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Abstract 
Matrix multiplication is one of the primary 
operations in linear algebra and is useful in a wide 
spectrum of multimedia applications including signal 
and image processing. In this paper we review a 
novel computer architecture for matrix 
multiplications. This novel architecture is based on 
graph theory, hence the name Programmable Graph 
Architecture.  We discuss the performance of PGA 
via time and space complexity and time-processor 
product for parallel implementation. We further 
compare the PGA performance with Cannon’s 
algorithm and show that the PGA architecture 
outperforms the existing method for matrix with any 
dimension. 

Keyword: computer architecture, matrix 
multiplication, Cayley graphs 
 
1. Introduction 

Recently, we introduce the novel algorithms and 
architectures for matrix operations on configurable 
devices [1,2]. This new family of architecture is 
based on Cayley Graphs, hence the name 
Programmable Graph Architecture (PGA). The 
motivation to propose this new model of computation 
is to explore the potential performance advantages of 
transforming matrix operations into spatial graph 
routing problems. This is conceptually similar to the 
transformation techniques used in [5-9] but we rely 
on the isomorphism between linear matrix groups and 
Cayley graphs rather than those between arithmetic 
groups and permutation groups. 

Our model works through the use of modular p
arithmetic; that is a matrix is iteratively broken down 
into modular p matrices. Operations in the original 
matrix domain are then translated into operations in 

the modular p matrix domain. It is in this domain of 
modular p matrices that we construct a Cayley graph. 
To connect between the original matrix domain and 
the modular p matrix domain, we need five tables to 
store one-to-one mapping information. 

Through computer simulations, we observe that the 
time complexity of our PGA algorithm is of O (P),
where P is the average path length of a Cayley graph, 
instead of the dimension of the original matrix. And 
the number of processors needed is 3

2
SDm

M e NN
,

where M is the dimension of the original matrix, N is 
the dimension of the base matrix for the 
corresponding Cayley graph, e is an integer, and NSDm
is the number of source-destination multiplication 
pairs. The time-processor product for the PGA 
algorithm will be 3

2
SDm

MP e N N
. Standard 

serial matrix multiplication computation will require 

a time complexity of 
3O M , while the most updated 

parallel computing algorithms can be performed in 
O M operations with M2 processors, or in 

logO M operations with M3 processors [11,12]. 
The time-processor product for these parallel 

methods, however, is all nearly
3M

, which is 
worse than our PGA approach.  In this paper, we also 
show that the time-processor product for the PGA 
approach is less than that of the standard parallel 
computation for any matrix dimension with proper 
setting of PGA coefficients.    

This paper is organized as follows: in section 2, we 
review the existing matrix multiplication algorithms. 
Section 3 provides a description of the PGA 
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algorithm. Section 4 discusses the performance of 
PGA and Section 5 is the conclusion of the paper. 

2. Overview of existing matrix multiplication 
algorithms 
 
Matrix multiplication is one of the primary operations 
in linear algebra and is useful in a wide spectrum of 
multimedia applications including signal and image 
processing. In recent years, a number of algorithms 
have been developed to reduce the computational 
complexity from O(M3). Initial algorithms were 
sequential, with Strassen(1969) showing that the 
complexity is reduced to O(M2.807). [14] Further 
improvements reduced the order to O(M2.376) was 
achieved by Coppersmith and Winograd(1990) [15]. 
To speed up computation, parallel matrix 
multiplication algorithms have been developed which 
mostly involve decomposition of the matrices and 
parallelizing the standard algorithm. A common 
complexity measure is therefore, a time-processor 
product ( ) rather than just the order of time 
complexity. There have been a number of approaches; 
these include: the systolic algorithm using systolic 
arrays, Cannon’s algorithm [16], PUMMA (Parallel 
Universal Matrix Multiplication)[17], SUMMA 
(Scalable Universal Matrix Multiplication)[18], 
DIMMA (Distribution Independent Matrix 
Multiplication)[19] and SRUMMA (Shared and 
Remote Memory based Universal Matrix 
Multiplication algorithm)[20]. Apart from the 
computational requirements (number of 
multiplications and additions) there are also storage 
requirements which must be considered.  In the case 
of parallel algorithms, the communication overhead 
between processors also comes into play.  

