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Abstract 
The RHIC Beam Permit System (BPS) monitors the 

anomalies occurring in the collider and restores the ma-
chine to a safe state upon fault detection. The reliability of 
the BPS thus directly impacts RHIC availability. An ana-
lytical multistate reliability model of the BPS has been 
developed to understand the failure development and 
propagation over store length variation. BPS has a modu-
lar structure. The individual modules have joint survival 
distributions defined by competing risks with exponential 
lifetimes. Modules differ in functionality and input re-
sponse. The overall complex behavior of the system is 
analyzed by first principles for different failure/success 
states of the system. The model structure changes accord-
ing to the type of scenario. The analytical model yields 
the marginal survival distribution for each scenario versus 
different store lengths. Analysis of structural importance 
and interdependencies of modules is also examined. A 
former Monte Carlo model [1] is used for the verification 
of the analytical model for a certain store length. This 
work is next step towards building knowledge base for 
eRHIC design by understanding finer failure characteris-
tics of the BPS. 

INTRODUCTION 
The Beam Permit System (BPS) of Relativistic Heavy 

Ion Collider (RHIC) plays a key role in safeguarding 
against the developing faults in the collider. The energy 
stored in RHIC is about 2MJ in particle beams and 70 MJ 
in the form of magnet currents. Any abnormality in the 
machine can cause an undesirable escape of this energy, 
which can result into machine damage. BPS senses the 
onset of failures by monitoring the health inputs from 
RHIC support systems like power supplies, cryogenics, 
beam loss monitors, access controls, quench detection, 
vacuum system etc. In case of anomaly, it directs this 
energy out the machine for safe disposal.  

RHIC reliability is directly dependent on the BPS relia-
bility. Thus it is essential for the BPS to be highly relia-
ble, being a safety critical system. Earlier a Monte Carlo 
(MC) model [1] was developed to quantify the probability 
of system level catastrophic events. This model simulated 
the behavior of modules with exponential competing 
failures. The module level failures were calculated by a 
quantitative fault tree analysis [2].  

The MC model simulated the failure characteristics of 
the BPS for a certain store length. Also as the simulation 

takes about 17 hours to run 1E9 iterations to generate 
reproducible results. It generated probabilities of system 
level failures for a particular store length. This paper is 
aimed towards developing a model that generates the 
system failure probabilities as a function of store length. 
We develop an analytical model of the BPS behavior 
using stochastic mathematics for this purpose.  

RHIC BEAM PERMIT SYSTEM 
The BPS has a modular structure that consists of 

33 Permit Modules (PM) and 4 Abort Kicker Modules 
(AKM). These modules are connected by three fiber-optic 
links that run 10MHz carrier links whose presence signi-
fies that the system is healthy. These links are called the 
Permit Link (PL), Blue Link (BL) and Yellow Link (YL). 
The PMs collect support systems’ health inputs from the 
field, called Permit Inputs (PI) and Quench Inputs (QI). 
The PM takes decision to drop the carrier, indicating a 
failure. When there is a magnet system failure, QI goes 
bad, and all the three links are dropped. In case of any 
other failure PI goes bad and only the permit link is 
dropped. The carrier drop propagates to all the modules, 
resulting respectively in magnet power +beam dump and 
a beam dump only. The AKMs send the beam dump sig-
nal to the beam abort system. They have redundancy 
incorporated. For more details of BPS refer to [3]. Fig-
ure 1 shows the BPS configuration. 

 

 

Figure 1: BPS connection diagram. 

SURVIVAL DISTRIBUTION 
The PMs and AKMs have been analysed for their fail-

ure modes in [2]. The top level failure of BPS depends 
upon the states of the PMs and AKMs. The calculation 
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showed that the top level failures of the modules have 
exponential survival distribution, which is characterized 
by a constant hazard function λ. Modules can have these 
failure states, False Beam Abort (F), a False Quench (M),  
Blind (B) and Dirty Dump (D), with failure rates as λF, 
λM, λB and λD resp. The PMs have {F, M, B} or {F, B} 
failure modes (green PM and grey PM resp. in Fig. 1). 
The AKMs have {F, M, D}. The inputs PI and QI are 
modelled as Poisson variable with exponential trigger rate 
as λPI and λQI. The initial state is a Good (G) state, where 
the module performs its intended function properly. The 
Markov diagrams for states is shown in Fig. 2.  

