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Abstract - We proposed a novel method to extract a
feature from time-series data by Principal Components
Analysis (PCA) with time-delay embedding, and showed
its usefulness to the pattemn recognition. We first
resampled from the original time sertes data and
constructed a new data with time-delay embedding.
Then we applied PCA to the new data to get a Pseudo
Principal Component (PPC), which now represents the
newly constructed data and hence the original time series
data as well. The PPC was used as a feature vector for
the original data, and the pattern classification of was
performed upon PPC. In order to improve the
performance of the classification, we incorporated with
the Continuous Wavelet Transform (CWT) to the newly
constructed data before we take the PPCs. The results
showed that the new method is useful to classification
tasks of time series data, and that the performance is
improved when well combined with the CWT technique.

1. Introduction

Time-series or time-sequence data are a collection of the
sequential measurements of some physical system over a
certain period of time {4). In general, the distance
measure such as Euclidian, Mahalanobis, etc., are
general methods for the classification problem of time-
series datasets [13]). The feature vectors used in the
distance measur¢ can be any form of vector representing
the original dataset, e.g. original data itself, mean,
variance, and so on.

As a new feature extraction technique, we propose a
novel method, Pseudo PCA, in which we resample from
the original time series data and construct a new data
with time-delay embedding, and then appty PCA on the
new data. In this paper, we first review PCA, and then
the proposed Pseudo PCA to extract a feature from the
time-series data. Finally, we apply the Pseudo PCA to a
practical datasets — the Synthetic Control Chart data [5],
[7] and the Japanese Vowel data [14]. We also show that
the performance of Pseudo PCA can be improved by
incorporating the Continuous Wavelet Transform (CWT)
technique.

2. Time-series data

Time-series or time-sequence data are a collection of the
sequential measurements of some physical system over 2
certain period of time, and more examples and study
about time-series data can be found in [4]. In general,
those data are studied mostly to reduce the data size —
data compress, or to predict the future values - function
approximation or regression modeling [13], or to find
stmilarities among sets of the data and classify the sets
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according to the similarities. We are interested in the
latter known as the pattern recognition.

Let’s consider a N-point sequence
A = {xf1).x[2],---,.x[N]} of an arbitrary vanable, x(f)
generated from a certain machine or processor over time
period [#,,£,]. The details about how to get these discrete

signals from a continuous signal can be found in many
textbooks, e.g. [8] and [9). We may repeat observing the
processor M times and get a set of M different sequences.
These M different sequences or time series can be
thought of M different estimations of the stochastic
process, x[tr], as shown in Figure 1.

x[n,] .
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2 1 . - . N2 M=l N

Figure 1. Example of time-series data

For our experiment, we generated the Synthetic Control
Chart data of length 60 or 60 points per each sequence,
according the equations given in {2] and [5], and
M =100 sequences were generated as estimations of the
6 different predetermined pattern classes, namely A, B,
C, D, E, and F, which can be then considered as 6
different stochastic processes. They are described as
normal, cyclic, increasing trend, decreasing trend,
upward shift, and downward shift. Each time sequence
of length N = 60 was generated as follows for | <f <N .
A. Nommal: x(t)=m+rs where m=30, s=2,

and r, is a andom number between [-3,3].
B. Cyclic: x(t)=m+rs+r, sin(—zﬂ) where
i
r,and r, are random numbers between [10,15].
C. Increasing: x(t}=m+nrs+rt where r, isa
random number between [0.2,0.5].
D. Decreasing: x{(t)=m+ns—ni
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E. Increasing Shift: x(£) =m+rs+rk where r,
is a random number between [7.5,20], and
k=0for 1<t<T and k= for T<t<N
where T is a random number between
[N/3,2N/3].

F. Decreasing Shift: x(1)=m+rs—nk

The characteristics of each class can be more

understandable if it is plotted, and Figure 2 shows some
examples of the time sequence of those 6 classes.
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Figure 2. The Synthetic Control Chart data of length 60

Also, for the sake of comparison with existing methods,
e.g. Hidden Markov Model, we tested our new method
with the Japanese Vowel database created by M. Kudo et
al. (see [14] for more details). The database has 640
time-series of 12 LPC cepstrum coefficients of the
Japanese vowel sound ‘/ae/’ taken from nine male
speakers; 270 sequences for training and 370 sequences
for testing whose length are from 7 to 29 depending
upon the utterances. The first and second degree
cepstrum coefficients are shown in Figure 3, and the
dark lines are of the ninth speaker and the light lines are
of the rest speakers. ’
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Figure 3. The first and second feature of the */ae/” sound.

