
Performance of PGA (Programmable Graph Architecture)
for Matrix Multiplications

Department of Electrical and Computer Engineering
State University of NY at Stony Brook

muling@ece.sunysb.edu, sramani@ic.sunysb.edu, wtang@ece.sunysb.edu

A. Yavuz Oruç
Department of Electrical and Computer Engineering

University of Maryland at College Park
yavuz@eng.umd.edu

Abstract
Matrix multiplication is one of the primary
operations in linear algebra and is useful in a wide
spectrum of multimedia applications including signal
and image processing. In this paper we review a
novel computer architecture for matrix
multiplications. This novel architecture is based on
graph theory, hence the name Programmable Graph
Architecture. We discuss the performance of PGA
via time and space complexity and time-processor
product for parallel implementation. We further
compare the PGA performance with Cannon’s
algorithm and show that the PGA architecture
outperforms the existing method for matrix with any
dimension.

Keyword: computer architecture, matrix
multiplication, Cayley graphs

1. Introduction

Recently, we introduce the novel algorithms and
architectures for matrix operations on configurable
devices [1,2]. This new family of architecture is
based on Cayley Graphs, hence the name
Programmable Graph Architecture (PGA). The
motivation to propose this new model of computation
is to explore the potential performance advantages of
transforming matrix operations into spatial graph
routing problems. This is conceptually similar to the
transformation techniques used in [5-9] but we rely
on the isomorphism between linear matrix groups and
Cayley graphs rather than those between arithmetic
groups and permutation groups.

Our model works through the use of modular p
arithmetic; that is a matrix is iteratively broken down
into modular p matrices. Operations in the original
matrix domain are then translated into operations in

the modular p matrix domain. It is in this domain of
modular p matrices that we construct a Cayley graph.
To connect between the original matrix domain and
the modular p matrix domain, we need five tables to
store one-to-one mapping information.

Through computer simulations, we observe that the
time complexity of our PGA algorithm is of O (P),
where P is the average path length of a Cayley graph,
instead of the dimension of the original matrix. And
the number of processors needed is 3

2
SDm

M e NN
,

where M is the dimension of the original matrix, N is
the dimension of the base matrix for the
corresponding Cayley graph, e is an integer, and NSDm
is the number of source-destination multiplication
pairs. The time-processor product for the PGA
algorithm will be 3

2
SDm

MP e N N
. Standard

serial matrix multiplication computation will require

a time complexity of
3O M , while the most updated

parallel computing algorithms can be performed in
O M operations with M2 processors, or in

logO M operations with M3 processors [11,12].
The time-processor product for these parallel

methods, however, is all nearly
3M

, which is
worse than our PGA approach. In this paper, we also
show that the time-processor product for the PGA
approach is less than that of the standard parallel
computation for any matrix dimension with proper
setting of PGA coefficients.

This paper is organized as follows: in section 2, we
review the existing matrix multiplication algorithms.
Section 3 provides a description of the PGA

Muling Peng, Sreekanth Ramani, K. Wendy Tang

Proceedings of the 5th IEEE/ACIS International Conference on Computer and Information Science and 1st IEEE/ACIS
International Workshop on Component-Based Software Engineering, Software Architecture and Reuse (ICIS-COMSAR’06)
0-7695-2613-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 26, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

algorithm. Section 4 discusses the performance of
PGA and Section 5 is the conclusion of the paper.

