STONY BROOK UNIVERSITY

CEAS Technical Report 840

Optimal Phase Balancing using Dynamic Programming
with Spatial Consideration

Kai Wang, Steven Skiena and Thomas G. Robertazzi

October 12, 2017
manuscript completed August 15, 2013

Optimal Phase Balancing Using Dynamic Programming
With Spatial Consideration

*Kai Wang, **Steven Skiena, *Thomas G. Robertazzi

*Electrical Engineering Department, Stony Brook University
100 Nicolls Road, Stony Brook, 11790 USA
Corresponding author: Kai Wang. Tel: 1-631-885-5289
Emml address: kamwang.sunysb@gmail. com

**Computer Science Department, Stony Brook Universily
100 Nicolls Road, Stony Brook, 11790 USA

Abstract

Unbalanced loads on feeders increase power system investment and operating
costs. Three-phase lateral loads phase swapping is one of the popular meth-
ods to balance such systems. In this paper, a novel dynamic programming
algorithm for phase balancing with spatial consideration is studied. This
algorithm produces optimal solutions for an interesting class of instances of

this NP-complete problem efficiently.
Keywords: Spatial Load Balancing, Dynamic Programming, NP-complete,

Smart Grid, Feeder.

1. Introduction

Over the past 15 years, research has been conducted on three phase feeder
balancing. Phase balancing aims to reduce the unbalance of loads on three

Preprint submilted to Electric Power System Research August 15, 2013

phases which can bring severe voltage drops in the leeders. The majority
of electric power systems utilize, in the electric distribution system, feed-
ers which carry three phases of alternating current/voltage. It is desirable
for electric utilities and providers of electric power distribution systems to
have approximately equal loads on each phase. This is a problem as even if
loads are initially balanced, with time loads increase, decrease, are added or
removed from each phase, cansing an unbalance of loads. Even during the
same day there may be much variation of load on each phase of a feeder.
There are two major phase balancing methods: there is feeder reconfigura-
tion at the system level and there is phase swapping at the feeder level [2].
Phase swapping is not as well studied in the electric power literature as feeder
reconfiguration. This paper is about phase swapping algorithms.

Why does one wish phases to be in balance? Phase unbalance can limit
the amount of power transferred on a feeder as on an unbalanced feeder one
phase may reach its maximum carrying capacity measured in amperes (i.e.
ampacity) while the other two phases are then underutilized and unable to
carry their full or even nearly their full amount of current. This is poor
utilization of the existing power distribution network and may result in un-

necessary feeder expansion and upgrades which raise utility costs. Because

one phase may be near its maximum ampacity, phase unbalance can also
lead to preventive breaker/relay tripping and shutdown of a feeder whose
restoration also involves a cost to the electric utility.

Periodically crews rebalance feeders. This can be done during periods of
maintenance or restoration. One suburban Northeast U.S. utility rebalances
feeders if the percentage of unbalance exceeds 15%. Generally it takes 10 to
15 minutes to switch a load so the overall job may take an hour plus travel
time to the location. Work by a crew of two employees can cost several
hundred dollars. However preparatory work such as scheduling can bring
the total cost to several thousand dollars for one tap change. Three factors
are considered in making a decision to rebalance a [eeder: the monetary
cost of making the tap change(s), the expected increase in feeder balance
{saved energy) and the temporary interruption of power to the customer. Tap
change generally fall into two situations: a new customer is to be connected or
the phase balance for existing feeders has become significantly unbalanced.
Once a feeder is re-balanced it will initially be in balance but drift into
unbalance as time goes on.

Even in more limited electric power systems, the same problems may

arise. For instance Gaffney [3] reports problems with effective phase balanc-

ing in electric power systems in the tactical battlefield environment, largely
because of insufficient operator training and experience. David [4] [5] pro-
poses automatic phase balancing but does not propose an algorithm for this
purpose.