Our goal is to classify those sequences from the same
classes into same group for the Synthetic Control Chart
data, and to identify the speakers by the sequence of the
cepstrum coefficients for the Japanese Vowel database.

3. Similarity and Feature Extraction
We naturally expect that estimations of a same process
share some similar features that may discriminate
themselves form others. Pattern Recognition (PR) is a
scientific discipline that studies methods to classify or
recognize those similar features. In general, PR approach
uses so-called feature wvectors, which one-to-one
represent each element of the original dataset. Then,
either the distance between vectors or the likelihood of
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the vectors (under some prior belief or probabilistic
assumption} are computed as similarity or dissimilarity
between two vectors. Finally, each vector in feature
space is classified or grouped into certain classes
according to so-called decision rules {13]. Usually, the
feature vectors derived from the original data are in
lower dimension than the original dats, unless the
original dimension is necessary. Once the feature space
is established, one classifies or groups each feature
vector in certain regions into given classes. Those
regions are divided by hyper-planes formulated by so-
cailed decision (or discriminant) functions [13]. In
general the discriminant function is determined on the
ground of the distance measure between feature vectors
which uniguely represent the original data.

Principal Components Analysis {(PCA) is a statistical
tool, which is one of the most popular dimension-
reducing methods [10, 15]. The linear transformation by
the matrix of ail principal components conserves the
Mahalanobis distance between two feature vectors, We
will propose a novel approach for feature extraction,
built upon PCA.

4. Principal Components Analysis
PCA is a well known statistical method to reduce the
dimension of a dataset or to find features in data of high
dimension, PCA is to analyze the cotrelations or
covariances between multiple variables [10], and hence
requires the data to be two or more dimensional.
However, time-series data are not always mult
dimensional and PCA is not always applicable for the
fime-series data (of a single dimension). And yet, we
proposc 2 new method, where PCA is applicable and
compatible with ¢xisting PR methods even to a single
dimensional dataset.
PCA is a statistical tool to identify the variability of the
multi-dimensional  data, i.e, PCA analyzes the
correlations between variables. We will shortly review
the forward transform of PCA, which gives us the
principal components or the eigenvector, and
corresponding variances or eigenvalues. More details
and advanced applications, such as data compression and
data recovering, can be found in {10], {3] and [15].
In Figure 4, an exemplar dataset of two dimensions is
depicted in two different coordinate systems, which are
related by the equation as follows;

x' [l cos{f) sin(@) x—X
¥y - —sin(8) cos(8)|| y-Y |

The variance of the dataset about the average point
(X,¥) and along the direction of & is proportional to
V', the length of the projections onto the X' axis. In
general, the projection of individual point is called Score
of the point onto the X' axis, and V' is actually
proportional to the variance of the Scores. By changing
the projection angle &, we can obtain the maximum ¥,
and the angle &, at which the maximum variance is
obtained 1s known as the principal angle.

- 13 ~

The largest etgenvalue of the data, which is the variance
of the Scores along the X' axis, is proportional to the
maximum  projection length ¥* . The eigenvector
corresponding to the largest eignevalue is called the
principal component and determines the principal angle
&, and hence the A" axis.

PCA starts with a collection of multi-dimensional data.
We then compute the covariance matrix from the data
and compute the eigenvalues and corresponding unitary
eigenvectors (e.g. uw,. and w,. in Figure 4) of the
covariance matrix. Now the orthonormal eigenvectors
can be used as the bases for a new space and each of the
corresponding  eigenvalue shows how much the
corresponding eigenvector is related to the data, ie. the
vaniance of the Scores along the eigenvector.
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Figure 4. Example data of two dimensions.

As the eigenvector of a larger eigenvalue is more related
to the data and comtains more statistical information
about the data, the largest eigenvalue that we now call
the “Pseudo™ Principal Component {(PPC) of the data
plays an important role for feature extraction and pattern
recognition, as we will discuss in Section 6.

