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Abstract of the Thesis
A sensor network for environmental monitoring using

PSoCs
by

Varun Subramanian
Master of Science

in
Electrical and Computer Engineering

Stony Brook University
2008

This report presents a detailed description of the implementation of a grid

type sensor network and presents a case study based on an application for

environmental monitoring. Programmable System on Chip (PSoCs) are used

for the implementation as PSoC is a reconfigurable System on a Chip (SoC)

which helps in designing adaptation policies for reconfigurable sensor nodes.

The implementation is specific to regions defined within the network and var-

ious functionalities to be implemented are specified for each region.

Prior to execution, the user has to define parameters that update the data

structure of the nodes. These parameters are defined by basic commands

which are transmitted by the server (PC) to the PSoC network in the form

of packets. The server communicates directly to one node (PSoC) called the

Entry Point which is located at co-ordinates (0,0) in the network. The Entry

Point receives these commands from the server, processes them and broadcasts

them to all the nodes in the network using a broadcast scheme.
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The commands include defining regions and various parameters associated

to the regions. After defining these parameters, various events and goals are

defined specific to regions using a different set of commands. The nodes pro-

duce actuation signals depending on the goals defined.

After all parameters are specified by the commands, the user gives out a

command to start execution which involves sensing, processing and networking

under tight hardware, bandwidth and energy constraints.
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Chapter 1

Introduction

Sensor networks are emerging as a key concept for many modern day applica-

tions like environmental monitoring, tracking, healthcare etc. This is possible

because of the reason that sensing and electronic devices are small and cheap

and thus, can be deployed in large numbers. It also enables superior deci-

sion making capabilities as related problems are tackled together instead of

separately which also helps in improving the reliability and robustness of the

system as failure of local nodes do no affect the overall functionality of the

system. This report discusses an efficient implementation which involves sens-

ing, processing and networking by each individual node in the network under

tight hardware, bandwidth and energy constraints.

Programmable System on Chip (PSoCs) are the nodes in the grid network.

PSoC is a reconfigurable System on Chip which helps in designing adapa-

tion policies for reconfigurable sensor nodes. The implementation involves the

following two design steps: (i)defining regions & the associated parameters,

events and goals specific to the regions with the help of command packets

1



through the server and (ii)start execution which includes sensing, processing

and networking.

The regions and the associated parameters are defined by the user through

the server which sends the commands to the Entry Point which is located

at co-ordinates (0,0) in the network. The functionality of the Entry Point is

detailed in chapter 2. The parameters associated with the region include Target

Point, Path, Path Probability, Aggregation Function and Precision. The Entry

Point processes these commands by converting the ASCII characters into the

hexadecimal equivalent before broadcasting these commands to all nodes in the

network by using broadcast scheme ’A’ which ensures that all the nodes receive

these commands and they receive it only once. It is important that they receive

it only once as there is no way the nodes will know if the same command packet

was received earlier and it may update the data structure with redundant data.

In scheme A, the command packets are first sent to all nodes in row 0 of the

network (i.e. all the nodes with X co-ordinate equal to 0) and these nodes

in row 0 send the commands to all the nodes in their respective columns. It

is thus ensured that all the nodes in the network receive the commands only

once. The nodes after receiving the command packets check if the data in

the packet matches the co-ordinates of the node and accordingly update the

data structure before sending the packet to the neighboring node(s). The

command packet structure is detailed in chapter 3 and the data structure for

the various parameters is detailed in chapter 4. After defining the regions and

the parameters, the user defines the goals associated with the regions and also
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the events. The goals defined for the region determines the type of actuation

signals the nodes have to produce.

After defining all the parameters and goals for the regions, the user gives

the command to start execution. The routine ’execute’ is called which is a loop

and the node exits the loop only on network reset. Within the loop, the code

first checks if the node is a Target Point. If the node is not the Target Point, it

performs the functionality of sensing, processing and networking. The nodes

sense data, perform the aggregation function defined for the region and select

one of the paths defined for the region to transmit the aggregated data to the

Target Point. The nodes send this data to the Target Point in the form of Data

Packets. The nodes then check for events which occur when the aggregated

data exceeds the threshold value. The node informs the Target Point about the

occurrence of an event by sending the Event Packet to the Target Point using

the transmit scheme B, which is defined in chapter 5. The node glows an LED

when an event occurs and the LED is turned off only when the recomputed

aggregated data does not produce an event. After checking for the occurrence

of an event, the node generates an actuation signal depending on the goals

defined for the region. Since the case study is based on an application for

environmental monitoring, the goals defined for the regions is to keep the

temperature within a range. Hence, the actuation signals generated by the

nodes control the speed of a fan. The aggregated data is compared with the

range of temperature values defined for the region and the speed of the fan

is controlled. While executing the functionalities mentioned above, the nodes
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also periodically check for received data and the packets received by the nodes

during execution are Information packets which are forwarded by the nodes to

one of the neighbor nodes. The nodes repeat the same functionality for all the

regions using a round robin policy. The node stops execution only on network

reset which can either be a hard reset or a soft reset. Sending the command

Reset network by the user through the server results in a soft reset.

If the node is the Target Point, it does not perform any sensing or pro-

cessing and performs the functionality of collecting data from all other nodes

in the region and form a data pool. After receiving data from all nodes in

the region, the Target Point creates the Data pool packet which is transmitted

to the Entry Point using the transmit scheme C. The Entry Point forwards

this packet to the server. The Data pool packet contains information about all

nodes in the region which includes the node co-ordinates, aggregated data and

the aggregation function. The server hence periodically gets updates from the

Target Point.
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Chapter 2

Entry Point Interface with
PSoC Network

Configuration and execution commands are setup in the PSoC Network by

using a server (PC) as the user terminal and access point to the network. For

this, the serial interface is used between the server and a special node in the

PSoC network, the entry point. This node has a dedicated mode of operation.

It receives commands from the server, decodes and translates them into an

appropriate packet format for the PSoC nodes in the network, and then it

broadcasts the commands to all the PSoC nodes.

The entry point also transmits back to the server information about the

network’s operation. This data is received by the entry point from the target

points of the different regions in the network and then is sent to the server.

For the serial interface implemented between the server and the PSoC

Network, each command packet is made up of multiple 8 bits (1 byte) long

serial frames. For transmitting these commands to the PSoC network, the

entry point translates the commands into a format that reduces the number
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of serial frames in a packet.

The individual commands are described in Section II. Section III shortly

describes the format translation done by the entry point in order to adapt

the command packet for the PSoC nodes. The mode of operation of the entry

point is presented in Section IV and in Section V an analysis of the clock cycles

needed for operation is given.

2.1 Entry Point Interface with PSoC Network

This section describes the packet format which is sent throughout the PSoC

network, after the entry point (node 0,0) decodes the commands received from

the server (PC).

The command packet sent in the network is formed of 8 bit wide serial

UART frames. Each of these UART frame contains information about the

specific command, according to the command structure described in the pre-

vious section. At the end of each packet, an 8 bit value of 0xFF is sent in

the network in order to indicate the end of the packet. At this time, the

command type and command parameters are sent as their equivalent ASCII

codes (8 bits), except for numeric information. Numbers (ex. coordinates) are

processed by the entry point and changed from their ASCII representation to

an 8 bit value. The spaces from the server commands are eliminated, in this

way reducing the size of a command packet and optimizing the communication

channel usage.

Using this approach, the network command packets follow the same format
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as the server commands with the exclusion of white spaces. All UART frames

have the same meaning.

The start network command is converted to a single frame with the fixed

predefined value of 0xFD. The reset network command is processed in a similar

way, with the single frame value being 0xFE.

All commands are sent to all the nodes in the PSoC network, implementing

a broadcast communication scheme.

2.2 Entry Point Implementation Description

The entry point code is written in assembly in order to optimize it for speed,

by trying to reduce the overhead a C program would generate. This approach

has been taken because of the basic lower level at which these commands

operate within the PSoC network. Regardless of the application implemented

on the network, there is always the need to execute these commands in order

to set up the network’s data structure, configure the communication between

the nodes and set the region’s or individual node’s operation.

Apart from speed, code size is also taken into consideration when imple-

menting the commands on the entry point. Because all subsequent applications

have their own program (code) added to this current structure, the command

processing algorithm code size has to be kept to a minimum. This is done by

defining general routines that can be reused often. The penalty paid with this

approach is that some clock cycles are wasted with the call and return instruc-

tions. However, this loss in execution speed is compensated by the extended
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Figure 2.1: Entry point operation. (a) Server command execution. (b) Net-
work data execution

program memory available for other applications.

As described in the previous sections, the commands are received from the

server thorough the serial interface using ASCII characters. The implementa-

tion only supports one character sized names (region id, path id, etc) and only

two digit numbers (coordinates, precision). The entry point has two dedicated

operation modes. The flow charts for these two modes are shown in Fig.1.

One mode of operation deals with the commands received from the server

and processes these commands and transmits them in the entire PSoC network

(Fig.1 (a)). The second mode of operation focuses on receiving data from the

network and transmitting it to the server (Fig.1 (b)).

2.2.1 Receiving Server Commands

Commands are received through the serial interface from the server, therefore

on the PSoC node designated as an entry point an RX8 module is used with
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the receive interrupt for this module, minimizing the software resources needed

and freeing up the CPU for other tasks.

Commands are received from the server one byte (one ASCII character)

at a time and for each byte the receive interrupt is triggered. After checking

if the byte received is correct (no parity errors), another check is performed

to see if the byte is an end of command string byte (ASCII for new line). If

the byte is not an end of command indicator, the value is saved in SRAM

memory. When an end of command indicator is received, a variable is set in

order to signal the main program loop that the entire server command has

been received successfully.

The main program constantly monitors this variable showing a complete

command received, and if so, processes the command and then clears this

variable and resets the index at which bytes are to be received for the next

command (a new command will overwrite the previous command bytes in

memory only after the command has been processed and transmitted to the

network).

2.2.2 Processing Server Commands

After a command is received, it undergoes several processing steps before it

is sent forward in the network. Multiple routines are implemented in order to

deal with this aspect. Using function calls for these general purpose opera-

tions (they are shared by all the server commands used) reduces the code size

required.
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The processing routines implemented in the design are:

• get command type

• get region name

• get path name

• get number

• get number last

• save path coordinate

All of these functions listed above assume the X register is set up to point

to the next character in the command string that needs to be processed. Since

the command format is well determined, decoding or processing a command

implies calling these functions in the correct sequence and adjusting the X

register to point at the next character that is to be considered before calling a

function. No check is done to determine the correctness of a command received

and no error message is produced in case an unknown command is received or

in case there are syntax issues in the command string. The first condition will

not generate a functional issue (the command is ignored), but the former will

determine the system to malfunction.