The variables in the phase balancing problem are the phases each load is
connected to and the goal is to minimize the degree of unbalance on feeders.
Many algorithms have been used to solve phase balancing problem. The
original work is Zhu, Chow and Zhang's mixed-integer programming in 1998
(1], but this algorithm has a drawback that the objective functions can only
be linear. In 1999, to expand to nonlinear objective functions, Zhu, Bilbro
and Chow introduced simulated annealing [2]. In 2000 and 2004, Chen and
Cherng and Gandomkar applied a genetic algorithm to the problem [6] [7].
In 2005, Lin, Chen, et. al adopted a heuristic greedy algorithm [8]. In 2007,
Huang, Chen, Lin, et. al used an immune algorithm to solve the problem [9).
These heuristic algorithms can get near-optimal solution quickly but can not
guarantee optimal solutions.

Many combinatorial optimization problems have no known efficient algo-
rithms capable of always producing optimal solutions. For those problems

that computer scientists have been shown to be N P-complete, there is con-

vincing evidence that no correct, efficient algorithms can exist. An efficient
algorithm for any one of the hundreds of known N P-complete problems would
imply efficient algorithms for all of them, implying that all are equally hard
to compute.

The phase balancing problem we describe in this paper can readily be
shown to be equivalent to integer partitioning, a well-known N P-complete
problem. Thus an efficient algorithm for phase balancing which always pro-
duced optimal solutions would imply efficient algorithins for all problems
in NP, which computer scientists considered extremely unlikely. Howev-
er heuristic algorithms that produce near optimal solutions with reasonable
cfficiency are possible, and arce often developed for this purpose. [10)

In 2013, we introduced a dynamic programming algorithm to obtain the
optimal solution for phase balancing problem in a reasonable running time
[11]. However, this algorithm has a shortcoming in that it only balances the
whole feeder, but not every section along the feeder. This may lead to a
situation where the three phase current is balanced at the beginning of the
feeders, but not balanced at other positions of the feeders.

In this paper, a dynamic programming algorithm is applied to solve the

phase balancing problem along each part of the feeder. The computation

120v £
£0o°
oyt
Q)
120v
120V p Z 240°
Z120°
3
loads (O J) O

neutral wire

Figure 1: Three phase wiring diagram

complexity of this algorithm is O(nT?) (T is the sum of all the loads) in
the worst case, and all operations we do are in linear time. A mathematical
model, algorithm and objective functions are introduced (section 2). An
optimal dynamic programming algorithm is discussed in detail (section 3).
Simulation results appear in section 4. The conclusion is in section 5.

The key lesson of our paper is that heuristic techniques such as simulated
annealing and genetic algorithm (and DE and PSO) can be replaced by
the dynamic programming methods we employ, which give optimal results
instead of heuristic ones. Our generalized dynamic programming algorithm

gives optimal results in reasonable running time.

2. Problem and Algorithm Formulation

2.1. Overview

The algorithm we discuss in this paper is a dynamic programming algo-
rithm. Assume the feeder is linear and the generation input is at the left.
In terms of an objective function we seek to minimize a weighted sum of the
degree of imbalance of each section along the feeder for a given number of tap
changes. Suppose we have N loads on a linear feeder. To do this we create N
objective function matrices {one for each section) as well as N cost matrices.
For each matrix in both sets the (horizontal) rows correspond to potential
load on phase A and the (vertical) columns correspond to the potential load
on phase B. Thus the (i, j)th entry of the kth objective function matrix is
the objective function value with partial total load ¢ for phase A for the first
k sections and with partial total load 7 for phase B for the first & sections.
Implicitly the partial total load on phase C is the total load on the first k&
sections minus load 7 and minus load j for the first k sections.

Also, the (i, j)th entry of the kth cost matrix is the minimum number of
tap changes one has to use to achieve the corresponding objective function in
the (i, j)th entry of the kth objective function matrix. How does one compute

the (¢, j)th entry in the kth objective function matrix? One knows the load

7

on phase A is ¢ for the first £ sections and the load on phase B is j for the
first k& sections. Implicitly one then knows the load on phase C is the total
load for the first & sections minus 7 and minus j. So the (¢, j)th entry is the
absolute difference between the maximum of the loads on each phase minus
the average load per phase [or the first & sections and this difference is divided
by the average load per phase for the first £ sections. On the other hand, the
(4, 7)th entry of the kth cost matrix (which is the minimum number of tap
changes to achieve the corresponding objective function value) is generated by
a recursion that appears below. Note there are different recursions depending
on whether loads are connected to one phase or two/three phases.

