
MULTIHOP NETWORKS: PERFORMANCE MODELING UNDERNON-UNIFORM TRAFFIC PATTERNSEric NoelAT&T LaboratoriesHolmdel, NJ 07733ericn@surya.att.com K. Wendy TangDepartment of Electrical EngineeringSUNY at Stony Brook, Stony Brook, NY 11794-2350wtang@sbee.sunysb.eduABSTRACTPerformance modeling under non-uniform tra�cis a useful tool to validate simulation accuracy andlend insights to realistic implementation of multihopnetworks. In this article, we present a performancemodel capable of tracking non-uniform tra�c for anarbitrary multihop network. Our model is a an exten-sion of Greenberg-Goodman and Brassil-Cruz modelswhich are limited to Manhattan Street networks. Byconsidering packets with non-null states only, we alsoprovide an improved computational e�ciency. Appli-cation to estimate the performance of Toroidal Meshand Diagonal Mesh networks under non-uniform traf-�c is provided. Comparison of performance param-eters derived from the model and from simulationshow good agreement. Limitations of our memory-less and independence assumptions based model areaddressed. I. INTRODUCTIONMultihop networks have found applications as wave-length division multiplexed lightwave networks [12]and as interconnection networks for multicomputers[13]. In the former, multihop networks are used aslogical topologies for wavelength assignments of trans-mitters and receivers at a node; whereas in the latter,multihop networks are used as physical topologies forthe interconnection of multiple processors in a parallelcomputer system. In both cases, the number of neigh-bors at a node is small, and a typical message mustgo through a number of hops to reach its destination,hence the name multihop networks. Large numberof multihop networks have been proposed. This in-clude the Manhattan Street [11], the Shu�eNet [15],BanyanNet [16], Toroidal Mesh, and Diagonal Mesh[17].Because of its simplicity, deection routing or hotpotato routing [2] is a popular routing strategy amongmultihop networks. It is a bu�erless, dynamic routingalgorithm. Basically, messages are sorted accordingto a deection criterion, such as age or path length.Those with higher priorities are routed optimally tothe shortest path while those with lower priorities are

deected to non-optimal links that will lead to a longerpath length. There is no bu�er and hence no bu�ermanagement at a node. Performance studies indicatethat age priority based deection algorithms reducethe maximum delay [14, 17].Most literature on multihop networks contains onlysimulation results to estimate the networks perfor-mance. If performance analysis is included, it is oftenfor uniform tra�c only. While computer simulationis often prone to programming errors, uniform traf-�c pattern is far from the realistic situation. Thereis, therefore, a need for a non-uniform tra�c perfor-mance model that can be applied to multihop net-works of arbitrary topology. Such a model will val-idate the simulation results and will lend insights tothe capability of the proposed multihop network.Already, Greenberg-Goodman and Brassil-Cruz [8,4, 7] have developed a performance model for packetarrivals subject to the independence and memorylessassumptions, for non-uniform tra�c, and limited toManhattan Street networks using deection routingstrategy. In our paper we generalize this model forarbitrary network topologies with an improved com-putational e�ciency. To demonstrate the validity ofour model, we apply it to two kinds of non-uniformtra�c pro�le, the single node accumulation and singlenode broadcast, for 9x11 Toroidal and Diagonal Meshnetworks.These two non-uniform tra�c patterns are repre-sentative of multicomputer behavior for a wide rangeof parallel algorithms such as inner product calcula-tions and relaxation iterations [3]. However, we con-cede that our packet arrival model (limited by the in-dependence and memoryless assumptions) do not rep-resent bursty arrivals which is more common in com-munication networks [6]. Performance modeling forbursty arrivals is not a trivial problem. Due to theircorrelated and time-variant nature (a violation of theindependence and memoryless assumptions), proba-bilistic model of these arrivals will result in an expo-nential growth in the number of states and is compu-tationally prohibitive even for networks of small size.For this reason and to the best of our knowledge, prob-abilistic network performance models have not beenapplied to bursty arrivals in the literature.



