
Routing for Generalized Chordal Rings

Bruce W. Arden and Kit-Ming W. Tang

Department of Electrical Engineering
University of Rochester, Rochester NY 14627.

ABSTRACT

A recursive routing algorithm is presented for generalized chordal ring (GCR) graphs. This algorithm consists of two
parts. The first part deals with an onetime establishment of a database, and the second part determines a path of
length less than or equal to 2’ where 1 is the smallest integer that such a path exists. Note that 1 _< d where d satisfies
Zd-’ < diameter < 2d. The inherent symmetry and the modular arithmetic connectivity of the GCR are exploited to
achieve a parallel tyme complexity of O(log, diameter) and a serial time complexity of O(diameter).

1 INTRODUCTION

One of the most active areas in computer architec-
ture is the design of efficient interconnection networks.
A processor or computer interconnection network can be
modeled as a graph. The vertices of the graph correspond
to the communication or processing nodes and the edges
represent connections between nodes. Due to the limited
number of connections that can be made to real chips,
regular graphs of small degree, having a small maximum
message path length, or diameter, are of great interest.

Moore provided in 1958 an upper bound for the num-
ber of vertices in a regular graph with certain degree and
diameter [I]. This Moore bound is unattainable except
for the cases where diameter is 2, and degree is 3, 7 (and
possibly 57) [2]. The search for (SJ) graphs that connect
the maximum number of nodes with a degree b and di-
ameter D continues. Chudnovsky et al. have constructed
the best (6 = 4, D) graphs for a range of D, from a family
of graphs, called Cayley graphs [3]. In a recent report we
have shown that these Cayley graphs can be represented
as generalized chordal rings (GCR) [4]. In this paper we
present a recursive routing algorithm for GCR graphs.
The recursive algorithm is divided into two parts.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
Permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-348-5/9010002/0271 $1.50 271

The first part deals with the establishment of a database
which is then replicated at every node. We emphasize
that this part of the algorithm is an one-time computa-
tion. Once the database is established, the actual path
determination, or routing, is carried out by the second
part of the algorithm. The time complexities of this sec-
ond part are O(log, diameter) and O(diameter) for the
parallel and serial case respectively. This paper is orga-
nized as follows: In section 2, we state the formal defini-
tion of GCR and provide an example. Section 3 presents
the routing algorithm and section 4 provides an exam-
ple to illustrate the algorithm. Finally in section 5, we
summarize our results.

2 GENERALIZED CHORDAL RING (GCR)

In this section we provide the formal definition of
GCR and present a specific example.

Definition 1 A graph R is a generalized chordal ring
(GCR) if vertices of R can be labeled with integers mod
n, the number of vertices, and there is a divisor q of n
such that oertex i is connected to oertez j ifl vertex i+q
is connected to vertex j+q.

As an example, we consider a GCR with divisor q = 4
and n = 24. In this case the graph has a vertex set, V =
(021,. . . , 23). The connectivity of the graph is defined
as: for any i E V, if i mod 4 =:

Figure 1: A GCR with q = 4 and n = 24

“0” : i is connected to i + 1, i + 2, i - 5, i - 3;
“1” : iis connected to i+l, i-l, i+3, i-2;
“2” : i is connected to i - 2, i - 1, i + 8, i - 8;
“3” : iis connected to i+8,i-8, i+2, i+5.

Such a GCR graph is illustrated in Figure 1.

3 RECURSIVE ROUTING ALGORITHM

In this section we develop a simple recursive routing
algorithm with a parallel time complexity of O(log, di-
ameter) which is capable of finding paths of any length
5 2’ where I is the smallest integer such that a path ex-
ists. Note that in the worst case the algorithm finds a
path of length 2d where d is an integer that bounds the
diameter (2cd-') < diameter 5 2d).

