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ABSTRACT 

A recursive routing algorithm is presented for generalized chordal ring (GCR) graphs. This algorithm consists of two 
parts. The first part deals with an onetime establishment of a database, and the second part determines a path of 
length less than or equal to 2’ where 1 is the smallest integer that such a path exists. Note that 1 _< d where d satisfies 
Zd-’ < diameter < 2d. The inherent symmetry and the modular arithmetic connectivity of the GCR are exploited to 
achieve a parallel tyme complexity of O(log, diameter) and a serial time complexity of O(diameter). 

1 INTRODUCTION 

One of the most active areas in computer architec- 
ture is the design of efficient interconnection networks. 
A processor or computer interconnection network can be 
modeled as a graph. The vertices of the graph correspond 
to the communication or processing nodes and the edges 
represent connections between nodes. Due to the limited 
number of connections that can be made to real chips, 
regular graphs of small degree, having a small maximum 
message path length, or diameter, are of great interest. 

Moore provided in 1958 an upper bound for the num- 
ber of vertices in a regular graph with certain degree and 
diameter [I]. This Moore bound is unattainable except 
for the cases where diameter is 2, and degree is 3, 7 (and 
possibly 57) [2]. The search for (SJ) graphs that connect 
the maximum number of nodes with a degree b and di- 
ameter D continues. Chudnovsky et al. have constructed 
the best (6 = 4, D) graphs for a range of D, from a family 
of graphs, called Cayley graphs [3]. In a recent report we 
have shown that these Cayley graphs can be represented 
as generalized chordal rings (GCR) [4]. In this paper we 
present a recursive routing algorithm for GCR graphs. 
The recursive algorithm is divided into two parts. 
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The first part deals with the establishment of a database 
which is then replicated at every node. We emphasize 
that this part of the algorithm is an one-time computa- 
tion. Once the database is established, the actual path 
determination, or routing, is carried out by the second 
part of the algorithm. The time complexities of this sec- 
ond part are O(log, diameter) and O(diameter) for the 
parallel and serial case respectively. This paper is orga- 
nized as follows: In section 2, we state the formal defini- 
tion of GCR and provide an example. Section 3 presents 
the routing algorithm and section 4 provides an exam- 
ple to illustrate the algorithm. Finally in section 5, we 
summarize our results. 

2 GENERALIZED CHORDAL RING (GCR) 

In this section we provide the formal definition of 
GCR and present a specific example. 

Definition 1 A graph R is a generalized chordal ring 
(GCR) if vertices of R can be labeled with integers mod 
n, the number of vertices, and there is a divisor q of n 
such that oertex i is connected to oertez j ifl vertex i+q 
is connected to vertex j+q. 

As an example, we consider a GCR with divisor q = 4 
and n = 24. In this case the graph has a vertex set, V = 
(021,. . . , 23). The connectivity of the graph is defined 
as: for any i E V, if i mod 4 =: 



Figure 1: A GCR with q = 4 and n = 24 

“0” : i is connected to i + 1, i + 2, i - 5, i - 3; 
“1” : iis connected to i+l, i-l, i+3, i-2; 
“2” : i is connected to i - 2, i - 1, i + 8, i - 8; 
“3” : iis connected to i+8,i-8, i+2, i+5. 

Such a GCR graph is illustrated in Figure 1. 

3 RECURSIVE ROUTING ALGORITHM 

In this section we develop a simple recursive routing 
algorithm with a parallel time complexity of O(log, di- 
ameter) which is capable of finding paths of any length 
5 2’ where I is the smallest integer such that a path ex- 
ists. Note that in the worst case the algorithm finds a 
path of length 2d where d is an integer that bounds the 
diameter (2cd-') < diameter 5 2d). 