Comparison of parameters derived from the modelwith simulation results showed good agreement. Fur-thermore, by considering only packets with non-nullstate, we improved the computational e�ciency ofGreenberg-Goodman and Brassil-Cruz models. Forexample, under single node accumulation for both net-works, we estimated that our model's time complexityis 26 time better; whereas for single node broadcast,our model's time complexity is 3x108 times better.This article is organized as follows: In Section 2,we present the performance model. Applications ofthe model to Toroidal and Diagonal Mesh networksare included in Section 3. Section 4 discusses the lim-itations and the complexity analysis of the model. Fi-nally, in Section 5, we present a conclusion.II. PERFORMANCE MODELA. Network Model
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Figure 1: Node model.We model the multihop network as a set of nodesconnected by zero delay links. As shown in Figure1, each node consists of a tra�c extractor, din receivebu�ers (Rx bu�ers), a switching fabric, and don trans-mit bu�ers (Tx bu�ers). The tra�c extractor divertstransit packets which arrive at destination to the lo-cal station, so these packets never occupy the receivebu�ers. The switching fabric maps packets from re-ceive bu�ers to transmit bu�ers. All bu�ers are sizeone, so there is no queueing of packets. Time is syn-chronized so that all nodes receive and transmit pack-ets simultaneously.Attached to each node n is a local station whichcan accept up to din packets in the same time slot.Packet generation follows a Bernoulli process de�nedby the probabilities the local station creates a packetto destination nodes in the next time slot (geomet-ric inter-arrival times). The transit packets (packetsforwarded by neighboring nodes) have priority overlocal packets (packets created by the local station).So, a local packet can enter node n Rx bu�er onlywhen strictly less than din transit packets enter noden; otherwise the local packet is blocked and lost.

The switching fabric assigns to each received packeta set of preferred outgoing links based on the short-est path [5] to the desired destination. The set ofpreferred outgoing links is empty when all outgoinglinks result in the same path length. The rule usedby the switching fabric to map packets from receiveto transmit bu�ers is age-priority based (the age ofa packet corresponds to the number of time slots ithas been circulated): First choice is given to the old-est packet with non empty set of preferred outgoinglinks. (Twin packets, or packets with equal age, arerandomly sorted.) When a packet set of preferred out-going links overlaps with one or more younger packetssets of preferred outgoing links, the contention resolu-tion algorithm described below is invoked. Otherwise,an outgoing link is randomly selected out of the set ofpreferred outgoing links and the packet is switched tothe corresponding transmit bu�er. Once all packetswith non empty set of preferred outgoing links havebeen serviced, packets with empty set of preferred out-going links are randomly assigned an outgoing linkfrom the unselected outgoing links.The contention resolution algorithm is applied ev-ery time the packet being mapped from receive totransmit bu�ers (also called the contending packet)has its set of preferred outgoing links overlapping withone or more younger packets preferred outgoing links.The algorithm consists of �rst creating a deectionset composed of outgoing links preferred by the con-tending packet and by the least number of youngerpacket(s). Then, an outgoing link is randomly se-lected out of the deection set and assigned to thecontending packet.B. Steady State ProbabilitiesFor expository convenience, we have included inTable 1 the nomenclature of parameters used here.For any node n, we consider packet x, also denotedby fdx; axg, of destination node dx and age ax. Tocalculate the probability pon;lx(dx; ax + 1) that packetfdx; axg leaves node n on link lx in the next timeslot, we �rst evaluate the probability that a packetdestined to node dx of age ax exits on link lx in thenext time slot, conditioned by the event that k packetsare present in node n receive bu�ers. Then, applyingthe total probability theorem we obtain,pon;lx(dx; ax + 1) = dinXk=1 XAk ;Dk;Lk pn(Ek)Pr24 fdx; axg exitson link lx innext time slot ������Ek35 (1)where Ak = fa1; a2; :::ax; :::; akg represents all possi-ble packet age combinations, Dk = fd1; d2; :::; dx; :::;