A GCR graph implies that nodes are labeled as 0, . _ . ,
n - 1. Our recursive routing algorithm exploits the in-
herent property of GCR: if i is connected to j, i + mq
is connected to j -f mq (modulo n) for any integer m.
This property indicates that the connection pattern from
any node can be represented by a single tree with a root
node that is of the same class. There are q classes, where
q is the chosen divisor of n. The connection pattern for a
particular node can be obtained by an addition of some
multiple of q to the address of every element in the cor-
responding tree. Furthermore, the mod R circular struc-
ture of the GCR means that nodes can be represented
by an n-bit boolean-vector (or a compacted form of such
a vector). Circular shifting this vector is tantamount to
adding the same constant, the amount of shift, to each
node address. In view of these observations, we divide the
recursive routing algorithm into two parts. The first part
involves the one-time generation of a database, which
consists of d bit-vectors (represented in the algorithm as
boolean-vectors) for every class. The identical database,
dependent only on the chosen GCR structure, can be
stored at every node for the purpose of path determina-
tion, or routing. Once the database is established, the
actual routing between the source and destination pair is
carried out by the second part of the algorithm.

We summarize this routing algorithm as follows:

3.1 Part 1: Database Generation

The objective of this part is to record, with repetition,
the node labels at a distance 5 2’ (I = 0, 1, . . . , d - 1)
from the root node of different classes. The results of
this one-time computation are used later to determine
the connection patterns for any node in the network. For
each class of the GCR, a recursive algorithm “Half-Tree”
is used to produce a redundant binary “half-tree”, con-
taining binary levels 2’, 2l,. . . , 2d-1. During this process
the nodes occurring at a distance < 2' from the root node

are stored in the Ith level in boolean vector form. That is,

the mth bit of the lth boolean-vector indicates whether
node labeled m first occurs at a distance 5 2’ from the
root node. Notice that any node in the class can be
made the root node of the corresponding half-tree. Sub-
sequently we label the root node as “0” by subtracting
the root node address from the address of every other
node in the half-tree. For example, if node io is the root
node, we subtract is from the address of all nodes in
the binary half-tree. This representation allows us to re-
build the appropriate tree for an arbitrary node from the
same class by a simple shifting of the boolean-vectors. In
other words, if js is a node of the same class as is, we
can rebuild the half-tree with root node js by adding js
to the address of every other node in the tree. Notice
that is and je being in the same class implies that their
difference is a multiple of q, the divisor of the GCR. The
C-implementation of the recursive “Half-Tree” routine is
shown in Table 1.

3.2 Part 2: Recursive Routing

This part of the algorithm is responsible for deter-
mining the path(s) between source and destination pairs.
A recursive routine “Single-Path” is developed to find a
path between a source and destination pair. We start the
recursion at level 1 = d-l. From the database established
in Part 1, we first check if the current source and destina-
tion (symmetrically viewed as two sources) are root and
leaf in the same 2' tree. If so, there is a path with length
< 2’. We continue the recursion by decreasing the level 1
by one. If not, that means the shortest path between the
two nodes has length > 2’ and 5 a’+‘. We then check if

272

Half-Tree(value,index,dis~Cons,root,xd,xn.xke)
int value,index,dist,*Cons,root,xd,xn,xk,xdeg,*S-Tree;
(int level.i,class,name;

If (dist c= Pow(2,xd-1)) /* distance porn root * I

1 class = value%xk;
if ((dist != 0) && (value != root))
(level = Gnt(dist.2); /* dist <= 2**level * /

name = Mod(valueroot,xn);
i=level;
while (icxd) I* assign to alL levels > i* I
(*(S-Tree+i*xn+name) = TRUE; ++i;)

1 I* go through generators * /
for (i=O; i<xdeg; ++i)

if ((i != Mod(indext(xdeg /2),xdeg)) II (dist==O))
Half Tree(Mod(value+*(Com+class*xdegti).xn),i,

aist+l,Cons,roo~xd,xn,~xdeg,S_Trec);
1

Table 1: Half-Tree Recursive Routine

a common node exists at level I of the source half-tree
and at level 1 - 1 of the destination half-tree, assuming
1 > 0. If such a common node is not found, we locate a
common node at level 1 of both the source and destination
half-trees. Such a common node always exists because
the graph is connected and the diameter is bounded by
2d-1 < diameter 5 2d. Once a common node is found,
either at level 1 - 1 or 1 of the destination half-tree, we
split the problem into two, each with a level one less than
the current value and the identified common node as the
destination or source.