In Strassen’s algorithm, the M M matrices are 
divided into 4 M/2  M/2 matrices and the result is 
obtained by recursively multiplying these. The 
limitation is that the matrix size is a power of 2 which 
is overcome in the Winograd algorihm. 

In parallel processor algorithms, the memory used is 
either distributed or shared or a combination of both. 
Distributed memory performance measurements are 
more complex as the partitioning of matrices across 
the machines affects the parallelism and the 
communication overhead. The time complexity in the 
case of Cannon’s algorithm was     O(M) with M M
processors. [12,16]  

In our proposed matrix multiplication via PGA 
(Programmable Graph Architecture), we take a novel 

approach in turning the original matrix multiplication 
operation into the fine grain computation of graph 
routing.  In [1-4], we introduced a computational 
model that facilitates the transformations of matrix 
multiplication into physical layers of processors. 
Such a computation model is based on the 
isomorphism between linear matrix groups and 
Cayley graphs. This isomorphism allows us to map 
matrix multiplication directly into hardware without 
performing any row-column products. The potential 
benefits of this mapping from the matrix algebra 
domain to Cayley graphs in processor design, 
especially for multimedia applications, can be quite 
huge. In the following section, we provide a brief 
overview of our matrix multiplication via PGA 
algorithm.   

3. Matrix Multiplication via PGA algorithm 
Our PGA algorithm makes use of five pre-stored 
tables and memory mapping to deal with the matrix 
multiplication. The strength of the PGA algorithm 
comes from transforming the matrix multiplication 
into serial scalar additions through graph routing. The 
theoretical parts of the algorithm are mentioned in 
previous papers [1-4]. Here we briefly review the 
algorithm by the following examples: 
 
Step 1: Decompose the operand matrices: Given two 
M M matrices, A, B, where M is a power of 2,
iteratively decompose A×B into products of 2 2
matrices. For example, let A and B be 4 4 matrices. 
Then, we can write 

1 2 3 4 126 54 3 4
5 6 7 8 37 26 7 8

88 127 11 12 9 10 11 12
111 5 15 16 13 14 15 16

       Eq.(1)1 1 2 3 1 2 2 4

3 1 4 3 3 2 4 4

A B =

A B A B A B A B
=

A
A B

B A B A B A B

where 

1 2 3 4 88 127 11 12
, , ,

5 6 7 8 111 5 15 16

126 54 3 4 9 10 11 12
, , ,

37 26 7 8 13 14 15 16

1 2 3 4

1 2 3 4

A A A A

B B B B

Thus, the product of two M M matrices (M is a 
power of 2), can be computed through a sequence of 
multiplications of 2 2 matrices. In the following 
steps, we illustrate how 2 2 matrices can be 
computed in parallel through Cayley graph routing. 
Step 2: Choose a prime number p and factor the 2 2
matrices into 2 2 matrices with entries mod p:  For 
example, for p = 5, consider the following 2 2
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matrix multiplication A3 and B1, choosing from Eq. 
(1):  

88 127 126 54
111 5 37 263 1A B =

Then, 
3 2

,1 ,2 ,3 ,4

0 1 3 0 1 0 3 2
0 0 4 0 2 1 1 0

p p p
3 3 3 3

3

A A A A

A

3 2

,1 ,2 ,3 ,4

1 0 0 2 0 0 1 4
0 0 1 1 2 0 2 1

p p p
1 1 1 1

1

B B B B

B

3 2       Eq.(2)p p3 1 3,3 1,2 3,4 1,2 3,4 1,4A B A B A B A B

                                                          
Eq. (2) reveals that the matrix product A3 B1 can be 
computed by performing a set of 2 2 mod p matrix 
multiplications. As in this example, only these three 
terms listed are non-singular matrices and the rest of 
these mod p matrices are singular. For singular 
matrices, the Cayley graph approach cannot be used 
for matrix multiplications because these matrices are 
not in GL(2,p), and therefore not in the corresponding 
Cayley graph. We solve this problem by expressing a 
singular matrix as a sum or difference of two 
nonsingular matrices. More specifically, there are 
five possible patterns of 2 2 singular matrices.  They 
are:

