
Design and Testbed Evaluation of RDMA-based

Middleware for High-performance Data Transfer

Applications

Yufei Ren, Tan Li, Dantong Yu*, Shudong Jin, Thomas Robertazzi
Email: yufei.ren@stonybrook.edu, tan.li@stonybrook.edu, dtyu@bnl.gov,

shujin@notes.cc.sunysb.edu, tom@ece.sunysb.edu

Stony Brook University, Stony Brook, New York, USA

*Brookhaven National Laboratory, Upton, New York, USA

Preprint submitted to Journal of Systems and Software May 9, 2013

Design and Testbed Evaluation of RDMA-based

Middleware for High-performance Data Transfer

Applications

Yufei Ren, Tan Li, Dantong Yu*, Shudong Jin, Thomas Robertazzi
Email: yufei.ren@stonybrook.edu, tan.li@stonybrook.edu, dtyu@bnl.gov,

shujin@notes.cc.sunysb.edu, tom@ece.sunysb.edu

Stony Brook University, Stony Brook, New York, USA

*Brookhaven National Laboratory, Upton, New York, USA

Abstract

Providing high-speed data transfer is vital to various data-intensive appli-
cations supported by data center networks. We design a middleware layer of
high-speed communication based on Remote Direct Memory Access (RDMA)
that serves as the common substrate to accelerate various data transfer tools,
such as FTP, HTTP, file copy, sync and remote file I/O. This middleware
offers better end-to-end bandwidth performance than the traditional TCP-
based alternatives, while it hides the heterogeneity of the underlying high-
speed architecture. This paper describes this middleware’s function modules,
including resource abstraction and task synchronization and scheduling, that
maximize the parallelism and performance of RDMA operations. For net-
works without RDMA hardware acceleration, we integrate Linux kernel op-
timization techniques to reduce data copy and processing in the middleware.
We provide a reference implementation of the popular file-transfer protocol
over this RDMA-based middleware layer, called RFTP. Our experimental re-
sults show that our RFTP outperforms several TCP-based FTP tools, such
as GridFTP, while it maintains very low CPU consumption on a variety of
data center platforms. Furthermore, those results confirm that our RFTP
tool achieves near line-speed performance in both LAN and WAN, and scales
consistently from 10Gbps Ethernet to 40Gbps Ethernet and InfiniBand en-
vironments.

Keywords: Distributed systems, Middleware, Network protocols, Remote

Preprint submitted to Journal of Systems and Software May 9, 2013

direct memory access

1. Introduction

Data-intensive applications, including high energy and nuclear physics,
astrophysics, climate modeling, nano-scale materials science, genomics, and
financing, are expected to generate exabytes of data over the coming years,
which must be transferred, visualized, and analyzed by geographically dis-
tributed teams of users. High-performance network capabilities must be
available to these users at the application level in a transparent, virtualized
manner. Moreover, the application users must have the capability to move
large datasets from local and remote locations across network environments
to their home institutions.

To support these data-intensive distributed applications, much work has
been done to accelerate data transfer over high-speed networks. There are
two main approaches. The first is protocol offload and hardware acceleration.
They are among the most desired techniques to achieve high data transfer
rate with marginal host resource consumption. The TCP/IP Offload Engine
(TOE) is one of the early examples of protocol offload to meet above require-
ments. The idea of TOE is to use a dedicated hardware module on a network
adapter card to execute the TCP/IP internal operations, such as segmenting,
framing, packet reassembling, timing, and congestion and flow control. Re-
search and implementation works Feng et al. (2005); Jang et al. (2008) have
shown that TOE is a cost-effective technique to free the host processors from
onerous TCP/IP protocol processing, and therefore to enhance the concur-
rency between communication and computation. Thereafter, Remote Direct
Memory Access (RDMA) was proposed as another hardware-based Protocol
Offload Engine (POE) realization to enable high-speed and low-latency data
transfer with much less CPU resource involvement, and its use has recently
become popular when converged Ethernet and data center bridge technolo-
gies were proposed and implemented. RDMA has the capability to move
bulk data from the source host memory directly to the remote host mem-
ory with kernel-bypass and zero-copy operations. Three different RDMA
implementations, InfiniBand (IB), Internet Wide Area Protocol (iWARP),
and RDMA over Converged Ethernet (RoCE), are available today to offload
RDMA protocol stack to different network architectures. Each of them has
different trade-offs between system performance, cost, compatibility, and im-
plementation complexity.

3

The second approach is software optimization and kernel pass techniques.
This approach is based on the observation that data-intensive applications
impose a formidable requirement on the CPU usage of hosts. In particular,
frequent data copy within the host memory space is expensive, but often
redundant and inefficient. For example, in a typical file transfer application,
file data is first read from disk drivers to the kernel memory, and then copied
to the user space. From then on, the data is sent via the socket interface,
and thus it is copied from the user space back to the kernel space, i.e., the
socket buffer before actual delivery to the network drivers. Various optimiza-
tion techniques have been proposed in modern computer systems to minimize
data copy. In fact, the same idea has been adopted by Web server perfor-
mance optimization Suzumura et al. (2009). In the current Linux systems,
on the other hand, we have seen more standard kernel primitives to facilitate
such performance optimization, for example, via the sendfile and splice

primitives Linux (2012).
In addition to achieving near line-speed data transfer, another challenge is

to integrate both the hardware acceleration and software optimization tech-
niques to support data transfer applications. For example, it is important
to manage a heterogeneity of underlying RDMA architectures as described
above for user applications. File Transfer Protocol (FTP) is one of the most
widely-used services to transfer bulk data. Existing data transfer applications
built on top of the native TCP/IP may not be able to fully utilize the available
bare-metal bandwidth of the next-generation high-speed networks, because
of the considerable load on host CPU caused by kernel-based TCP/IP real-
ization Bierbaum (2002); Yeh et al. (2002). Various RDMA implementations,
as introduced above, offer opportunities to enhance the performance of data
transfer service. However, despite of the emergence of industry standards
such as OpenFabrics Enterprise Distribution (OFED) OpenFabrics Alliance
(2012), it could be a distraction if the user applications have to directly
manage the underlying RDMA devices.

In this paper, we describe the design of a middleware software that pro-
vides RDMA capability Ren et al. (2012a). This middleware integrates net-
work access, memory management, and multitasking in its core design. We
address a number of issues related to its efficient implementation, for in-
stance, explicit buffer management and memory registration, and paralleliza-
tion of RDMA operations, that are vital to delivering the benefits of RDMA
to applications. Built on top of this middleware, an implementation and
experimental evaluation of a RDMA-based FTP software, RFTP, are de-

4

scribed. This application has been implemented by our team to exploit the
full capabilities of advanced RDMA mechanisms for ultra-high speed bulk
data transfer applications on U.S. Department of Energy, Energy Sciences
Network (ESnet) ESnet (2012a). Our contributions include the following:

• We design the core of our middleware software that offers data transfer
and access primitives. This core is designed to have a multi-threaded
architecture and facilitates multi-stream data transfer to exploit paral-
lelism of RDMA operations.

• We explore the most efficient operations among various options in
RDMA to implement high-speed data transfer over a variety of net-
works. We implement buffer management and task synchronization
mechanisms to allow maximum buffer reuse, reduce synchronization
expense, and minimize RDMA connection setup cost. Thus it serves
as a reliable base for the development of data transfer applications in
high-speed networks.

• We design an improved data transfer method in the middleware that
uses software-based kernel techniques to reduce data copy overhead.
This method is based on the sendfile and splice primitives to di-
rectly move data between file systems and network interfaces.