As discussed previously, the command string is saved byte by byte in SRAM

(starting at a predefined location) until the ASCII new line character is re-

ceived, at which point the RX8 interrupt service routine signals the main
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program to start processing. At this time, the X register is set up to point

to the first byte received and the get command type function is called. This

function places the first byte of the command string (command identifier) in

a predefined SRAM location (pkt start) which is the first byte of the packet

that will be sent in the network once the entire command is decoded. The

main program then checks the content of the pkt start location and deter-

mines the command type (and executes the correct sequence of functions for

that command) or ignores the entire command string in case of an unknown

command.

The get region name and get path name functions operate in a similar way

with the get command type function, saving the region name and path name,

respectively, from the command string to the A register (returned value). This

value is afterwards saved to the next position available in the packet that is

being assembled for transmitting in the network.

The get number function (also get number last) is used to determine the

numbers present in the command string. Before calling this function, the X

register is set up to point to the next unprocessed byte in the string. When

called, this function counts the number of digits in the number (how many

characters between two consecutive spaces) and transforms the ASCII repre-

sentation to the actual number: 0x30 is subtracted from each byte and if the

number is composed of two digits, the first digit is multiplied by 10 (using the

hardware multiplier) and then the result added to the second digit (only max-

imum 2 digit support). The actual number represented on 8 bits is returned
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in the A register and later saved in the next available space of the packet that

is being assembled for transmitting in the network. The get number last func-

tion operates in the same way, except it counts the number of digits between

a space and the end of command indicator (ASCII new line character).

Because the path defining command does not have a fixed number of bytes,

the function save path coordinate was implemented to overcome this issue and

keep track where each coordinate needs to be placed in the packet that is

going to be sent in the network. The combination of this function and the

get number or get number last is used in a loop until all the coordinates from

the command string have been added to the final network packet.

Once all the ASCII characters from the command string have been decoded

(processed) and the network packet is assembled, the main program places the

packet end indicator (0xFF). This indicator is used by the receiving PSoC

nodes in a similar way the entry point uses the ASCII new line character when

communicating with the server to determine the end of a command.

In the case of a start or reset command being received from the server, the

main program does not do any function calls other than get command type.

After determining that the command is a start or reset command, the start or

reset indicator is sent in the PSoC network (0xFD or 0xFE, respectively). The

reset command is automatically executed and sent in the network on power-up

or hard reset. This is a safety measure taken to prevent power-up noise from

generating false commands in the network.
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2.2.3 Transmitting Server Commands

A processed command is assembled into a packet terminated by an end of

packet indicator (0xFF) as described in the previous sections. This packet

is then sent to all the nodes in the PSoC network using the TX8 modules.

Transmitting is not implemented using interrupts and a broadcast technique

is used: all the nodes in the network will receive the command, but only the

ones that are affected by it will interpret it, all the others will just ignore and

forward it.

The entry point is considered to be of coordinates 0,0 in this grid imple-

mentation of the PSoC network. For this reason, it uses two TX8 modules,

one labeled ’up’ (for transmitting to upper row in the network) and the other

label ’right’ (for transmitting to next column in the network). Both of these

interfaces are used to send command packets. Because an interrupt approach

is not available and simultaneous transmission is not possible, first the ’up’

direction and then the ’right’ direction is activated.

Two different functions are implemented to deal with these two transmit

directions: send up UART and send right UART. They operate in a similar

way, except they use different physical TX8 modules, hence they call different

API routines (specific to each module).

The implementation of the send up UART function uses a loop to send

each byte of the command packet. Starting from SRAM location pkt start

bytes are sent one at a time on the TX8 module by calling the send data TX8

API routine. The loop executes until the last byte transmitted is equal to
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0xFF. Except for path command packet, all other packets have a known size

(total number of bytes) and therefore the number of iterations through the

loop can be determined.

The send right UART function also includes the usage of a third TX8

module, this one connected back to the server. The role of this module is to

enable an echo function back to the server (all the bytes sent in the network

can be viewed on the server terminal). It serves debugging purposes only and

has no application functionality.

2.2.4 Network Data

The entry point also serves the function of sending network data and infor-

mation back to the server so that it can be analyzed on the terminal. This

process is similar to the server commands process discussed previously. Using

RX8 modules and the interrupts associated with them, data from the net-

work is received in SRAM, starting from a predefined index. When the packet

end indicator is received (0xFF) the interrupt service routine signals the main

program loop that new data has been received from the network by setting

a specific data received flag. At this point there is no processing of the data

packet involved, it is just forwarded to the server through the same TX8 mod-

ule used to echo the server commands. After the last byte is sent (0xFF), the

data received flag is reset by the main loop. There are two possible directions

from which the entry point can receive network data. Data overwrites from the

two different locations are overcome by using two different SRAM locations
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to store the data packets and two different data received flags (one for each

direction).

2.3 Entry Point Clock Cycles Analysis

This section presents a clock cycle analysis done on the entry point assembly

language implementation. It is intended to give a measure of the complexity of

each part of the application. Different scenarios (branches taken or not taken)

are discussed and total number of clock cycles are given for each segment

of the code: receiving a server command, processing a server command and

transmitting a server command.

This analysis does not include the network data process since it is based

on similar routines with the process involving a server command. For receiv-

ing network data, the clock cycle count is close to the count for receiving

server commands. In the case of transmitting network data to the server, the

same formula that is given for transmitting a path command can be used for

reference.

2.3.1 Receiving Server Commands

For this section, the RX8 receive interrupt service routine is presented from

the total number of clock cycles perspective, taking into account the different

branch instruction outcomes. Ignoring the case of parity errors, there are two

possible branch outcomes: the ASCII character is not new line (normal) or it

is ASCII new line (complete command was received). This data is shown in
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Byte type Clock Cycles

normal 115

new line 112

Table 2.1: Receive Interrupt Clock Cycle Count (one byte)

Table I. Information is given for a single byte received. In case of a complete

command, the total number of clock cycles is determined with the formula (1).

API routines clock cycle count are not included, only the call and the return

instructions.

Clkscommand = (N + 1)× Clksnormal + Clksnewline (2.1)

In (1), N stands for the number of bytes the command string has (including

spaces). Clksnormal and Clksnewline are the data from Table I for a normal

byte received and a newline character, respectively. The N + 1 accounts for

the ASCII carriage return character received before the new line character

(considered as a normal character).

2.3.2 Processing Server Commands

All routines presented in section IV.B are shown and the total number of clock

cycles are given (Table II). Call and return instructions for these functions are

considered in this count. Furthermore, the total number of clock cycles data

is also provided about processing each of the commands from section II (Table

III). Best case scenarios consider that all the numbers in the command are

single digit. Worst case scenarios assume that all the numbers in a command

are made up of two digits. Since a path command has a variable total number
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Function Best Case Worst Case

get command type 40 -

get region name 35 -

get path name 35 -

get number 164 255

save path coordinate 64 -

Table 2.2: Processing Functions Clock Cycle Count

Command Best Case Worst Case

define region 877 1241

define target 518 700

define path 489 × Nc + 428 671 × Nc + 519

define path probability 423 514

define region precision 583 765

define aggregation function 585 771

define region event 423 514

define node event 782 1146

define region range 795 1159

define node range 1157 1612

network start 272 -

network reset 207 -

Table 2.3: Processing Complete Commands Clock Cycle Count

of bytes, a formula depending on this number is given (Nc stands for the

number of nodes in the server path command string).

2.3.3 Transmitting Server Commands

In this section, the total number of clock cycles for transmitting the server

command packet for all commands discussed in section II is presented (Table

IV). Since a path command has a variable total number of bytes, a formula
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Command Transmitted Clock Cycles

define region 2 × 706

define target 2 × 500

define path 2 × (103 × Np + 88)

define path probability 2 × 500

define region precision 2 × 500

define aggregation function 2 × 603

define region event 2 × 397

define node event 2 × 603

define region range 2 × 603

define node range 2 × 809

network start 2 × 55

network reset 2 × 55

Table 2.4: Transmitting Complete Commands Clock Cycle Count

depending on this number is given (Np stands for the number of bytes in the

path packet - coordinates are 1 byte and there are no spaces in packet at this

point, 0xFF not included in Np). The TX8 module API routine clock cycle

count is not included, only the call and the return instructions are considered.

The total number of clock cycles for both ’up’ and ’right’ transmitting are

shown in Table IV ( 2 * one direction count).
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Chapter 3

The Packet Structure

In the PSoC network, packets are the means by which data is communicated

between nodes and also between the server and the PSoC network. The size

of a packet is equal to the number of bytes in the packet. The size is fixed

for a type of packet with a few exceptions. The value FFh denotes the End of

Packet and is included for all packets. The End of Packet is included while

computing the size of packet. Reset Network and Start Execution are the only

packets with do not include an End of Packet.

The packets are of two types namely (i)Command Packets and (ii)Information

Packets. The command packets are further subdivided into (a)Define regions

& the associated parameters, (b)Define events & actuation procedures and

(c)Reset network & Start execution.

3.1 Command Packets

Command packets are sent from the server to the PSoC network to define

various parameters that update the data structure of the nodes in the network.
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0 , 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2 , 0 2, 1 2, 2 2, 3

3, 0 3, 1 3, 2 3, 3

Region A

Figure 3.1: Defining a Region

The nodes perform different functionalities relative to these parameters. The

command packets are further divided into the following subtypes:

3.1.1 Define Regions & the associated parameters

These packets are command packets which are used to define a region and the

parameters associated with it which include the Target point, Region’s path,

Path Probability, Region’s precision and Region’s aggregation function.

3.1.1.1 Define Region

This command is used to define a set of nodes within the PSoC grid to be a

part of the same region. The size of this packet is 7.

