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ABSTRACT

Performance modeling under non-uniform traffic
is a useful tool to validate simulation accuracy and
lend insights to realistic implementation of multihop
networks. In this article, we present a performance
model capable of tracking non-uniform traffic for an
arbitrary multihop network. Our model is a an exten-
sion of Greenberg-Goodman and Brassil-Cruz models
which are limited to Manhattan Street networks. By
considering packets with non-null states only, we also
provide an improved computational efficiency. Appli-
cation to estimate the performance of Toroidal Mesh
and Diagonal Mesh networks under non-uniform traf-
fic is provided. Comparison of performance param-
eters derived from the model and from simulation
show good agreement. Limitations of our memory-
less and independence assumptions based model are
addressed.

I. INTRODUCTION

Multihop networks have found applications as wave-
length division multiplexed lightwave networks [12]
and as interconnection networks for multicomputers
[13]. In the former, multihop networks are used as
logical topologies for wavelength assignments of trans-
mitters and receivers at a node; whereas in the latter,
multihop networks are used as physical topologies for
the interconnection of multiple processors in a parallel
computer system. In both cases, the number of neigh-
bors at a node is small, and a typical message must
go through a number of hops to reach its destination,
hence the name multithop networks. Large number
of multihop networks have been proposed. This in-
clude the Manhattan Street [11], the ShuffleNet [15],
BanyanNet [16], Toroidal Mesh, and Diagonal Mesh
[17].

Because of its simplicity, deflection routing or hot
potato routing [2] is a popular routing strategy among
multihop networks. It is a bufferless, dynamic routing
algorithm. Basically, messages are sorted according
to a deflection criterion, such as age or path length.
Those with higher priorities are routed optimally to
the shortest path while those with lower priorities are
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deflected to non-optimal links that will lead to a longer
path length. There is no buffer and hence no buffer
management at a node. Performance studies indicate
that age priority based deflection algorithms reduce
the maximum delay [14, 17].

Most, literature on multihop networks contains only
simulation results to estimate the networks perfor-
mance. If performance analysis is included, it is often
for uniform traffic only. While computer simulation
is often prone to programming errors, uniform traf-
fic pattern is far from the realistic situation. There
is, therefore, a need for a non-uniform traffic perfor-
mance model that can be applied to multihop net-
works of arbitrary topology. Such a model will val-
idate the simulation results and will lend insights to
the capability of the proposed multihop network.

Already, Greenberg-Goodman and Brassil-Cruz [8,
4, 7] have developed a performance model for packet
arrivals subject to the independence and memoryless
assumptions, for non-uniform traffic, and limited to
Manhattan Street networks using deflection routing
strategy. In our paper we generalize this model for
arbitrary network topologies with an improved com-
putational efficiency. To demonstrate the validity of
our model, we apply it to two kinds of non-uniform
traffic profile, the single node accumulation and single
node broadcast, for 9x11 Toroidal and Diagonal Mesh
networks.

These two non-uniform traffic patterns are repre-
sentative of multicomputer behavior for a wide range
of parallel algorithms such as inner product calcula-
tions and relaxation iterations [3]. However, we con-
cede that our packet arrival model (limited by the in-
dependence and memoryless assumptions) do not rep-
resent bursty arrivals which is more common in com-
munication networks [6]. Performance modeling for
bursty arrivals is not a trivial problem. Due to their
correlated and time-variant nature (a violation of the
independence and memoryless assumptions), proba-
bilistic model of these arrivals will result in an expo-
nential growth in the number of states and is compu-
tationally prohibitive even for networks of small size.
For this reason and to the best of our knowledge, prob-
abilistic network performance models have not been
applied to bursty arrivals in the literature.



Comparison of parameters derived from the model
with simulation results showed good agreement. Fur-
thermore, by considering only packets with non-null
state, we improved the computational efficiency of
Greenberg-Goodman and Brassil-Cruz models. For
example, under single node accumulation for both net-
works, we estimated that our model’s time complexity
is 26 time better; whereas for single node broadcast,
our model’s time complexity is 3x10® times better.