• We propose and implement a RDMA extension for the File Trans-
fer Protocol defined in RFC 959. We provide a comprehensive set
of evaluations to this RFTP on top of various RDMA implementa-
tions. The experiments are done on actual Linux clusters over a vari-
ety of testbed platforms and networks, including the world’s pioneering
100Gbps ultra-speed wide-area testbed. The experimental results vali-
date our middleware design.

The unique contributions of our work include the follows. First, we design
the first middleware layer to support RDMA-based data transfer. Second,
we integrate both hardware acceleration and software kernel optimization to
eliminate the host processing overhead for data-intensive applications. Third,
we report the first experimental results on the data transfer performance over
long-haul 100Gbps networks.

The rest of this paper is organized as follows. Background information
and related work are presented in Section II. Section III describes the design

5

of our middleware layer. The design of RFTP will be detailed in Section
IV. In Section V, we describe the hardware and software setup of our test
platforms and present the experiment results. A conclusion of this paper is
given in Section VI.

2. Background and Related Work

2.1. RDMA Architectures

The outstanding performance benefit of RDMA technology for data center
networks and high performance computing has attracted a great deal of inter-
ests in both academia and industry. The original RDMA architecture, known
as InfiniBand IBTA (2006), supports top-down RDMA message service with
its own layer-4 to layer-2 (and sometimes even layer-1) implementation of
the OSI protocol stack. It supplies the message passing service to appli-
cations with all the protocol processing operations offloaded to specialized
hardware. Unlike the best-effort frame delivery service in Ethernet, the link
layer of InfiniBand provides reliability and strong ordering in packet transfer
through its credit-based flow control and virtual lane mechanisms. However,
the extension of IB on WAN requires proprietary hardware to encapsulate
IB into Ethernet frame, which prevents it from being widely adopted.

Two other implementations, Internet Wide Area RDMA Protocol (iWARP)
and RDMA over Converged Ethernet (RoCE), were proposed to extend the
advantages of RDMA and InfiniBand to ubiquitous IP/Ethernet-based net-
works and integrate the traditional network structure with advanced RDMA
mechanisms. iWARP offloads the whole TCP/IP stack. The Direct Data
Placement (DDP) layer of the iWARP stack implements the zero-copy and
kernel-bypass, and transfers data in user-space buffer directly to remote ap-
plication memory. It enables RDMA to seamlessly run over ubiquitous IP
networks, and thus over today’s Internet. RoCE techniques allow the IB
transport protocol to run over Ethernet and offer the advantages of IB in the
ubiquitous Ethernet environment. Compared to iWARP, RoCE is a more
natural extension of message based transfer, and therefore, offers better effi-
ciency than iWARP.

One objective of our middleware is to support applications across all
aforementioned RDMA architectures. We build our system with the com-
mon Verbs Application Programming Interface (API) in OpenFabrics En-
terprise Distribution (OFED) OpenFabrics Alliance (2012), a unified, cross-
platform, transport-independent software stack for RDMA. The OFED offers

6

Figure 1: Applications over different RDMA protocols

a uniform application programming interface, which is known as native IB
verbs, to access various RDMA architectures. Applications mainly use the
libibverbs and librdmacm libraries. The layered structure, with applications
on top, is shown in Figure 1. The OFED software also offers several mid-
dleware packages, such as IP over IB The Internet Engineering Task Force
(IETF) (2006) and Sockets Direct Protocol (SDP) IBTA (2010), to allow
socket based applications running over RDMA devices without rewriting the
program. The User Direct Access Programming Library (uDAPL) DAT Col-
laborative (2002) also provides RDMA capabilities for applications, and has
been used in other studies Danalis et al. (2008a,b). Yet, these extensions
introduce additional overhead and performance penalties compared to the
native RDMA IB verbs interface Lai et al. (2009b).

2.2. RDMA Communication Models

RDMA provides two message transfer semantics: channel semantic and
memory semantic. The channel semantic, SEND/RECEIVE, is also referred
as two-sided operations in RDMA since the kernels at both the data source
and the sink are involved in the data transfer after a connection is estab-
lished Frey and Alonso (2009). The communication channel between the
source and the sink is modeled as a queue pair (QP). Each QP consists of
one send queue and one receive queue, and each queue represents one end of

7

the channel. Before an application uses RDMA for data transfer, the receiver
posts a work request to the receive queue, and then the sender can post a
work request to the send queue. Both the send and receive sides will get a
completion event after the data transfer is finished. On the other hand, the
memory semantic, or RDMA READ/WRITE, is regarded as one-sided oper-
ations. The receiver advertises its available registered memory to the sender,
including the key of memory region and the address, so that the sender can
directly RDMA WRITE data to the specified memory space at the receiver.

The use of RDMA two-sided operations can be found in Lai et al. (2009b).
Their FTP implementation is based on two-sided zero-copy operations in IB
networks. However, SEND/RECEIVE operations are originally proposed for
delivering control messages. A one-sided semantic, i.e., READ/WRITE is a
better choice for high-speed large data transfer due to its ability to decouple
data transfer from the host kernel. The authors of Rao et al. (2008); Yu et al.
(2008) have shown that even though there are some benefits of using RDMA
over LAN and WAN with short latency, there are challenges to achieve good
performance in WAN with a long latency due to the low performance issue
with RDMA READ operation and the lack of RDMA capability in handling
non-contiguous data. Based on prior studies Frey and Alonso (2009); Rao
et al. (2008); Yu et al. (2008), our middleware is designed to exploit the full
benefit of RDMA by using the RDMA WRITE operation due to its better
performance, and lower communication cost for synchronizing senders and
receivers.

2.3. OS Kernel Techniques

Another approach to reducing data copy and processing overhead is via
software optimization, i.e., techniques supported by modern operating system
kernels. The TCP/IP stack involves multiple data copy, which results in
high CPU consumption in high speed data transfer environment. One of
such examples is the sendfile primitive in Linux. It copies data between
one file descriptor and another, e.g., between a disk file descriptor and a
socket descriptor. Because this copying is done within the kernel, sendfile()
is more efficient than the combination of read and write, which would require
transferring data to and from the user space.

Another system call, splice further extends the functionality of send-
file(). It is a Linux-specific system call that moves data between a file de-
scriptor and a pipe without a round trip to user space. The use of splice()
requires the setup of a pipe buffer. A pipe buffer is an in-kernel memory

8

buffer that is transparent to the user space process. A user process can
splice the content of a source file, e.g., a socket, into this pipe buffer, then
splice the pipe buffer into the destination file descriptor, e.g., a file in the
disk systems.

3. Middleware Design

We design a middleware layer between applications and the RDMA net-
work transport layer, with the goal of making this layer a general architec-
ture convenient for developing various applications that can take advantage
of RDMA techniques to archive high bandwidth performance and low CPU
usage. It provides the necessary data communication and access functions,
and maximizes the parallelism of data processing. It considers features such
as zero-copy, memory region reuse, multi-stream parallel transfer, and multi-
threading. In this section, we first give an overview of the function and
components of this RDMA-based middleware layer, and then describe the
more specific design of each component. This section also briefly describes
the use of Linux kernel primitives (sendfile and splice) in optimizing non-
RDMA conventional TCP-based data transfer, which are integrated in our
middleware.

3.1. Overview of the Architecture

The middleware layer, as shown in Figure 2, implements a set of function
modules, and provides an abstraction of the computational resources includ-
ing main memory and network cards. The middleware layer contains two
primary sections: one data structure section, which is used to keep track of
data structure necessary for data communication and memory access, and one
thread pool, which implements all function modules related to data commu-
nication, synchronization, and task scheduling. Since registering and dereg-
istering Memory Regions (MRs) increase CPU load Frey and Alonso (2009),
our middleware pre-allocates and reuses data structures and threads to avoid
the overhead of resource allocation and release during program execution.

