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ABSTRACT
This paper presents a 2 x 2 core architecture for matrix multi-

plications via the Programmable Graph Architecture approach pro-
posed earlier. A larger matrix-matrix multiplication can be carried
out through sub-matrix decomposition. The iterative operation is
completely performed with simple arithmetic operations and mem-
ory accesses. The core architecture is structurally described using
Verilog and its functionality has been verified. Performance of the
operation and factors influencing the execution are analyzed.

1. INTRODUCTION

In this paper, we consider the Programmable Graph Architecture
(PGA) [1] approach for matrix multiplications based on previous
work on Cayley Graph theory [2]. The details of the PGA ap-
proach can be found in [1]. The following is a brief summary.

The operation is based on two basic assumptions: (1) Given
two N x N matrices where N is a power of 2. (2) Elements of ma-
trices are integers. Performing the matrix multiplications involves
several steps. First a larger matrix multiplication is iteratively bro-
ken down into a set of 2 x 2 matrix multiplications. The operation
can be used with the other small unit of matrices, such as 4 x 4,
8 x 8. A matrix multiplication is further broken down iteratively to
a set of multiplications of singular and/or non-singular Zp matri-
ces through modular p arithmetic [2]. For example, a 2 x 2 matrix
multiplication is given by

AR = [50 26][4 16] (1)

where

Then, AR

[1 1] [ 2]

[0 M 1M

(QAQBP + QARB + RAQB)P + RARB

where QAQB, QARB, RAQB, and RARB can be computed in
parallel. These four matrices are further broken down to Zp ma-
trices. Again, all products are computed in parallel. When the
break down process is completed, all matrices are either singular
or non-singular Zp matrices. For singular matrix multiplications,
each matrix is expressed as sum or difference of non-singular ma-
trices. Then for all non-singular matrix multiplications, we use the
Programmable Graph Architecture (PGA) [1] approach.
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For illustration of a multiplication of Zp matrices via Cayley
Graph, let's consider p = 3, n = 48 nodes where

V = [ 1] '1 1] ' [2 1] ' 1 2]'[ 2]
(5)

then, 4 generators (it can be other even numbers) are picked as

G 0 1JG2 =[ ],G1 2[ ]G [2G21]
(6)

for GCR representation with q = 6 classes.
The advantage of the PGA approach is that when it is applied

to matrix multiplication, all of the calculations can be simplified
to table-look-up operations where these tables can be pre-stored in
memory. Because every characteristic matrix multiplication can be
considered as a route from one vertex to the other through certain
vertices on the graph, we have to map each matrix to a specific
integer representing the vertex on Cayley graph. Then they can be
utilized to find the solution through routing and the result is simply
addition and subtraction of these characteristic matrices multiplied
by fixed power of p. The number of integers, represented as n is
equal to that of vertices on Cayley graph which is a function of
parameterp, then n =(N -_)(pN _p)p(l N( _p2) (pN _pN-1)
where N is the order of the matrix.

2. PROGRAMMABLE GRAPH ARCHITECTURE
2.1. Core Operation

Figure 1 illustrates the main operation of the matrix multiplica-
tions. The inputs to this core process are sub-matrices multipli-
cations that are obtained from the decomposition. The core oper-
ation involves accessing 5 tables. Two input matrices, A and B,
are mapped to integers through the Integer Mapping Table, Table
1, and generate two input integers #A and #B. The number of
entries of this table is n. Then, the core operation performs two
basic operations. The first operation generates partial results from
a sub-matrices multiplication based on the routing path. This is an
iterative operation and becomes the critical path of the core oper-
ation. The other operation generates a remainder, which will be
subtracted from the results of the routing process before obtaining
the result of the multiplication.

Initially, the routing path is obtained with #B by referencing
the Routing Table, Table 2. The number of entries in this table is
n. Each entry corresponds to a routing path, which contains a set
of generator matrices. Both #A and #B are also used to look up
the Table 5, which is not shown in the figure containing the pre-
calculated matrices A x QB p (i.e., used on the Verilog model to
simplifies the process). This table has n2 entries and the entry in
this table corresponds to a remainder matrix that was mentioned
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erates Output. Both Input Transformation Module and Routing
Process Modules have several memory look-up tables and simple
arithmetic and logic operators. Note that no multiplier is used.

Figure 1: Illustration of matrix multiplication of decomposed ma-
trices.

above. Generally the routing process takes certain iterations (i.e.,
the number of generators), therefore the remainder matrix from
Table 5 will be stored and wait until the entire routing process is
done.

The operation within the dotted part in Figure 1 illustrates one
iteration of the routing process. The inputs of the process are the
#A and a set of generators matrices. First, the input integer num-
ber (which the initial number is #A) will go through a modulo q
operation to obtain the remainder. The divisor, q, corresponds to
the number of classes of the GCR (General Chordal Ring) repre-
sentation [2]. The remainder and an input generator become the
reference to access the GCR constant in Table 3. The number of
entries in this table is qD where D is the number of generators
as illustrated in Eq. (6). Meanwhile, the input integer and the
generator are also used to access the Quotient Matrices of Gener-
ators Table, Table 4. The number of entries in this table is nD.
In the routing process, the Quotient Matrix will be checked to see
if it is singular. A singular matrix will be decomposed into two
non-singular matrices. The Quotient Matrix will be mapped back
to integer through the Integer Mapping Table. The GCR constant
will be combined with the input integer and then divided by n to
obtain the remainder which represents another vertex in integer.

Every routing process will multiply the Quotient Matrix by a
scaling factor p. The routing process generates three partial re-
sults per iteration where they are collected and accumulated by the
YiAdder. Before the accumulation, these partial results are trans-
formed back to matrices. The result of YAdder is then subtracted
with the remainder matrix from the Table 5 and the result of this
matrix is the result of sub-matrices multiplication. The results are
composed for the final output.
2.2. Core Processing Unit

Figure 2 shows the architecture of the Core Processing Unit. The
Core Processing Unit consists of Input Transformation Module,
Routing Process Module, Controller, and Output Generation Mod-
ule. The entire unit takes two inputs InputA and InputB, and gen-
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Figure 2: Illustration of Core Processing Unit architecture.

3. DESIGN EVALUATION

We evaluate complexity of the architecture as a function of the
matrix elements. We investigate how many sub-matrices multipli-
cations are needed as a function of elements. Each element is ran-
domly selected and the number of decomposed multiplications is
plotted for 4-bit, 8-bit, and 16-bit elements. Figure 3 illustrates the
number of decomposition process represented by Eq. (4). In the
figure, three bars correspond to the number of singular cases, the
average Core Process Unit used, and the maximum possible num-
ber of Core Process Unit used. The computational requirement is
analyzed for 8-bit, 12-bit, and 16-bit element sizes. The values of
the elements in the matrix are randomly generated. There are sig-
nificant numbers of the core process computation due to singular
matrices. The percentage of the singular cases can be reduced for
larger value of p. However, the core processing unit will be larger
when the value of p increases.
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Figure 3: Illustration of the computation requirements.
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