This article is organized as follows: In Section 2,
we present the performance model. Applications of
the model to Toroidal and Diagonal Mesh networks
are included in Section 3. Section 4 discusses the lim-
itations and the complexity analysis of the model. Fi-
nally, in Section 5, we present a conclusion.

II. PERFORMANCE MODEL
A. Network Model
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Figure 1: Node model.

We model the multihop network as a set of nodes
connected by zero delay links. As shown in Figure
1, each node consists of a traffic extractor, d¢, receive
buffers (Rx buffers), a switching fabric, and d¢ trans-
mit buffers (Tx buffers). The traffic extractor diverts
transit packets which arrive at destination to the lo-
cal station, so these packets never occupy the receive
buffers. The switching fabric maps packets from re-
ceive buffers to transmit buffers. All buffers are size
one, so there is no queueing of packets. Time is syn-
chronized so that all nodes receive and transmit pack-
ets simultaneously.

Attached to each node n is a local station which
can accept up to d, packets in the same time slot.
Packet generation follows a Bernoulli process defined
by the probabilities the local station creates a packet
to destination nodes in the next time slot (geomet-
ric inter-arrival times). The transit packets (packets
forwarded by neighboring nodes) have priority over
local packets (packets created by the local station).
So, a local packet can enter node n Rx buffer only
when strictly less than df, transit packets enter node
n; otherwise the local packet is blocked and lost.

The switching fabric assigns to each received packet
a set of preferred outgoing links based on the short-
est path [5] to the desired destination. The set of
preferred outgoing links is empty when all outgoing
links result in the same path length. The rule used
by the switching fabric to map packets from receive
to transmit buffers is age-priority based (the age of
a packet corresponds to the number of time slots it
has been circulated): First choice is given to the old-
est packet with non empty set of preferred outgoing
links. (Twin packets, or packets with equal age, are
randomly sorted.) When a packet set of preferred out-
going links overlaps with one or more younger packets
sets of preferred outgoing links, the contention resolu-
tion algorithm described below is invoked. Otherwise,
an outgoing link is randomly selected out of the set of
preferred outgoing links and the packet is switched to
the corresponding transmit buffer. Once all packets
with non empty set of preferred outgoing links have
been serviced, packets with empty set of preferred out-
going links are randomly assigned an outgoing link
from the unselected outgoing links.

The contention resolution algorithm is applied ev-
ery time the packet being mapped from receive to
transmit buffers (also called the contending packet)
has its set of preferred outgoing links overlapping with
one or more younger packets preferred outgoing links.
The algorithm consists of first creating a deflection
set composed of outgoing links preferred by the con-
tending packet and by the least number of younger
packet(s). Then, an outgoing link is randomly se-
lected out of the deflection set and assigned to the
contending packet.

B. Steady State Probabilities

For expository convenience, we have included in
Table 1 the nomenclature of parameters used here.
For any node n, we consider packet z, also denoted
by {d.,a.}, of destination node d, and age a,. To
calculate the probability p; ; (ds;a, + 1) that packet
{ds,a,} leaves node n on link [, in the next time
slot, we first evaluate the probability that a packet
destined to node d, of age a, exits on link [, in the
next time slot, conditioned by the event that k packets
are present in node n receive buffers. Then, applying
the total probability theorem we obtain,

d,,
p%_’lm (da:7 ay + 1) = Z Z pn(Ek)

k=1 A ,Dr,Lr
Pr{ o) lixilrtls Ek} (1)

next time slot

where Ay = {aj,as,...a,,...,a;} represents all possi-
ble packet age combinations, Dy = {d;,do, ..., dz, ...,



N Total number of nodes in the network under test.

and age a;.