The middleware interacts with the host computer adapter (HCA) via an
array of queue pairs, which are supported by the OpenFabrics standard. A
separate queue, the completion queue (CQ), is also maintained by the same
standard. The threads in the middleware layer gain access to the queue pairs
and the completion queue via standard programming interface.

9

Threads Data Structure

CQ QP-1 QP-2 QP-n

Data Block List

Receive Control

Message List

Send Control

Message List

Remote MR

Info List

application

system

 Queue Pair List

Memory

Sender

CE dispatcher

CE slave-n

...

CE slave-2

CE slave-1

Logger

Hardware

HCA

Figure 2: Multi-threaded architecture and data structure of RDMA-based middleware

10

3.2. Resources Abstraction and Management

The middleware accesses the local and remote memory by maintaining
several data block/message lists. This data structure is maintained and up-
dated by the threads, according to certain communication semantics to be
described later. This data structure contains:

• A data block is used to contain user payload data, and it is temporarily
kept in the data block list before the actual delivery. A user can copy
data into the block or extract data from it.

• The send and receive control message lists are used to keep outgoing
and incoming control messages, respectively.

• The remote MR information is used to store the memory region in-
formation such as key, logical buffer address, and maximum length of
acceptable payload at the remote side of the communication.

• A queue pair list is maintained to keep track of the status of the ac-
tual queue pairs implemented in the underlying OpenFabrics standard
software.

These resource abstractions are managed and maintained by a pool of
threads that implement the communication semantics. There is one sender
thread, which posts control message tasks or payload tasks into the send
queue of the queue pairs. Once a RDMA WRITE operation is completed,
a completion event (CE) is generated. A master-slave thread pool handles
various types of completion events as follows. The master, i.e., the CE dis-
patcher thread, on the detection of a completion event, encapsulates this
event into a task structure and dispatch it to a CE slave. This CE slave then
parses the task to determine the appropriate action, for example, updating
the status of a data block. Finally, a logger thread checks the status of on-
going data transfers, for example, whether the transfer is finished or aborted
for any reason. The logger also monitors and reports the performance of data
transfer.

3.3. Communication Semantics

As described earlier, our middleware layer uses the channel semantic to
exchange control messages and the memory semantic to deliver user data
payload for low latency and high performance. A dedicated queue pair is

11

used to exchange control messages between two communication parties, and
a channel semantic is adopted for this communication. For data payload
transfer, we allocate, possibly multiple, additional queue pairs, the number
of which is user-configurable. Data packets are exchanged using these queue
pairs according to the memory semantic.

There are four categories of control messages to support multi-task, par-
allel reliable data transfer. We describe each of them as follows.

• Session identifier negotiation: Before the data transfer, the mid-
dleware at the client side and server side will choose a unique session
identifier for each transfer task. For example, when there are multi-
ple files to be transferred simultaneously in one application, each file
should be assigned a session identifier for both sides to label all data
packets for transferring this particular file.

• Number of data connections negotiation: The middleware is de-
signed to support multiple parallel streams for a single data transfer.
The client and server will exchange messages to agree on and establish
a number of parallel connections.

• Memory region block request and response: The memory seman-
tic requires one-sided operations, with which the active side acquires
the memory region information of the passive remote side prior to ac-
tual data transportation. Before the client issues a RDMA WRITE,
for example, it has to compose the sending task information such as
the key of the remote memory region, the address of remote memory
block, and the maximum allowed length of the remote block. When the
server receives this memory region request, it searches for an available
memory region for the client and sends back its information.

For performance consideration, pre-request and batch-mode are used
for the control message channel. “Pre-request” means the data source
requests free memory regions before an actual data transfer task, and
thus the data source could send out the data immediately without the
time-consuming memory region information exchange. “Batch-mode’
means the data sink feedbacks a list of free memory regions available
at the time with a single response, and this reduces the communication
overhead due to request control messages.

12

• RDMA completion notification: Since the middleware transfers
user payload using one-sided RDMA WRITE, the data sink is not
aware of the completion of one data block transfer. Therefore, the data
source should issue a notification to the data sink. This notification
includes the block address, with which the data sink can locate the
data block with user payload.

3.4. Parallel and Pipelined Data Transfer

The middleware layer implements an end-to-end, connection-oriented data
transfer. It attempts to maximize the data transfer performance by exploit-
ing parallelism of RDMA operations. We achieve this goal via two ways.
First, we allow multiple active data streams and many data blocks simultane-
ously posted to queue pairs. Second, each single data streams uses execution
pipeline, i.e., multiple data blocks of the stream can be posted before any of
them is acknowledged.

In particular, the implementation of multiple active streams facilitates
parallel data transfer between a single pair of data source and sink. For
instance, a single file can be partitioned (or striped), and each partition
can be delivered using a single data channel, i.e., a stream. This imple-
mentation will potentially increase the data transfer rate for data-intensive
applications. With this multi-stream transfer, many data blocks could be
transferred through queue pairs simultaneously. So it is possible that some
of them arrive at the data sink out-of-order. There is one minor problem
related to this multi-stream data transfer. For example, magnetic disk write
performance would deteriorate during random access. To solve this problem,
our middleware contains a plug-in module which gathers out-of-order blocks
temporarily, until they can be delivered to the applications (for example, the
disk writer here) in a sequential order.

To guarantee the orderly execution of multiple parallel RDMA operations,
we need to carefully maintain the data block list. For this purpose, we
associate each block with a status field, and this field is updated according
to different operations as shown in Figure 3.

To illustrate this diagram, we consider the following example of disk-to-
disk file copy. Initially, blocks at both the data source and sink are in the
“free” state.

At the data source, one consumer of free blocks, the disk reader, takes
one “free” data block from the data block list. The disk reader loads payload
into the data block, then marks this block as in the “sending” state. The

13

Free

Offloading

Waiting

Sending

Data Sent

Successful
Completed

Data Loaded

Remote
Request

Completion
Notification

Data Offloaded

Figure 3: The data block state transition diagram

sender thread sends out this block using a RDMA WRITE operation. As we
described, the RDMA operation is asynchronous. After the RDMA WRITE
task is posted to the sending queue, the state of this block becomes “waiting”.
When the completion event (CE) corresponding to this task is generated, the
CE dispatcher captures this event, composes this as a task, and forwards it
to a CE slave thread. This CE slave thread checks this block and marks it
as “free” again if the send task is finished successfully.

At the data sink, once the application receives a free block request, it
searches for one data block in “free” state. It finds out the attributes of
this block, such as the key of the memory region, its virtual address, and its
maximum payload length. Then it packs this information into a free block
response and sends it to the data source. This block is marked as “waiting”
state. At this point, the data sink is waiting for the remote side to fill this
block using RDMA one-sided operation. After the data sink receives the
“finish notification” event, it marks this block as “offloading” state. The
content of the data block is passed to the data consumer, i.e., a disk writer.
Once the writer offloads all the content in the data block, it marks this block
as “free” again.

3.5. Integration of Software Kernel-bypass Techniques

Our middleware is designed to also support the conventional TCP/IP-
based data transfer, for applications without RDMA network configurations.
This is also an important feature of our middleware, as it provides good
compatibility. However, the conventional TCP/IP protocol stack may not be
efficient, especially in applications that require ultra-high speed data transfer.
For this reason, we integrate some Linux based kernel optimization techniques
to reduce the overhead due to excessive data copy.