1 2

3 4

0 0 0 0
, , , ,

0 0 0 0

x xx y x x

x xx y y y

These singular 2x2 matrices can be expressed as the 
sum or difference of two non-singular Zp matrices: 

0 0 1 0 1 0
=  if 1; or

1 0 1

0 1 0 1
 if 1, 1; or

1 1 0

1 0 1 0
( 1)   , if 1

1 2 0 1
{ }

y p
x y x y

y p x p
x y

p x y p

The matrices 0 0
, ,

0 0 0 0

x y x x

y y

can be similarly 

expressed.  The last pattern of singular matrices can 
be expressed as: 

1 2 21

3 4 34

00

00

x x xx

x x xx

The elements of any rows or columns in 1 2

3 4

x x

x x

could not be both zeroes. 

Thus, all the singular matrices in Eq. (2) can be 
represented as the sum of two no-singular matrices. 
Eq. (2) will become multiple non-singular matrices 
pair multiplication. For example:  

0 1 1 0 1 1 1 0 2 0 1 0
0 0 0 0 0 1 0 1 0 1 0 11,1 1,1A B

Step 3: Multiply 2 2 mod p matrices via graph 
routing in a Cayley Graph: In this step, we multiply 
the non-singular sub-matrices in Eq. (2). These 
multiplications are computed using an integer 
representation of a Cayley graph constructed over the 
GL(2,p) group of matrices [1-4].  For p=5, there are 
480 number of nodes in the graph.  These nodes are 
labeled as node  to node . Every node of the 
graph corresponds to a 2 2 mod p non-singular 
matrix. Multiplication of any two 2 2 mod p non-
singular matrices corresponds to routing between a 
source and destination node of the graph, hence we 
call this process the source-destination multiplication, 
SDm. For example, node ×  is a source 
destination multiplication, SDm. The mapping of 
these matrices and the corresponding integer node 
label in the graph is stored as Table 1.  This table 
consists of n = p×(p-1)×(p2-1) entries to index the n
vertices with the n matrices, where n is the order of 
the matrix group.

Step 3.1: Transform 2 2 mod p non-singular 
matrices into integers: Every non-singular matrix has 
a corresponding integer node label which is stored in 
Table 1. As in the example of 

3,3 1,2A B  in Eq. (2): 

1 0 0 2
,

2 1 1 1
integer integer

matrix matrix
3,3 1,2A B

Thus,

Part I

Part II

the routing path of

the quotient matrix of 

Integer Domainmatrix domain

matrix domain

matrix domain
p

3,3 1,2

3,3

3,3 1,2

1,2

A

A

B

B

A

B
 

 

 

 

                                                                            Eq (3) 
In the above example, it is clear that the computation 
of 

3,3 1,2A B  is divided into 2 parts.  The computation 
of these two parts is described in more details in 
Steps 3.2 and Step3.3:  

Step 3.2:  Multiply source node with the routing path 
of the destination node (Part I): Table 2 consists of 
nD entries where D is the diameter of the graph. It 
keeps track of the paths from node  to all the other 
nodes in the graph. A path is identified as a sequence 
of generators as defined by Cayley graphs. More 
detailed description of these generators can be found 
in [1-4] and is not repeated here. By looking up Table 
2, the path of the destination node can be identified.  
In our example, the routing path of  can be 
identified from the 355th entry of Table 2, and in this 
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case, the sequence is , ,-1 -1
1 6 7G G G , where , ,-1 -1

1 6 7G G G  are 
generators.   

Once we have identified the sequence of generators 
as a path to the destination node, we need to multiply 
the source node with this set of generators. This is the 
core of the algorithm that transforms a vector 
operation into a scalar operation. In the integer 
domain of the Cayley graph, multiplying a source 
node with generators corresponds to a series of 
modular n additions. Each of the generators 
corresponds to an integer and these integers are 
stored in Table 3 [1-2]. The size of this table is of O( )
where is the degree of the underlying graph. In this 
example, =14.