{dj,a;} 7™ packet in node n receive buffer, of destination node d,

pfl,l (d§ a)

Probability that packet {d,a} arrives to node n on link I in the
next time slot. (pj, o(d;0) is the probability node n creates a
local packet destined to node d.)

pha(dia+1)
node n, is always zero.

Probability that packet {d,a} leaves node n on link [ in the next
time slot. p; ;(n;a), the probability packet {n,a} leaves

Pn(Ek) Probability {di,a1}, {d2,a2},...,{dk,ar} entered node n Rx buffers.
A Age bound. p), (d;a) = p,, ,(d;a) =0 for a > A,
All (k — 1) sets spanning over {0,1,..., A — 1}. If all receive
Ay buffers are occupied, or the test packet {d,,a,} has age 0,
then Ay spans over {1,..., A —1}.
Dr All (k — 1) sets spanning over {0, 1,..., N — 1}, excluding node n.
Ly All k-subsets of the d;,-set {1,2,...,d;}.
P; Packet {d;,a;} set of preferred outgoing links.
Packet {d;,a;} set of preferred outgoing links not selected by older
D; packets, and preferred by the least number of younger packets.
Referred to as packet {d;,a;} deflection set.
C; Packet {d;,a;} set of preferred outgoing links not selected by older
packets, and not preferred by younger packets.
Product of the probabilities packets {a;,d;}, ..., {ar,dr} do not
S?(j|Pj, ..., Pr) | select outgoing link I,, times the probability test packet {as,d.}

selects outgoing link [, when a; > a;_1... > a, > ... > aj.

Table 1: Nomenclature of parameters used in the model for steady-state probabilities.

di} represents all possible packet destination combi-
nations, and Ly, = {li,ls,...,ls,...,lx} represents all
packet incoming link combinations.

We compute the conditional probability in (1) by
constructing the recursive function S*(j|P;j, ..., Pa, ...,
Pi) for j = 1,2..., x. Qualitatively, for j < z, the func-
tion computes the product of the probabilities that all
packets older than packet {d,,a,} (packets indexed 1
to & — 1) are not assigned outgoing link [, multiplied
by the probability packet = is assigned outgoing link
I, given packets {d;,a;}, ..., {ds—1,az—1} were not as-
signed [, when being routed.

More precisely, let node n receive buffers be occu-
pied by k packets {di,a1}, ....{ds,as}, ....{dg, ar} of
respective set of preferred outgoing links Py, Po, ...,
Pr and such that the age of these packets are sorted
with {di, a1} being the oldest packet, i.e. a1 > as >
.. > ag > ... > ay. Also, define for each packet j, D;
as the deflection set (set of outgoing links also pre-
ferred by younger packets), and C; as the set of out-
going links preferred by packet j but not any younger
packets. Assuming packet arrivals to the same node
are independent of one another and of the state of
neighboring nodes (independence and memoryless as-

sumptions), for j = 1,2...,x — 1 we define the function
SZ(7|'P], ey Pa, ...,'Pk) by:

or (C; # O NIl ¢ C;): If packet {dj,a;} has
an empty set of preferred outgoing links or does

not prefer link [,, we set to one its probability
of being assigned link [,, prior packet {d,,a,}
is assigned an outgoing link.

o 57(jIPj, ) = (L = 1/|C;1)8" (G + 1[Pj41,...) if
I, € C;: If Cj contains [, the probability packet
{d;,a;} is not assigned I, is one minus the prob-
ability to randomly choose link [, in C;.

_ vIDj-1

o S7(jIPy, ) = YT (11D )7 P
..)if C; = O AIl, € D;: If D; contains [, there
are |D;|—1 possible ways that packet {d;,a;} is
assigned an outgoing link and affects the set of
preferred outgoing links of one or more younger
packets.

o S%(j|Pj, ) = 1/ |D; |87 (G + 1[PL, ) i
C;j = OANIl; ¢ D;: If D; does not contain I,
there are | D;| possible ways that packet {d;,a;}
is assigned an outgoing link and affects the set of
preferred outgoing links of one or more younger
packets.