A GCR graph implies that nodes are labeled as 0, . _ . , 
n - 1. Our recursive routing algorithm exploits the in- 
herent property of GCR: if i is connected to j, i + mq 
is connected to j -f mq (modulo n) for any integer m. 
This property indicates that the connection pattern from 
any node can be represented by a single tree with a root 
node that is of the same class. There are q classes, where 
q is the chosen divisor of n. The connection pattern for a 
particular node can be obtained by an addition of some 
multiple of q to the address of every element in the cor- 
responding tree. Furthermore, the mod R circular struc- 
ture of the GCR means that nodes can be represented 
by an n-bit boolean-vector (or a compacted form of such 
a vector). Circular shifting this vector is tantamount to 
adding the same constant, the amount of shift, to each 
node address. In view of these observations, we divide the 
recursive routing algorithm into two parts. The first part 
involves the one-time generation of a database, which 
consists of d bit-vectors (represented in the algorithm as 
boolean-vectors) for every class. The identical database, 
dependent only on the chosen GCR structure, can be 
stored at every node for the purpose of path determina- 
tion, or routing. Once the database is established, the 
actual routing between the source and destination pair is 
carried out by the second part of the algorithm. 

We summarize this routing algorithm as follows: 

3.1 Part 1: Database Generation 

The objective of this part is to record, with repetition, 
the node labels at a distance 5 2’ (I = 0, 1, . . . , d - 1) 
from the root node of different classes. The results of 
this one-time computation are used later to determine 
the connection patterns for any node in the network. For 
each class of the GCR, a recursive algorithm “Half-Tree” 
is used to produce a redundant binary “half-tree”, con- 
taining binary levels 2’, 2l,. . . , 2d-1. During this process 
the nodes occurring at a distance < 2' from the root node 

are stored in the Ith level in boolean vector form. That is, 

the mth bit of the lth boolean-vector indicates whether 
node labeled m first occurs at a distance 5 2’ from the 
root node. Notice that any node in the class can be 
made the root node of the corresponding half-tree. Sub- 
sequently we label the root node as “0” by subtracting 
the root node address from the address of every other 
node in the half-tree. For example, if node io is the root 
node, we subtract is from the address of all nodes in 
the binary half-tree. This representation allows us to re- 
build the appropriate tree for an arbitrary node from the 
same class by a simple shifting of the boolean-vectors. In 
other words, if js is a node of the same class as is, we 
can rebuild the half-tree with root node js by adding js 
to the address of every other node in the tree. Notice 
that is and je being in the same class implies that their 
difference is a multiple of q, the divisor of the GCR. The 
C-implementation of the recursive “Half-Tree” routine is 
shown in Table 1. 

3.2 Part 2: Recursive Routing 

This part of the algorithm is responsible for deter- 
mining the path(s) between source and destination pairs. 
A recursive routine “Single-Path” is developed to find a 
path between a source and destination pair. We start the 
recursion at level 1 = d-l. From the database established 
in Part 1, we first check if the current source and destina- 
tion (symmetrically viewed as two sources) are root and 
leaf in the same 2' tree. If so, there is a path with length 
< 2’. We continue the recursion by decreasing the level 1 
by one. If not, that means the shortest path between the 
two nodes has length > 2’ and 5 a’+‘. We then check if 
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Half-Tree(value,index,dis~Cons,root,xd,xn.xke) 
int value,index,dist,*Cons,root,xd,xn,xk,xdeg,*S-Tree; 
(int level.i,class,name; 

If (dist c= Pow(2,xd-1)) /* distance porn root * I 

1 class = value%xk; 
if ((dist != 0) && (value != root)) 
( level = Gnt(dist.2); /* dist <= 2**level * / 

name = Mod(valueroot,xn); 
i=level; 
while (icxd) I* assign to alL levels > i* I 
( *(S-Tree+i*xn+name) = TRUE; ++i; ) 