2. Overview of existing matrix multiplication
algorithms

Matrix multiplication is one of the primary operations
in linear algebra and is useful in a wide spectrum of
multimedia applications including signal and image
processing. In recent years, a number of algorithms
have been developed to reduce the computational
complexity from O(M3). Initial algorithms were
sequential, with Strassen(1969) showing that the
complexity is reduced to O(M2.807). [14] Further
improvements reduced the order to O(M2.376) was
achieved by Coppersmith and Winograd(1990) [15].
To speed up computation, parallel matrix
multiplication algorithms have been developed which
mostly involve decomposition of the matrices and
parallelizing the standard algorithm. A common
complexity measure is therefore, a time-processor
product () rather than just the order of time
complexity. There have been a number of approaches;
these include: the systolic algorithm using systolic
arrays, Cannon’s algorithm [16], PUMMA (Parallel
Universal Matrix Multiplication)[17], SUMMA
(Scalable Universal Matrix Multiplication)[18],
DIMMA (Distribution Independent Matrix
Multiplication)[19] and SRUMMA (Shared and
Remote Memory based Universal Matrix
Multiplication algorithm)[20]. Apart from the
computational requirements (number of
multiplications and additions) there are also storage
requirements which must be considered. In the case
of parallel algorithms, the communication overhead
between processors also comes into play.

In Strassen’s algorithm, the M M matrices are
divided into 4 M/2 M/2 matrices and the result is
obtained by recursively multiplying these. The
limitation is that the matrix size is a power of 2 which
is overcome in the Winograd algorihm.

In parallel processor algorithms, the memory used is
either distributed or shared or a combination of both.
Distributed memory performance measurements are
more complex as the partitioning of matrices across
the machines affects the parallelism and the
communication overhead. The time complexity in the
case of Cannon’s algorithm was O(M) with M M
processors. [12,16]

In our proposed matrix multiplication via PGA
(Programmable Graph Architecture), we take a novel

approach in turning the original matrix multiplication
operation into the fine grain computation of graph
routing. In [1-4], we introduced a computational
model that facilitates the transformations of matrix
multiplication into physical layers of processors.
Such a computation model is based on the
isomorphism between linear matrix groups and
Cayley graphs. This isomorphism allows us to map
matrix multiplication directly into hardware without
performing any row-column products. The potential
benefits of this mapping from the matrix algebra
domain to Cayley graphs in processor design,
especially for multimedia applications, can be quite
huge. In the following section, we provide a brief
overview of our matrix multiplication via PGA
algorithm.

3. Matrix Multiplication via PGA algorithm
Our PGA algorithm makes use of five pre-stored
tables and memory mapping to deal with the matrix
multiplication. The strength of the PGA algorithm
comes from transforming the matrix multiplication
into serial scalar additions through graph routing. The
theoretical parts of the algorithm are mentioned in
previous papers [1-4]. Here we briefly review the
algorithm by the following examples:

Step 1: Decompose the operand matrices: Given two
M M matrices, A, B, where M is a power of 2,
iteratively decompose A×B into products of 2 2
matrices. For example, let A and B be 4 4 matrices.
Then, we can write

1 2 3 4 126 54 3 4
5 6 7 8 37 26 7 8

88 127 11 12 9 10 11 12
111 5 15 16 13 14 15 16

 Eq.(1)1 1 2 3 1 2 2 4

3 1 4 3 3 2 4 4

A B =

A B A B A B A B
=

A
A B

B A B A B A B

where

1 2 3 4 88 127 11 12
, , ,

5 6 7 8 111 5 15 16

126 54 3 4 9 10 11 12
, , ,

37 26 7 8 13 14 15 16

1 2 3 4

1 2 3 4

A A A A

B B B B

Thus, the product of two M M matrices (M is a
power of 2), can be computed through a sequence of
multiplications of 2 2 matrices. In the following
steps, we illustrate how 2 2 matrices can be
computed in parallel through Cayley graph routing.
Step 2: Choose a prime number p and factor the 2 2
matrices into 2 2 matrices with entries mod p: For
example, for p = 5, consider the following 2 2

Proceedings of the 5th IEEE/ACIS International Conference on Computer and Information Science and 1st IEEE/ACIS
International Workshop on Component-Based Software Engineering, Software Architecture and Reuse (ICIS-COMSAR’06)
0-7695-2613-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 26, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

matrix multiplication A3 and B1, choosing from Eq.
(1):