Command string format:
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r. . . region id. . . x1. . . y1. . . x2. . . y2. . . FFh

• r - command id (define region)

• region id - region name

• x1, y1 - coordinates for bottom-left corner of region

• x2, y2 - coordinates for top-right corner of region

• FFh - End of Packet

ex. r A 0 1 2 3 // defines a region named ”A”, node (0,1) and (2,3) set the

boundaries of region ”A”, node (0,1) being the bottom-left corner of the region

and node (2,3) being the top-right corner of the region as shown in figure 3.1,

3.1.1.2 Define Region’s Target Point

This command establishes which of the nodes associated with a region is the

target node. The target node is the node where all the paths within the region

will end. The Target node collects data from all the nodes in the network and

forms a data pool. The data from the region is fed back to the Entry Point

and from the Entry Point to the server from the target node. The size of this

packet is 5.

Command string format:

t. . . region id. . . x. . . y. . . FFh

• t - command id (define target point)
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0 , 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2 , 0 2, 1 2, 2 2, 3

3, 0 3, 1 3, 2 3, 3

Region A

Figure 3.2: Defining a Target Point

• region id - region name

• x, y - coordinates of target point

• FFh - End of Packet

ex. t A 2 3 // defines the node (2,3) to be the Target Node for region ”A”

as shown in figure 3.2 where the Target Point is highlighted.

3.1.1.3 Define Region’s Path

This command sets a path inside a predefined region. Only one path can be

set at a time but a region can have multiple paths. The size of this packet is

not fixed as the length of a path is not fixed.

Command string format:
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0 , 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2 , 0 2, 1 2, 2 2, 3

3, 0 3, 1 3, 2 3, 3

Region A

Figure 3.3: Defining a Path

p. . . region id. . . path id. . . no of nodes. . . list of nodes. . . FFh

• p - command id (define path)

• region id - region name

• path id - path name

• no of nodes - total number of nodes on path

• list of nodes - xi, yi - coordinates of nodes on path, separated by spaces

and last node is always the target point

• FFh - End of Packet

ex. p A P 5 0 1 0 2 1 2 1 3 2 3 // defines a path named ”P” in region

named ”A” having 5 nodes with the co-ordinates (0,1), (0,2), (1,2), (1,3) &
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(2,3). (2,3) is the target node and the last node in the path. The path is shown

in figure 3.3 where the path from (0,1) to (2,3) is highlighted.

3.1.1.4 Define Path Probability

This command is used to set the probability with which a path is chosen within

a predefined region. The size of this packet is 5.

Command string format:

q. . . region id. . . path id. . . path probability. . . FFh

• q - command id (define path probability)

• region id - region name

• path id - path name

• path probability - the probability with which a path is chosen (given in

%)

• FFh - End of Packet

ex. q A P 30 // sets the probability of path named ”P” in region named

”A” to 30% = 0.3.

3.1.1.5 Define Region’s Precision

This command sets the precision of the data acquisition within a predefined

region by specifying the resolution of the ADC (this changes the sampling
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time) and the time interval between two measurements. All nodes within the

region will use these settings. The size of this packet is 5.

Command string format:

s. . . region id. . . no of bits. . . no of seconds. . . FFh

• s - command id (define space and time precision within a region)

• region id - region name

• no of bits - ADC bit resolution

• no of seconds - time interval in which at least one measurement must be

made

• FFh - End of Packet

ex. s A 8 5 // precision in region named ”A” is set to 8 bit ADC resolution

and an interval of 5 seconds between 2 measurements.

3.1.1.6 Define Region’s Aggregation Function

This command sets the way in which data is processed by a node within a

predefined region. Special keywords are used to set the different functions.

This command is specific to a node in the region and separate commands have

to be defined for each node in the region. The size of this packet is 6.

Command string format:

f. . . region id. . . keyword. . . x. . . y. . . FFh
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• f - command id (define aggregation function within a region)

• region id - region name

• keyword - sets which function to use

• x, y - coordinates of the node for which the function applies

• FFh - End of Packet

Example of possible keywords: a - arithmetic mean for 5 sensed values; g

- arithmetic mean for 4 sensed values

ex. f A g 2 3 // in region named ”A”, arithmetic mean (”g”) of 4 sensed

values will be used as aggregation function for node (2,3).

3.1.2 Define Events & Actuation Procedures

These packets are command packets which are used to define events and actu-

ation procedures. An event occurs when the temperature value sensed exceeds

a threshold value. A fan is used for the actuation and hence, the speed of the

fan needs to be controlled depending on the range of the temperature value

sensed which is specified by the commands.

3.1.2.1 Define Region’s Event

This command is used to define an event for a region. The size of this packet

is 4.

Command string format:

h. . . region id. . . threshold. . . FFh
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• h - command id (define a region’s event)

• region id - region name

• threshold - threshold temperature value that generates an event

• FFh - End of Packet

ex. h A 30 // defines an event for region ”A”, 30o celcius being the

threshold temperature value that generates an event.

3.1.2.2 Define a Node’s Event for a Region

This command is used to define an event for a node (x, y) specific to region

”A”. The default threshold value for the node for region ”A” is the one defined

by the command Define a region’s event. The size of this packet is 6.

Command string format:

n. . . region id. . . x. . . y. . . threshold. . . FFh

• n - command id (define an event for a node)

• region id - region name

• x, y - coordinates of node

• threshold - threshold temperature value that generates an event

• FFh - End of Packet
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ex. n A 3 12 30 // defines an event for node (3,12) for region ”A”, 30o

celcius being the threshold temperature value that generates an event. The node

may be a part of other regions and they may have different threshold values

specific to those regions.

3.1.2.3 Define Region’s Range

This command defines a range of temperature values for controlling the speed

of the fan for a specific region. The command packet specifies three tempera-

ture values T1, T2 and T3. If the temperature value is less than T1, the fan

is very slow i.e. the PWM which drives the fan has 25% duty cycle. If the

temperature value is between T1 & T2, the speed of the fan is slow (PWM

with 50% duty cycle). If the temperature value is between T2 & T3, the speed

of the fan is medium (PWM with 75% duty cycle) and the speed is fast (PWM

with 100% duty cycle) if the temperature value is greater than T3. The size

of this packet is 6.

Command string format:

g. . . region id. . . T1. . . T2. . . T3. . . FFh

• g - command id (define region’s range)

• region id - region name

• T1 - temperature value 1

• T2 - temperature value 2

28



• T3 - temperature value 3

• FFh - End of Packet

ex. g A 20 25 30 // defines a range of temperature values for region ”A”

such that the fan is very slow if the temperature value is less than 20o C, speed

of the fan is slow for the temperature range of 20o C - 25o C, speed of the fan

is medium for the temperature range of 25o C - 30o C and the speed is fast if

the temperature value exceeds 30o C.

3.1.2.4 Define a Node’s Range for a Region

This command defines a range of temperature values for controlling the speed

of the fan for a node (x, y) specific to a region ”A”. The command packet

specifies three temperature values T1, T2 and T3. If the temperature value

is less than T1, the speed of the fan is very slow i.e. the PWM which drives

the fan has 25% duty cycle. If the temperature value is between T1 & T2, the

speed of the fan is slow (PWM with 50% duty cycle). If the temperature value

is between T2 & T3, the speed of the fan is medium (PWM with 75% duty

cycle) and the speed is fast (PWM with 100% duty cycle) if the temperature

value is greater than T3. The default range for the node for region ”A” is the

one defined by the command Define region’s range. The size of this packet is

8.

Command string format:

o. . . region id. . . x. . . y. . . T1. . . T2. . . T3. . . FFh
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• g - command id (define node’s range for a region)

• region id - region name

• x, y - co-ordinates of node

• T1 - temperature value 1

• T2 - temperature value 2

• T3 - temperature value 3

• FFh - End of Packet

ex. g A 3 12 20 25 30 // defines a range of temperature values for node

(3, 12) specific to region ”A” such that the speed of the fan is very slow if the

temperature value is less than 20o C, speed of the fan is slow for the temperature

range of 20o C - 25o C, speed of the fan is medium for the temperature range

of 25o C - 30o C and the speed is fast if the temperature value exceeds 30o C.

The node may be a part of other regions and they may have different ranges

specific to those regions.

3.1.3 Reset network & start execution

These command packets are used to Reset the network & Start execution.

3.1.3.1 Reset Network

This command resets the entire PSoC Network. It is intended as a software

version of a hard reset, enabling the user to remotely reset all the nodes in the
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network, hence deleting all previous information stored in the data structure

(region, target, path, path probability, aggregation function, precision, event

and range). This command also stops execution. The size of this packet is 1

and it does not include an End of Packet.

Command string format:

x

This command can be also be executed by pressing the reset button of

node (0,0) which is the Entry Point.

The actual information is not deleted from memory, rather all the indexes

in the data structure are reset to zero, this being equivalent to a total loss of

information.

3.1.3.2 Start execution

This command enables execution for the network. All the parameters which

include region and it’s parameters, events and ranges are defined prior to

enabling execution. After the execution is enabled, the nodes in the network

start sensing temperature, execute various functions within the regions, check

for events and also produce the actuation signals. The size of this packet is 1

and it does not include End of Packet.

Command string format:

y

After this command is defined, the nodes stop execution only on hardware

reset or on software reset using the Reset Network command.
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3.2 Information Packets

These type of packets are not command packets as they are not defined by

the server and are also not used to define the data structure and parameters

related to execution. They are just information packets which are used to

communicate data between nodes in the network.

3.2.1 Define Data Packet

The Data Packet is defined by a node in the network. The node uses this

packet format to transmit data associated to it to the Target Point of the

region along one of the paths defined by the server. All other nodes in the

path just forward this information packet to the subsequent node in the path.

The size of this packet is 8.

Command string format:

D. . . region id. . . path id. . . x. . . y. . . data. . . funct. . . FFh

• D - command id (Communicate data to Target Point)

• region id - region name

• path id - path used to send data to Target Point

• x, y - co-ordinates of the node

• data - aggregated data computed by the node

• funct - aggregation function used by the node
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• FFh - End of Packet

ex. D A P 2 3 17 g // An information packet defined by node (2,3) which

sends data associated to region ”A” to the Target Point using path ”P”.

3.2.2 Define Data pool Packet

This is an information packet defined by the Target Point which collects data

from all nodes in the region to form a data pool after which it transmits the

collected data to the server. The size of this packet is not fixed as the number

of nodes in a region is not fixed.