Since the underlying Cayley graph is constructed 
over a group of modular p matrices, namely GL(N,p),
the quotient of the multiplication product need to be 
identified from a table.  Table 4 of our database 
stores the quotient matrices for the product of the 
matrix with each of the generators. Its size is 
therefore, n N2 where n is the number of nodes,  is 
the degree of the Cayley graph, and N is the 
dimension of the base matrix.   

In our example, the source node is , from 
Table 3, generator G1 corresponds to integer 270.  
From the 401th entry of Table 4, the quotient matrix is 

0 0
1 0

.  Hence 
1G  is

mod 480

0 0
401 270

5 0
p

1GQ

Using the method outlined here, the entire 
computation of Part I can be summarized as follow: 

mod 480

mod 480

Part I

Part I

Pa

Part I

401 270

0 0
5 0

0 0
5 0

0 0
191 237

5 1

rt I

Part I

Part I

5

0 0
5

p

p

1

-1
6

-1 -1
1 6 7

-1 -1
G 6 7

-1 -1
6 7

-1 -1
6 7

-1
7G

G G G

Q G G

G G

G G

Q G

2
,mod 480 mod 480

2

1 2 0 0
15 1 1 5 15

0 0
287 172 428 3

30 55

0 0 0 1 0 0
3

P

0 55 0 1 1

art I

Part I
3

p p

p p p

p p p

-1 -1 -1
7 7 7

-1 -1
7 7

G G G

G G

Q Q

0 0 0 25 20 15 0 0 0 2 20 42
30 55 0 25 10 0 5 15 1 0 46 9

Part 
5

I

Step 3.3: Fetch the quotient matrix of the destination 
node (Part II): Table 5 is used to store the quotient 
matrix of the product of the set of generator matrices 

from node  to each node in the graph. Its entries are 
therefore, n, where n is the number of nodes. The 
quotient matrix of the destination node is retrieved 
from the entry of its node number in Table 5. If 
entries in the quotient matrix are greater than p, we 
have to repeat step 2 to factor the matrix into entries 
mod p. In our example, the equation of Part II 
becomes: 

2

4 8 0 1

Part

4 3
Part II

1 2 0 0 1 2

0 1 4 3 20 40
0 2 9 8

 II
45 90

p p p

p p

Step 3.4: Sum up Part I and Part II: Once the 
answers of Part I and Part II are available, the answer 
of two matrix multiplications is Part I subtracted by 
Part II. In our example: 

1 0 0 2 20 42 20 40 0 2
2 1 1 1 46 95 45 90 1 5

3,3 1,2A B

 
4. Performance of PGA 
Assume we need to perform a matrix multiplication 
for two M M grey level matrices.  Using our PGA 
algorithm, we need to choose a base matrix with 
dimension N×N to form a Cayley graph.    

Here are 3M
N

 numbers of base matrix 

multiplications needed to compute. From our 
example in Eq. (1), the dimension of the original 
matrix is M=4, and the dimension of the base matrix 
is N=2, the number of base matrix multiplication is 

34
2

= 8. If we adopt larger number of N, there are 

less numbers of base matrix multiplications. A small 
change of N will, however, dramatically increase the 
size of the number of nodes in the Cayley graph. Our 
experiments primarily use N=2 as the base matrix 
dimension.  

For performance, we consider three parameters: time
complexity, space consumption, and time-processor 
product to measure the performance of PGA 
algorithm. In the following sections, we described the 
time and space complexity of our PGA approach. We 
also compare the time-processor product measure of 
PGA with the latest parallel matrix multiplication 
algorithms. We found that, indeed, our PGA 
approach has better performance with the proper 
setting of PGA coefficients.  

4. 1 Time complexity measure 
As indicated in Eq (3), in our PGA approach, the 
computation of the multiplication of two N×N non-
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singular matrices is divided into two parts. Part I is 
concerned with the multiplication of the source node 
with the generators of the graphs; and Part II is the 
multiplication of the source node with the quotient of 
the destination node. The following describes the 
time complexity analysis for Part I and Part II. 