14

Various versions of Linux systems implement sendfile() and splice(), two
system calls that provide the capability to reduce data copy between file de-
scriptors. The sendfile() copies data between one file descriptor and another.
Because this copy is done within the kernel, sendfile() is more efficient than
the combination of read() and write(), which would require transferring data
to and from user space. The splice() moves data between two file descriptors
without copying between kernel space and user space. Once the application
calls splice to move data from a file descriptor which reference a disk file to
a pipe, the kernel loads data into the pages associated with the pipe directly
without copying data into the user space.

In our middleware design, we use these two system calls to reduce the
data copy between a disk file descriptor and a socket descriptor. We use
the sendfile() for the sender, who wishes to deliver data from a disk file to a
socket. The use of sendfile() is rather straightforward. In addition to that,
we consider the TCP CORK option in the sendfile() method. TCP CORK is
a parameter for throughput optimization. If set, kernel wont send out partial
frames before a time ceiling (200 millisecond). The reason we use this option
is the follows. The sendfile() takes the higher CPU consumption without
TCP CORK than with it. Kernel generates many partial frames in the sender
side, and this results in more system calls, and the CPU consumption is high.
In our middleware design, we also optimize the data copy at the receiver side
of a data transfer. The splice() system is used for this purpose. For this
system call, we need to explicitly create a pipe between a socket descriptor
and a disk file descriptor.

4. Implementation of RFTP

The design of our middleware layer facilitates the development of various
distributed applications that rely on RDMA techniques for optimal data
transfer performance. In this section, we show one example, the design and
implementation of our RDMA-based FTP service, RFTP. The section starts
with the overall layout of the RFTP application supported by the middleware
layer. We then discuss our RDMA extensions to the standard FTP protocol,
and the workflow in RFTP.

4.1. RFTP Modules

The RFTP has a layered architecture as shown in Figure 4. This RFTP
application is extended from the traditional FTP protocol. We support two

15

Hardware

Operating

System

Middleware

Application

RDMA Middleware

RFTP

Disk I/O Module

InfiniBand iWARP RoCE

Verbs
Communication

manager

SSD Magnetic

Disk Driver

API

API
Buffer

Manage

I/O

Scheduling

Connection

Manage

Event

Dispatch

Task

Scheduling
Direct I/O

API

TCP/IP
stack

read()

write()

Zero Copy

sendfile()

splice()

TCP/IP IO RDMA IO File System IO

Figure 4: Modules in RFTP

modes: one is solely based on the conventional TCP/IP stack with optimized
socket operations, i.e., sendfile() and splice() as we described, and the other
is based on our RDMA middleware layer as our extension to the standard
FTP protocol. The middleware layer itself consists of several modules, such
as buffer management and connection management.

This RDMA middleware is in turn supported by low layer protocols.
It uses IB verbs through the InfiniBand, RoCE, and iWARP provided by
InfiniBand Verbs library (libibverbs) and RDMA communication manager
(librdmacm). Thus, the middleware layer hides all the specifics related to
the hardware to provide the desirable transparency, while the applications,
for example, FTP, do not have to be aware of those specifics.

During the development of RFTP, we also notice that disk access is critical
to the performance of the applications. Thus in our RFTP implementation,
we design an additional disk I/O module based on direct I/O operations.
This module includes an I/O scheduler, which is responsible for supporting
disk multiple readers/writers. The direct I/O access is particularly efficient
for solid-state disks (SSD).

4.2. RDMA extension to standard FTP protocol

The standard FTP protocol implements a set of commands that are ex-
changed between the client and server entities. A control channel is used for
transferring these commands, while actually file content is transmitted over
another data channel.

16

Table 1: RDMA-extension to standard FTP protocol

Command Function and Procedure
RADR RDMA address information exchange

RSTR

1) Establish RDMA data transfer channel;
2) Send data from client to server using RDMA
operations, and store file at server side;
3) Tear down RDMA data transfer channel.

RRTR

1) Establish RDMA data transfer channel;
2) Get data from server to client using RDMA
operations, and store the file at client side;
3) Tear down the RDMA data transfer channel

To support data transfer over our RDMA middleware, we extend the set
of commands in FTP protocol. Table 1 lists the RDMA-extension FTP com-
mands, RADR, RSTR, and RRTR, to support RDMA-enabled data transfer.
They correspond to the PORT, STOR, and RETR commands in RFC 959 -
File Transfer Protocol. These extensions explicitly request the remote side
to adopt RDMA-specific steps for data transfer and therefore negotiate par-
ticular RDMA capabilities and ensure the compatibility between sender and
receiver. If, however, when the conventional commands of FTP are used, we
resort to the TCP/IP based mode with kernel bypass techniques.

We also provide user commands, rget and rput, which are extensions to
the original FTP commands. We provide a command line parameter to allow
users to choose between two modes, i.e., the traditional FTP service that is
built on top of the socket interface and the RFTP service that is built on
top of our middleware. The advantages of this extension instead of rewriting
the entire FTP service include, 1) it is convenient to compare different data
transfer mechanisms, 2) it is relatively easier to make FTP service available
on these RDMA architectures, and 3) user can easily choose to use the one
that is fit with their data transfer environment.

4.3. Workflow in RFTP

Figure 5 describes the workflow of RFTP, which is similar to that of stan-
dard FTP service. We add three RDMA-extension commands for the control
message carried in the FTP communication channel. When these extended
commands are exchanged, a RDMA control message channel and multiple
RDMA data channels are initiated for RDMA data movement between the

17

Server start listening, and
wait for new connection

Server uses the
established FTP
communication channel to
transfer COMMANDs and
REPLIES information with
Client

fork()

File
System

File
System

Client open new
connection, then login to
the server

FTP communication channel

USER, PASS,
RADR,

RSTR, RRTR

RDMA control channel

RDMA data channel

Control Message

Data Blocks

Figure 5: Workflow chart of RFTP

sender and receiver. For each of such data channels, both the sender and
receiver will allocate and preregister data blocks. These data blocks are
initially organized in a data block list.

We use an example of rput in Figure 6 to illustrate the implementation
of user-level commands. The figure shows the interaction between the client
and server when uploading a file to the server. Note we take advantage
of one-sided RDMA operations for fast data transfer and two-sided RDMA
operations for related control message exchange. The client first sends a re-
quest to the server to get a session identifier for the file to be transferred.
The server, upon receiving the request, assigns a global session identifier for
this file and sends it back to the client. All the data packages contain this
session identifier and sequence numbers. The memory region addresses infor-
mation and RDMA keys are sent back to the client in the reply message by
the server side per each remote memory region request. Afterward, the client
starts a set of RDMA WRITE operations to deliver data to the registered
memory space. The data delivery, once completed, is followed by a control
message to signal its completion for each RDMA WRITE operation. The
server, upon receiving the completion control message, then moves the data
to the file system. This memory region will be available after the disk write
is completed, and the memory region information is sent back to the client
for the next round of data transfer. This client/server interaction will repeat

18

&OLHQW 6HUYHU
0HPRU\�5HJLRQ�
%ORFN�UHTXHVW 3UHSDUH�PHPRU\�

UHJLRQ�IRU�5'0$�
:5,7(�RSHUDWLRQ

0HPRU\�5HJLRQ�
%ORFN�UHVSRQVH

5'0$�:5,7(
V

5'0$�:5,7(�
FRPSOHWLRQ�QRWLILFDWLRQ

0RYH�WKH�GDWD�
IURP�PHPRU\�WR�
ILOH�V\VWHP

&RQWLQXH�WR�VHQG�GDWD�
�ZLWK�XSGDWHG�0HPRU\�
5HJLRQ�DGGUHVV�LQIR�

5'0$�:5,7(
V

Figure 6: Implementation of rput with RDMA WRITE

until the entire file is delivered.