 

Figure 2: Markov diagrams 

A competing risks model with crude lifetimes [1, 4] is 
implemented here, where multiple risks compete with 
each other to cause a final failure. Mathematically if a 
module is subjected to j = {1, 2...k} risks, where ݆ ൌሼܯ,ܨ, ݆	ሽ for PMs, andܤ ൌ ሼܨ, ,ܤ  ሽ for AKMs. Theܦ
crude probability distribution function of risk j is given by ܨሺݐሻ ൌ 	 ∑ߣ ୀଵߣ 	ቀ1 െ	݁ିቀ∑ ఒೖసభ ቁ௧ቁ ; ݆	 ൌ ሼ1, 2. . , ݇ሽ 

 The marginal hazard rate for jth risk is λj and t is the 
time of observation or the beam store length. The survival 
function for the module undergoing competing risks is 
given by ்ܵሺݐሻ 	ൌ 	 ݁ିሺ∑ ఒೖసభ ሻ௧ 

At any given instant for a module, following expression 
is always true ்ܵሺݐሻ  ∑ ሻୀଵݐሺܨ ൌ 1                       (1) 

ANALYTICAL MODEL 
 The BPS has a ring configuration. A trigger arrival at a 

module initiates a carrier failure, which returns back to it 
after traversing all the modules in the system. The func-
tionality of BPS that affects the reliability is to abort the 
beams and dump the magnet power upon trigger arrival. 
We thus cut out this ring configuration to a linear struc-
ture, with inputs and outputs. The start of this structure is 
the master module [3] and the end is the AKMs that abort 
the beam. We approach the problem of developing math-

ematical equations for system states by looking at the 
states of each module in this system (Fig. 2). These states 
are of two kind: trigger state that initiates carrier failure 
(F, M) and passive state where a module waits in that state 
for a trigger (B, D, G). PI and QI are also the triggers to 
the system that initiate a carrier failure. For this reason we 
always use the failure density function p(t) (instantaneous 
probability) for triggering state and failure distribution 
function P(t) (probability that an event has occurred till 
now) for passive states to derive the expressions for the 
system level failures. For mth module, and jth triggering 
state where j= {F, M, PI, QI} ሺݐሻ ൌ ∑݁ିሺߣ ఒೖసభ ሻ௧ ;			 ܲሺݐሻ ൌ  ሻ௧ݐሺ  

For jth passive failure state where j= {B, D} 

ܲሺݐሻ ൌ ఒೕ∑ ఒೖసభ ሺ1 െ ݁ିሺ∑ ఒೖసభ ሻ௧ሻ;  
For passive good state  ܲீሺݐሻ ൌ ݁ିሺ∑ ఒೖసభ ሻ௧  
Similar to Eq. 1, for a module m, at any given instant  ܲீ ሺݐሻ ቀ ܲሺݐሻቁ ൌ 1 

Using above equations for modules’ states, we further 
develop the analytical equations for the system states. 
BPS modules are connected by multiple links and some of 
the modules do not have blue/yellow link connected to 
them. We thus simplify the structure of BPS (shown in 
Fig. 1) for different type of system states. Also because 
AKM exhibit redundancy, we treat them as a separate 
entity that receive the signals from rest of the BPS. Con-
sider the following configurations named I, II and III 
shown in Fig 3. Config. I shows the path of permit link 
triggers i.e. F and PI. Config. II shows the path of quench 
link triggers i.e. M and QI. Config. III shows the redun-
dant configuration of the AKMs that signals the beam 
abort system to dump the beams.  

 

 

Figure 3: BPS connection diagram 
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To develop equations for system states, we consider the 
probability of each module and one by one traverse the 
path of carrier failure to beam abort system output. Be-
cause of the complexity and length of the expressions, we 
avoid writing them in this paper. However we explain the 
strategy that we chose to develop them. Following are the 
system states that can result from combinations of module 
states. 
 ND: No Dump - No trigger generated in I, II and III 
 GD: Good Dump - Trigger PI arrives in I, or QI ar-

rives in II. No other triggers are generated anywhere 
else. Signal goes to the output of III, all modules in 
the forward path are in G state.  

 FD: False Beam Abort Dump - Trigger F arrives in I 
or III. No other triggers are generated anywhere else. 
Signal goes to the output of III, all modules in the 
forward path are in G state.  

 MD: False Magnet Quench Dump - Trigger M ar-
rives in II. No other triggers are generated anywhere 
else. Signal goes to the output of III, all modules in 
the forward path are in G state.  

 BD: Blind Dump - Trigger F/PI arrives in I, or M/QI 
arrives in II, or trigger F arrives in II. Signal does not 
to the outputs of III, at least one module in the for-
ward path is in B state.  

 DGD: Dirty Good Dump - Trigger PI arrives in I, or 
QI arrives in II. No other triggers are generated any-
where else. Signal goes the output of III, with at least 
one output passing through the D state of redundant 
AKMs.  

 DFD: Dirty False Beam Abort Dump - Trigger F ar-
rives in I or III. No other triggers are generated any-
where else. Signal goes the output of III, with at least 
one output passing through the D state of redundant 
AKMs.  

 DMD: Dirty False Magnet Quench Dump - Trigger 
M arrives in II. No other triggers are generated any-
where else. Signal goes the output of III, with at least 
one output passing through the D state of redundant 
AKMs.  