Command string format:

e. . . region id. . . x1. . . y1. . . data1. . . funct1. . . . . . xn. . . yn. . . datan. . . functn. . . FFh

• e - command id (Send collected data to the server)

• region id - region name

• x1, y1 - co-ordinates of first node in region id

• data1 - aggregated data of node (x1, y1)

• funct1 - aggregation function used by the node (x1, y1)

• xn, yn - co-ordinates of last node in region id

• datan - aggregated data of node (xn, yn)
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• functn - aggregation function used by the node (xn, yn)

• FFh - End of Packet

ex. e A 1 0 17 g 1 1 16 a // An information packet defined by Target Point

of region A which consists of only two nodes (1,0) and (1,1). The aggregated

data associated with node(1,0) is 17 & the function used is g and the aggregated

data associated with node (1,1) is 16 & the function used is a.

3.2.3 Define Event Packet

This information packet is defined by an individual node in case an event occurs

for a defined region. An event occurs when the computed data is higher than

the threshold value defined for the node and the event is specific for a region.

The node defines this packet to inform the Target Point that an event has

occurred. The size of this packet is 5.

Command string format:

v. . . region id. . . x. . . y. . . FFh

• v - command id (Inform the Target Point about an event)

• region id - region name

• x, y - co-ordinates of the node

• FFh - End of Packet

ex. v A 2 3 // An information packet defined by an individual node which

transmits the packet to the Target Point.
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Chapter 4

The Data Structure

The user has to update the data structure for the nodes before giving out the

command to start execution. The data structure is updated by the user with

the help of commands which define the various parameters. These commands

are the command packets discussed previously in chapter 3. Once the data

structure is updated, the nodes have all the necessary information to start

execution.

4.1 Data structure for regions & the associ-

ated parameters

The data structure for region and it’s associated parameters is shown in figure

4.1.

The command for defining a region has the following format:

r. . . region id. . . x1. . . y1. . . x2. . . y2. . . FFh
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Region_start

Region_name_1

Region_target_1

Aggr_function_1

Bit_resolution_1

Time_interval_1

86h

87h

88h

89h

8Ah

8Bh

X_bottomleft_1

Y_bottomleft_1

X_topright_1

Y_topright_1

8Ch

8Dh

8Eh

8Fh

Region_name_2

Region_target_2

Aggr_function_2

Bit_resolution_2

Time_interval_2

90h

91h

92h

93h

94h

X_bottomleft_2

Y_bottomleft_2

X_topright_2

Y_topright_2

95h

96h

97h

98h

Figure 4.1: Data structure for region & the associated parameters

This command contains the region id (i.e. the region name) and the co-

ordinates of the endpoints of the region. The data structure is updated with

these parameters.

The data structure for the region starts at memory address location 86h in

SRAM page 1 as shown in figure 4.1. The variable region start is the pointer

to the start of the table and is located at memory address location 86h and

the value stored in this location is equal to the number of regions defined for

the node.

After receiving this command, the node checks if it exists in the region by
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comparing it’s own co-ordinates with the endpoints of the region defined in

the command. If the node exists in the region, it updates it’s data structure

by storing region id and the co-ordinates of the endpoints of the region.

The node computes the index pointer that points to the location where it

should store the region id. This is done by using the formula:

X = 9 ×n + 1 + 86h.

where, n is the number of regions previously defined for the node.

Referring to figure 4.1, if n = 0, X = 87h, if n = 1, X = 90h, if n = 2, X =

99h and so on. These are the memory locations where the region id is stored.

For example, if n = 1, X = 90h. After computing this index pointer,

the node stores the values of the region id, x1, y1, x2 and y2 at locations

region 2(90h), X bottomleft 2(95h), Y bottomleft 2(96h), X topright 2(97h)

and Y topright 2(98h) respectively. The other parameters are yet to be defined

and so they are initialized to 0.

The user defines the Target Point for a region using the format:

t. . . region id. . . x. . . y. . . FFh

The node first checks if it lies in the region specified by the command by

comparing region id in the command with the region names in the table. If

the region exists, then the node compares it’s co-ordinates with x & y in the

command. If they are equal, then the node is the Target Point for that region

and it stores a value of 1 in the region target location which is located below

the corresponding region name. A value of 1 in that location indicates that
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the node is the Target Point of the region and the default value of 0 indicates

that it is not the Target Point.

For example, if the node is a Target Point for region name 2(90h), then it

stores a value of 1 in region target 2(91h).

The Target Point has it’s own data structure which the node updates when

this command is specified which is discussed in the next section.

The remaining parameters namely Aggregation function, Bit Resolution

and Time Interval are also updated on receiving the corresponding commands.

In each case, the node first checks if it lies in the region specified in the

command by comparing the region id in the command with the region names

in the table. If it exists, then it updates these parameters to the corresponding

locations which are initialized to 0 when a region is defined.

4.2 Data structure for Target Point

The data structure for defining a Target Point for a region is shown in figure

4.2.

The command for defining the Target Point has the following format:

t. . . region id. . . x. . . y. . . FFh

This command contains the region id (i.e. the region name) and the co-

ordinates of the Target Point of the region. There are 2 different data struc-

tures for the Target Point as shown in figure 4.2 and they are updated depend-

ing on the co-ordinates of the node. The data structure shown in figure 4.2
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Target_start

	o_of_nodes

X_coord_1

Y_coord_1

Data_1

Function_1

BBh

BCh

BDh

BEh

BFh

C0h

X_coord_2

Y_coord_2
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Function_2

C1h
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C3h

C4h

.

.

.

X_coord_n
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Data_n

Function_n
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Region_target

Region_name_1

X_target_1

Y_target_1

Region_name_2

X_target_2

A0h

A1h

A3h

A4h

A5h

Y_target_2

Region_name_3

X_target_3

Y_target_3

A6h

A7h

A8h

A9h

Page 1 Page 2

.

.

.

(a) (b)

A2h

Figure 4.2: Data structure for the Target Point

(a) is updated if the node is the Target Point and the data structure shown

in figure 4.2 (b) is updated if the node lies in the region but is not the Target

Point.

The node first checks if it lies in the region specified by the command by

comparing region id in the command with the region names in the table (refer

to figure 4.1). If the region exists, then the node compares it’s co-ordinates

with x & y in the command. If they are equal, then the node is the Target

Point for that region and it stores a value of 1 in the region target location

which is located below the corresponding region name. As mentioned earlier,
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as the node is the Target Point for the region, it updates the data structure

shown in figure 4.2 (a). The node stores a value of 1 in the Target start

location which shows that the node is a Target Point. Also Target start acts

as a pointer to the start of the table and is located at SRAM page 1 location

BBh. After that, using the information of the co-ordinates of the endpoints

stored in the table shown in figure 4.1, the node computes the co-ordinates of

all the nodes which lie in the region and allocate 4 memory locations for each

of them. The 4 memory locations correspond to the x and y co-ordinates of the

nodes, the aggregated data of the nodes and the aggregation functions of the

nodes. The data structure is now set up as shown in figure 4.2 (a). The Target

Point collects data from all the nodes and updates this data structure with

the information. The memory location No of Nodes located below Target start

indicates the number of nodes that lie in the region.

If the node lies in the region and is not the Target Point, the data struc-

ture shown in figure 4.2 (b) is updated. This data structure contains the

co-ordinates of the Target Point of the region. This information is helpful

when an event occurs and the node has to inform the Target Point of the

occurrence of the event. This information packet does not follow the paths

defined for the region as the paths are reserved for the data. So the node has

to know the location of the Target Point.
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4.3 Data structure for Path & Path Probabil-

ity

The data structure for defining a Region’s Path is shown in figure 4.3.

The command for defining the Region’s Path has the following format:

p. . . region id. . . path id. . . no of nodes. . . list of nodes. . . FFh

This command contains the region id (i.e. the region name), the path id,

the number of nodes in the path and the co-ordinates of all the nodes in the

path.

The node first checks if it lies in the region specified by the command

by comparing region id in the command with the region names in the table

(refer to figure 4.1). If the region exists, then the node checks if it lies in the

path specified in the command by comparing it’s own co-ordinates with all the

co-ordinates in the path. If the node lies in the path, then it determines the

path direction by comparing the co-ordinates of it’s neighbors with those of

the next node in the path. If the node is the Target Point, then it is the last

node in the path. Now the node updates the data structure shown in figure

4.3 with the path name and path direction. The path probability is not yet

defined and hence, it is initialized to 0. Figure 4.3 shows the data structure

for the path. The variable path start is located at location 30h in SRAM page

1 and it points to the start of the data structure for the paths. The paths

specific to regions are then updated. The data structure is defined in such a

41



Path_start

Region_name_1

�o_paths_1
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Page 1

Figure 4.3: Data structure for Path & Path Probability
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way that the user has to first define all the paths for a region before moving to

the next region. It starts with the region name, the next location is the path

strength, i.e the number of paths for that region and then the path names,

path directions and the path probabilities. Once the user moves on to the

next region, more paths for the previous regions cannot be defined but the

path probabilities can be modified.

The command for defining the probability for a path has the format:

q. . . region id. . . path id. . . path probability. . . FFh

The node first checks if it lies in the region specified by the command by

comparing region id in the command with the region names in the table (refer

to figure 4.1). If the region exists, then the node checks if it lies in the path

specified in the command by comparing path id in the command with all the

path names specific to region id in the table shown in figure 4.3. If the path

exists, the node updates the probability for the corresponding path.

During execution, the node selects the path according to the probabilities

defined for them. The node uses these paths to send the aggregated data to

the Target Point which collects data from all the nodes. Hence each and every

path specified for a region ends into the Target Point.

4.4 Data structure for Events & Actuation

The data structure for defining an Event is shown in figure 4.4 (a).
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Figure 4.4: Data structure for Events & Actuation

The command for defining an Event has the following format:

h. . . region id. . . threshold. . . FFh

This command contains the region id (i.e. the region name) and the thresh-

old value that generates an event. The event is specific to the region but the

user also has the option to change the threshold value for individual nodes.

The node first checks if it lies in the region specified by the command by

comparing region id in the command with the region names in the table (refer

to figure 4.1). If the region exists, then the node updates the data structure
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shown in figure 4.4 (a). The variable Event start is located at SRAM page 2

location 30h and the value stored is equal to the number of regions for which

events are defined.

The command for defining the range (actuation) for a region has the format:

g. . . region id. . . T1. . . T2. . . T3. . . FFh

This command contains the region id (i.e. the region name) and the range

of temperature values to specify the actuation procedure. The range is specific

to the region but the user also has the option to change the range for individual

nodes.