5. Experimental Results

To validate our middleware and RFTP application built on top of this
middleware, we conduct a comprehensive experimental study on real test
platforms. We first describe the test setup with different network configu-
rations, including RDMA architectures and IP networks. Then we compare
the performance of RFTP with Netkit FTP Holland (1998), a standard FTP
implementation over socket, and GridFTP, a high performance data trans-
fer protocol widely used in data-intensive science applications. We use our
results and a demo at the 2011 Supercomputing conference, based on the IP-
based 100Gbps Advanced Networking Initiative (ANI) testbed, to conclude
this section.

In our experiments, we use long data sessions, since we target data-
intensive applications and bulk data transfer scenarios. Sophisticated sta-
tistical performance analysis based on many experimental runs are valuable,
but very difficult due to time constraint. Fortunately, as we will show, for

19

large data transfers, the performance are relatively stable. We should ac-
knowledge that, for short data sessions which although are not our focus, it
is more important to conduct comprehensive statistical analysis.

5.1. RDMA Networks Setup

We consider both memory-to-memory and memory-to-disk data transfer
between local and remote hosts. For memory-to-memory data transfer, we
generate and transfer data between client memory and server memory. In
this configuration, our focus is to evaluate the network bandwidth perfor-
mance and protocol offload efficacy, but not the file system performance. For
modern data center applications, as suggested in Lai et al. (2009b), it is a
reasonable simplification to avoid the disk I/O bottleneck. Many of these ap-
plications usually employ solid state disk arrays or distributed file systems,
such as the Lustre file systems Oracle (2011), to achieve high speed I/O per-
formance. In our experiments, the bandwidth performance only counts the
pure user payload without all the control messages. For the memory-to-disk
data transfer experiments, we set up a disk system at the receiving server
side using Fusion-io’s solid state disk arrays.

For host connectivity, we consider a variety of networks. For example,
LAN connectivity is frequently used in data center applications, while WAN
connectivity is required in the ANI testbed where our RFTP tool will be
eventually deployed for use. The details of our three configurations are as
follows.

5.1.1. High-bandwidth low-latency LANs

In order to provide an application-level performance test over different
RDMA architectures, we setup two local-area test platforms. The first test
platform is described in Figure 7. We have the client and server hosts set in
the Brookhaven National Laboratory, and the propagation delay between
them is less than 0.1ms. The detailed configurations for the nodes and
switches are listed in Table 2. Each host is equipped with a 40Gbps IB HCA
and a 10Gbps iWARP HCA. The IB Mellanox RNIC we use can support
both IB and RoCE.

The second test platform contains a 10Gbps link, between two hosts lo-
cated in University of Michigan, Ann Arbor. We use this platform to evaluate
and compare the performance of our RFTP and GridFTP. In order to max-
imize the performance of GridFTP over 10Gbps links, we tried several TCP

20

Host

IB fabric switch
Host

Test platform for IB

Host

Ethernet fabric switch

Host

Test platform for iWARP

Host Host

Test platform for RoCE

Figure 7: Test platform with different RDMA implementations in LAN

Table 2: LAN cluster configuration

Hardware

24 Intel(R) Xeon(R) CPU X5660 @ 2.80GHz cores
64GB memory

12288KB L3 cache
iWARP HCA: NetEffect NE020 10Gb Adapter

IB HCA: Mellanox MT26428 ConnectX VPI PCIe IB QDR

Software
RHEL 5 with kernel-2.6.18

OFED Version 1.5.2
Netkit FTP version 0.17

Network
Mellanox MTS 3600 InfiniBand switch
Juniper EX2500 Ethernet fabric switch

21

Figure 8: Host connectivity with long haul-link, for MAN performance test

parameter tunings, including setting the MTU at 9000, i.e., jumbo frames, ac-
cording to ESnet (2012b). The extended block mode (MODE E) of GridFTP
Globus (2012) is enabled throughout the test for high performance.

5.1.2. High-bandwidth medium-latency MAN

We set up a communication path in the New York metropolitan area.
We have two hosts located inside the Brookhaven National Laboratory, Long
Island. These two hosts are connected by a long distance SONET link that
goes through New York city, as shown in Figure 8. This infrastructure is also
part of the Energy Science Network (ESnet) ESnet (2012a). The capacity of
this link is 40Gbps in each direction, with a minimum round trip time (RTT)
of 3.6ms.

5.1.3. High-bandwidth high-latency WAN

For the long-haul link for WAN test, we utilize the path between Univer-
sity of Michigan, Ann Arbor, and Brookhaven National Lab, which traverses
through the ESnet and UltraLight networks UltraLight (2012), as shown in
Figure 9. The capacity of this link is 10Gbps, with a minimum RTT of 31ms.

5.2. Experimental Results over LAN

In this set of experiments, we use memory-to-memory data transfer for
the baseline results. We compare the performance between RFTP and Netkit
FTP, and between RFTP and GridFTP.

22

Figure 9: Host connectivity with long haul-link, for WAN performance test

 0

 2

 4

 6

 8

 10

 12

 1 2 4 8 16 32

B
an

dw
id

th
(G

bp
s)

Number of clients

Bandwidth comparsion - iWARP

RFTP
Netkit FTP

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 4 8 16 32

C
P

U
 u

til
iz

at
io

n(
%

)

Number of clients

CPU utilization comparsion - iWARP

RFTP server
RFTP client

Netkit FTP server
Netkit FTP client

Figure 10: Bandwidth and CPU utilization comparison between RFTP and Netkit FTP
over iWARP in LAN

5.2.1. Bandwidth and CPU usage of RFTP and Netkit FTP

We consider the aggregate bandwidth and CPU utilization as the main
performance metric, and the performance numbers are obtained as follows.
For both Netkit FTP and RFTP, multiple clients are initiated and connected
to the server concurrently, and then each client process transfers 100GB of
data to the server memory using the put/rput command. The server always
listens to potential incoming client connection requests, and on each connec-
tion request, forks a child process to handle data transfer. The aggregate
bandwidth is obtained by monitoring the entire transfer period of all con-
nections, and then we take the average bandwidth during the time period.
We use “nmon” tool Griffiths (2006) to obtain the CPU utilization of the
application. Note, we have 24 cores in our hosts, and therefore the total
CPU utilization can be up to 24× 100%.

Based on performance metrics described above, we try to evaluate the
performance improvement of RFTP over Netkit FTP. We define the following

23

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32

B
an

dw
id

th
(G

bp
s)

Number of clients

Bandwidth comparsion - InfiniBand

RFTP
Netkit FTP

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 4 8 16 32

C
P

U
 u

til
iz

at
io

n(
%

)

Number of clients

CPU utilization comparison - InfiniBand

RFTP server
RFTP client

Netkit FTP server
Netkit FTP client

Figure 11: Bandwidth and CPU utilization comparison between RFTP and Netkit FTP
over InfiniBand in LAN

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32

B
an

dw
id

th
(G

bp
s)

Number of clients

Bandwidth comparsion - RoCE

RFTP
Netkit FTP

 0

 100

 200

 300

 400

 500

 600

 1 2 4 8 16 32

C
P

U
 u

til
iz

at
io

n(
%

)

Number of clients

CPU utilization comparison - RoCE

RFTP server
RFTP client

Netkit FTP server
Netkit FTP client

Figure 12: Bandwidth and CPU utilization comparison between RFTP and Netkit FTP
over RoCE in LAN

24

Table 3: Bandwidth and CPU utilization ratio with single client

iWARP InfiniBand RoCE
α 1.492 2.468 3.074

βserver 1.168% 1.435% 1.774%
βclient 8.906% 15.802% 19.251%

performance ratios:

Bandwidth ratio of single client α =

Bandwidth of RFTP with single client

Bandwidth of Netkit FTP with single client

(1)

CPU utilization ratio of single host β =

CPU utilization of RFTP with single host

CPU utilization of Netkit FTP with single host

(2)

In addition, when calculating CPU utilization ratio, we consider client
and server hosts separately. For instance, βclient is calculated by comparing
the CPU utilization of a single client running with RFTP, and a single client
running with Netkit FTP.