When packet {d;,a;} is assigned the ¢ link of its
deflection set D;, we remove the assigned link from the
set of preferred outgoing links of all younger packets
(operation denoted by P?).

The last term of the recursive function corresponds
to j =a:

o S*(x|Py,...,Px) = 1/|Cy| if I, € Cy: When C,
is non empty and contains [, the probability



that [,, is assigned to packet {d,,a,} is one over
the size of set C,.

o S*(z|Py,...,Pr) = 1/|D,| if C, = O Al € Dy,:
When C, is empty and the deflection set D,
contains l,, the probability that [, is assigned
to packet {d,,a,} is one over the size of set D,.

o ST(&| Py, ., Pr) = 1/(u—0,) T1\25 (1-1/ (u—
i)) if P, = @: When P, is empty, the probabil-
ity link I, is assigned to packet {d,,a,} is the
probability that the O, packets with empty set
of preferred outgoing links and older than packet
{d.,a,} are not assigned to link I, times the
probability packet {d,,a,} is assigned link I,
randomly selected out of the u — O, remaining
links. (w is the number of remaining outgoing
links.)

So, assuming packet arrival to receive buffers are
independent of one another, and of the state of neigh-
boring nodes (independence and memoryless assump-
tions), the conditional probability in (1) is S*(1 |
P1,Pa,...; Py, ..., Pr). When twin packets are present,
to calculate the conditional probability in (1), we cal-
culate S*(1 | Py, Pa, ..., Ps, ..., Pi) for each twin packet
permutation, and take the average (twin packets are
randomly sorted).

To compute the second term of (1), let packets
{d1,a1},...,{ds,a.}, ..., {dk,ar} arrive to node n re-
ceive buffers from respective input links {l1,1ls, ..., lx }.
Then, assuming packet arrivals to the same node are
independent, the probability that exactly k packets
enter node n is,

k packets k
Pr | in receive | = lemlj (dj,a;)
buffer j=1
dy,
I (- > P, (d5. . a5.)
jr=k+1 Az DrLE
N-1
1— 3" phold;0)
d=0,d#n

where A = {a},,a} y,...,a% } represents all (d}, —
k) sets such that a} € {1,...,A—1} for j € [k+1,d}].
D; = {d},.d; s,....,d} } represents all (d}, — k) sets
such that d} € {0,1,..., N —1}\{n} for j € [k+‘1, di].
And Ly = {l; 1, liyos s i } represents all (d;, — k)
permutations of {1,2,...,d"}\ {l1,l2, ..., lx}.

That is, the first term represents the probability
k packets enter node n receive buffers. The second
term represents the probability the remaining df, — k
receive buffers are empty. And the third term rep-
resents the probability node n does not generate a
local packet. Note that if all receive buffers are full

(k = di), the second and third terms are removed (re-
call transit packets have priority over local packets).
Also, if a local packet is created (3j € [1,k]|a; = 0)
the third term is removed.

3

C. Model Implementation

Our model can accommodate arbitrary network
architectures and traffic patterns. Its inputs are the
network connectivity matriz, traffic pattern, preferred
outgoing links matriz, and the specified accuracy.

To describe the steps followed in our model imple-
mentation, we consider a node with non-empty receive
buffers at iteration ¢. Then, using (1), we compute the
probability (p°) for each received packet (of non-zero
state probability) to enter every neighboring node in
the next iteration. Next, we send the received packets
to every neighboring node for which p° is non zero.
In other words, our model allows for a packet with
multiple preferred outgoing links to be forwarded to
more than one neighboring node at the next iteration
(contending packets permitting). Consequently, more
than one packet may enter the same receive buffer
during the same time slot, and each such packet rep-
resents a possible outcome.