The node first checks if it lies in the region specified by the command by

comparing region id in the command with the region names in the table (refer

to figure 4.1). If the region exists, then the node updates the data structure

shown in figure 4.4 (b). The variable Range start is located at SRAM page 2

location 60h and the value stored is equal to the number of regions for which

the range is defined.

4.5 Clock cycle and Power Consumption anal-

ysis

This section discusses the number of clock cycles the code takes to define the

parameters and update the data structures. Assembly language was used for

optimization. According to the scheme used by the nodes to broadcast data,

the nodes transmit the packets to the neighboring node(s) after updating the
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Function Number of clock cycles

Define region 1974

Define Target Point 1847 + 84 ×(r − 1) + 112× no nodes

Define Path 453 + 84 ×(r − 1) + 68× n + 234× p

Define Path Probability 1400 + 84 ×(r − 1) + 86× q

Define Function 1626 + 84 ×(r − 1)

Define Precision 1378 + 84 ×(r − 1)

Define Event Region 1284 + 84 ×(r − 1)

Define Event Node 1692 + 84 ×(r − 1)

Define Range Region 1843 + 84 ×(r − 1)

Define Range Node 2233 + 84 ×(r − 1)

Table 4.1: Clock cycle count to define parameters

data structure. Hence the clock cycle analysis also include the transmit part

along with the part where the node updates the data structure. The number

of clock cycles the node takes to transmit depends on the size of the packet

’n’ and is equal to:

no clock cycles tx = 12 + 117 * n.

During the analysis, we assume that the parameter defined is relevant to

the node. For example, when we define a region, the node is assumed to exist

in the region or when a path probability is defined, we assume the node lies

in the corresponding path.

The code takes 1974 clock cycles to define a region. As mentioned earlier,

it is assumed that the node exists in the region defined.

Before defining any other parameter, the node checks if it exists in the

region by comparing the region names in the data structure with the region

name in the command packet received. The number of clock cycles taken to
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execute this functionality is equal to 84 * (r - 1). The region associated with

the parameter is the rth region defined in the data structure. Hence the code

executes the loop which checks if the region exists (r - 1) times and it takes

84 clock cycles to execute the loop once.

While defining the Target Point, the node first checks if it exists in the

region which takes 84 * (r - 1) clock cycles. If it exists in the region, it updates

the data structure shown in figure 4.2 (a) which takes ’1847 + 112 * no nodes’

clock cycles, where no nodes is the total number of nodes in the region. The

node allocates 4 memory locations for each node in the region and hence the

number of clock cycles to define the Target Point depends on the number of

nodes in the region.

While defining the path, the node first checks if it exists in the region

which takes 84 * (r - 1) clock cycles. If it exists in the region, it updates the

data structure shown in figure 4.3 which takes ’453 + 68 * n + 234 * p’ clock

cycles. The parameter n denotes that the node is the nth node in the path

and p denotes that the size of the packet to be transmitted to the neighbor

nodes which depends on the number of nodes in the path.

While defining the probability for the path, the node first checks if it exists

in the region which takes 84 * (r - 1) clock cycles. If it exists in the region,

it updates the data structure shown in figure 4.3 with the probability which

is initialized to 0 when the path is defined. This takes ’1400 + 86 * q’ clock

cycles where q denotes that the region associated is the qth region in the data

structure.
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Function Power in mW

Define region 259.42

Define Target Point 271.45

Define Path 251.65

Define Path Probability 252.93

Define Function 251.96

Define Precision 240.06

Define Event Region 239.51

Define Event Node 251.83

Define Range Region 251.715

Define Range Node 250.105

Table 4.2: Power consumed by the nodes while defining parameters

In case of the rest of the commands namely Define Function, Define Preci-

sion, Define Event Region, Define Event Node, Define Range Region & Define

Range Node, the node checks if it exists in the region which takes 84 * (r -

1) clock cycles and if the node exists in the region, the commands update the

respective data structures and the number of clock cycles taken is as shown in

Table 4.1.

The average power consumed by the node to define all the above parameters

was computed and is as shown in Table 4.2.
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Chapter 5

Methodology of Execution

The user gives out the command to start execution after defining all the pa-

rameters through commands to update the data structures of the nodes. The

parameters include regions and the associated parameters, events and goals

(actuation). Once the nodes start execution, they only stop on network reset.

A bit ’start execute’ is set and the routine ’execute’ is called which is a

loop that performs the functionalities of the nodes.

The nodes sense data, perform aggregation function, check for events and

generate actuation signals. The nodes which act as the Target Point for a

region do not perform these functionalities. They just collect data from all

other nodes in the region forming a data pool and send this data to the server.

Hence the nodes perform two different kinds of functionalities depending on

whether they are specified as a Target Point. The node exits the ’execute’

loop either on hard reset or soft reset. Sending the command Reset network

by the user through the server results in a soft reset. This results in resetting

the bit ’start execute’ which gets the node out of the routine ’execute’. The
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data structure is also erased by the node after receiving this command. This is

done by resetting all the variables that act as pointers to the start of the data

structures. These variables also contain the number of parameters defined.

Hence resetting these variables result in a complete loss of data as the code

uses these variables to update or retrieve data from the data structure. The

hard reset is the hardware reset of the individual nodes.

In the ’execute’ routine, the node first checks if it is a Target Point. This

is done by checking if the variable target start is set. This variable is set or

reset while defining the Target Point for a region depending on whether the

node is the Target Point. If the node is the Target Point, the execution shifts

to a function named targetpoint datacollect that performs the functionality of

data collection and if the node is not a Target Point, the execution enters a

loop exec loop which performs the functionality of sensing and processing. A

detailed description of functionalities of targetpoint datacollect and exec loop

is given in the sections below.

5.1 Sensing, Processing & Networking by the

Nodes

If the node is not a Target Point, the function exec loop is called which

performs 3 functionalities for a region namely (i)Sense and aggregate data,

(ii)Check for events and (iii) Generate actuation signals. The node performs

the same functionalities for all the regions using a round robin policy. The

node continues to execute this loop until the network is reset. Figure 5.1
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START

Select region 1

Select aggregation function and 

compute n

Select Timer Interval ‘s’ & load p 

= 150 * s into Timer period 

register

Sense and aggregate data

Select a path to transmit to 

Target Point

Check for Event

Generate Actuation Signals

Is execute = 

0?

Is curr_region = 

last_region?

Select next region

STOP
Yes

No

Yes

No

data = 0; count = 0;

Figure 5.1: Flow of execution

illustrates the flow of execution.

After entering the routine exec loop, performs the following functionalities:

5.1.1 Sense & Aggregate Data

The node first sets the value of n depending on the aggregation function defined

for the region. A 16-bit Timer circuit enables the sensing of data. The Timer is

clocked with a frequency of 150 Hz. Hence, the value of ’p = 150 * s’ is loaded

into the period register so that the Timer circuit generates an interrupt every

’s’ seconds, where ’s’ is defined to be the Timer Interval between measurements
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for the region. The interrupt service routine for the Timer sets the value of

the variable ’sense’ to 1. Two variables namely ’data’ and ’count’ are reset to

0.

After setting the value of n, loading the period register of the Timer circuit

and resetting the variables, the node enters a waiting loop to see if the variable

sense has been set to 1 by the Timer interrupt. But this waiting loop is not

idle and the node constantly checks if it has received data from other nodes by

calling the function check received data and forwards the received data to the

Target Point using the designated path. This forwarding of data by the node

takes very few clock cycles to implement and hence it does not affect the Time

Interval between measurements. When the sense variable is set to 1, the node

moves out of the waiting loop and resets the variable ’sense’ before calling the

routine to sense data. The sensed value is stored in the variable ’data sense’

which is added to the variable ’data’. The variable ’count’ is incremented by

1 and then compared with the value of n, which is the number of times the

data is sensed before performing the aggregation function. If the value is less

than n, the execution moves back to the busy waiting loop to sense data as

soon as the variable ’sense’ is set to 1 again. If the value of ’count’ is equal to

n, the aggregation function is performed. The variable ’data’ which contains

the summation of the data sensed n times is then divided by n to perform an

average. The result is again stored into ’data’.

Figure 5.2 gives a detailed description of the Sense & Aggregate function-

ality of the node.

52



START

Sense data and place value in 

‘data_sense’

data = data + data_sense

count ++

Is count = n?

data = data / n

STOP

Yes

sense = 0

Is sense = 1?

Data 

received?

No

Yes

No

Forward data to a 

neighbor node

No

Yes

Figure 5.2: Sense & Aggregate data
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Once the aggregated data is computed, the data needs to be transmitted

to the Target Point of the region using one of the paths defined for the region.

The routine select path is called for this purpose. The path is selected with

the help of the probabilities defined for the paths. The probabilities are in the

form of percentage and so, a random number between 1 and 100 is generated.

This number is compared to the probability of the path which has the highest

probability. If the random number is less than the probability, that path is

selected else the random number r is changed to ’r = sum of probabilities of

non-eliminated paths - r’ and then, the path with the highest probability is

eliminated. The process is again repeated until a path is selected. In the

case where there is only 1 path left and the rest are eliminated, the path that

remains is selected without checking the probabilities thus ensuring that a

path is definitely selected to transmit data to the Target Point. Once the path

is selected, the Data pool packet is formed (refer to chapter 3 for the packet

structure) and transmitted to the neighbor node which lies in the path. All

other nodes in the network just forward this packet to their respective neighbor

nodes which lie in the path and the Data packet is successfully transmitted

to the Target Point. Figure 5.3 describes the functionality of selecting a path

using the probabilities.

5.1.1.1 Check if data received

The function check received data is called when the node enters the busy wait-

ing loop before sensing data. The routine checks if data is received from other

nodes. Since the nodes have started execution, the nodes will receive only
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Figure 5.3: Select a path
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information packets. The receiving is done with the help of interrupts and the

ISRs set a bit ’ff entered’ after receiving an end of packet. If the bit is set to 1,

the data is retrieved by the node from the buffers, the bit ’ff entered’ is reset

and the received data is forwarded to one of the neighboring nodes depending

on the type of packet received.

The packet received is either a Data packet, a Data pool packet or an Event

packet. If a Data packet is received, the node forwards the packet to the

neighboring node which will follow the path defined in the packet. This path

was selected by the node which transmitted the Data packet. If a Data pool

packet is received, the packet was originally transmitted by the Target Point

and is meant to be transmitted to the server. According to scheme C used to

transmit this packet to the server, if the X co-ordinate of the node is 0, the

node transmits the packet to the left neighbor else it transmits the packet to

the bottom neighbor. The section on Data collection by the Target Node gives

a detailed explanation of this scheme. If an Event packet is received, the node

forwards data using scheme B which is used to transmit an event to the Target

Point. A detailed explanation of this scheme is given in the next subsection

viz. Check for Events.