Figures 10–12 show the aggregate bandwidth and CPU utilization per-
formance of RFTP and Netkit FTP over iWARP, InfiniBand, and RoCE in
LAN, respectively, with different numbers of concurrent clients. We have the
following observations:

• RFTP saturates the bare metal bandwidth with only two concurrent
clients, compared with 4-8 clients needed by Netkit FTP. To avoid the
raw bandwidth limit of the physical channel, we calculate the ratios of
aggregate bandwidth and CPU utilization performance when there is
only one client in Table 3. We can see that the bandwidth increases
by 49.2% on iWARP, 146.8% on InfiniBand, and 207.4% on RoCE,
respectively. With RoCE, the advantages of RFTP is more obvious
than with IB, because the RoCE test case uses back-to-back connection
while the IB HCAs are connected via an IB switch.

25

• All three RDMA architectures greatly improve the bandwidth per-
formance with extremely low CPU consumption. All the protocol-
intensive operations are offloaded to network adapters. Our results
show the advantage of the POE technique clearly.

• By taking advantage of low-latency RDMA operations and an efficient
middleware design, RFTP significantly improves the bandwidth perfor-
mance. On the other hand, TCP/IP stack is known as high overhead
protocol for high-speed data transfer applications. At the sender side,
the application data must be copied into the socket buffer in the kernel
space before sending, and vice versa at the receiver side. The un-
necessary intermediate buffering and associated context switching dra-
matically increase CPU processing overhead, and slow down the data
transfer process. The figures above clearly shows that the high CPU
load is due to complicated protocol processing. In addition, due to the
overhead from flow and congestion control of TCP, Netkit FTP cannot
fill the available bandwidth when there is only a couple of clients.

• The bandwidth and CPU load performance do not strictly increase with
the number of clients. The reason is that, during our experiments, there
were other active processes in the hosts, competing against our test pro-
cesses. Those processes introduced noise to our CPU load performance.
Nevertheless, we notice that the CPU consumption of Netkit FTP in-
creases faster than that of RFTP with the increase of the number of
clients. This underscores again the advantage of POE in lowering CPU
load.

• As shown in Table III, iWARP uses the least CPU resources since it
runs over a 10Gbps link while both IB and RoCE run over 40Gbps
network. The raw bandwidth of iWARP is much lower than that of IB
and RoCE. This fact leads to the relatively lower operation cost of the
middleware layer over iWARP.

• Since we implement one-sided RDMA in the middleware, much of the
overhead and complexity is left to the client side in our test. The
client uses RDMA WRITE for the rput (RDMA upload) operation,
and therefore, the CPU usage of the server side is lower than that of
the client side.

26

Table 4: Statistical analysis of performance

min 25th mean median 75th max

RFTP over
iWARP

Bandwidth 9.430 9.534 9.531 9.534 9.535 9.535
Client CPU 8.953 10.159 11.748 11.112 12.759 18.341
Server CPU 4.671 6.059 7.845 7.718 9.506 11.812

Netkit FTP
over iWARP

Bandwidth 8.925 8.948 8.961 8.957 8.977 9.012
Client CPU 27.100 27.306 27.515 27.406 27.661 28.350
Server CPU 99.944 99.983 99.991 99.994 100.000 100.006

RFTP over
InfiniBand

Bandwidth 24.500 24.538 24.536 24.5398 24.540 24.541
Client CPU 95.983 99.800 106.199 102.967 113.983 121.233
Server CPU 37.333 37.833 38.267 38.317 38.600 40

Netkit FTP
over
InfiniBand

Bandwidth 13.178 13.244 13.282 13.280 13.340 13.406
Client CPU 99.8 99.867 99.878 99.875 99.891 99.909
Server CPU 33.77 34.09 34.550 34.32 35 36.42

One question regarding our test results is whether they are statistically
representative of the applications under evaluation. For that purpose, we con-
ducted a large set of independent tests as before. Since the original testbed
was no longer available, and we had to run the tests on a new testbed with
more powerful PCI Gen 2 hosts, and both 10Gbps iWARP and 40Gbps In-
finiBand links. We performed the test 35 times to get the characteristic
performance numbers, such as the mean values, the median values, the 25th
and 75th percentile values, and the minimum and maximum values. Each
time we let one process transfer 100GB data from the local /dev/zero to the
remote /dev/null at another host. We show the statistical results in Table 4.
We can see that the performance numbers, including both bandwidth and
client/server CPU times, are all within tight ranges. Thus, we conclude that
the performance advantages of RFTP is consistent.

5.2.2. Bandwidth and CPU usage of RFTP and GridFTP

GridFTP is a popular tool for data transfer in high-performance com-
puting environment. As RFTP, GridFTP allows the use of multiple parallel
connections to maximize bandwidth utilization. In this experiment, we com-
pare the performance of GridFTP and RFTP, in terms of both aggregate
bandwidth and CPU consumption.

Figure 13 shows the performance comparison between GridFTP and RFTP
in the LAN environment with 10Gbps iWARP connection. We run RFTP

27

 0

 200

 400

 600

 800

 1000

 1200

32 64 128 256 512 1024 2048

B
an

dw
id

th
 (

M
B

/s
)

Block Size (KBytes)

Bandwidth comparsion with 1 stream

GridFTP
RFTP

 0

 200

 400

 600

 800

 1000

 1200

32 64 128 256 512 1024 2048

B
an

dw
id

th
 (

M
B

/s
)

Block Size (KBytes)

Bandwidth comparsion with 8 streams

GridFTP
RFTP

Figure 13: Bandwidth comparison between GridFTP and RFTP over iWARP in LAN

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

32 64 128 256 512 1024 2048

C
P

U
 u

til
iz

at
io

n
(%

)

Block Size (KBytes)

CPU utilization comparsion with 1 stream

GridFTP-Client
GridFTP-Server

RFTP-Client
RFTP-Server

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

32 64 128 256 512 1024 2048

C
P

U
 u

til
iz

at
io

n
(%

)

Block Size (KBytes)

CPU utilization comparsion with 8 streams

GridFTP-Client
GridFTP-Server

RFTP-Client
RFTP-Server

Figure 14: CPU utilization comparison between GridFTP and RFTP over iWARP in LAN

28

 0

 1000

 2000

 3000

 4000

 5000

1 8 16 64 128 256

B
an

dw
id

th
 (

M
B

/s
)

IO Depth

RFTP Memory to Memory Bandwidth

8k
32k

128k
512k

1024k
2048k

Figure 15: RFTP memory to memory bandwidth in MAN

with one stream and eight streams. We also test GridFTP with a single
TCP connection and eight parallel connections. In terms of bandwidth per-
formance, RFTP consistently outperforms GridFTP in this setting. Notice
that with RFTP, the bandwidth is almost fully utilized when block size is
large enough, for example, 128K bytes. For CPU utilization, Figure 14 shows,
with a small block size, both RFTP client and server run at higher CPU
utilization, due to the higher overhead for handling more control messages
and completion events. Because our middleware has a multi-thread design,
RFTP takes advantage of multi-core CPU resources efficiently. When the
block size is large enough, we observe that the CPU consumption of RFTP
drops drastically, as much of the protocol processing and data copy has been
offloaded. On the other hand, GridFTP, in particular its server, requires
almost a constant CPU consumption even when block size is large.