1 I* go through generators * / 
for (i=O; i<xdeg; ++i) 

if ((i != Mod(indext(xdeg /2),xdeg)) II (dist==O)) 
Half Tree(Mod(value+*(Com+class*xdegti).xn),i, 

aist+l,Cons,roo~xd,xn,~xdeg,S_Trec); 
1 

Table 1: Half-Tree Recursive Routine 

a common node exists at level I of the source half-tree 
and at level 1 - 1 of the destination half-tree, assuming 
1 > 0. If such a common node is not found, we locate a 
common node at level 1 of both the source and destination 
half-trees. Such a common node always exists because 
the graph is connected and the diameter is bounded by 
2d-1 < diameter 5 2d. Once a common node is found, 
either at level 1 - 1 or 1 of the destination half-tree, we 
split the problem into two, each with a level one less than 
the current value and the identified common node as the 
destination or source. 

By passing along the source and destination to see if 
they are in the same half-tree, this algorithm finds a path 
of length 5 2” where 3 bounds the shortest path, s-path 
(2’-’ < s-path _< 2”). For instance if there are two paths, 
one has length 3 and another has length 4, the algorithm 
finds the one with length 3. But if the shortest path has 
length 4 and there is another path with length 5, the al- 
gorithm may find the one with length 5. The fact that 
two levels are checked for a common node increases the 
probability of finding the shortest path within the range 
2’-’ and 2* without increasing the complexity of the al- 
gorithm. As a matter of fact, this strategy allows us to 
find a path of length < 1.5 (25-1), if it exists. When the 
diameter of the graphis large, more levels of comparison 
can be considered. The routine “Single-Path” is included 
in Table 2. A simple augmentation of this routine will 
produce all paths of length 5 25, 25-1 _< s-path 5 2”. 

Regarding the complexity of this part of the algo- 
rithm, the time for “shifting” and the “AND” opera- 
tion are, in principle, constant with respect to n. Thus 
with parallelism, the algorithm has a time complexity of 
O(logz 0); and with serial computation, it is of O(D), 
where D represents the diameter. For space complexity, 
each node has to store qd n-bit boolean vectors, which 

results in an O(n2 q log2 D) complexity for all nodes in 
terms of bits. However, if the boolean-vectors are sparse, 
and n is large, various coding schemes for the one-bit- 
locations can be used instead of the boolean-vectors, but 
at a price of greater time complexity. 

4 AN EXAMPLE 

In this section we use the 24 nodes GCR graph de- 
scribed in section 2 as an example to illustrate the com- 
putation of our recursive algorithm. In this case both the 
diameter and divisor are 4. That is, we have d = 2 and 
q = 4. Suppose the source and destination nodes are 0 
and 8, and both are of class 0. There are two shortest 
paths, each has length 3 and four more paths with length 
4 between these two nodes. They are: 

path 1 : 0, 19, 3, 8; 
path 2 : 0, 2, 10, 8; 
path 3 : 0, 1, 4, 5, 8; 
path 4 : 0, 19, 11, 3, 8; 
path 5 : 0, 2, 18, 10, 8; 
path 6 : 0, 2, 10, 9, 8. 

According to the GCR constants, the database for class 
0 is as follows: 

Level 0 : 1, 2, 19, 21; 
Level 1 : 1, 2, 3, 4, 10, 11, 18, 19, 20, 21, 22, 23. 

Note that the nodes at level 0 are projected to level 1. 
Since node 8 beiongs to class 0, the half-tree for the des- 
tination node can be obtained by a modular shift of 8 
bits: 
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strut xnode ( Int id; struct xnode *next;); /* path structure * / 
/****************f****************************~*******~************ / 

I* Find a single path between source and destination. *f 
/****************************************************************** / 

Single-Path(path,sl,s2,S_Tree,xd,xn,xk,level) 
struct xnode **path; I* sl. ~2: source & dest * / 
int sl,s2,*S~Tree.xd.xn.xk,level; I* S-Tree: half-trees * I 
( int mid; /* uf, xn, xk: d, n. k * / 

int *S-vecl, *S_vec2, l*S-vec:vector after shifting* 1 

If (level c 0) Push(path,s2); 
else /* shift sl’s half-tree * I 
( S vecl = (int *) malloc((unsigned) (xn*sizeof(int))); 