N Total number of nodes in the network under test.fdj ; ajg jth packet in node n receive bu�er, of destination node djand age aj .Probability that packet fd; ag arrives to node n on link l in thepin;l(d;a) next time slot. (pin;0(d; 0) is the probability node n creates alocal packet destined to node d.)Probability that packet fd; ag leaves node n on link l in the nextpon;l(d; a+ 1) time slot. pon;l(n; a), the probability packet fn; ag leavesnode n, is always zero.pn(Ek) Probability fd1; a1g; fd2; a2g; :::; fdk; akg entered node n Rx bu�ers.A Age bound. pon;l(d; a) = pin;l(d; a) = 0 for a � A.All (k � 1) sets spanning over f0; 1; :::; A� 1g. If all receiveAk bu�ers are occupied, or the test packet fdx; axg has age 0,then Ak spans over f1; :::; A� 1g.Dk All (k � 1) sets spanning over f0; 1; :::; N � 1g, excluding node n.Lk All k-subsets of the din-set f1; 2; :::; ding.Pj Packet fdj ; ajg set of preferred outgoing links.Packet fdj ; ajg set of preferred outgoing links not selected by olderDj packets, and preferred by the least number of younger packets.Referred to as packet fdj ; ajg deection set.Cj Packet fdj ; ajg set of preferred outgoing links not selected by olderpackets, and not preferred by younger packets.Product of the probabilities packets faj ; djg, ..., fak; dkg do notSx(jjPj ; :::;Pk) select outgoing link lx, times the probability test packet fax; dxgselects outgoing link lx, when aj > aj�1::: > ax > ::: > ak.Table 1: Nomenclature of parameters used in the model for steady-state probabilities.dkg represents all possible packet destination combi-nations, and Lk = fl1; l2; :::; lx; :::; lkg represents allpacket incoming link combinations.We compute the conditional probability in (1) byconstructing the recursive function Sx(jjPj ; :::; Px; :::;Pk) for j = 1; 2:::; x. Qualitatively, for j < x, the func-tion computes the product of the probabilities that allpackets older than packet fdx; axg (packets indexed 1to x� 1) are not assigned outgoing link lx, multipliedby the probability packet x is assigned outgoing linklx, given packets fdj ; ajg; :::; fdx�1; ax�1g were not as-signed lx when being routed.More precisely, let node n receive bu�ers be occu-pied by k packets fd1; a1g, ...,fdx; axg, ...,fdk; akg ofrespective set of preferred outgoing links P1, P2, ...,Pk and such that the age of these packets are sortedwith fd1; a1g being the oldest packet, i.e. a1 > a2 >::: > ax > ::: > ak. Also, de�ne for each packet j, Djas the deection set (set of outgoing links also pre-ferred by younger packets), and Cj as the set of out-going links preferred by packet j but not any youngerpackets. Assuming packet arrivals to the same nodeare independent of one another and of the state ofneighboring nodes (independence and memoryless as-sumptions), for j = 1; 2:::; x�1 we de�ne the functionSx(jjPj ; :::;Px; :::;Pk) by:� Sx(jjPj ; :::) = Sx(j + 1jPj+1; :::) if (Pj = �)or (Cj 6= � ^ lx =2 Cj): If packet fdj ; ajg hasan empty set of preferred outgoing links or does

not prefer link lx, we set to one its probabilityof being assigned link lx, prior packet fdx; axgis assigned an outgoing link.� Sx(jjPj ; :::) = (1 � 1=jCj j)Sx(j + 1jPj+1; :::) iflx 2 Cj : If Cj contains lx, the probability packetfdj ; ajg is not assigned lx is one minus the prob-ability to randomly choose link lx in Cj .� Sx(jjPj ; :::) =PjDj j�1t=1 (1�1=jDjj)Sx(j+1jPtj+1;:::) if Cj = �^ lx 2 Dj : If Dj contains lx, thereare jDj j�1 possible ways that packet fdj ; ajg isassigned an outgoing link and a�ects the set ofpreferred outgoing links of one or more youngerpackets.� Sx(jjPj ; :::) =PjDj jt=1 1=jDj jSx(j + 1jPtj+1; :::) ifCj = � ^ lx =2 Dj : If Dj does not contain lx,there are jDj j possible ways that packet fdj ; ajgis assigned an outgoing link and a�ects the set ofpreferred outgoing links of one or more youngerpackets.When packet fdj ; ajg is assigned the tth link of itsdeection setDj , we remove the assigned link from theset of preferred outgoing links of all younger packets(operation denoted by Pt�).The last term of the recursive function correspondsto j = x:� Sx(xjPx; :::;Pk) = 1=jCxj if lx 2 Cx: When Cxis non empty and contains lx, the probability