We note that performance evaluation of GridFTP alone with InfiniBand
was done in another study Subramoni et al. (2010). Our work is different in
that we consider another RDMA architecture, and we compare the perfor-
mance of GridFTP to our application.

5.3. Experiment Results over MAN

In this set of experiments, we use both memory-to-memory and memory-
to-disk data transfer to show the effectiveness of our design.

The first experiment evaluates the network performance of our middle-
ware layer and RFTP without bandwidth limitation from the disks. At the
data source, the disk I/O module loads data from the special file /dev/zero,
and simply copies data into /dev/null at the data sink. The application’s

29

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 8 16 64 128 256

C
P

U
 u

til
iz

at
io

n
(%

)

IO Depth

RFTP Memory to Memory Client CPU Utilization

8k
32k

128k
512k

1024k
2048k

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 8 16 64 128 256

C
P

U
 u

til
iz

at
io

n
(%

)

IO Depth

RFTP Memory to Memory Server CPU Utilization

8k
32k

128k
512k

1024k
2048k

Figure 16: CPU utilization comparison of RFTP with different block size and I/O depth
in MAN

throughput performance is calculated by the logging thread in the middle-
ware layer.

We configure with only one data stream in this experiment to check the
impact of I/O depth and data block size of each trunk. Figure 15 shows
the bandwidth of the RFTP payload. The throughput of the middleware
increases as the size of each data block increases. However, the throughput
hits the hardware limit offered by the network at certain block size, and
further increasing the size does not improve the bandwidth performance. On
our testbed, we have found that 2048 kilobytes block size results in the same
throughput as 1024 KB’s when the RDMA I/O queue depth is greater than
16.

Our middleware design supports multiple packets in flight in each transfer
pipeline. It means the RFTP application can post many RDMA tasks into
the send queue simultaneously. With the same block size, the larger I/O
depth usually means a better performance.

As shown in Figure 16, when the I/O depth is low and the block size is
small, .e.g., less than 1024 kilobytes, the CPU utilization remains mostly a
constant. This is because the network bandwidth is under-utilized, as shown
in the bandwidth figure. However, when the I/O depth is larger than 16
and the block size is greater than 1024 kilobytes, the bandwidth reaches its
maximum. At this point, the use of large block size leads to lower CPU
consumption. For example, the CPU usage at 2048-kilobytes block size is
half that at 1024-kilobytes block size.

In our second experiment, data will be sent from /dev/zero at the data
source to a Fusion-io disk set, which contains eight physical solid state disks
at the data sink. The experiment launches two concurrent processes, each

30

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

1 8 16 64 128 256

B
an

dw
id

th
 (

M
B

/s
)

IO Depth

RFTP Memory to Disk Bandwidth Comparison

8k
32k

128k
512k

1024k
2048k

Figure 17: RFTP Memory to Disk Bandwidth comparison in MAN

responsible for delivering four files into four independent disks. As shown in
Figure 17, the performance of RFTP in this case is similar to the performance
in the previous memory-to-memory experiment when the block size is smaller
than 128 kilobytes. When the block size is small, the disks are not the
bottleneck. When the block size is larger, the disk bandwidth becomes the
bottleneck. We find the RFTP’s performance is close to the peak disk rate
that is measured with local disk performance tools on the installed Fusion-io
disks.

5.4. Experimental Results over WAN

Finally, we run RFTP and Netkit FTP over the long-haul WAN link.
iWARP is utilized in this test due to its capability to run RDMA over IP
networks. Due to the space limitation, we do not include the full exper-
imental results, but only summarize our findings here. We observed that
CPU utilization of RFTP still stay at a relatively low level. However, the
bandwidth of RFTP does not show much improvement over Netkit FTP,
particularly when the number of concurrent streams is small. Recent studies
Cohen et al. (2009); Lai et al. (2009a); Rashti et al. (2009); Subramoni et al.
(2009) also reported the shortcomings of iWARP.

To elaborate this, we note the implementation of the TCP/IP stack in the
iWARP RNIC is limited and has much fewer parameters to tune than one in
the operating systems. For long-haul high-speed network, the TCP buffer size
must be set large enough to fully utilize the link capacity regardless whether
the data transfer uses a TCP in OS or in POE. RNIC must be configured
to allow a very large TCP sliding window to accommodate the long and fat

31

links. Once off-loaded hardware is implemented, it is very difficult to make
customized changes for various environments. Therefore, we argue that this
is a major disadvantage of POE techniques. We also conjecture that, despite
the POE techniques, the iWARP RNIC still suffers from high overhead of
TCP processing and the complicated layered structure of iWARP, and thus
achieves low data transfer efficiency over high speed WAN links.

5.5. Experiment Results and Demo on ANI testbed

We have also tested the performance our RFTP software on the ANI
test. To illustrate these experiments, we should first briefly describe the
testbed. The Advanced Networking Initiative (ANI) testbed is part of a
larger Advanced Networking Initiative (ANI) program to build a nation-
wide 100Gbps prototype network which linking several DOE supercomputer
sites and the international network exchange, MANLAN, in the New York
City. Our middleware system and the RFTP are developed to support data-
intensive computing over this network, for example, climate data transfer and
various applications. At the time of our experiments and during our demo at
the 2011 Supercomputing conference, the RDMA links were not ready for use.
Rather, the testbed team built an IP network with an aggregate bandwidth
of 100Gbps among three main sites, National Energy Research Scientific
Computing Center (NERSC), Argonne National Laboratory (ANL), and Oak
Ridge National Laboratory (ORNL).

In our test and demo, we run parallel data transfer sessions, from NERSC
to ANL and from NERSC to ORNL. We utilized 15 hosts at NERSC, 14
hosts at ANL, and 10 hosts at ORNL. From NERSC to ANL, we started
14 parallel data transfer session, between 14 pairs of hosts. They are all
for disk-to-memory data transfer. The NERSC hosts have General Parallel
File System (GPFS), and each host continuously sent a set of files of variable
sizes. The ANL hosts did not provide disk systems, and therefore the received
data will be discarded. From NERSC to ORNL, we started 10 parallel data
transfer session, between 10 pairs of hosts. They are all for disk-to-disk data
transfer. The receiving hosts had ext4-ssd disk systems. The GPFS disk
systems were able to offer more than 80Gbps aggregate bandwidth.

Our RFTP test was done in the TCP/IP-based mode, but with the soft-
ware kernel bypass optimization. For all the data transfer sessions, we tuned
the parameters such as the number of streams in each session and buffer size.
During our test, the ANI testbed was not used by other activities. To ensure

32

Figure 18: Throughput achieved by RFTP in the ANI testbed 100Gbps network.

this, we made reservations for the time slots of the entire testbed, including
the links and the host resources.

Figure 18 shows the results of our test during our demo on November 17,
2011. During this 30-minute time slot, we monitored the network activities
at the gateway using the Ganglia tool. This tool counts the traffic volume in
and out of the gateway in NERSC, and displays the bandwidth throughput.
The figure shows that our RFTP software was able to achieve about 80Gbps
aggregate throughput. Note that the disk systems were able to deliver only
80Gbps bandwidth. Thus, RFTP already achieved the maximum possible
throughput.