5. Eigenvalues and eigenvectors

As we have seen In Section 4, eigenvalues and
cigenvectors is very important in PCA. Now let us
discuss the eigenproblem, ie, how to find the
eigenvalues and eigenvectors of a matrix. The theory and
computing mechanisms about eigenproblem is well
established in many textbook e.g. [1] and [12].

A square matrix A can be Schur-factored with QR
algorithm and Householder transformation [12] into
A =8TS' where T is an upper Hessenberg matrix and
8 is Schur vectors and §' is a transpose of §. Then the
diagonal elements of the matrix T are the cigenvalues of
the matrix A . For the corresponding eigenvectors, we
first compute the dominant (or the targest) eigenvalue by
the power iteration [1], and then the rests using the
deflation algorithm [1]. In short, if we have an
eigenvalue A, of n-dimensional matrix A then the
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additional eigenvalues 4,,---,
the following steps. First, we transform A into
HAH'=F'| b ]
0 B
where H is a Householder matrix and B is a matrix of
order n-1 containing eigenvalues 4,,---,4,. Second, we

A, can be obtained through

compute eigenvalue A, and the corresponding
cigenvector g, of B . Third, the eigenvector G, of A
corresponding A, is given by the equations;

Gz=H'|:a] and a= -2 B2
£ Aﬁ_ll

We repeat these until we get all the eigenvectors of A .

6. Pseudo Principal Component Analysis
PCA requires multi-dimensional square covariance
matrix, and hence we cannot directly apply PCA to the
time-series dataset of a single dimension. Instead, we
construct new datasets from the original times-series
dataset and apply PCA to the newly constructed datasets.
In this section, we will discuss about time-delay
embedding [11] for establishing new datasets and how to
extract features from the new datasets. Qur objective in
this section is to find the statistical relationship among
individual instant values of time-series data and extract a
feature (and now a pseudo principal component) for each
of the dataset.

Our methodolegy rests on transforming a single

dimensional dataset into datasets of multi dimension. We,

first, resample from the original dataset by a sampling
filter kernel with a certain time delay and set up new sets
of data of muiti dimensions. We used a non-causal MA
{moving average) filter as a sampling kemel of a form of
FIR (Fimte Impulse Response), however theoretically
there is no limitation for the kernel. Let’s censider the
data {x{#]}, in Figure 5. We set up data {d,[#]} and

{d,[n]} using an MA of kernel size K and delay time
r =1 as shown in Figure 5.
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Figure 5. Re-samplm i and new datasets

Now we get 2 dimensional data of {d,{n]} and {d,[r]}
with length N from a single dimensional data {x{n]},

with length N . We compute covariance matrix CM >
of the new data of 2™ order as follows;
M = cov(d,.d) cov(d,d,)
cov(d,,d,) eov{d,,d,)
m=N

cov(d, d,) = lN S (dim-d)d,im-d,)

=]
_— 1 m=N
d=—)d
, N?:; (m]

From CM™' | we compute the Pseudo Principal
Component ( PPC, ) of the new data and this PPC,

represents the feature of the original times-series data
{x[n]}, . Figure 6 shows each step to the feature
extraction discussed above.

Features
Wlnlyy g'[[z]]}; ~ Jerec,
xlnly, g‘[[:]]}}’ <:]-—’PPC2

Original Data  New Data

. g S
Figure 6. Feature extraction

7. Continuous Wavelet Transform

In addition to Pseudo PCA, we incorporated with
Continuous Wavelet Transform (CWT) that is a well
known technique to analyzing localized frequencies
overcoming the disadvantage of the Fourier Transform
[16, 17]. Figure 7 shows how CWT contributes to
feature extraction with Pseudo PCA.

Original Data

New Data Features

U

Dot}
d\(nl}s
O i d[[’;]]i

{D [”]}2 PPC
— (o, — PG
{d, [n]}w D[y,
AL (i — By, 7
Figure 7. Pseudo PCA with CWT
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For arbitrary signal s(z), the equation of CWT or the
continuous wavelet coefficients is given by,

Cla, f)=~l;<3(f),‘*’(%—r))

7
| T—t
"7 I SO¥

where {»+) is an inner product, & is a scaling factor, 7
is & transiation factor, and ‘¥(+) is a mother wavelet

(function) {6]. We used the Daubechies-2 mother
wavelet for our application, and it is shown in Figure 8.
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Figure 8. The mother wavelet of Daubechies-2.