88 127 126 54
111 5 37 263 1A B =

Then,
3 2

,1 ,2 ,3 ,4

0 1 3 0 1 0 3 2
0 0 4 0 2 1 1 0

p p p
3 3 3 3

3

A A A A

A

3 2

,1 ,2 ,3 ,4

1 0 0 2 0 0 1 4
0 0 1 1 2 0 2 1

p p p
1 1 1 1

1

B B B B

B

3 2 Eq.(2)p p3 1 3,3 1,2 3,4 1,2 3,4 1,4A B A B A B A B

Eq. (2) reveals that the matrix product A3 B1 can be
computed by performing a set of 2 2 mod p matrix
multiplications. As in this example, only these three
terms listed are non-singular matrices and the rest of
these mod p matrices are singular. For singular
matrices, the Cayley graph approach cannot be used
for matrix multiplications because these matrices are
not in GL(2,p), and therefore not in the corresponding
Cayley graph. We solve this problem by expressing a
singular matrix as a sum or difference of two
nonsingular matrices. More specifically, there are
five possible patterns of 2 2 singular matrices. They
are:

1 2

3 4

0 0 0 0
, , , ,

0 0 0 0

x xx y x x

x xx y y y

These singular 2x2 matrices can be expressed as the
sum or difference of two non-singular Zp matrices:

0 0 1 0 1 0
= if 1; or

1 0 1

0 1 0 1
 if 1, 1; or

1 1 0

1 0 1 0
(1) , if 1

1 2 0 1
{ }

y p
x y x y

y p x p
x y

p x y p

The matrices 0 0
, ,

0 0 0 0

x y x x

y y

can be similarly

expressed. The last pattern of singular matrices can
be expressed as:

1 2 21

3 4 34

00

00

x x xx

x x xx

The elements of any rows or columns in 1 2

3 4

x x

x x

could not be both zeroes.

Thus, all the singular matrices in Eq. (2) can be
represented as the sum of two no-singular matrices.
Eq. (2) will become multiple non-singular matrices
pair multiplication. For example:

0 1 1 0 1 1 1 0 2 0 1 0
0 0 0 0 0 1 0 1 0 1 0 11,1 1,1A B

Step 3: Multiply 2 2 mod p matrices via graph
routing in a Cayley Graph: In this step, we multiply
the non-singular sub-matrices in Eq. (2). These
multiplications are computed using an integer
representation of a Cayley graph constructed over the
GL(2,p) group of matrices [1-4]. For p=5, there are
480 number of nodes in the graph. These nodes are
labeled as node to node . Every node of the
graph corresponds to a 2 2 mod p non-singular
matrix. Multiplication of any two 2 2 mod p non-
singular matrices corresponds to routing between a
source and destination node of the graph, hence we
call this process the source-destination multiplication,
SDm. For example, node × is a source
destination multiplication, SDm. The mapping of
these matrices and the corresponding integer node
label in the graph is stored as Table 1. This table
consists of n = p×(p-1)×(p2-1) entries to index the n
vertices with the n matrices, where n is the order of
the matrix group.

Step 3.1: Transform 2 2 mod p non-singular
matrices into integers: Every non-singular matrix has
a corresponding integer node label which is stored in
Table 1. As in the example of

3,3 1,2A B in Eq. (2):

1 0 0 2
,

2 1 1 1
integer integer

matrix matrix
3,3 1,2A B

Thus,

Part I

Part II

the routing path of

the quotient matrix of

Integer Domainmatrix domain

matrix domain

matrix domain
p

3,3 1,2

3,3

3,3 1,2

1,2

A

A

B

B

A

B

 Eq (3)
In the above example, it is clear that the computation
of

3,3 1,2A B is divided into 2 parts. The computation
of these two parts is described in more details in
Steps 3.2 and Step3.3:

Step 3.2: Multiply source node with the routing path
of the destination node (Part I): Table 2 consists of
nD entries where D is the diameter of the graph. It
keeps track of the paths from node to all the other
nodes in the graph. A path is identified as a sequence
of generators as defined by Cayley graphs. More
detailed description of these generators can be found
in [1-4] and is not repeated here. By looking up Table
2, the path of the destination node can be identified.
In our example, the routing path of can be
identified from the 355th entry of Table 2, and in this

Proceedings of the 5th IEEE/ACIS International Conference on Computer and Information Science and 1st IEEE/ACIS
International Workshop on Component-Based Software Engineering, Software Architecture and Reuse (ICIS-COMSAR’06)
0-7695-2613-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 26, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

case, the sequence is , ,-1 -1
1 6 7G G G , where , ,-1 -1

1 6 7G G G are
generators.