6. Conclusions

RDMA is known as a promising high-performance POE technique that
supports zero-copy and kernel bypass mechanisms. However, it is difficult to
program with RDMA. Therefore, appropriate middleware support are impor-
tant for the development of efficient applications and underlying hardware

33

transparency. In this paper, we have designed and implemented a RDMA-
based middleware layer that provides resource abstraction and management,
task scheduling, and parallel data transfer. Our middleware utilizes the most
favorable interfaces of the OFED verbs, buffer reuse and task synchronization
mechanisms that are tightly coupled with RDMA architecture. We imple-
mented our RDMA-based FTP application based on this middleware layer.
To accommodate network environments without hardware RDMA supports,
our middleware supports an optimized TCP based data transfer mode, and
in this mode, Linux kernel zero-copy techniques are used for performance
improvement.

To demonstrate the efficiency of our middleware design, we developed
a FTP application based on this middleware layer. In order to obtain the
practical test data under different scenarios, we setup a platform with three
different RDMA technologies, and we also tested the performance of our
system over long-haul MAN links. In particular, we also demonstrated the
performance of RFTP on the ANI testbed, which has a 100Gbps IP net-
work. Our application protocol design also shows its efficiency in long-haul
high latency RoCE links Ren et al. (2012b). The experiments show that
our middleware achieves remarkable bandwidth performance with marginal
CPU resources, and it can be a common substrate to accelerate various data
transfer applications.

Acknowledgment

The authors are grateful to the facility donation of Mellanox Technolo-
gies, Inc. and Fusion-io, Inc. The authors have benefited from the numer-
ous technical discussions with Todd Wilde from Mellanox, David McMillen
from System Fabric Works, Inc., and David Strohmeyer from Intel. This
work is supported by United States Department of Energy, Grant No. DE-
SC0003361.

This research used resources of the ESnet Advanced Network Initiative
(ANI) Testbed, which is supported by the Office of Science of the U.S. De-
partment of Energy under contract DE-AC02-05CH11231, funded through
the The American Recovery and Reinvestment Act of 2009.

References

Bierbaum, N., 2002. MPI and embedded TCP/IP Gigabit Ethernet cluster
computing, in: Proceedings of 27th Annual IEEE Conference on Local

34

Computer Networks, Tampa, Florida, USA. pp. 733–734.

Cohen, D., Talpey, T., Kanevsky, A., Cummings, U., Krause, M., Recio,
R., Crupnicoff, D., Dickman, L., Grun, P., 2009. Remote Direct Memory
Access over the Converged Enhanced Ethernet fabric: Evaluating the op-
tions, in: 2009 17th IEEE Symposium on High Performance Interconnects
(HOTI), pp. 123–130.

Danalis, A., Brown, A., Pollock, L., Swany, M., 2008a. Introducing gravel:
An MPI companion library, in: Proceedings of IEEE International Sym-
posium of Parallel and Distributed Processing (IPDPS), Miami, Florida
USA.

Danalis, A., Brown, A., Pollock, L., Swany, M., Cavazos, J., 2008b. Gravel:
A communication library to fast path MPI, in: Euro PVM/MPI 2008.

DAT Collaborative, 2002. uDAPL: User Direct Access Programming Library.
http://www.datcollaborative.org/udapl doc 062102.pdf.

ESnet, 2012a. Energy Sciences Network: http://www.es.net/.

ESnet, 2012b. Linux TCP Tuning: http://fasterdata.es.net/fasterdata/host-
tuning/linux/.

Feng, W., Balaji, P., Baron, C., Bhuyan, L.N., Panda, D.K., 2005. Perfor-
mance characterization of a 10-Gigabit ethernet TOE, in: Proceedings of
13th Symposium on High Performance Interconnects (HOTI).

Frey, P.W., Alonso, G., 2009. Minimizing the hidden cost of RDMA, in:
Proceedings of IEEE International Conference on Distributed Computing
Systems (ICDCS).

Globus, 2012. GT 4.0 GridFTP Glossary:
http://www.globus.org/toolkit/docs/4.0/data/gridftp/gridftp glossary.html.

Griffiths, N., 2006. nmon performance: A free tool to analyze AIX and Linux
performance.

Holland, D.A., 1998. Linux NetKit:
http://www.hcs.harvard.edu/ dholland/computers/old-netkit.html.

IBTA, 2006. InfiniBand Architecture Specification. Release 1.2.1 .

35

IBTA, 2010. Infiniband Trade Association. http://www.infinibandta.org/.

Jang, H., Chung, S.H., Yoo, D.H., 2008. Implementation of an efficient
RDMA mechanism tightly coupled with a TCP/IP offload engine, in:
Proceedings of International Symposium on Industrial Embedded Systems
(SIES).

Lai, P., Balaji, P., Thakur, R., Panda, D.K., 2009a. ProOnE: A general-
purpose protocol onload engine for multi- and many-core architectures.
Computer Science - Research and Development 23, 133–142.

Lai, P., Subramoni, H., Narravula, S., Mamidala, A., Panda, D.K., 2009b.
Designing efficient FTP mechanisms for high performance data-transfer
over InfiniBand, in: Proceedings of International Conference on Parallel
Processing (ICPP).

Linux, 2012. sendfile manpage: http://www.kernel.org/doc/man-
pages/online/pages/man2/sendfile.2.html.

OpenFabrics Alliance, 2012. OpenFabrics Alliance:
http://www.openfabrics.org/.

Oracle, 2011. Lustre file system: http://wiki.lustre.org/.

Rao, N.S.V., Yu, W., Wing, W.R., Poole, S.W., Vetter, J.S., 2008. Wide-area
performance profiling of 10GigE and InfiniBand technologies, in: Proceed-
ings of International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC).

Rashti, M.J., Grant, R.E., Afsahi, A., Balaji, P., 2009. iWARP redefined:
Scalable connectionless communication over high-speed Ethernet, in: Pro-
ceedings of 16th International Conference on High Performance Computing
(HiPC).

Ren, Y., Li, T., Yu, D., Jin, S., Robertazzi, T., 2012a. Middleware support
for rdma-based data transfer in cloud computing, in: Proceedings of High-
Performance Grid and Cloud Computing Workshop.

Ren, Y., Li, T., Yu, D., Jin, S., Robertazzi, T., Tierney, B., Pouyoul, E.,
2012b. Protocols for wide-area data-intensive applications: Design and
performance issues, in: Proceedings of the IEEE/ACM Conference on Su-
percomputing SC’12.

36

Subramoni, H., Lai, P., Kettimuthu, R., Panda, D.K., 2010. High perfor-
mance data transfer in grid environment using gridftp over infiniband, in:
Int’l Symposium on Cluster Computing and the Grid (CCGrid).

Subramoni, H., Lai, P., Luo, M., Panda, D.K., 2009. RDMA over Ethernet:
A preliminary study, in: Proceedings of Cluster Computing Workshops,
CLUSTER’09.

Suzumura, T., Tatsubori, M., Trent, S., Tozawa, A., Onodera, T., 2009.
Highly scalable web applications with zero-copy data transfer.

The Internet Engineering Task Force (IETF), 2006. RFC 4392 - IP over
InfiniBand (IPoIB) Architecture.

UltraLight, 2012. Ultralight: An ultrascale information system
for data intensive research: http://ultralight.caltech.edu/web-
site/ultralight/html/index.html.

Yeh, E., Chao, H., Mannem, V., Gervais, J., Booth, B., 2002. Introduction
to TCP/IP Offload Engine (TOE). 10 Gigabit Ethernet Alliance (10GEA)
.

Yu, W., Rao, N.S., Wyckoff, P., Vette, J.S., 2008. Performance of RDMA-
capable storage protocols on wide-area network, in: Proceedings of Petas-
cale Data Storage Workshop.

37