Once all of the matrices are generated, what is essentially a shortest path
algorithm can be run from matrix to matrix where the distances are the
objective function entry values. However in generating the possible paths
thru the matrices there are some constraints on which entries in the (k +
1)st matrix an entry in the kth matrix can be connected to. For instance
if one is at entry (4,5) with a load of 1 on phase C in the 3rd objective
function matrix, a path can connect it to entry (6,5) with a load of 1 on
phase C in the 4th matrix if the 4th load is 2 (single phase load) but a path

cannot connect it to (8,5) with a load of one on phase C in the 4th matrix.

Thus, unlike the Dijkstra shortest path algorithm we generate all possible
feasible paths. However these constraints reduce the number of paths to be
considered. Actually there is one more set of matrices that is generated as
the recursion is run to record the associated paths for future use. This is
done in k path matrices, where using similar definitions of i and j as before,
the (Z, j)}th entry of the kth matrix is a pointer to the position of its parent
entry along a path in the & — 1st objective function matrix.

To obtain a solution, one fixes as an input parameter to the algorithmn the
maximum number of tap changes allowed. Call it M. The last cost matrix
is used to determine the set of solutions that meet this constraint. From
the remaining solutions we can select the solution with the best objective
function value. Once the best solution is selected one can retrieve the phase
assignment from the corresponding path matrix.

Alternately we can create a table of the best solution for cach specific
number of tap changes. To create the pth row in the table one can run
the steps of the previous paragraph, keeping only the solutions with p tap
changes. Note that beyond a certain number of tap changes the objective
function value of solutions tend to get worse.

This overview has been phrased in terms of minimizing a weighted sum of

the degree of imbalance on each section. However the use of other objective
functions using these techniques is certainly possible. A different one is
discussed below. Note that the objective function and cost matrices may
be viewed as N sets of two dimensional matrices, or each one as a three
dimensional matrix. Another note is that an implementation of this dynamic
programming algorithm can do without the objective function matrices since
the objective function values can be computed from corresponding indexes
of the cost matrices.

Another idea to save memory is to use a different notation to describe
the statuses. Let L(i} be the load on each phase after the first i loads on the
line, then We can change our state space from:

C(i,j, k) - the cost to achieve a total load of ¢ on phase a and total load
of 7 on phase b, after the first k£ loads, leaving the total load on phase ¢
implicit.

to

C(da, db,) - the cost to achieve a difference {delta) load on phase a from
L(i), a delta load on phase b from L() after the first ¢ loads, leaving the
delta load on phase ¢ implicit.

The advantage is that this method can reduce the complexity and also we

10

Table 1: An example feeder with single phase loads

Loadsize: 2 1 2 1

Phase: A B C A

2. 0000 1. 8000 L. 000G 0. 5000 1. Q00 1. 5000

1. 5000 1. 3000 &, 5900 0. 5000 i.04Q00 1. 5000

1. a000 0. 5000 aQ 0. 5000 1.0000 Ing

0., 5090 ¢. 5009 0. 5000 0. 5090 Inf Ing

2. 000D Inf 2. GoDO 1. GQ00 Int 1. Qo000 Inf Inf Inf
Int Int In¢ 1. 5000 L. 5000 Inft Inf Inr Inf

2. 0000 Int Int Z. 0090 Inf Inf Int Ing Iing
2. ¢a0g 1.4000 Q. 8000 0., 8000 1. 4080 o. 0003

-] 1 1 a2 1. 4000 Int a. 2000 Inf 1. 4000 Inf

1 a 1 int Q. 8000 Q. 2000 Q. 2000 0. BGQO int Ing

i 1 Int Int — > 0. 8000 Inf 0. 8000 Int Int Int

= e Inf Int 1. 1040 t. 4000 Inf Int Int Int

2. 0909 Int Int Int Int Int

Figure 2: Example of objective function values matrices

can delete the solutions with very large deltas. So one can save a great deal
of memory, which otherwise would limit the scalability of this algorithm.