8. Pattern recognition — Classification

EBach of the extracted features tepresents the
corresponding data and will be used to classify the
patterns. Moreover, if we are given unknown future data,
we can predict which class the data should be associated
to. In this section we will discuss how the Pseudo
Principal Component of each data can be used to classify
and recognize the embedded patterus.
Some of the probability mass functions (PMF) of the
pseudo principal components are shown in Figure 9 with
different kemel size X and wavelet scale factor & . The
vertical axis is the probability mass and the horizontal
axis is the principal components of the data. As indicated
in Figure 9, it turned out that the datasets of the same
class can be grouped and separated from the others. For
cxample, the Class A is separated from the others in
Figure 9-a, The Class B was hard to separate from the
others in Figure 9-a, however, we can separate Class B if
we consider Figure 9-b. Once we have classification
information, we can predict the class for future data as
follows. We set a range where the principal components
of the dataset of a specific class as a classification
criteria. If the principal component of the test data is
within the range, we associate the data to the
corresponding class. We repeat this predictions L times
with different kernel size K and wavelet scale factor &,
then the majority of the results will be the final
prediction for the data. Figure 10 shows how this
prediction process works.
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Figure 9. PMF of the Synthetic Control Chart data
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Figure 10. Prediction mechanism

9. Results

We generated a total of 1200 sequences of the Synthetic
Control Chart data in order to learn the embedded
patterns {or 10 get the classification criteria). Each of the
class set was consisted of M =200 time-series data of
length N =60 (see Figure | and 2). We first used 60
different sampling kernels of size K={2,...,60}

without CWT. After leaming the patterns, we verified
the prediction with new testing data. A total of 600 new
data was tested with M =100 per each class and the
results are shown in Table 1. As we can see in Table 1,
the pseudo principal componems computed by the
process that we have described above results in a good
separation for Class A, B, C, and D. However, Class E
and F were predicted a little bit worse than the others by
the pseudo principal components. At this poit, we
introduce the CWT technique. As we can see in Figure 9,
feature extraction with CWT gives better grouping and
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separation. The test results with both PCA and CWT are
shown in Table 2. It turns out that a proper selection of
kernel size K and wavelet scale factor « leads us to a
good recognition results.

Table 1 Test results with only Pseudo PCA

Class A B C D E F
Error (%) 100 10]20 (10270 31.0
K=1{.2,..60}

Table 2 Test results with both Pseudo PCA and CWT
Class A B C D E F

Error (%) | 0.0 | 1.0 | 20 | 00 { 9.0 ] 60
(K,2)={(,1,(1,31),(21,31),(41,41),(51,5)}

For the sake of performance comparison with the state of
the arts for speech recognition problem, we downloaded
the Japanese Vowel database from the URL,
hitp i kdd.ies.uci.edu. The database is created by M.
Kudo, et al., and is thankfully open to the public for
research. As we can see in Table 3, the performance of
our novel method was compatible with the state of the
art methods, although we see the needs for more study to
improve the performance. In Table 3, MDC is multi-
dimensional classifier; 5-NN HMM is 5 nearest neighbor
hidden Markov model; and PPCA is pseudo PCA.

Table 3 Test results for the Japanese Vowel
Method MDC 5-NN HMM PPCA

Correct (%) 94.1 96.2 92.2

10. Conciusion

We proposed a novel method, Pseudo PCA, to extract a
feature from time-series data, by constructing new
datasets with time delay embedding and then computing
their principal components by PCA. We experimented
the novel method with the pattern recognition of the
Synthetic Control Chart data. Also, we combined the
CWT technique to improve the performance of the
proposed method. The resuits showed that PCA with
time-delay embedding is useful to classification tasks of
time-series data, and that a proper selection of kernel
size K and wavelet scale factor o leads us to a good
recognition results.

The comparison with the state of the art methods for the
Japanese Vowel database also showed that the novel
method is comparable in performance. Also more study
is needed to improve the performance, and show the
computational efficiency, e.g. compared to the Hidden
Markov Models,
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