that lx is assigned to packet fdx; axg is one overthe size of set Cx.� Sx(xjPx; :::;Pk) = 1=jDxj if Cx = � ^ lx 2 Dx:When Cx is empty and the deection set Dxcontains lx, the probability that lx is assignedto packet fdx; axg is one over the size of set Dx.� Sx(xjPx; :::;Pk) = 1=(u�Ox)QjOxj�1i=0 (1�1=(u�i)) if Px = �: When Px is empty, the probabil-ity link lx is assigned to packet fdx; axg is theprobability that the Ox packets with empty setof preferred outgoing links and older than packetfdx; axg are not assigned to link lx, times theprobability packet fdx; axg is assigned link lx,randomly selected out of the u � Ox remaininglinks. (u is the number of remaining outgoinglinks.)So, assuming packet arrival to receive bu�ers areindependent of one another, and of the state of neigh-boring nodes (independence and memoryless assump-tions), the conditional probability in (1) is Sx(1 jP1;P2; :::;Px; :::;Pk). When twin packets are present,to calculate the conditional probability in (1), we cal-culate Sx(1 j P1;P2; :::;Px; :::;Pk) for each twin packetpermutation, and take the average (twin packets arerandomly sorted).To compute the second term of (1), let packetsfd1; a1g; :::; fdx; axg; :::; fdk; akg arrive to node n re-ceive bu�ers from respective input links fl1; l2; :::; lkg.Then, assuming packet arrivals to the same node areindependent, the probability that exactly k packetsenter node n is,Pr24 k packetsin receivebu�er 35 = kYj=1 pin;lj (dj ; aj)dinYj�=k+10@1� XA�k ;D�k;L�k pin;l�j� (d�j� ; a�j�)1A0@1� N�1Xd=0;d6=n pin;0(d; 0)1A ;where A�k = fa�k+1; a�k+2; :::; a�ding represents all (din �k) sets such that a�j 2 f1; :::; A� 1g for j 2 [k+1; din].D�k = fd�k+1; d�k+2; :::; d�ding represents all (din � k) setssuch that d�j 2 f0; 1; :::; N�1gnfng for j 2 [k+1; din].And L�k = fl�k+1; l�k+2; :::; l�ding represents all (din � k)permutations of f1; 2; :::; ding n fl1; l2; :::; lkg.That is, the �rst term represents the probabilityk packets enter node n receive bu�ers. The secondterm represents the probability the remaining din � kreceive bu�ers are empty. And the third term rep-resents the probability node n does not generate alocal packet. Note that if all receive bu�ers are full

(k = din), the second and third terms are removed (re-call transit packets have priority over local packets).Also, if a local packet is created (9j 2 [1; k]jaj = 0),the third term is removed.C. Model ImplementationOur model can accommodate arbitrary networkarchitectures and tra�c patterns. Its inputs are thenetwork connectivity matrix, tra�c pattern, preferredoutgoing links matrix, and the speci�ed accuracy.To describe the steps followed in our model imple-mentation, we consider a node with non-empty receivebu�ers at iteration t. Then, using (1), we compute theprobability (po) for each received packet (of non-zerostate probability) to enter every neighboring node inthe next iteration. Next, we send the received packetsto every neighboring node for which po is non zero.In other words, our model allows for a packet withmultiple preferred outgoing links to be forwarded tomore than one neighboring node at the next iteration(contending packets permitting). Consequently, morethan one packet may enter the same receive bu�erduring the same time slot, and each such packet rep-resents a possible outcome.We illustrate this procedure with the example rep-resented in Figure 2 for a 3x3 Unidirectional ToroidalMesh network (for clarity, we do not use the most re-cently updated receive bu�ers). In Figure 2, packetsentering the same receive bu�er are shown on the samerow, and packets entering di�erent receive bu�ers areshown on di�erent rows. Starting with an empty net-work (column labeled \Iteration 1" in Figure 2), bothnodes 0 and 3 send a packet destined to node 4 withprobability one. Since there are two routes equallydistant from node 0 to node 4, the packet sent by node0 is multiplied into two equally probable packets, oneto neighboring