4.1.1 Matrix multiplication between sources nodes 
and generators (Part I)  
The routing sequence from the identity matrix to the 
multiplier matrix is actually the combination of 
generators. That’s why this part can be regarded as 
multiplication with generators as multipliers. Once 
the dimension and modulus p are set, the length of 
the routing sequence for each node is controlled by 
the degree of the graph. In general, the larger degree 
gives the smaller path length, but their relationship is 
non-linear.  

Now, let’s take a closer look at the process of 
multiplication with generators as multipliers. The 
amounts of processes needed depend on the number 
of generators in the routing sequence. Each process 
contains one addition for a multiplicand node plus 
GCR constant, and N2 additions for the quotients. For 
our experiments, it is 22=4 additions here. If the 
quotient is singular or has entries greater than 
modulus p, there are extra expanded terms for the 
next multiplication process. For example, if singular 
quotient is encountered, there are two more additions 
for multiplicand nodes plus GCR constants, and two 
more N2 additions for quotients. Even though we 
have these expanded and add-on terms, the 
computing time of this part can still grow only with 
the path lengths of the graph. Figure 1 illustrates the 
relationship between the average number of additions 
and average path lengths for different graphs. The 
average number of additions is computed by 
averaging the total number of additions for all 
possible n2 multiplication pairs. As expected, the 
average number of additions is proportional to the 
average path length. 

Figure 1 contains four different Cayley graphs with p
ranges from 5 to 13. Each point in the graph 
corresponding to a particular value of p with a 
specific degree as indicated on the graph. From the 
graph, we observe that the average number of 
additions is linear with the average path length, i.e., 
average number of addition is of O(P), where P is the 
average path length. 

4.1.2 Matrix Multiplication between source node and 
quotient of destination node (Part II) 

2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3

Average Path Lengths (P)
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p=7, n=2,016
p=11, n=13,200
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Degree=16

Degree=8

Degree=8
Degree=14

Degree=22

Degree=22

Degree=38

Figure 1: Time complexity of PGA has O(P) relation. 

In this part, the computation is divided into several 
source-destination pairs. If the computation is 
achieved in serial, the time complexity should be the 
product of the number of SDm pairs with the average 
path length of the graph. If the computation is 
achieved in parallel, the number of processors needed 
corresponds to the number of source-destination pairs. 
The number of source-destination pairs is affected by 
the size of the graph. In general, a large network 
requires the graph having a larger degree so that the 
average path length is small which corresponds to a 
smaller quotient in Table 5. Such smaller quotients in 
general guarantees a smaller number of source-
destination pairs. In our experiments by computing 
all possible n2 multiplication pairs, we have the 
following results: for p=13, NSDm=4.6 at =32;
NSDm=6.3 at =34; NSDm=3.9 at =36; NSDm=3.5 at 
=38; where NSDm is the number of SDm pairs, and 

is the degree of the graph. 

4.2 Space consumption measure 

As described in Section 3, there are five tables.  As a 
summary, these five tables are:  
Table 1: This table of size nN2 consists of n entries to 
pair the n nodes with the n matrices. 
Table 2: This table consists of nD entries where D is
the diameter of the graph to keep track of the paths 
from node 0 to all the other nodes in the graph.
Table 3: This table stores GCR constants with size q .
Table 4: This table of size n N2 is used to store the 
quotient matrices for the product of the              
matrix corresponding to each node with each of the 
generators.
Table 5: This table of size nN2 is used to store the 
quotient matrix of the product of generator matrices 
from node  to each node in the graph.

The total size of these tables is, therefore,  
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2Tables Sizes = 2n N D q

Where n is the number of nodes in the graph, N is the 
dimension of the matrix,  is the degree of the graph, 
D is the diameter of the graph, and q is the class of 
the graph.  

The following diagram illustrates the space 
consumption versus the number of nodes in the graph 
with various degrees.  As expected, the space 
requirement grows linearly with the size of the 
graphs. 