Figure 2 and figure 3 are examples of objective function values matrices
and cost function matrices of a feeder with four single phase loads.

The dynamic programming algorithm is now outlined in more detail.

2.2. Qbjectives
In phase balancing problem, there are three main objectives:
1. To avoid overloading.
2. To balance three phase current along the feeders.

11

Apath

1 /Int '
fiof}/ 1nt Ing _ .

¢ Intf Inf

5.
JEe
g

- - b b

i
£
£

Cost{:,: 1) Costi:, 1, 2) Cost(., . 3}

Figure 3: Example of cost matrices

3. Reduce number of phase changes to save labor cost.

2.3. Overall structure

Figure 4 illustrates the overall structure for phase balancing of distribu-
tion feeders. Omne abstracts the node connection and hourly load demand
for each node from feeder topology information and customer information.

Based on this information, one can do a phase balancing analysis and give a

phase assignment recommendation.

2.4. Sample feeder with connecting branches

Figure 5 shows a radial feeder configuration and the loads (L; 1, L; g, L;3)
at node i. In our model, the feeder is divided into nodes and sections. Here,
I;; denotes the current on phase j of section i. L;; is the current (load)

demand of node 7 on phase j. The phase balancing’s objective is to find the

12

[T
g,
LE LI]

3
3
2
1
1
3

Inf Int Inf

P
—
Iif"rpl:f-.‘eder Topology

i Information

Customer Information

—

Node Reduction) ourly Load Demand for

Each Customer

Phase Balancing Analysis

Phase Assignment
Recommendation

Figure 4: Overall structure for phase balancing

optimal phase assignment for each load to minimize the unbalanced flows at
monitored sections with a certain number of tap changes which is smaller

than the given maximum one.

2.5. Objective function

To balance the three phase flows along the whole feeder, one needs to
balance the three phase flow in cach section. From Kirchhoff’s current law,
one knows that the current on phase ¢ flowing out of section j equals to the

current on phase ¢ from the source minus the total current on phase ¢ of the

13

Section

1 2 3 4 5 -] .
I_souce.a 1_2.a 133 I_4.a 153 L6a
5 +]
I_soucse,b 126 L3b I_3,b I_5.b I 6b
[
I_souce,.c 1_2,c 1_3¢ I_3.c I_5.¢ 16¢c
we O O O O O O
1 2 3 4 5 6
L_1a L .2a L 3.a L_4a L.5a L_6.a
L_1b L_2b L_3b L 4t L_5b L_6D
L_te L2¢ L3¢ Ldc L 5¢c L_bc

Figure 5: Sample feeder model

first 7 — 1 sections.

I16 = Loureep — 3021 Lig for all p=a,b,c.

Here, j is the section index and i is the load index. j7 > 2.

Then the problem becomes to balance Zf=1 Lz, Zf=1 L;y and Zle L;,
for k=1to N.

There are various kinds of objective functions such as cost [unctions in
[2] and the loss function in [6]. In this paper, the objective function is
the phasing unbalance index (PUI) which is used in many phase balancing

papers [9] [8] [12]:

M Ia;‘—Im;.,Ii_Iav'gIci_IaU.
a$(| y g.| Ib, .‘Jal I + .‘Jl)*loo%

Ia‘ug,-

PUI; =

(1)

Here, I,;, I,; and I.; are the total current loads on phase 1, 2 and 3 of

14

PLI_1 PUI_2

PUI_3 PUI_2

PLI_S

PUI_E
Sectiol
2 3 4 5 (]

s I_souce,a I_2a I_3a I_4.a I_5.a I_6.a
I_souceb I_2b 1_3a.b I_4.b LSh I_6b
I_souce.c 1_2¢c I_3c I_sc 1_5.¢ 1 6¢

hoas @ O O o O O

1 2 3 a 5 &
L_1a L_2a L3a L 48 L Sa L Ba
L1n L.2b L3b L_4b L_5b L_6.b
L_1.c L 2¢ L 3¢ L_Ac L_5¢ L_6.c

section i. [,y is the mean value of the current load on each single phase
of section i. Considering the single phase loads case is a subset of the three
phase loads case, we assume that all the loads are connected to three phases.