node 1 and the other to neighboringnode 3. Similarly, because there is only one shortestroute from node 3 to node 4, the packet sent by node3 is forwarded to neighboring node 5 with probabilityone. The remaining iterations should be interpretedsimilarly.D. ConvergenceIt is easy to see that solving for the network outputprobabilities is equivalent to �nding the �xed pointof a multi-dimensional function which maps a set ofoutput probabilities from one iteration to the next(combine (1) with the mapping of input probabili-ties to output probabilities). Conditions for the ex-istence of a �xed point may be found in [9]. How-ever, whether these conditions applied to our multi-dimensional function remains to be veri�ed.Qualitatively, convergence is achieved once our it-erative procedure reaches steady state. Proof thatthere always exist a unique steady state remains to
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Figure 2: Illustration with a 3x3 Unidirectional Toroidal Mesh network. (Each packet is represented by a triplet(a, d, p), where a: age, d: destination, p: input probability.)be found. Experience with the model shows that asteady state is always reached within a number of it-erations approximately equal to maximum packet age.
E. Performance ParametersFrom the steady state probabilities, we derived thefollowing performance metrics: the blocking probabil-ity pb (the probability that a packet fails to arrive atits destination), the delay distribution h(a) (the prob-ability that a packet arrives to its destination node ina hops), the mean delay �, the outgoing link utiliza-tion Uon(l) (the probability that a packet exits noden on link l in the next time slot), the incoming linkutilization U in(l) (the probability that a packet entersnode n on link l in the next time slot), the outgoingpacket rate Ron (the number of packets exiting node nin the next time slot) and the incoming packet rateRin (the number of packets entering node n in the nexttime slot). They are summarized as follows:pb = 1� PnPlPa pin;l(n;a)PnPd pin;0(d;0) (2)h(a) = PnPl pin;l(n;a)PnPlPa pin;l(n;a) (3)� = Pa ah(a) (4)Uon(l) = PdPa pon;l(d; a) (5)U in(l) = PdPa pin;l(d; a) (6)Ron = Pl Uon(l) (7)Rin = Pl U in(l) (8)

III. APPLICATIONA. SimulationTo validate the performance model, we constructedan event-driven simulator from which we derived thesame performance parameters derived from the model.The simulator replicated all aspects of our networkmodel. For each tra�c and network type, we made 10independent replications of 150,000 departures each(statistics associated with the �rst 50,000 departureswere disregarded). The resulting performance param-eters were averaged over the 10 replications and a 95%con�dence interval was constructed by assuming thenormalized error to be t-distributed [10]. We set ourmodel convergence error to 10�6 and the age boundA = 20.B. Multihop Networks Under Test
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lFigure 3: Node n connected neighbors for a Diago-nal Mesh network (left) and a Toroidal Mesh network(right).The two networks under test were a 9 rows by 11columns (9x11) Toroidal Mesh [1] and a 9x11 Diagonal



[17] Mesh subject to two non-uniform tra�c patterns:single node accumulation tra�c (all nodes transmitto a single node) and single node broadcast (a singlenode transmits to all nodes). Such tra�c patterns arerepresentative of multicomputers behavior for a widerange of parallel algorithms [3].Both networks are bi-directional degree four mul-tihop networks. We only consider odd numbered Di-agonal Mesh networks, as even numbered networks donot create a fully connected graph. The diameter of anR rows by C columns (RxC) Diagonal Mesh network(Dd) and an RxC Toroidal Mesh network (Dt) are[17]: (Assuming, without loss of generality C � R.)Dd = � max(R; C�12 ) if C > RR� 1 if C = R;Dt = C � 12 + R� 12 :For a R rows and C columns network, we numbernodes from 0 to N � 1 (N = RC) left to right, top tobottom.C. Single Node AccumulationThe single node accumulation tra�c pattern cor-responds to all but one node transmit to the samenode at a rate of 1=(N � 1). This tra�c pattern cor-responds to the scenario where all nodes of a multi-processor