0 100000 200000 300000 400000 500000 600000 700000
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Figure 2: The table sizes versus the number of nodes in the 
graph with various degrees. 

4.3 Time-processor product 

For parallel implementation, time-processor product 
is a common performance measure. From the 
beginning of the section, we know there are 3M

N
numbers of base matrix multiplications, and in 
Section 4.1.2, we further confirm that each base 
matrix multiplication needs the number of SDms. 
Nevertheless, there is still another issue we need take 
into consideration, and that is matrix entries greater 
than modulus p. Since, it is a matrix with grey level 
entries, the power of modulus p will determine the 
number of expanded terms. The number of expanded 
terms is equal to the smallest integer e such that pe > 
128. For instance, for p=11, e=3, and for p=13, e=2.
To combine these three factors, the processor units 
are required for parallel computation as the following 
equation: 

3
2Number of Processor     SDm

M e NN
where NSDm is the number of source-destination 
multiplication. 

To combine the time and processor factors, the time-
processor product for the PGA algorithm will be: 

3
2

SDm
MP e N N

 
The comparison between PGA and the existing 
algorithms 
In comparing the performance of PGA with other 
existing algorithms, we consider the time-processor 
product for PGA and other algorithms. Existing serial 
or parallel matrix multiplication is generally 
measured only with the number of multiplication, but 
our PGA algorithm does not involve multiplication 
but only contains integer additions. Since we 
consider the grey level matrix, we can assume seven 
scalar additions is equal to one scalar multiplication. 
Therefore, the time complexity of our algorithm can 
be O(P/7). We computed the time-processor product 
for four sets of PGA graphs:  N=2, p=13, and =32 to 
38, These computations involves O(P/7) where 
P=3.38, 3.25, 3.18 and 3.06 respectively for =32 to 
38. They are implemented on 37.8M , 310.1M ,

36.2M , 35.4M  processors, respectively. As expected, 
the time-processor product for our PGA algorithm 
grows with matrix dimension. Figure 3 shows the 
comparison between our PGA algorithm and 
Cannon’s algorithm. The plot shows the time-
processor product for our PGA algorithm for p=13, 
=34 and 38. Those for =32 and =38 are similar to 
=34 and =38 respectively, and are therefore 

omitted in the figure. As described in Section 2, 
Cannon’s algorithm implements on M2 processors 
with O(M) time. The time-processor product is (M3).  

101 1022 3 4 5 6 7 8 9 2

Matrix Dimension (M)

103

104

105

106

9

2

3
4
5
6
8

2

3
4
5
6
8

2

3
4
5
6
8

2

3
4
5
6

T
im

e
-P

ro
c

e
s
s

o
r 

P
ro

d
u

c
t

Cannon's algorithm
PGA with N=2, p=13, Degree=34
PGA with N=2, p=13, Degree=38
PGA with N=4, p=7 (Estimation)

Figure 3: The performance comparison of our PGA algorithms 
v.s Cannon’s algorithm. 

As shown in Figure 3, our PGA algorithm for p=13, 
=38 outperforms Cannon’s method for any matrix 
dimension, but not for  =34. It tells the coefficient 
setting of our PGA algorithm is crucial to govern the 
performance for matrix multiplication. Hence, we 
have an estimation result for N=4, p=7 on the figure 
to show that the different setting can significantly 
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influence the performance. For example, for matrix 
with dimension 27, the time-processor product for our 
PGA for N=2, p=13,  =38 is 220.6; for =34 is 221.5;
and for N=4, p=7 is 219.7 whereas that of Cannon is 
221. Thus, our PGA algorithm can be tuned by 
choosing different coefficients to tower over any 
other existing algorithms.  
 
5. Conclusion 
In this paper, we reviewed our PGA matrix 
multiplication algorithms and discuss its performance 
in time complexity, space complexity, and the time-
processor product.  We also compare the time-
processor product of our PGA algorithm with that of 
Cannon’s algorithm. Indeed, our PGA algorithm 
outperforms existing methods with the proper setting 
of the PGA coefficients. 
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