The load range is set as integers between 1 and 100. Larger loads range can

Figure 6: Phasing unbalance index

be scaled to this range.

Also, to avoid overloading, the current on each phase has to be smaller

than the line capacity.

In this paper, two approaches are introduced.

The first approach is to limit all the PUI’s of each section under a certain

threshold:

PUI; <= threshold

15

foralli=1to N

Here, the threshold can be set by operator or one can use binary search
to find the minimum possible threshold.
The second approach is to minimize the weighted sum of phase unbalance

indexes for each section of the feeder:

=N
Minimize Z w; ¥ PUI; (3)
i=]
Subject to:
wi =y Iy (4)
Isi < C; (5)
where
i) is one of three phases a, b and c.
i is the index of section from 1 to N.
C; is the phase line capacity of phase j of section .

2.6. Load type

There are two types of loads on the feeder: one phase loads and two or

three phase loads. Loads on one phase feeders can only connect to one of the

16

three phases. Loads on the two and three phase feeders can connect to two or
three phases. That is: single phase loads have three tap change possibilities,
two and three phase loads have six tap change possibilities.

Table 1 shows valid connection schemes for various types of laterals.

Original phase | Valid rephasing schemes

abc ach
3¢ abe bca bac
cab cba

ab ab* ba* a*b

b*a *ab *ha

be bc* ch* b*c
2¢
c*b *be *ch
ac ac* ca* a*c
cta *ac *ca
a a** *pk kg
1¢ b b** *h* *kp
c C* * *C* **c

17

800

Consmed power fVagitiy)

Figure 7: A yearly load profile
2.7. Load patiern

The customer hourly load data can be collected by the AMI (Advanced
Metering Infrastructure) meters. However, it would be hard to do the com-
putation if one makes phase balancing recommendation for the next year
based on all hourly load data of the last year because of the large amount of
data. So the evaluation of the load pattern is considered. One can do phase
balancing analysis based on the load in the “peak time” or the “peak day”
in the summer. Figure. 7 and 8 shows the load pattern obtained from one of
LIPA’s substation’s data. From the two load profiles, one can see the peak
days of the year are in the summer and autumn and the peak hours of the

day are in the afternoon.

18

‘000 ——— ——— - —y = 5 1
5500

5000 |- 3
w00 \\ |
4000 - =

Hour

a15umed power (WagaWer)

Figure 8: A duily load profile

3. A Dynamic Programming Algorithm to Solve the Phase Bal-

ancing Problem

3.1. The optimalily and complezily

An “optimal” algorithm for phase balancing is now presented in detail.
The phase balancing problem is N P-complete even with two phases and no
cost per tap change, because it is equivalent to the integer partition prob-
lem and the integer partition problem is N P-complete. The hardness of
integer partition depends upon large numbers, because it is not strongly
N P-complete. For the phase balancing problem, the loads range between 1
and several hundred amperes. Assume that there are n loads, where the ith
load has values (weights) !; 4, & and ;. on three phases and are currently

assigned to a feeder. We assume the weights of all loads are integers, and the

19

total load T'= 37" | 375 li4. As will be seen the algorithm runs faster with
smaller T'. Loads can be scaled to bring this about. The solution produced
by the dynamic programming algorithm are optimal but it should be noted
that the scaling is a source of approximation.

We present an algorithm which runs in O(nT?) to find the minimum
number of changes to reach a particular quality criteria.

Denote the total load on phase i by L;. Because there are three phases,
there are about T? sets of possible values for L;, Ls, and Ls. This is as both
Ly and Lo are integers between 0 and T, and Ly =T — Ly — La, L3 would
be specified after one has L; and L.