Once we have identified the sequence of generators
as a path to the destination node, we need to multiply
the source node with this set of generators. This is the
core of the algorithm that transforms a vector
operation into a scalar operation. In the integer
domain of the Cayley graph, multiplying a source
node with generators corresponds to a series of
modular n additions. Each of the generators
corresponds to an integer and these integers are
stored in Table 3 [1-2]. The size of this table is of O()
where is the degree of the underlying graph. In this
example, =14.

Since the underlying Cayley graph is constructed
over a group of modular p matrices, namely GL(N,p),
the quotient of the multiplication product need to be
identified from a table. Table 4 of our database
stores the quotient matrices for the product of the
matrix with each of the generators. Its size is
therefore, n N2 where n is the number of nodes, is
the degree of the Cayley graph, and N is the
dimension of the base matrix.

In our example, the source node is , from
Table 3, generator G1 corresponds to integer 270.
From the 401th entry of Table 4, the quotient matrix is

0 0
1 0

. Hence
1G is

mod 480

0 0
401 270

5 0
p

1GQ

Using the method outlined here, the entire
computation of Part I can be summarized as follow:

mod 480

mod 480

Part I

Part I

Pa

Part I

401 270

0 0
5 0

0 0
5 0

0 0
191 237

5 1

rt I

Part I

Part I

5

0 0
5

p

p

1

-1
6

-1 -1
1 6 7

-1 -1
G 6 7

-1 -1
6 7

-1 -1
6 7

-1
7G

G G G

Q G G

G G

G G

Q G

2
,mod 480 mod 480

2

1 2 0 0
15 1 1 5 15

0 0
287 172 428 3

30 55

0 0 0 1 0 0
3

P

0 55 0 1 1

art I

Part I
3

p p

p p p

p p p

-1 -1 -1
7 7 7

-1 -1
7 7

G G G

G G

Q Q

0 0 0 25 20 15 0 0 0 2 20 42
30 55 0 25 10 0 5 15 1 0 46 9

Part
5

I

Step 3.3: Fetch the quotient matrix of the destination
node (Part II): Table 5 is used to store the quotient
matrix of the product of the set of generator matrices

from node to each node in the graph. Its entries are
therefore, n, where n is the number of nodes. The
quotient matrix of the destination node is retrieved
from the entry of its node number in Table 5. If
entries in the quotient matrix are greater than p, we
have to repeat step 2 to factor the matrix into entries
mod p. In our example, the equation of Part II
becomes:

2

4 8 0 1

Part

4 3
Part II

1 2 0 0 1 2

0 1 4 3 20 40
0 2 9 8

 II
45 90

p p p

p p

Step 3.4: Sum up Part I and Part II: Once the
answers of Part I and Part II are available, the answer
of two matrix multiplications is Part I subtracted by
Part II. In our example:

1 0 0 2 20 42 20 40 0 2
2 1 1 1 46 95 45 90 1 5

3,3 1,2A B

4. Performance of PGA
Assume we need to perform a matrix multiplication
for two M M grey level matrices. Using our PGA
algorithm, we need to choose a base matrix with
dimension N×N to form a Cayley graph.

Here are 3M
N

 numbers of base matrix

multiplications needed to compute. From our
example in Eq. (1), the dimension of the original
matrix is M=4, and the dimension of the base matrix
is N=2, the number of base matrix multiplication is

34
2

= 8. If we adopt larger number of N, there are

less numbers of base matrix multiplications. A small
change of N will, however, dramatically increase the
size of the number of nodes in the Cayley graph. Our
experiments primarily use N=2 as the base matrix
dimension.

