difference (in grey), which is used for triggering quench 
event in case it goes beyond 25mV. The maximum value 
of the trigger signal is found to be 6mV which is quite 
below the 25mV level.  

 
 

Figure 7: Field testing, quench trigger signal  

Residual Diagnostics  
The linear regression model validity can be established 

by residual diagnostics. We use the guidelines discussed 
in [4] for checking our model. 

The true residuals of our model are obtained by the 
difference between the observed magnet voltage and the 
predicted voltage from the newly generated DSP table, as 
this table will actually be used in the field.  Similar to the 
DSP, we find the predicted voltage from Eq. 1, by 
interpolating the L values for intermediate I values in the 
table.  

We use the following rules for our residual diagnostics 
as discussed in [4]. It is to be noted that the shape of 
residuals in Fig. 6 will be visible in these residuals as 
well. We address this residual pattern later in this paper. 
First, the explanatory variable should be linearly related 
to the response variable. This can be observed by plotting 
the residuals against the explanatory variable. We already 
linearized our model by piecewise regression so that the 
residuals will be linear with respect to dI/dt. As seen in 
Fig 8, the trend is almost linear, with little variability.   

 

Figure 8: Residuals vs. explanatory variable  

Secondly, the residuals should have nearly normal 
distribution. This can be seen by plotting the histogram 
and quantile-quantile plot (Fig. 9). From the figure it is 
seen that the residuals are a little light-tailed but are not 
skewed, and are nearly normal.  

 

Figure 9: Histogram and QQ plot  

Thirdly, the residuals should have constant variability. 
This can be checked by plotting the residuals against the 
response variable where the residuals should be randomly 
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scattered around the zero value. This rule is satisfied as 
seen in the Fig. 10.  

 

Figure 10: Residuals vs. response variable  

Lastly the residual values should be independent of 
each other. This can be checked by the scatter plot of 
residuals (Fig. 11). In all the residual plots we see a 
periodic structure, which is due to the Booster main 
magnet pulses disturbing the power line [5, 6]. Other than 
this, the pattern looks random. 

 

Figure 11: Scatter plot of residuals  

DISCUSSION 
To further improve the model, the remaining variability 

in the residuals has to be analyzed. As seen in Fig. 7, we 
see a pattern in the residuals. This variation depicts a 
dependence on the second derivative of current, which is 
shown in Fig 12.  

 

Figure 12: Negative of IInd derivative of current   

To accommodate this variance, we can modify the 
magnet model as the following equation.  

 

 Here X is a coefficient of second derivative of current, 
which can be a constant throughout the data, and might 
not need piecewise regression. This X parameter can then 
be modeled as an eddy current component and/or parasitic 
capacitance in the circuit. More accurate analysis can be 
done by performing the frequency response analysis.  

CONCLUSION 
We utilize the statistical analysis concepts to reveal the 

underlying saturation characteristics of the magnet, and 
validate our model using field testing and residual 
analysis. This will facilitate the automatic generation of 
the DSP tables without any manual intervention. This 
helps to save the valuable resources when the RHIC is 
running at 4K temperature. Going further, we have also 
developed an analytical memory model that quantifies the 
saturation and hysteresis behavior of RHIC 
superconducting magnets [7]. This will help forecast the L 
vs. I curve for particular current waveform, accounting for 
nonlinearities due to saturation and hysteresis.  
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