The algorithm will enumerate all possible partitions of T into L,, L., and
L3, and in particular for each such partition P find way to move from the
current state to P using the fewest number of changes. One can evaluate
each of these O(T?) partitions according to the objective function, eliminate
all which are not good enough, and then find the minimum cost good-enough

transformation.

3.2. Stepl: Use recurrence to record number of tap changes
Define C[z,y, 1] to be the minimum cost {in terms of number of moves)
to realize a balance of Ly = x, Ly = y and implicitly Ly =T — L; — L, after

20

reassignments to the first ¢ loads (from 1 to 7).
For the cost matrix for single phase loads we define the following recur-

rence relation:

Clz,y,1] = Min[Clz—L,y, i=1]+i(i, 1), Clz+L, y=1, i=1)+i(i, 2), Clz+;, y, i—1)+(i, 3))
(6)
Here in the cost matrix, ; is the weight of ith load (single phase load),
t(1, ¢) is the cost of moving the i, load to phase ¢. C|z, y, 7] is the minimum

number of tap changes to move from the initial status to [z,y, T; — z — y].

.

Ti=) Lj (7)
i=1
If iy, load stays on phase ¢
t(i,$) =0 (8)
If 74, load leaves phase ¢
i,y =1 (9)

Assume the ith load is initially on phase a. Then the optimal solution
either leaves load i on phase a (incurring no cost for the move), or moves it
to phase b, or moves it to phase ¢ (both of which incur a cost of 1 operation).

21

We need similar recurrences for the cases where load i is on phase b or phase
c. The basis of this recurrence is that C[L,, L2, 0] = 0, C[xo, %0,0] = o0 for
all zg # L, and ¥ # Lo (meaning no other states are achievable with zero
moves).

For two and three phase loads, suppose the ith load has three single phase
loads I 4, l; s, li - and they are initially on phase a, b and c. We define the

following recurrence relation:

Clz,y,1) = Minlc[z — L g,y — lip, i — 1), [z = lig,y — bie,i — 1] + 1,
ele ~ gy = bt — 1]+ 1,z — by — bii— 1] +1, (10)

cle —lieyy —lin, i — 1)+ 1, ¢l — lic,y — lig, i — 1] + 1]

3.8. Step 2: Record the “Path”

In last subsection, when calculating the number of tap changes for each
[z, y,1], one needs to create a three dimensional path matrix (since C is three
dimensional) to record what is the “parent” of a status [z,y,]. That is, to
record the parent’s position of [z,y,1] as a cell. With all the record of these

relationships, one can know the paths.

22

3.4. Step 3: Calculate objective values

After using the recurrence to record the path, one calculates objective
values for all (T; + 1)* possible [z, v,7] using objective function for all i €
[1,n—1]. Then, to take the imbalance of each section into consideration, one

can calculate the weighted sum objective values for each path.

3.5. Step 4: Avoid the overload

One needs to delete the solutions that cause overload on the feeders by
setting the positions that have indexes larger than the line capacity to infinity.
"The deletion simply removes the incoming or outgoing edges to these nodes.
That is to make sure that all three phase currents in each section is smaller

or equal to the line capacity.

3.6. Step 5: Make phase assignment recommendation

For the first approach, if we have a threshold of “what is balanced e-
nough”, then we can delete any partial solution that is not “balanced e-
nough”. If there is a solution remaining, it would be found by any path from
an end state to a state that passes through “balanced enough” vertices. If
we do not have a threshold but want to find the path with the minimum

balance, do a binary search on the possible thresholds. Repeatedly pick a

23

possible threshold in the middle ol the range of possible thresholds. Delete
all vertices more unbalanced than this. Look for a path in the remaining
graph. If we find one, try a smaller threshold. If not, try a larger one.