For performance, we consider three parameters: time
complexity, space consumption, and time-processor
product to measure the performance of PGA
algorithm. In the following sections, we described the
time and space complexity of our PGA approach. We
also compare the time-processor product measure of
PGA with the latest parallel matrix multiplication
algorithms. We found that, indeed, our PGA
approach has better performance with the proper
setting of PGA coefficients.

4. 1 Time complexity measure
As indicated in Eq (3), in our PGA approach, the
computation of the multiplication of two N×N non-

Proceedings of the 5th IEEE/ACIS International Conference on Computer and Information Science and 1st IEEE/ACIS
International Workshop on Component-Based Software Engineering, Software Architecture and Reuse (ICIS-COMSAR’06)
0-7695-2613-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 26, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

singular matrices is divided into two parts. Part I is
concerned with the multiplication of the source node
with the generators of the graphs; and Part II is the
multiplication of the source node with the quotient of
the destination node. The following describes the
time complexity analysis for Part I and Part II.

4.1.1 Matrix multiplication between sources nodes
and generators (Part I)
The routing sequence from the identity matrix to the
multiplier matrix is actually the combination of
generators. That’s why this part can be regarded as
multiplication with generators as multipliers. Once
the dimension and modulus p are set, the length of
the routing sequence for each node is controlled by
the degree of the graph. In general, the larger degree
gives the smaller path length, but their relationship is
non-linear.

Now, let’s take a closer look at the process of
multiplication with generators as multipliers. The
amounts of processes needed depend on the number
of generators in the routing sequence. Each process
contains one addition for a multiplicand node plus
GCR constant, and N2 additions for the quotients. For
our experiments, it is 22=4 additions here. If the
quotient is singular or has entries greater than
modulus p, there are extra expanded terms for the
next multiplication process. For example, if singular
quotient is encountered, there are two more additions
for multiplicand nodes plus GCR constants, and two
more N2 additions for quotients. Even though we
have these expanded and add-on terms, the
computing time of this part can still grow only with
the path lengths of the graph. Figure 1 illustrates the
relationship between the average number of additions
and average path lengths for different graphs. The
average number of additions is computed by
averaging the total number of additions for all
possible n2 multiplication pairs. As expected, the
average number of additions is proportional to the
average path length.

Figure 1 contains four different Cayley graphs with p
ranges from 5 to 13. Each point in the graph
corresponding to a particular value of p with a
specific degree as indicated on the graph. From the
graph, we observe that the average number of
additions is linear with the average path length, i.e.,
average number of addition is of O(P), where P is the
average path length.

4.1.2 Matrix Multiplication between source node and
quotient of destination node (Part II)

2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3

Average Path Lengths (P)

3

4

5

6

7

8

9

10

11

12

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
A

d
d

it
io

n
s

p=5, n=480
p=7, n=2,016
p=11, n=13,200
p=13, n=26,208 Degree=8

Degree=16

Degree=16

Degree=8

Degree=8
Degree=14

Degree=22

Degree=22

Degree=38

Figure 1: Time complexity of PGA has O(P) relation.

In this part, the computation is divided into several
source-destination pairs. If the computation is
achieved in serial, the time complexity should be the
product of the number of SDm pairs with the average
path length of the graph. If the computation is
achieved in parallel, the number of processors needed
corresponds to the number of source-destination pairs.
The number of source-destination pairs is affected by
the size of the graph. In general, a large network
requires the graph having a larger degree so that the
average path length is small which corresponds to a
smaller quotient in Table 5. Such smaller quotients in
general guarantees a smaller number of source-
destination pairs. In our experiments by computing
all possible n2 multiplication pairs, we have the
following results: for p=13, NSDm=4.6 at =32;
NSDm=6.3 at =34; NSDm=3.9 at =36; NSDm=3.5 at
=38; where NSDm is the number of SDm pairs, and

is the degree of the graph.