We illustrate this procedure with the example rep-
resented in Figure 2 for a 3x3 Unidirectional Toroidal
Mesh network (for clarity, we do not use the most re-
cently updated receive buffers). In Figure 2, packets
entering the same receive buffer are shown on the same
row, and packets entering different receive buffers are
shown on different rows. Starting with an empty net-
work (column labeled “Iteration 1” in Figure 2), both
nodes 0 and 3 send a packet destined to node 4 with
probability one. Since there are two routes equally
distant from node 0 to node 4, the packet sent by node
0 is multiplied into two equally probable packets, one
to neighboring node 1 and the other to neighboring
node 3. Similarly, because there is only one shortest
route from node 3 to node 4, the packet sent by node
3 is forwarded to neighboring node 5 with probability
one. The remaining iterations should be interpreted
similarly.

D. Convergence

It is easy to see that solving for the network output
probabilities is equivalent to finding the fixed point
of a multi-dimensional function which maps a set of
output probabilities from one iteration to the next
(combine (1) with the mapping of input probabili-
ties to output probabilities). Conditions for the ex-
istence of a fixed point may be found in [9]. How-
ever, whether these conditions applied to our multi-
dimensional function remains to be verified.

Qualitatively, convergence is achieved once our it-
erative procedure reaches steady state. Proof that
there always exist a unique steady state remains to



Iteration 1 Iteration 2

0 0
(0,4,1) (04.1)

0
(0,4,1)

(24,172)

8 8 8

Iteration 3

1 1 1
(1,4172) (14.172)
2 2 2
3 3 3
04,1
©ay dih iy
Node 4 4 4
Number (241)
5 5 5
(14.) (24,12)(L4,1/2)
6 6 6
(14,12)
7 7 7

Iteration 4

0
(0,4,1)

1
(14,1/2)
2
3

(04.1)
(14,1/2)

4
(34,1/2)(2,4,1/2)
(34,1/2)

Traffic Table

5
(24,1/2)

Source | Destination Rate
6
(@4) 0 4 1
3 4 1

Figure 2: Illustration with a 3x3 Unidirectional Toroidal Mesh network. (Each packet is represented by a triplet
(a, d, p), where a: age, d: destination, p: input probability.)

be found. Experience with the model shows that a
steady state is always reached within a number of it-
erations approximately equal to maximum packet age.

E. Performance Parameters

From the steady state probabilities, we derived the
following performance metrics: the blocking probabil-
ity pp (the probability that a packet fails to arrive at
its destination), the delay distribution h(a) (the prob-
ability that a packet arrives to its destination node in
a hops), the mean delay p, the outgoing link utiliza-
tion UZ(1) (the probability that a packet ezits node
n on link / in the next time slot), the incoming link
utilization U! (1) (the probability that a packet enters
node n on link / in the next time slot), the outgoing
packet rate R? (the number of packets eziting node n
in the next time slot) and the incoming packet rate
R (the number of packets entering node n in the next

time slot). They are summarized as follows:

DI 3 SRR

br = ST 3 b o (d:0)
Zn Z, Pi’l(’l’ha)
h(a) N Zn Zl Za pi’l(n,a) (3)
po= Y, ah(a) 4
Up() = Xa2aPpuld;a) 5
Upn(l) =

(4)
()
Dd Doa Pry(dia) (6)
Ry = >, U0 (7)
R, = 3, U0 (8)

III. APPLICATION

A. Simulation

To validate the performance model, we constructed
an event-driven simulator from which we derived the
same performance parameters derived from the model.
The simulator replicated all aspects of our network
model. For each traffic and network type, we made 10
independent replications of 150,000 departures each
(statistics associated with the first 50,000 departures
were disregarded). The resulting performance param-
eters were averaged over the 10 replications and a 95%
confidence interval was constructed by assuming the
normalized error to be t-distributed [10]. We set our
model convergence error to 107 and the age bound
A = 20.

B. Multihop Networks Under Test

Figure 3: Node n connected neighbors for a Diago-
nal Mesh network (left) and a Toroidal Mesh network
(right).