SThik(S vecl,level.sl.S~Tree+(sl%xk)*xd*xn,xd,xn); 
if (*(SZvecl+s2)) I* check if s2 in half tree of sl * / 
( (void) fke((char*) S-vecl); 

Single_Path(p&sl,s2,S-Tree,xd,xn,xk,level-1); 
I else /* find common point * I 

( svec2= 
&d 

(int *) malloc((unslgned) (xn*sizeof(int))); 
= xn; 

if (level>O) /* at level 1-I of s2 half-tree * / 
(Shift(S-vec2,level-1 ,s2,S_Tree+(s2%xk)*xd*xn,xd,xn); 

And(S_vecl,S_vec2,&mid,xn,s2);) 
if (mid == xn) /*if not found, check level 1 * I 
(Shift(S-vec2,level,s2,S-Tree+(s2%xk)*xd*xn,xd,xn); 

And(S-vecl ,S_vec2,&mid,xn,s2);) 
(void) frec((char*) S-vecl); (void) frce((char*) S-ved); 

/* split into 2 problems * I 
Single-Path(path,sl.mid,S_Tree,xd.xn,xk,level-l); 
Single-Path(path,mid,s2.S_Tree,xd,xn,xk,level-l); 

1 
1 

1 Table 2: Single-Path Recursive Routine 

Level 0 : 3, 5, 9, 10; 
Level 1 : 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 18, 19. 

We start the recursion at level d - 1 = 1. Since node 8 is 
not a node at level 1 of the source half-tree, we proceed 
to find a common node at level 1 of the source half-tree 
and at level 0 of the destination half-tree, There are 
two such nodes: node 3 and node 10. We choose one of 
these nodes, say node 3, as our common node and split 
the problem into two. One with a source node sl = 0, 
destination node 92 = 3; and the other has a source node 
sl = 3 and destination node 92 = 8. Both recursive calls 
are set at level 0. Since node 3 belongs to class 3, the 
database for this class after shifting 3 bits is: 

Level 0 : 5, 8, 11, 19; 
Level 1 : 0, 4, 5, 6, 8, 9, 10, 11, 13, 16, 19, 21. 

For the first half with sl = 0, 92 = 3, level= 0, we com- 
pare the half-tree of node 0 to that of node 3 at level 0 
and find node 19 as the common node. The next recur- 
sion split this half into two problems: sl = 0, 92 = 19 
and sl = 19, s2 = 3 at level -1, which means that node 
19 and 3 will be pushed into the path vector. 

For the second half with sl = 3, 92 = 8, level= 0, we 
find that node 8 is a node at level 0 of the sl half-tree. 

The recursion thus proceed with al = 3, 92 = 8 but at 
level -1, which again means that node 8 will be pushed 
into the path vector. At this point, the entire path 1 
is found. Should we have chosen node 10 as the first 
common node at level 1, we would have found path 2, 
which is another shortest path. 

As stated earlier, this recursive algorithm requires a 
parallel time complexity of O(log, diameter) and a serial 
complexity of O(diameter). Also a path with length 5 2” 
can be found between any two nodes that has a shortest 
path, s-path (2’-’ < s-path 2 2’). 

5 CONCLUSIONS 

In this paper we presented a recursive routing algo- 
rithm composed of two parts. The first part deals with 
the establishment of a database at every node. Compu- 
tation involved in this part of the algorithm is carried out 
once and for all. Part 2 of the algorithm is responsible for 
the actual determination of a path between a source and 
destination pair. By exploiting the inherent symmetry of 
the GCR, this algorithm finds a path of any length _< 2‘ 
(2’-’ < shortest path 5 2”) where s 5 d and d bounds 
the diameter of the graph by 2d-’ < diameter 5 2d. 
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