By passing along the source and destination to see if
they are in the same half-tree, this algorithm finds a path
of length 5 2” where 3 bounds the shortest path, s-path
(2’-’ < s-path _< 2”). For instance if there are two paths,
one has length 3 and another has length 4, the algorithm
finds the one with length 3. But if the shortest path has
length 4 and there is another path with length 5, the al-
gorithm may find the one with length 5. The fact that
two levels are checked for a common node increases the
probability of finding the shortest path within the range
2’-’ and 2* without increasing the complexity of the al-
gorithm. As a matter of fact, this strategy allows us to
find a path of length < 1.5 (25-1), if it exists. When the
diameter of the graphis large, more levels of comparison
can be considered. The routine “Single-Path” is included
in Table 2. A simple augmentation of this routine will
produce all paths of length 5 25, 25-1 _< s-path 5 2”.

Regarding the complexity of this part of the algo-
rithm, the time for “shifting” and the “AND” opera-
tion are, in principle, constant with respect to n. Thus
with parallelism, the algorithm has a time complexity of
O(logz 0); and with serial computation, it is of O(D),
where D represents the diameter. For space complexity,
each node has to store qd n-bit boolean vectors, which

results in an O(n2 q log2 D) complexity for all nodes in
terms of bits. However, if the boolean-vectors are sparse,
and n is large, various coding schemes for the one-bit-
locations can be used instead of the boolean-vectors, but
at a price of greater time complexity.

4 AN EXAMPLE

In this section we use the 24 nodes GCR graph de-
scribed in section 2 as an example to illustrate the com-
putation of our recursive algorithm. In this case both the
diameter and divisor are 4. That is, we have d = 2 and
q = 4. Suppose the source and destination nodes are 0
and 8, and both are of class 0. There are two shortest
paths, each has length 3 and four more paths with length
4 between these two nodes. They are:

path 1 : 0, 19, 3, 8;
path 2 : 0, 2, 10, 8;
path 3 : 0, 1, 4, 5, 8;
path 4 : 0, 19, 11, 3, 8;
path 5 : 0, 2, 18, 10, 8;
path 6 : 0, 2, 10, 9, 8.

According to the GCR constants, the database for class
0 is as follows:

Level 0 : 1, 2, 19, 21;
Level 1 : 1, 2, 3, 4, 10, 11, 18, 19, 20, 21, 22, 23.

Note that the nodes at level 0 are projected to level 1.
Since node 8 beiongs to class 0, the half-tree for the des-
tination node can be obtained by a modular shift of 8
bits:

273

strut xnode (Int id; struct xnode *next;); /* path structure * /
/****************f****************************~*******~************ /

I* Find a single path between source and destination. *f
/** /

Single-Path(path,sl,s2,S_Tree,xd,xn,xk,level)
struct xnode **path; I* sl. ~2: source & dest * /
int sl,s2,*S~Tree.xd.xn.xk,level; I* S-Tree: half-trees * I
(int mid; /* uf, xn, xk: d, n. k * /

int *S-vecl, *S_vec2, l*S-vec:vector after shifting* 1

If (level c 0) Push(path,s2);
else /* shift sl’s half-tree * I
(S vecl = (int *) malloc((unsigned) (xn*sizeof(int)));

SThik(S vecl,level.sl.S~Tree+(sl%xk)*xd*xn,xd,xn);
if (*(SZvecl+s2)) I* check if s2 in half tree of sl * /
((void) fke((char*) S-vecl);