For the second approach, consider now that one has three matrixes: the
number of tap changes (cost) matrix C{z, y, N], the path matrix and objective
values matrix Objv[z,y, N]. Then one can make a table with N rows and
three columns. The first column is the maximum number of tap changes
allowed to make. The second column is the corresponding best objective
value one can get, this can be obtained by searching all the z and y in
Obju[z,y, N] that satisfies Clz,y, N] = maximum number of tap changes
allowed. The third is the corresponding phase assignment for each load which
can be obtained by retrieving the path. From this table, one can make phase
assignment recommendation provided the desired number of tap changes or

objective values.

3.7. An iterative method lo balance tree network feeders

For tree network feeders, one can use the dynamic programming algo-
rithm above to balance each subtree feeder and take every subtree feeders as
equivalent nodes in the upper level of the tree. One can balance the whole
system using this bottom-up method.

24

IEEE 13 Node Test Feeder-

646 645 632 633 % 634
611 684 692 675
L 671 » \ & »
*

652 680

Figure 9: IEEE sample feeder with 13 nodes

For example, one can use the algorithm to balance three phase current of
IEEE sample feeder (figure. 9). This feeder contains several branch feeders
and they form a tree network. One can divide it into five groups: node 632,
645 and 646 as group A, node 633 and node 634 as group B, node 692 and
node 675 as group C, node 611,684 and 652 as group D and node 671 and
680 as group E. One can first balance group A and B and take them as one

nodes. Then balance group C, D and F and take them as the second node.

At last, balance those two equivalent nodes.

25

Table 2: Feeder belore phase balancing

Loadindex 1 2 3 4 5 6 7 8 9 10
a: 05 1 2 7 6 10 3 9 0O
b: 627 0 ¢ 0 0 6 0 2
c 5 010 0 0 7 3 0 3 6

Totalona: 0 5 6 & 15 21 31 34 43 43

Totalon b: 0

(A
[i=}
w
o
j<m)
=}
—
on
—
ot

17

Totalone: 5 5 15 15 15 22 25 25 28 34

4. Simulation

4.1. Implementing a 20 node feeder

Here, a feeder with 10 randomly generated loads and phases is tested.
Table 2 and Table 3 show the phase assignment for each load before and
after phase balancing. Figure 10 and 11 show the three phase current for
each section before and after phase balancing respectively. Figure 12 shows
the corresponding objective values. Note that in the objective values at the
end of the curves in figure 12 are worse because there is less flexibility in
making tap changes at that point. In fact, no tap changes were made for the

last two loads in the example.

26

Table 3: Feeder after phase balancing

loadindex 1 2 3 4 5 6 7 8 9 10

a: ¢ 5 1 2 7 6 0 3 9 0
b: 0 2 10 0 0 0 10 6 0 2
c: 50 7 0 0 7 3 0 3 6

Totalona: 0 5 6 8 15 21 21 24 33 33
Totalonb: 0 2 12 12 12 12 22 28 28 30

Totalone: 5 5 12 12 12 19 22 22 25 31

-
wn

Phase A
ot Phase B H
Phase C
B i
£ 0
E N\
S x5l J
@
=
=] J
@
=
= 15 .\ \\
N
hY
1118 \\\ p
5 ~ \-
D L 1 1

1 2 3 4 5 B 7 -] 9 10
Sections along the feeder

Figure 10: Three phase current along the feeder belore phase balancing

27

—=———=Phaze A
~—Phase B |
—Phase C

Three phase cument

10} L

1 1 1 i

1 2 3 4 5 B 7 8 9 10
Sections along the feeder

(=]

Figure 11: Three phase current along the feeder after phase balancing

14 T T r T T T T v
— = 0bjv before balancing
—+— Objv afler balancing

Objective value

10

Sections along the feeder

Figure 12: Objective values before and after phase balancing

x 10

Running time (ms}

u] 5 10 15 20 25 30
Number of loads

Figure 13: Running time VS Number of loads
4.2. Running {tme and required memory

To illustrate the running time and required memory (without the memory
reducing trick mentioned in the overview), randomly generated loads and
phases are used for testing. In figure 13 and 14, the horizontal axis is the
number of loads and the vertical axes are running time in ms and allocated

memory in bytes.