The two networks under test were a 9 rows by 11
columns (9x11) Toroidal Mesh [1] and a 9x11 Diagonal



[17] Mesh subject to two non-uniform traffic patterns:
single node accumulation traffic (all nodes transmit
to a single node) and single node broadcast (a single
node transmits to all nodes). Such traffic patterns are
representative of multicomputers behavior for a wide
range of parallel algorithms [3].

Both networks are bi-directional degree four mul-
tihop networks. We only consider odd numbered Di-
agonal Mesh networks, as even numbered networks do
not create a fully connected graph. The diameter of an
R rows by C columns (RxC') Diagonal Mesh network
(D4) and an RxC Toroidal Mesh network (D) are
[17]: (Assuming, without loss of generality C > R.)

max(R, Cgl) itC >R
D; = .

R-1 if C =R,
D, = Cc-1 R-1

2 2

For a R rows and C columns network, we number
nodes from 0 to N —1 (N = RC) left to right, top to
bottom.

C. Single Node Accumulation

The single node accumulation traffic pattern cor-
responds to all but one node transmit to the same
node at a rate of 1/(IN — 1). This traffic pattern cor-
responds to the scenario where all nodes of a multi-
processor system send messages to a single node, as
found in applications such as relaxation iterations [3].
The networks tested were 9x11, and the node accu-
mulation was node 49.

In Figure 4, we show the outgoing and incoming
packet rate derived from our model (Equations 7 and
8). In Figure 5, we compare the model and the sim-
ulation delay histograms (Equation 3). In Table 2,
we compare the model and the simulation mean de-
lay, blocking probability and outgoing link utilization
(Equations 4, 2, 5). We found good agreement be-
tween the model and simulation for the mean delay
(1), and outgoing link utilization. For the blocking
probability (py), our model predicts a value less than
the convergence bound of 1076 (or below the model
accuracy), which is consistent with our simulation re-
sults where packets were never blocked.

Moreover, we found little delay performance dif-
ferences between the two networks under test. This
can be explained by noticing that the diameter of the
Diagonal Mesh and Toroidal Mesh networks are equal
for 9x11 (D; = Dy = 9, see Section 3.1). Delay dif-
ferences in favor of the Diagonal Mesh network would
become more significant for C > R + 2 [17].

Di agonal Mesh Network
Qut goi ng Packets

I ncom ng Packets

Toroi dal Mesh Network
Qut goi ng Packets I ncom ng Packets

Figure 4: Outgoing and incoming packet rate for a
9x11 Diagonal Mesh network and a 9x11 Toroidal
Mesh network subject to single node accumulation
traffic.
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Figure 5: 9x11 Toroidal Network and 9x11 Diago-
nal Network delay histograms and absolute error his-
tograms for single node accumulation traffic.

D. Single Node Broadcast

The single node broadcast traffic pattern corre-
sponds to one node transmits to all other nodes at a
relative rate of 1/(N — 1). This traffic pattern corre-
sponds to the case where all nodes of a multiprocessor
system receive messages from a single node, as found
in applications such as inner product calculations [3].

The networks tested were 9x11, and the broadcast-
ing node was node 49. Outgoing and incoming packet
rate are symmetrical to the one for the single node ac-
cumulation traffic pattern shown in Figure 4. Model



Single Node Accumulation
Network 0 Db Maximum Outgoing Link
Model | Simulation | Model | Simulation Utilization Error
Diagonal Mesh | 5.191 | 5.2124+0.004 | < 10°°¢ 0 0.002
Toroidal Mesh | 5.277 | 5.29740.005 | < 10°° 0 0.001
Single Node Broadcast
Network 0 Db Maximum Outgoing Link
Model | Simulation | Model | Simulation Utilization Error
Diagonal Mesh | 4.927 | 4.9194+0.007 | < 10°° 0 0.002
Toroidal Mesh | 5.001 | 5.000£0.005 | < 10°° 0 0.002