Single_Path(p&sl,s2,S-Tree,xd,xn,xk,level-1);
I else /* find common point * I

(svec2=
&d

(int *) malloc((unslgned) (xn*sizeof(int)));
= xn;

if (level>O) /* at level 1-I of s2 half-tree * /
(Shift(S-vec2,level-1 ,s2,S_Tree+(s2%xk)*xd*xn,xd,xn);

And(S_vecl,S_vec2,&mid,xn,s2);)
if (mid == xn) /*if not found, check level 1 * I
(Shift(S-vec2,level,s2,S-Tree+(s2%xk)*xd*xn,xd,xn);

And(S-vecl ,S_vec2,&mid,xn,s2);)
(void) frec((char*) S-vecl); (void) frce((char*) S-ved);

/* split into 2 problems * I
Single-Path(path,sl.mid,S_Tree,xd.xn,xk,level-l);
Single-Path(path,mid,s2.S_Tree,xd,xn,xk,level-l);

1
1

1 Table 2: Single-Path Recursive Routine

Level 0 : 3, 5, 9, 10;
Level 1 : 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 18, 19.

We start the recursion at level d - 1 = 1. Since node 8 is
not a node at level 1 of the source half-tree, we proceed
to find a common node at level 1 of the source half-tree
and at level 0 of the destination half-tree, There are
two such nodes: node 3 and node 10. We choose one of
these nodes, say node 3, as our common node and split
the problem into two. One with a source node sl = 0,
destination node 92 = 3; and the other has a source node
sl = 3 and destination node 92 = 8. Both recursive calls
are set at level 0. Since node 3 belongs to class 3, the
database for this class after shifting 3 bits is:

Level 0 : 5, 8, 11, 19;
Level 1 : 0, 4, 5, 6, 8, 9, 10, 11, 13, 16, 19, 21.

For the first half with sl = 0, 92 = 3, level= 0, we com-
pare the half-tree of node 0 to that of node 3 at level 0
and find node 19 as the common node. The next recur-
sion split this half into two problems: sl = 0, 92 = 19
and sl = 19, s2 = 3 at level -1, which means that node
19 and 3 will be pushed into the path vector.

For the second half with sl = 3, 92 = 8, level= 0, we
find that node 8 is a node at level 0 of the sl half-tree.

The recursion thus proceed with al = 3, 92 = 8 but at
level -1, which again means that node 8 will be pushed
into the path vector. At this point, the entire path 1
is found. Should we have chosen node 10 as the first
common node at level 1, we would have found path 2,
which is another shortest path.

As stated earlier, this recursive algorithm requires a
parallel time complexity of O(log, diameter) and a serial
complexity of O(diameter). Also a path with length 5 2”
can be found between any two nodes that has a shortest
path, s-path (2’-’ < s-path 2 2’).

5 CONCLUSIONS

In this paper we presented a recursive routing algo-
rithm composed of two parts. The first part deals with
the establishment of a database at every node. Compu-
tation involved in this part of the algorithm is carried out
once and for all. Part 2 of the algorithm is responsible for
the actual determination of a path between a source and
destination pair. By exploiting the inherent symmetry of
the GCR, this algorithm finds a path of any length _< 2‘
(2’-’ < shortest path 5 2”) where s 5 d and d bounds
the diameter of the graph by 2d-’ < diameter 5 2d.

274

References

[I] A.J. Hoffman and R.R. Singleton. “On Moore Graphs
with Diameters 2 and 3”. IBM Journal, 30:497-504,
November 1960.

[2] J.C. Bermond and C. Delorme. “Strategies for In-
terconnection Networks: Some Methods from Graph
Theory”. Journal of Parallel and Distributed Com-
puting, 3:433-449, 1986.

[3] D.V. Chudnovsky, G.V. Chudnovsky, and M.M. Den-
neau. Regular graphs with small diameter as mod-
els for interconnection networks. Technical Report
RC 13484(60281), IBM Research Division, February
1988.

[4] B.W. Arden and K.W. Tang. Representation and
Routing of Cayley Graphs. Technical Report EL-8%
02, Department of Electiral Engineering, University
of Rochester, 1989.

275