5. Conclusion

Of all the algorithms examined in our earlier work [11], dynamic pro-

gramming was the most promising in its ability to provide optimal solutions

x 10

w
w [4,] kY
T

[N]
th
T

Allocated memory (Byles)
n N

-
T

D&}

u] 5 10 15 20 25 30
Number of loads

Figure 14: Running time VS Allocated memory

without using an exhaustive search approach. This paper has examined and
discussed dynamic programming in much greater detail and also adapted it
to include a consideration of spatially distributed loads. Many variations
on the basic approach described here are possible. This includes the use of
different objective functions and data structure implementation of the algo-
rithm. Most significantly the use of dynamic programming allows a better

quality combinatorial solution at much less the cost of an exhaustive search.

Acknowledgment

This material is based upon work supported by the Department of Energy
under Award Number DE-OE0000220, NSF grants DBI-1060572 and IIS-
1017181.

This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product,
pro process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect those
of the United States Government or any agency thereof.

This report was prepared as an account of work performed by The Re-
search Foundation of SUNY as sub-recipient of any award made by an a-

gency of the United States Government to the Long Island Power Authority.

31

Neither the Long Island Power Authority nor any of its trustees, employces
or subsidiaries, nor the State of New York, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned right-
s. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring the Long
Island Power Authority, its trustees or employees, or by the State of New
York. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the Long Island Power Autlority, its trustces or

employees, or of the State of New York.

References

(1] J. Zhu, MY. Chow and F. Zhang. IEEE Transaction on Power Systems,
“ Phase balancing using Mixed-Integer Programming”. Vol. 13, No. 4,

November 1998, pp. 1487-1492.

[2] J. Zhu, G. Bilbro and M. Chow. IEEE Transactions on Power Systems,

32

3]

4]

[6]

(7]

“Phase Balancing using Simulated Annealing”. Vol. 14, No. 4, November

1999, pp. 1508-1513.

M. N. Gaffney. http://www.ndia-mich.org/workshop/Papers, “Intelli-

gent Power Management: Improving Power Distribution in the Field”.

Y. David and R. Hasharon. United States Patent. “Apparatus for and
method of evenly distributing an electrical load across an N-phase power

distribution network”. US Patent Num. 6018203. Jan. 25. 2000.

Y. David. et al. United States Patent. “Apparatus for and method of
evenly distributing an electrical load across a three phase power distri-

bution network”. US Patent Num. 5604385. Feb. 18. 1997.

M. Gandomkar. 39th International Universities Power Engineering Con-
ference, “Phase Balancing Using Genetic Algorithm”. Sept, 2004, pp.

377-379.

T. H Chen and J. T. Cherng. IEEE Transactions on Power Systems,
“Optimal Phase Arrangement of distribution Transformers Connected
to a Primary Feeder for System Unbalance Improvement and Loss Re-
duction Using a Genetic Algorithm”. Vol. 15, NO. 3, August 2000, pp
994-1000.

33

[8] Chia-Hung Lin, Chao-Shur Chen, Hui-Jen Chuang and Cheng-Yu Ho.
IEEE Transactions on Power Systems, “Heuristic rule-based phase bal-

ancing of distribution systems by considering customer load patterns”.

VOL. 20, NO. 2, May 2005. pp 709-716.

[9] M.-Y. Huang, C.-S. Chen, C.-H. Lin, M.-S. Kang, H.-J. Chuang and
C.-W. Huang. IET Generation, Transmission and Distribution, “Three-
phase balancing of distribution feeders using immune algorithm”. 17th

August 2007, pp. 383-392.

[10} Steven Skiena. “The Algorithm Design Manual” 2nd edition. Springer,

2008.

[11] K. Wang, S. Skiena and T.G. Robertazzi, Electric Power System Re-
search, “Phase Balancing Algorithms”, Volume 96, March 2013, Pages

218224.

[12] Nikhil Gupta, Anil Swarnkar and K. R. Niazi. Power and Energy Society
General Meeting, 2011 IEEE. “A novel strategy for phase balancing in

three phase four wire distribution systems”. July 2011.