5.1.2 Check for events

An event is defined for the region by the user prior to execution using the com-

mand Define Region’s Event. The user can change the event for an individual

node in the region using the command Define a Node’s Event for a Region.
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0 , 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2 , 0 2, 1 2, 2 2, 3

3, 0 3, 1 3, 2 3, 3

Region A

Figure 5.4: Transmitting scheme B for Event Packet

The user defines a threshold value for the event. If the aggregated data exceeds

the threshold value, an event occurs. On the occurrence of an event, the node

illuminates the LED and turns it off only when the recomputed aggregated

data value does not lead to the occurrence of an event. When an event occurs,

the node has to inform the Target Point about the occurrence of the event and

it creates the Event packet. The node uses scheme B to transmit to the Target

Point. In this scheme, the node first compares it’s own X co-ordinate with the

X co-ordinate of the Target Point. If it is not equal, the node transmits top

or bottom depending on where the Target Point is located. This scheme is

also followed by the forwarding nodes. The nodes transmit the Event Packet

vertically in the network until the packet reaches the row where the Target

Point is located and then by comparing the Y co-ordinate of the node to that
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of the Target Point, the nodes transmit horizontally till the packet reaches the

Target Point. Figure 5.4 shows an example where node (0,1) in region A has

to transmit an event to the Target Point which is located at node (2,3). The

node which is shaded with red color is the node which generates the event,

the Target Node is the one with the dark blue shade and the forwarding nodes

are shaded with green color. Since the Target Node is located above the node

which generates an event, the Event Packet is transmitted vertically to the

top until it reaches the row at which the Target Node is located. After that,

the nodes transmit to the right until the packet reaches node (2,3) which is

the Target Node.

5.1.3 Generate actuation signals

After checking for events, the node generates actuation signals by comparing

the aggregated data with the range of values defined by the user for actuation.

The range is defined for the region by the user using the command Define

Region’s Range. The user can change the event for an individual node in

the region using the command Define a Node’s Range for a Region. Since

the sensed data is a temperature value, the actuation signals generated will

adjust the speed of the fan connected to the node. The range defined has 3

temperature values. The aggregated data is compared with these values and

the speed of the fan is adjusted according to Table 5.1.
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Range Speed of fan

data ≤ T1 very slow

T1 ≤ data ≤ T2 slow

T2 ≤ data ≤ T3 medium

data ≥ T3 fast

Table 5.1: Speed control for the fan

5.2 Data collection by the Target Node

If the node is a Target Point for the region, it does not perform the functional-

ities of sensing & processing like the other nodes but collects data from all the

nodes in the region and form a data pool. The function targetpoint datacollect

is called which performs this functionality. When the node is defined as a

Target Point before start of execution, the node forms the data structure to

store data from all the nodes in the region. The data structure is shown in fig-

ure 4.2(a) where 4 memory locations are reserved for each node which include

the X co-ordinate, Y co-ordinate, data and aggregation function. Whenever

the Target Point receives a Data Packet, it updates this data structure. It is

also assumed that the Target Point may exist only in one region as it cannot

perform any functionality other than data collection.

The function of the Target Point is to form a data pool. Once it re-

ceives Data Packets from all the nodes in the region, it sends the Data Pool

Packet to the server. The function targetpoint datacollect has a variable named

’nodes rec’ which keeps a record of the number of nodes from which data was

received. Once the count is equal to the number of nodes in the region, the Tar-
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get Point transmits the Data pool packet to the server using transmit scheme

C. The variable ’nodes rec’ and the memory locations where the aggregation

function is stored are reset to 0 after transmitting the Data pool packet.

Each time the Target Node receives a Data Packet, it first upates the mem-

ory location with the data and checks if the memory location where the ag-

gregation function is stored is reset before updating the aggregation function.

If that memory location was reset, it increments the variable ’nodes rec’ and

if it was not reset, it means that the Target Point had received a Data packet

from that node earlier and it need not increment ’nodes rec’. Now the Target

Point checks if ’nodes rec’ is equal to the number of nodes ’n’ in the region. If

it is equal, the Target Point creates the Data pool packet which is defined in

section 3.2.2 in chapter 3. This packet contains information about all nodes

in the network which includes the node co-ordinates, aggregated data and the

aggregation function. The size of this packet is not fixed and it depends on

the number of nodes defined for the region. The maximum size of the packet

for this network is 20 because the maximum size of the receive buffer in all

the nodes is 20. The packet structure of Data pool packet is defined such that

the packet cannot hold information from more than 4 nodes if the maximum

size is 20. Hence if the number of nodes in the region is greater than 4, more

Data pool packets are created by the Target Point and the number of Data

pool packets depend on the size of the region (i.e the number of nodes in the

region). These Data pool packets are transmitted separately to the server one

after the other.

60



The Target Point needs to introduce a delay of 1 second between consec-

utive transmissions. If the Target Point does not introduce the delay, the

forwarding nodes will not be quick enough to process all the received Data

pool packets from the Target Point which results in the loss of information as

the receive buffer in the node gets overwritten. It was also observed that the

forwarding node which is the neighbor node to the Target Point gets stuck in

an infinite loop which results in a node failure if the packets are transmitted

by the Target Point without any delay. If the Target Point is a neighbor to

the Entry Point, it has to directly transmit the Data pool packets to the Entry

Point. In this case, it need not introduce any delay between transmissions

as the Entry Point only has the functionality of forwarding the data received

to the server whereas the forwarding nodes also have their own individual

functionalities.

The Data pool packets are transmitted from the Target Point to the server

using scheme C by which the Data pool packets are transmitted down till they

reach row 0 after which they are transmitted left to the Entry Point which

forwards the packets to the server. Figure 5.5 shows an example where the

Target Point which is highlighted with dark blue color is located at node (2,3).

The forwarding nodes are highlighted with green color and the Entry Point is

highlighted with red color.

61



0 , 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2 , 0 2, 1 2, 2 2, 3

3, 0 3, 1 3, 2 3, 3

Region A

Figure 5.5: Transmitting scheme C for Data Pool Packet

Function Number of clock cycles

Check received data 200 + transfer from buffer ×4

Transfer from buffer 124 + 101 ×n + process

Process before execution 180 + command execution

Process after execution 97 + forwarding function

Sense 64720

Select Path 1233 + 75 ×(r − 1) + 91× (q − 1)

Check Event 1038 + 84 ×(r − 1) + 84× (t− 1)

Actuation 268 + 84 ×(r − 1)

Forward Data Packet 1087 + 75 ×(r − 1) + 35× (p− 1)

Forward Data Pool Packet 46 + 117 ×n

Forward Event Packet 848 + 84 ×(r − 1)

Table 5.2: Clock cycle analysis during execution
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5.3 Clock cycle and Power Consumption anal-

ysis

Table 5.2 shows the clock cycles analysis for the execution part. The code

enters the execute loop after receiving the command to start execution. This

loop performs the operation of sensing, performing the aggregation function,

checking if an information packet is received, checking for events and gener-

ating actuation signals. The execute loop calls these functions to implement

those functionalities and Table 5.2 gives the clock cycle analysis for each of

the functions. The execute loop takes the number of clock cycles given below:

n clkcycles(execute) = 535 + [(35 + check received data)n + 83 + sense]

* f + divide + select path + check event + actuation.

The execute loop performs the functionality detailed in Figure 5.1. In the

equation above, the code checks if data is received while in the waiting loop

by calling the function ’check received data’. This function checks if data is

received from the 4 neighbor nodes connected to the node. If data is received,

this function calls the routine that extracts data from the receive buffer (i.e.

the function Transfer from buffer in Table 5.2) which calls the function ’pro-

cess’ after transferring the data into memory. The routine ’Process’ checks if

the packet received is an Information Packet during execution after which it

calls the function that forwards the packet to the neighboring nodes. Before

the start of execution, ’Process’ checks if the packet received is a Command

Packet and calls the function that updates the data structure. Table 5.2 gives

the number of clock cycles taken by the routine ’Process’ for both situations.
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The execute loop moves out of the waiting loop once the variable ’sense’ is

set by the Timer Interrupt. The equation assumes that the routine to check

if data is received is called n times in the waiting loop. Since the variable to

sense data is set, data is sensed by the node. The number of clock cycles to

sense data is tabulated in Table 5.2. The aggregation function defines that

data needs to be sensed f times before performing the aggregation function

(average of the f sensed values), which is included in the equation. After

aggregating the data, a path needs to be selected to transmit this data to the

Target Point. The function that selects the path is called and it takes ’1233 +

75 * (r - 1) + 91 * (q - 1)’ clock cycles to execute. The parameter r denotes

that the current region is the rth region in the data structure and q denotes

the number of paths eliminated while selecting the path.

After selecting the path and transmitting the Data packet, the execute loop

calls the routine ’check event’ that checks if the aggregated data exceeds the

threshold value defined. This routine takes ’1038 + 84 * (r - 1) + 84 * (t -

1)’ clock cycles, where r denotes that the current region is the rth region in

the data structure for events (figure 4.4(a)) and t denotes that the current

region is the tth region in the data structure that stores the Target Points for

all regions defined for the node (figure 4.2(b)). The data structure in figure

4.2(b) is used to retrieve the co-ordinates of the Target Point of the region so

that the node can transmit the event to the Target Point using scheme B.

After checking for events, the execute loop calls the routine ’actuation’

which compares the value of the aggregated data with the range to generate
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actuation signals. This routine takes ’268 + 84 * (r - 1)’ clock cycles, where

r denotes that the current region is the rth region in the data structure for

actuation (figur 4.4(b)).

The routine ’Forward Data Packet’ forwards the data packet along the

path designated to it. The routine takes ’1087 + 75 * (r - 1) + 35 * (p - 1)’

clock cycles, where r denotes that the region name in the data packet is the rth

region in the data structure that defines the path (figure 4.3) and p denotes

that the path name in the data packet is the pth path defined for that region

in the data structure (figure 4.3).

The routine ’Forward Data Pool Packet’ forwards the data packet along

the path designated to it. The routine takes ’46 + 117 * n’ clock cycles, where

n is the size of the packet which can be at the most 20.