system send messages to a single node, asfound in applications such as relaxation iterations [3].The networks tested were 9x11, and the node accu-mulation was node 49.In Figure 4, we show the outgoing and incomingpacket rate derived from our model (Equations 7 and8). In Figure 5, we compare the model and the sim-ulation delay histograms (Equation 3). In Table 2,we compare the model and the simulation mean de-lay, blocking probability and outgoing link utilization(Equations 4, 2, 5). We found good agreement be-tween the model and simulation for the mean delay(�), and outgoing link utilization. For the blockingprobability (pb), our model predicts a value less thanthe convergence bound of 10�6 (or below the modelaccuracy), which is consistent with our simulation re-sults where packets were never blocked.Moreover, we found little delay performance dif-ferences between the two networks under test. Thiscan be explained by noticing that the diameter of theDiagonal Mesh and Toroidal Mesh networks are equalfor 9x11 (Dt = Dd = 9, see Section 3.1). Delay dif-ferences in favor of the Diagonal Mesh network wouldbecome more signi�cant for C > R+ 2 [17].
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Figure 4: Outgoing and incoming packet rate for a9x11 Diagonal Mesh network and a 9x11 ToroidalMesh network subject to single node accumulationtra�c.
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Figure 5: 9x11 Toroidal Network and 9x11 Diago-nal Network delay histograms and absolute error his-tograms for single node accumulation tra�c.D. Single Node BroadcastThe single node broadcast tra�c pattern corre-sponds to one node transmits to all other nodes at arelative rate of 1=(N � 1). This tra�c pattern corre-sponds to the case where all nodes of a multiprocessorsystem receive messages from a single node, as foundin applications such as inner product calculations [3].The networks tested were 9x11, and the broadcast-ing node was node 49. Outgoing and incoming packetrate are symmetrical to the one for the single node ac-cumulation tra�c pattern shown in Figure 4. Model



Single Node AccumulationNetwork � pb Maximum Outgoing LinkModel Simulation Model Simulation Utilization ErrorDiagonal Mesh 5.191 5.212�0.004 � 10�6 0 0.002Toroidal Mesh 5.277 5.297�0.005 � 10�6 0 0.001Single Node BroadcastNetwork � pb Maximum Outgoing LinkModel Simulation Model Simulation Utilization ErrorDiagonal Mesh 4.927 4.919�0.007 � 10�6 0 0.002Toroidal Mesh 5.001 5.000�0.005 � 10�6 0 0.002Table 2: Comparison between the model and simulation under single node accumulation tra�c and single nodebroadcast tra�c for mean delay (�), blocking (pb), and maximum outgoing link utilization error.and simulation histograms are equivalent to the onesfor the single node accumulation tra�c pattern shownin Figure 5. In Table 2, we compare the model andthe simulation mean delay, blocking probability andoutgoing link utilization. We found good agreementbetween the model and simulation for the mean delay(�), and outgoing link utilization. For the blockingprobability (pb), our model predicts a value less thanthe convergence bound of 10�6 (or below the modelaccuracy), which is consistent with our simulation re-sults where packets were never blocked.Again, for such small networks, there are not muchdi�erences in the average delay between the two net-works.IV. MODEL COMPLEXITY ANDLIMITATIONSA. ComplexityWe use the time complexity to quantify our modelcomplexity. We de�ne it as the number of terms gen-erated by the summations in (1) for every packet, andnode at each iteration. This is equivalent to the num-ber of loops used in the model implementation to com-pute the output probabilities of every node, and foreach iteration.The time complexity of our model is a functionof tra�c characteristics. Consequently, we can onlyprovide an upper bound for the time complexity, de-rived from the direct implementation (implementationwhich does not exclude packets with null states).The time complexity upper bound corresponds tothe number of possible combinations to have k packets(k 2 [1; din]) in each node receive bu�er of age rangingfrom 0 to A�1 ((A�1)k combinations), of destinationranging over the D destination nodes (Dk combina-tions), and entering in each node from any of the di