RESULTS 
The expressions are solved in Mathematica [5] and the 

time dependent probabilities functions for each scenario 
are calculated. These probabilities are verified with the 
help of Monte Carlo simulation reported in [1]. The fail-
ure rates of the modules are obtained from [2]. Some of 
the module failure rates are very small, especially B and 
D, which reflect at system level failures. Also due to the 
AKM redundancy, the DGD, DFD and DMD failure 
probabilities are much smaller. The Monte Carlo simula-
tion will need a large number of iterations to verify these 
results. Thus we first assign hypothetical failure rates to 
all the modules, with specific high failure rates for D 
mode to overcome the redundancy effect, and get substan-
tial number of DGD, DFD and DMD states for the verifi-
cation. Also we assume a hypothetical store length t = 
0.232 hours.  The Monte Carlo simulation is run for 2.4E9 

iterations and takes about 40 hrs to generate results. The 
probability is expressed as the number of system scenario 
generated / total no of system runs. Table 1 compares 
these hypothetical results from the Monte Carlo and the 
analytical model (7 digit precision) 

Table 1: Verification of the Analytical Model by Monte 
Carlo Results 
Abbr. Analytical Monte Carlo ேܲሺݐሻ 0.0149852 0.0149856 ܲீ ሺݐሻ 0.0621532 0.0621708 ிܲሺݐሻ 0.3105783 0.3105881 ெܲሺݐሻ 0.2494602 0.2494724 ܲሺݐሻ 0.2754812 0.2754846 ܲீሺݐሻ 0.0087564 0.0087507 ܲிሺݐሻ 0.0406134 0.0406134 ܲெሺݐሻ 0.0379719 0.0379183 
Total (from model) 1.0000000 1.0000000 

 
 The individual probabilities of each scenario from the 

analytical model is very close to the probabilities obtained 
from the Monte Carlo. The exact sum of all the probabili-
ties from the models is 1 as shown in the table. This veri-
fies that the relative probability expressions for a model 
considers all possible states in which the BPS can go.  

This establishes that the analytical model and the Mon-
te Carlo model both are verified. Next we put the actual 
failure rates in the analytical model and obtain the actual 
failure probabilities of the all the system states, with the 
store length equal to 6 hrs as RHIC average store length.  

 ேܲሺݐሻ ൌ 0.143573 ܲீ ሺݐሻ ൌ 0.856193 ிܲሺݐሻ ൌ 	0.000123713 ெܲሺݐሻ ൌ 0.000101377 ܲሺݐሻ ൌ ܧ	7.74551 െ 6 ܲீሺݐሻ ൌ ܧ	1.39145 െ 6 ܲிሺݐሻ ൌ ܧ	1.99945 െ 10 ܲெሺݐሻ ൌ ܧ	1.64755 െ 10 
 

 

Figure 4: Probability density for FD system failure. 
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Figures 4, 5 and 6 show the graphs for the probability 
densities of three important system level failures (FD, 
MD and BD) plotted as a function of store length. The 
probability values above are cumulative values and can be 
calculated as the area under the curve up to a certain store 
length. 

 

Figure 5: Probability density for MD system failure. 

 

Figure 6: Probability density for BD system failure. 

DISCUSSION 
There are certain advantages of deducing the mathe-

matical expressions for the probabilities of system level 
states. It facilitates quicker and easier analysis of the 
variation in system failure probabilities with change in 
component failure distributions or PI/QI trigger rates.  

We utilize this to analyze the importance and interde-
pendency of individual modules. The importance of the 
modules is evaluated as a combined effect of their failure 
rate magnitude and structural position. We analyze the 
three major system failure states, FD, MD and BD. The 
procedure is to increase the failure rates of F, M and B 
modes for each module one by one, and observing the 
change in the system failure probabilities, which is an 

indicator of the importance of the module. To summarize 
this comprehensive analysis, we can say that a module’s 
importance is highly dependent on its failure rate. Along-
side structural placement also plays a key role in deter-
mining the importance. The modules which are in the path 
of propagation of multiple failures have higher im-
portance. The nearer a module is to the abort system out-
put, higher is its importance. This is because probability 
of it being bypassed in failure propagation is small. The 
AKMs have lower importance due to the redundancy 
incorporated. Components that are major contributors to 
higher failure rate are discussed in [2].  

To assess the interdependency between the modules, 
the modules are ordered according to their importance.  
After this we increase the failure rate for the subsequent 
module pairs, and observe the increase the system level 
failure probabilities. For no dependency, the system fail-
ure should have the same order for importance of modules 
for pairs [6]. We do not find any inter-dependency in the 
modules. 

CONCLUSION 
We develop a mathematical model for understanding 

the fine failure characteristics of the BPS. After the verifi-
cation of this mathematical model through a MC model 
developed earlier, we are able to probe deeply into the 
failure probability distributions. This provides us with a 
faster way to analyze the system failures with change in 
system configuration. This model will provide a vision for 
the design of protection systems for the upcoming eRHIC 
project at BNL [7].  
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