The routine ’Forward Event Packet’ forwards the data packet along the

path designated to it. The routine takes ’848 + 84 * (r - 1)’ clock cycles,

where r denotes that the region in the event packet is the rth region in the

data structure that stores the Target Points for all regions defined for the

node (figure 4.2(b)). This function then compares its own co-ordinates with

the co-ordinates of the Target Point extracted from that data structure and

sends the Event Packet to a neighboring node by using the scheme discussed

earlier.

The average power consumed by the node to perform these functionalities

was computed and is as shown in Table 5.3.
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Function Power in mW

Execute loop 263.515

Check received data 232.75

Transfer from buffer 253.46

Process 230.9

Sense 571.86

Select Path 243.385

Check Event 242.83

Actuation 242.21

Forward Data Packet 227.215

Forward Data Pool Packet 249.85

Forward Event Packet 236.725

Table 5.3: Power consumed by the nodes during execution
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Chapter 6

Related work

A model has been proposed in [1] which provides reliable and efficient decision

making capabilities to massively distributed embedded systems. The exist-

ing approaches focus on either centralized or local control, centralized control

being well understood and reliable but not scalable for large systems while

local control works well for large systems but it’s overall performance is hard

to capture. The proposed decision making model is flexible due to low-level

reactive behavior, scalable because it uses more abstract (aggregated) data

as application size increases, and less reactive and more predictable as global

decisions are based on deterministic formalisms.

A systematic procedure for designing adaptation policies for reconfigurable

sensor networks is proposed in [2] where the policies control online the char-

acteristics of the sensor nodes and data routing such that the performance

requirements are optimized. The procedure includes two steps namely De-

sign Point (DP) generation which represent multiple performance-cost trade-

offs and calculating the switching rates between alternative DPs and possible
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communication paths so that performance is optimized. Multimode Graphs

are used by the DP generation to capture multiple modes of operation of the

sensor nodes. Data communication networks is a model which offers an aggre-

gated description of data flow through the sensor network. The paper offers a

technique to systematically design adaptation policies of the sensor nodes in

the network while co-optimizing the sensing, processing and networking of the

embedded nodes.

The concept of Visual Programming (VP) was arguably proposed in the

80s [7], however, it is only recently that its advantages for embedded appli-

cations became apparent. VP languages have been proposed for applications

like managing smart oilfields, vehicle tracking, contour finding, environmental

monitoring, etc.

Sensor data are generally collected to determine what is going on during

specific dynamic processes [5]. These processes are quite often very complex

in nature and cannot be run without spending large resources unless they are

simulated in some way. A simulation framework has been used to demonstrate

how a number of decision support tools (services), of which the query languages

are the most powerful and general, can be used to monitor dynamic processes.

A central part of this framework is a scenario engine that keeps track of a large

number of events. The input data to the simulator framework comes from a

set of sensor models. That means that for each sensor type there is a piece

of software that simulates the real sensor and generates data corresponding to

the ongoing situations. As a consequence, a scenario with a number of ongoing
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events can be run while applying the various decision support tools over time.

Region Streams [8] is a functional macro-programming language for sensor

networks. The specification model is based on successive filtering and func-

tional processing of data pools. The data model is based on continuous data

streams sampled from the environment and groups of nodes defined by their

specific interests in space and over time. Language constructs enable aggre-

gation of the data streams from a region and application of a function to the

streams in a region. Abstract Task Graphs [4] is also a functional specification

in which tasks sample from and place data into data pools. There is no other

type of interaction between tasks. Channels act as filters for associating to a

task only specific data from the pool. Tasks are executed periodically or when

input data is available.

Semantic Streams [11] implements a query-based programming paradigm,

which fits well applications in which sensor networks operate as large dis-

tributed databases. Queries formulated as logic programs are converted by

the compiler into a service graph for the network. Data sensing is modeled

as streams. Other constructs include filtering by specifying properties of the

streams, defining regions and sub-regions of the physical space, and perfor-

mance requirements (e.g., quality of service). Kairos [6] proposes a set of

language-independent extensions for describing global behavior of sensor net-

works controlled centrally. The extensions assume shared memory to allow

any node to iterate through its neighbors and address arbitrary nodes.

An ontology based semantic mediation approach is used to enable spa-
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tial system interoperability which is essential for many applications including

spatial decision support systems that require integration of traditional and

spatial information systems [12]. Interoperability involves accessing, manipu-

lating and sharing data across heterogeneous systems and requires semantic

mediation among the sources. The semantic mediation framework consists

of ontology based descriptions of content and contexts, information media-

tion components and query processors. The query processors reformulate and

submit queries on local data repositories and combine the results of the sub-

mitted sub-queries. The mediation component searches for relevant data and

reconciles the semantic differences among the data sources.

Future large scale Networked Sensor Systems(NSSs) will demand concur-

rent execution of protocols like positioning, topology maintenance, medium

access control, time synchronization, calibration, error detection, routing and

the application level functionality making it difficult to optimize the design and

also ensuring correct operation resulting in the need for systematic method-

ologies for designing algorithms for NSS applications. A systematic algorithm

design methodology is proposed [13] which enables domain experts to design,

analyze and optimize algorithms based on an abstract network model without

requiring the knowledge of lower level networking and the hardware aspects

of the system. A simple case study using two models, namely Collision Free

Model (CFM) and Collision Aware Model (CAM) is discussed.

A Model based Integrated Simulation framework (MILAN) [16] is intro-

duced to facilitate embedded system design and optimization. MILAN facili-
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tates seamless integration of a variety of simulators at multiple levels of granu-

larity into the framework. A single GUI allows designers to specify different as-

pects of embedded system hardware, software and performance requirements.

The results of the individual simulators are interpreted in the global context to

provide system wide estimates of different performance metrics. More empha-

sis is given to power estimation and optimization. The architectures modeled

in MILAN consist of tightly-coupled, heterogeneous, digital components or

SoC architectures.

The ability to deploy unmanned surveillance missions by using wireless

sensor networks is of great importance in military applications [19] and the

focus is to acquire and verify information about enemy capabilities and posi-

tions of hostile targets. The article describes the design and implementation

of a complete running system called VigilNet for energy-efficient surveillance.

VigilNet contains a group of cooperating sensor devices to detect and track the

positions of moving vehicles in an energy-efficient and stealthy manner. Other

related work for suveillance include [20] which includes an application involv-

ing Intrusion detection and the related problems of classifying and tracking

targets. [22] presents an ad-hoc wireless sensor network-based system which

detects and accurately locates shooters in urban environments. The perfor-

mance of the system is superior to that of centralized countersniper systems

in dense urban terrains.

Sensor networks are also widely used in Habitat and environmental mon-

itoring [21]. The focus is mainly on nodal and network performance, with

71



an emphasis on lifetime, reliability, and the static and dynamic aspects of

single and multi-hop netwoks. Another application on military surveillance

and environmental monitoring [23] includes a wireless sensor network which

deploys heterogeneous collections of sensors capable of observing and report-

ing on various dynamic properties of their surroundings. Such systems suffer

bandwidth, energy and throughput constraints that limit the quantity of in-

formation transferred from end to end. Mechanisms o perform data-centric

aggregation utilizing application-specific knowledge provide a means to aug-

menting throughput but have limitations due to their lack of adaptation and

reliance on application-specific decisions.
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Chapter 7

Conclusion

This dissertation focuses on the development of a reconfigurable grid type sen-

sor network using reconfigurable System on Chip (SoC) as the reconfigurable

nodes. The implementation is specific to regions within the network and the

nodes operate with respect to the parameters defined for the regions. The

design flow includes two main steps: (i)defining regions & the associated pa-

rameters, goals and events with the help of command packets through the

server and (ii)start execution which includes sensing, processing and network-

ing.

The regions and the associated parameters are defined by the user through

the server which sends the commands to the Entry Point which broadcasts

the commands to the network using scheme A. The associated paramters in-

clude Target Point, Path, Path Probability, Aggregation Function and Preci-

sion. The nodes after receiving the command packets check if the data in the

packet matches the co-ordinates of the node and accordingly update the data

structure before sending the packet to the neighboring node(s). After defining
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the regions and the parameters, the user defines the goals associated with the

regions and also the events.

After defining all the parameters and goals for the regions, the user gives the

command to start execution. If the node is not the Target Point, it performs

the functionality of sensing, performing the aggregation function, selecting a

path to transmit the aggregated data to the Target Point, checking for events

and generating actuation signals depending on the goals set for the region.

The execution flow is as shown in figure 5.1. The nodes stop execution only

on network reset. If the node is the Target Point, it does not perform any

sensing or processing and performs the functionality of collecting data from

all other nodes in the region to form a data pool. The Target Point periodically

sends this information of all the nodes in the region to the server.

Appendix A refers to a case study which illustrates the proposed methodol-

ogy of execution. A major part of the code was written in Assembly language

for optimization. A detailed analysis of the clock cycles taken by each routine

to execute and also the average power consumed by each routine is given in

chapter 4 and chapter 5. A trade-off analysis between bandwidth and accu-

racy was performed. Accuracy in this case relates to the loss of data and

the ability to implement a wide range of aggregation functions and precision.

Bandwidth relates to the amount of data communication that takes place in

the network and the number of clock cycles required to implement individual

routines. The data communication in the network during execution is in the

form of Information packets. The Information packets are the three types of
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packets namely the Data Packets which send the aggregated data from the

individual nodes to the Target Point, the Data Pool Packets which send in-

formation of all the nodes from the Target Point to the server and the Event

Packets which are used by the nodes to inform the Target Point about the oc-

currence of an event. The trade-off analysis was done specific to the case study

which resulted in an accurate, optimized and power efficient implementation

with acceptable bandwidth.

75



Bibliography

[1] Varun Subramanian, M.Wang, A. Doboli, 2008, Towards A Model and

Specification for Visual Programming of Massively Distributed Embedded

Systems, to IEEE International Workshop on Robotic and Sensors Envi-

ronments.

[2] Varun Subramanian and A. Doboli, 2008, Online Adaptation Policy De-

sign for Grid Sensor Networks with Reconfigurable Embedded Nodes, De-

sign, Automation and Test in Europe (DATE).

[3] Batini, C. et al. Visual languages and quality evaluation in multichannel

adaptive information systems, Journal of Visual Languages Computing,

18 (2007), 513-522.