Table 2: Comparison between the model and simulation under single node accumulation traffic and single node
broadcast traffic for mean delay (i), blocking (py), and maximum outgoing link utilization error.

and simulation histograms are equivalent to the ones
for the single node accumulation traffic pattern shown
in Figure 5. In Table 2, we compare the model and
the simulation mean delay, blocking probability and
outgoing link utilization. We found good agreement
between the model and simulation for the mean delay
(1), and outgoing link utilization. For the blocking
probability (pp), our model predicts a value less than
the convergence bound of 1075 (or below the model
accuracy), which is consistent with our simulation re-
sults where packets were never blocked.

Again, for such small networks, there are not much
differences in the average delay between the two net-
works.

IV. MODEL COMPLEXITY AND
LIMITATIONS

A. Complexity

We use the time complexity to quantify our model
complexity. We define it as the number of terms gen-
erated by the summations in (1) for every packet, and
node at each iteration. This is equivalent to the num-
ber of loops used in the model implementation to com-
pute the output probabilities of every node, and for
each iteration.

The time complexity of our model is a function
of traffic characteristics. Consequently, we can only
provide an upper bound for the time complexity, de-
rived from the direct implementation (implementation
which does not exclude packets with null states).

The time complexity upper bound corresponds to
the number of possible combinations to have k packets
(k € [1,d!]) in each node receive buffer of age ranging
from 0 to A—1 ((A—1)* combinations), of destination
ranging over the D destination nodes (D* combina-
tions), and entering in each node from any of the d"

input links (k choose d' combinations). That is,

d: )
- dy, ok _ d’
N%( .’ >(A1)D = N(DA),

where di = di, for all n € [0, N — 1].

To quantify the computational efficiency of our im-
plementation, we compare time complexity of our im-
plementation to the one for the direct implementation
for the networks and traffic profiles described in Sec-
tion ITI. The time complexity of our implementation is
calculated by computing the number of ways to com-
bine the packets with non-null state into the receive
buffers of each node, during the last iteration (worst
case). The time complexity of the direct implementa-
tion is given in the next table.

Time Complexity
Single Node | Single Node
Accumulation | Broadcast
Direct 15.8x10° 1.5x10"
Implementation
Section C 0.6x10° 4.5x10°
Implementation

For a 9x11 Diagonal Mesh or Toroidal Mesh network,
our implementation time complexity is approxima-
tively 26 times better than the one for direct imple-
mentation when subject to single node accumulation
traffic, and is approximatively 3x10® times better for
single node broadcast traffic. Even though in the di-
rect implementation, no operations are performed ev-
ery time a combination of incoming packets has one
or more packet with null state, the penalty in terms
of extra loops is significant.

B. Limitations

Using a packet arrival model which complies with
the memoryless and independence assumptions allowed
us to derive tractable performance expressions. Even
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Figure 6: Link utilizations greater than 10=* de-
rived from the model for a 9x9 Unidirectional Toroidal
Mesh network subject to a streaming source traffic [4].
(Node 57 sends packets continuously to node 42.)

though our traffic model does not account for long
range dependencies, as with bursty traffic [6], insights
on performance characteristics of multihop networks
subject to non uniform traffic patterns can be gained.

As mentioned, in the development of our model,
we assumed packet arrivals to the same node to be in-
dependent of one another (independence assumption)
and of the state of the neighboring nodes (memory-
less assumption). The effects of our independence and
memoryless assumptions become clear when relating
to the model implementation. Each time a packet has
more than one preferred outgoing link, our model al-
lows for the packet to be multiplied (one instance to
each preferred outgoing link, contending packets per-
mitting). As long as such multiplied packets do not
interfere (enter the same node) in a later iteration
(that is, as long as the memoryless assumption is not
violated), the model remains accurate. However, as
soon as such packets interfere with one another, the
model accuracy degrades. We illustrate such degrada-
tion with Figure 6 for a 9x9 Unidirectional Toroidal
Mesh network subject to the streaming source traffic
pattern [4]. Upon exiting node 57, packets originated
from node 57 are multiplied and meet again in node
41. As a result, the model accounts for deflections
which cannot occur, since the source cannot send more
than one packet at a time.