input links (k choose di combinations). That is,N dinXk=1� dink � (A� 1)kDk = N(DA)di ;where di = din for all n 2 [0; N � 1].To quantify the computational e�ciency of our im-plementation, we compare time complexity of our im-plementation to the one for the direct implementationfor the networks and tra�c pro�les described in Sec-tion III. The time complexity of our implementation iscalculated by computing the number of ways to com-bine the packets with non-null state into the receivebu�ers of each node, during the last iteration (worstcase). The time complexity of the direct implementa-tion is given in the next table.Time ComplexitySingle Node Single NodeAccumulation BroadcastDirect 15.8x106 1.5x1015ImplementationSection C 0.6x106 4.5x106ImplementationFor a 9x11 Diagonal Mesh or Toroidal Mesh network,our implementation time complexity is approxima-tively 26 times better than the one for direct imple-mentation when subject to single node accumulationtra�c, and is approximatively 3x108 times better forsingle node broadcast tra�c. Even though in the di-rect implementation, no operations are performed ev-ery time a combination of incoming packets has oneor more packet with null state, the penalty in termsof extra loops is signi�cant.B. LimitationsUsing a packet arrival model which complies withthe memoryless and independence assumptions allowedus to derive tractable performance expressions. Even



g0 -? g16- g2 -? g36- g4 -? g56- g6 -? g76- g8-?g9?� g106� g11?� g126� g13?� g146� g15?� g166� g17?�g18 -? g196- g20 -? g216-0.005 g22 -0.002?0.002 g236-0.171 g24 -?0.171 g256- g26-?g27?� g286� g29?0.005� g3060.005�0.005 g31?0.171� g3260.169�0.169 g33?0.173� g346�0.002 g35?�g36 -? g376-0.012 g38 -0.017? g3960.009 -0.543 g40 -0.621?0.093 g4160.337 -0.827 g42 -? g4360.002 - g44-?g45?� g4660.012� g47?0.012�0.012 g4860.535�0.024 g49?0.047�0.047 g5060.544�0.001 g51?�0.002 g5260.002�0.002 g53?�g54 -? g556- g56 -0.012? g5760.512 -0.512 g58 -0.535?0.024 g5960.543 -0.009 g60 -0.004?0.004 g6160.004 - g62-?g63?� g646� g65?� g6660.012� g67?0.012�0.012 g6860.016� g69?�0.004 g706� g71?�g72 -? g736- g74 -? g756- g76 -0.012? g7760.012 - g78 -? g796- g80-?Figure 6: Link utilizations greater than 10�4 de-rived from the model for a 9x9 Unidirectional ToroidalMesh network subject to a streaming source tra�c [4].(Node 57 sends packets continuously to node 42.)though our tra�c model does not account for longrange dependencies, as with bursty tra�c [6], insightson performance characteristics of multihop networkssubject to non uniform tra�c patterns can be gained.As mentioned, in the development of our model,we assumed packet arrivals to the same node to be in-dependent of one another (independence assumption)and of the state of the neighboring nodes (memory-less assumption). The e�ects of our independence andmemoryless assumptions become clear when relatingto the model implementation. Each time a packet hasmore than one preferred outgoing link, our model al-lows for the packet to be multiplied (one instance toeach preferred outgoing link, contending packets per-mitting). As long as such multiplied packets do notinterfere (enter the same node) in a later iteration(that is, as long as the memoryless assumption is notviolated), the model remains accurate. However, assoon as such packets interfere with one another, themodel accuracy degrades. We illustrate such degrada-tion with Figure 6 for a 9x9 Unidirectional ToroidalMesh network subject to the streaming source tra�cpattern [4]. Upon exiting node 57, packets originatedfrom node 57 are multiplied and meet again in node41. As a result, the model accounts for deectionswhich cannot occur, since the source cannot send morethan one packet at a time.Such observation leads us to de�ne the metric Mfor evaluating how often the independence and mem-