[4] Bakshi, A, Prasanna, V. et al. The Abstract Task Graph: A Methodology

for Architecture-Independent Programming of Networked Sensor Systems,

Proc. EESR (2005).

[5] Camara, K., Jungert, E. A visual query language for dynamic processes

applied to a scenario deiven environment, Journal of Visual Languages

Computing, 18 (2007), 315-338.

76



[6] Gummadi, K. et al. Macro-programming Wireless Sensor Networks us-

ing Kairos, Proc. Int’l. Conference on Distributed Computing in Sensor

Systems (2005).

[7] Johnston W. et al. Advances in Dataflow Programming Languages, ACM

Computing Surveys, Vol. 36, No. 1, (March 2004), 1-34.

[8] Newton, R., Welsh, M. Region Streams: Functional Macroprogramming

for Sensor Networks, Proc. Workshop on Data Management for Sensor

Networks (2004).

[9] Soma R. et al. A Semantic Framework for Integrated Asset Management

in Smart Oilfields, IEEE Symposium on Cluster Computing and the Grid

(2007), 119-126

[10] Wache, H et al. Ontology-Based Integration of Information - A Survey

of Existing Approaches, Proc. IJCAI - 01 Workshop: Ontologies and

Information Sharing (2001).

[11] Whitehouse, K., Zhao, F., Liu, J. Semantic Streams: a Framework for

Declarative Queries and Automatic Data Interpretation, Technical Re-

port, Microsoft Research, MSR-TR-2005-45 (2005).

[12] Yetagnon, K. et al. A Web-centric semantic mediation approach for spatial

information systems, Journal of Visual Languages Computing, Elsevier,

17 (2006), 1-24.

77



[13] Yu, Y. et al. On Communication Models for Algorithm Design in Net-

worked Sensor Sysemts: A Case Study, Pervasive and Mobile, 1, Issue 1

(2005), 95-121.

[14] Zhang, C., Bakshi, A., Bakshi, V. ModelIML: a Markup Language for Au-

tomatic Model Synthesis, IEEE Conf. Information Reuse and Integration

(2007), 317-322.

[15] Bakshi, A., Prasanna, V., Ledeczi, A. A Model Based Integrated Sim-

ulation Framework for Design of Embedded Systems, ACM SIG-PLAN

Notices (2001).

[16] Lange, C., Wijns, M., Chaudron, M. Supporting task-oriented modeling

using interactive UML views, Journal of Visual Languages and Comput-

ing, 18 (2007), 399-419.

[17] Passino, K. Biomimicry for Optimization, Control, and Automation,

Springer (2005).

[18] Eles, P. et al. Scheduling with Bus Access Optimization for Distributed

Embedded Systems, IEEE Transactions on VLSI Systems, VOl. 8, No. 5

(Oct 2000), 472-491.

[19] Tian He, Sudha Krishnamurthy et al. VigilNet: An Integrated Sensor

Network System for Energy-Efficient Surveillance.

[20] A. Arora, P. Dutta, S. Bapat et al. A Line in the Sand: A Wireless

Sensor Network for Target Detection, Classification, and Tracking.

78



[21] Robert Szewczyk, Alan Mainwaring et al. An Analysis of a Larget Scale

Habitat Monitoring Application,

[22] Gyula Simon, Miklos Maroti et al. Sensor Network - Based Countersniper

System,

[23] Tian He, Brian M. Blum et al. AIDA: Adaptive Application-Independent

Data Aggregation in Wireless Sensor Networks,

[24] Tian He, John A Stankovic et al. SPEED: A Stateless Protocol for Real-

Time Communication in Sensor Networks,

[25] Varun Subramanian, Michael Gilberti, Alex Doboli, Daniel Curiac, Dan

Pescaru. A Goal-Oriented Programming Model and Middleware Execution

Support for Grid Sensor Networks with Recon?gurable Embedded Nodes, to

IEEE Transactions on Industrial Informatics. Special Section on: ”Real-

Time and (Networked) Embedded Systems”.

79



Appendix A

A Case Study

This section presents a case study on a PSoC Network. Experiments were

performed on PSoC Networks with 9, 16 and 25 nodes respectively and the

results are tabulated. Figures A.1, A.2 and A.3 show the regions and the

parameters defined for the PSoC Networks with 9, 16 and 25 nodes.

This section discusses the execution flow and the number of clock cycles

required to compute aggregated data and transmit it along the PSoC Network

with 9 nodes. Experiments were also conducted on networks with 16 & 25

nodes and the results are tabulated. The implementation can also be extended

to larger networks.

Figure A.1 shows the network with 9 nodes (3 rows and 3 columns) and two

regions A and B are defined. The 2 nodes (1,1) and (2,1) highlighted in yellow

color in the figure are common to both regions and hence, they will sense,

compute data and check for events for both regions, one at a time. Also, the

goals for these nodes which are common to regions A and B is the intersection

of the goals for the 2 regions.
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Table A.1 gives the number of clock cycles to define the commands. The

best case is the case when the node that receives and processes the commands

is a neighbor to the Entry Point. This will include the clock cycles taken for

the command to reach node (0,1) and to process it. This node is the first

node that receives the commands from the Entry Point. The worst case is

the case where the node is at the top-right corner of the region. Node (2,2)

is the top-right corner in figure A.1 and this node is the last node to receive

the command from the Entry Point. The clock cycle analysis includes the

number of clock cycles taken by each of the nodes highlighted in green color

in figure A.1 to receive, process and transmit. This procedure can be mapped

into networks with 16 and 25 nodes and Tables A.2 and A.3 gives the clock

cycle analysis for these networks.

Table A.4 shows the number of clock cycles to sense data, compute the

aggregated value and transmit the data to the Target Point. The critical path

shown in figure A.1 is the longest path defined in the network. Node (0,1) is

the Target Point which is highlighted in dark blue. The node which is neighbor

to the Target Point and lies in the critical path is node (0,2) in figure A.1 and

the best case section in Table A.4 shows the number of clock cycles taken by

this node to sense data, compute aggregated data and transmit the data to the

Target Point. The node (2,2) in the critical path is the farthest node from the

Target Point. The worst case section in Table A.5 shows the number of clock

cycles taken by node (2,2) to sense data, compute aggregated data & transmit

data and also the number of clock cycles taken by the forwarding nodes in
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the path to forward this data to the Target Point. Table A.4 shows 2 cases

where two different types of aggregation functions are used. In one case, data

is sensed twice before aggregation and in the other case, data is sensed four

times before aggregation. This procedure can also be mapped into networks

with 16 and 25 nodes.

Table A.5 shows the number of clock cycles taken by the nodes to generate

an event and also, transmit the occurrence of the event to the Target Point.

The nodes use scheme B to transmit the event. The path following by scheme

B in this case coincides with the critical path. Node (0,1) in the network is a

neighbor to the Target Point and the best case section in Table A.5 shows the

number of clock cycles taken by this node to generate an event and transmit

the occurrence of the event to the Target Point. Node (2,2) is the farthest

node in the region from the Target Point. The worst case section in Table A.5

shows the number of clock cycles taken by this node to generate an event and

transmit the occurrence of the event to the Target Point and also the number

of clock cycles taken by the forwarding nodes. This procedure can also be

mapped into networks with 16 and 25 nodes.
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0 , 0 0, 1 0, 2

1, 0 1, 1 1, 2

2 , 0 2, 1 2, 2

Region A

Region B

Critical Path

Event B Event A

Goal B

Goal A

Goal C = Goal A ˄ Goal B

Figure A.1: PSoC Network with 9 nodes

Functionality Best Case Worst Case

Define Region 3200 12800

Define Target Point 3395 13580

Define Path 5838 20718

Define Path Probability 2361 9444

Define Aggregation Function 2676 10704

Define Precision 2253 9012

Define Region’s Event 1984 7936

Define a Node’s Event 2742 10968

Define Region’s Range 2893 11572

Define a Node’s Range 3633 14532

Table A.1: Clock Cycle Analysis for defining commands in a PSoC Network
with 9 nodes
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0 , 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2 , 0 2, 1 2, 2 2, 3

3, 0 3, 1 3, 2 3, 3

Region A
Region B

Critical Path

Event B

Goal B

Event A Goal A

Goal C = Goal A ˄ Goal B

Figure A.2: PSoC Network with 16 nodes

Functionality Best Case Worst Case

Define Region 3200 19200

Define Target Point 4066 24396

Define Path 7474 39897

Define Path Probability 2361 14166

Define Aggregation Function 2676 16056

Define Precision 2253 13518

Define Region’s Event 1984 11904

Define a Node’s Event 2742 16452

Define Region’s Range 2893 17358

Define a Node’s Range 3633 21798

Table A.2: Clock Cycle Analysis for defining commands in a PSoC Network
with 16 nodes
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0 , 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2 , 0 2, 1 2, 2 2, 3

3, 0 3, 1 3, 2 3, 3

Region A

4, 0 4, 1 4, 2 4, 3

0 , 4

1, 4

2 , 4

3, 4

4, 4

Critical Path

Event B

Goal B

Region B

Event A Goal A

Goal C = Goal A ˄ Goal B

Figure A.3: PSoC Network with 25 nodes

Functionality Best Case Worst Case

Define Region 3200 25600

Define Target Point 4962 39696

Define Path 9110 64956

Define Path Probability 2361 18888

Define Aggregation Function 2676 21408

Define Precision 2253 18024

Define Region’s Event 1984 15872

Define a Node’s Event 2742 21936

Define Region’s Range 2893 23144

Define a Node’s Range 3633 29064

Table A.3: Clock Cycle Analysis for defining commands in a PSoC Network
with 25 nodes
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Number of nodes & Aggregation Function Best Case Worst Case

n = 9 & f = 2 131445 138906

n = 16 & f = 2 131445 143880

n = 25 & f = 2 131445 148854

n = 9 & f = 4 261039 268500

n = 16 & f = 4 261039 273474

n = 25 & f = 4 261039 278448

Table A.4: Clock Cycle Analysis for computing and transmitting data to Tar-
get Point in a PSoC Network

Number of nodes & Aggregation Function Best Case Worst Case

n = 9 & f = 2 131958 137127

n = 16 & f = 2 131958 140573

n = 25 & f = 2 131958 144019

n = 9 & f = 4 261552 266721

n = 16 & f = 4 261552 270167

n = 25 & f = 4 261552 273613

Table A.5: Clock Cycle Analysis for transmitting an event to Target Point in
a PSoC Network
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