Such observation leads us to define the metric M
for evaluating how often the independence and mem-

oryless assumptions are violated.

; k multiplied packets
N A d,
Z Z Z Pr of age a enter the
same node in the
n=0a=0 k=2 .
[ next time slot J

In other words, M represents the frequency that our
model allows for multiplied packets to enter the same
node in any time slot. So, the smaller M is, the more
accurate is our model.

For the 9x9 Unidirectional Toroidal Mesh network
(UTM) subject to the streaming source traffic (Figure
6), the 9x11 Toroidal Mesh network (TM) and the
9x11 Diagonal Mesh network (DM) subject to single
node accumulation and single node broadcast traffic
(Section 3), we constructed the following table:

Network Traffic M Max. Outgoing
Pattern Link Utilization
Error

UTM Streaming 0.250 0.336
Source

™™ Single Node < 0.073 | 0.001
Accumulation

DM Single Node < 0.076 | 0.002
Accumulation

™ Single Node 0.001 0.002
Broadcast

DM Single Node 0.001 0.002
Broadcast

In this table, we have included the different types
of networks under the three traffic patterns, the value
for the metric M and the corresponding maximum
outgoing link utilization error between the model and
simulation.

We can observe that for the streaming source traf-
fic pattern in the 9x9 Manhattan Street network, the
M metric is quite large, M = 0.25 which accounts for
the relatively large maximum outgoing link utilization
error between simulation and results from the model.
However, for the single node accumulation and the
single node broadcast traffic patterns, the M values
are quite small for both DM and TM networks which
explain why the model and simulation results agree,
as evident by the small maximum outgoing link uti-
lization error. Simply stated, this table confirms that
the smaller M is, the more accurate is our model.

Note that in this table, for the single node accumu-
lation traffic profile, we have only provided an upper
bound for the metric M. This is because our imple-
mentation allows us to calculate M only when packets
from distinct source nodes have distinct destination
nodes. In this case, the upper bound on M is simply
the probability of two or more packets of the same age
entering the same node in the next time slot.




V. CONCLUSION

In this article, we presented a performance model
for multihop networks under non-uniform traffic pat-
tern. The model is a generalization of Greenberg-
Goodman and Brassil-Cruz models which were de-
signed specifically for Manhattan Street networks [8,
4, 7]. Our model, on the other hand, can be ap-
plied to an arbitrary network topology of arbitrary de-
gree. Furthermore, by considering packets with non-
null states only, our model is computationally more
efficient than Greenberg-Goodman and Brassil-Cruz
direct implementations.

As an application, we applied the model for perfor-
mance evaluation of 9x11 Toroidal and Diagonal Mesh
networks subject to (i) single node accumulation and
(ii) single node broadcast traffic patterns. These two
traffic profiles are chosen not only because of their
relative tractability but also because they represent
a wide range of problems in multicomputer networks.
We found the model provides good agreement with
simulation. Not surprisingly, for these small networks
of same diameter, there are no significant difference
in the average delay between the two networks.

Finally, we also discussed various issues related
to the model implementation, including complexity,
limitations and convergence. By incorporating event-
driven simulation and considering packets with non-
null states only, our model is more time efficient. For
example, with the 9x11 Diagonal and Toroidal Mesh
networks, our model provides several order of magni-
tude improvement over the Greenberg-Goodman and
Brassil-Cruz implementations in time complexity.

In terms of model limitations, both our model and
Greenberg-Goodman and Brassil-Cruz models made
the independence and memoryless assumptions which
imply packet arrivals to the same node are indepen-
dent of one another and of the state of neighboring
nodes. We briefly discussed when such an assumption
is not valid and defined a metric to assess the model
accuracy.
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