oryless assumptions are violated.M = NXn=0 AXa=0 dinXk=2Pr2664 k multiplied packetsof age a enter thesame node in thenext time slot 3775 :In other words, M represents the frequency that ourmodel allows for multiplied packets to enter the samenode in any time slot. So, the smallerM is, the moreaccurate is our model.For the 9x9 Unidirectional Toroidal Mesh network(UTM) subject to the streaming source tra�c (Figure6), the 9x11 Toroidal Mesh network (TM) and the9x11 Diagonal Mesh network (DM) subject to singlenode accumulation and single node broadcast tra�c(Section 3), we constructed the following table:Network Tra�c M Max. OutgoingPattern Link UtilizationErrorUTM Streaming 0.250 0.336SourceTM Single Node � 0.073 0.001AccumulationDM Single Node � 0.076 0.002AccumulationTM Single Node 0.001 0.002BroadcastDM Single Node 0.001 0.002BroadcastIn this table, we have included the di�erent typesof networks under the three tra�c patterns, the valuefor the metric M and the corresponding maximumoutgoing link utilization error between the model andsimulation.We can observe that for the streaming source traf-�c pattern in the 9x9 Manhattan Street network, theM metric is quite large,M = 0:25 which accounts forthe relatively large maximum outgoing link utilizationerror between simulation and results from the model.However, for the single node accumulation and thesingle node broadcast tra�c patterns, the M valuesare quite small for both DM and TM networks whichexplain why the model and simulation results agree,as evident by the small maximum outgoing link uti-lization error. Simply stated, this table con�rms thatthe smaller M is, the more accurate is our model.Note that in this table, for the single node accumu-lation tra�c pro�le, we have only provided an upperbound for the metric M. This is because our imple-mentation allows us to calculateM only when packetsfrom distinct source nodes have distinct destinationnodes. In this case, the upper bound on M is simplythe probability of two or more packets of the same ageentering the same node in the next time slot.



V. CONCLUSIONIn this article, we presented a performance modelfor multihop networks under non-uniform tra�c pat-tern. The model is a generalization of Greenberg-Goodman and Brassil-Cruz models which were de-signed speci�cally for Manhattan Street networks [8,4, 7]. Our model, on the other hand, can be ap-plied to an arbitrary network topology of arbitrary de-gree. Furthermore, by considering packets with non-null states only, our model is computationally moree�cient than Greenberg-Goodman and Brassil-Cruzdirect implementations.As an application, we applied the model for perfor-mance evaluation of 9x11 Toroidal and Diagonal Meshnetworks subject to (i) single node accumulation and(ii) single node broadcast tra�c patterns. These twotra�c pro�les are chosen not only because of theirrelative tractability but also because they representa wide range of problems in multicomputer networks.We found the model provides good agreement withsimulation. Not surprisingly, for these small networksof same diameter, there are no signi�cant di�erencein the average delay between the two networks.Finally, we also discussed various issues relatedto the model implementation, including complexity,limitations and convergence. By incorporating event-driven simulation and considering packets with non-null states only, our model is more time e�cient. Forexample, with the 9x11 Diagonal and Toroidal Meshnetworks, our model provides several order of magni-tude improvement over the Greenberg-Goodman andBrassil-Cruz implementations in time complexity.In terms of model limitations, both our model andGreenberg-Goodman and Brassil-Cruz models madethe independence and memoryless assumptions whichimply packet arrivals to the same node are indepen-dent of one another and of the state of neighboringnodes. We briey discussed when such an assumptionis not valid and de�ned a metric to assess the modelaccuracy. VI. REFERENCES[1] W. C. Athas, C. L. Seitz, Multicomputers:Message-Passing Concurrent Computers. IEEEComputer Magazine, August 1988, pp. 9-24.[2] P. Baran, On distributed computing networks,IEEE Transactions on Communications Systems.Mar 1964, pp. 1-9.[3] D. P. Bertsekas, J. N. Tsitsiklis, Parallel and Dis-tributed Computation Numerical Methods. Engle-wood Cli�s, NJ: Prentice Hall, 1989.[4] J. Brassil, R. Cruz. Nonuniform Tra�c in theManhattan Street Network. Proceedings of the
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