4.2 Space consumption measure

As described in Section 3, there are five tables. As a
summary, these five tables are:
Table 1: This table of size nN2 consists of n entries to
pair the n nodes with the n matrices.
Table 2: This table consists of nD entries where D is
the diameter of the graph to keep track of the paths
from node 0 to all the other nodes in the graph.
Table 3: This table stores GCR constants with size q .
Table 4: This table of size n N2 is used to store the
quotient matrices for the product of the
matrix corresponding to each node with each of the
generators.
Table 5: This table of size nN2 is used to store the
quotient matrix of the product of generator matrices
from node to each node in the graph.

The total size of these tables is, therefore,

Proceedings of the 5th IEEE/ACIS International Conference on Computer and Information Science and 1st IEEE/ACIS
International Workshop on Component-Based Software Engineering, Software Architecture and Reuse (ICIS-COMSAR’06)
0-7695-2613-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 26, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

2Tables Sizes = 2n N D q

Where n is the number of nodes in the graph, N is the
dimension of the matrix, is the degree of the graph,
D is the diameter of the graph, and q is the class of
the graph.

The following diagram illustrates the space
consumption versus the number of nodes in the graph
with various degrees. As expected, the space
requirement grows linearly with the size of the
graphs.

0 100000 200000 300000 400000 500000 600000 700000

Number of Nodes (n)

M

107.0

107.3

107.5

107.6

107.7

107.8

107.8

107.9

108.0

108.0

T
a
b

le
 S

iz
e

s

Degree=6
Degree=8
Degree=10
Degree=12
Degree=14
Degree=16

0

Figure 2: The table sizes versus the number of nodes in the
graph with various degrees.

4.3 Time-processor product

For parallel implementation, time-processor product
is a common performance measure. From the
beginning of the section, we know there are 3M

N
numbers of base matrix multiplications, and in
Section 4.1.2, we further confirm that each base
matrix multiplication needs the number of SDms.
Nevertheless, there is still another issue we need take
into consideration, and that is matrix entries greater
than modulus p. Since, it is a matrix with grey level
entries, the power of modulus p will determine the
number of expanded terms. The number of expanded
terms is equal to the smallest integer e such that pe >
128. For instance, for p=11, e=3, and for p=13, e=2.
To combine these three factors, the processor units
are required for parallel computation as the following
equation:

3
2Number of Processor SDm

M e NN
where NSDm is the number of source-destination
multiplication.

To combine the time and processor factors, the time-
processor product for the PGA algorithm will be:

3
2

SDm
MP e N N

The comparison between PGA and the existing
algorithms
In comparing the performance of PGA with other
existing algorithms, we consider the time-processor
product for PGA and other algorithms. Existing serial
or parallel matrix multiplication is generally
measured only with the number of multiplication, but
our PGA algorithm does not involve multiplication
but only contains integer additions. Since we
consider the grey level matrix, we can assume seven
scalar additions is equal to one scalar multiplication.
Therefore, the time complexity of our algorithm can
be O(P/7). We computed the time-processor product
for four sets of PGA graphs: N=2, p=13, and =32 to
38, These computations involves O(P/7) where
P=3.38, 3.25, 3.18 and 3.06 respectively for =32 to
38. They are implemented on 37.8M , 310.1M ,

36.2M , 35.4M processors, respectively. As expected,
the time-processor product for our PGA algorithm
grows with matrix dimension. Figure 3 shows the
comparison between our PGA algorithm and
Cannon’s algorithm. The plot shows the time-
processor product for our PGA algorithm for p=13,
=34 and 38. Those for =32 and =38 are similar to
=34 and =38 respectively, and are therefore

omitted in the figure. As described in Section 2,
Cannon’s algorithm implements on M2 processors
with O(M) time. The time-processor product is (M3).

101 1022 3 4 5 6 7 8 9 2

Matrix Dimension (M)

103

104

105

106

9

2

3
4
5
6
8

2

3
4
5
6
8

2

3
4
5
6
8

2

3
4
5
6

T
im

e
-P

ro
c

e
s
s

o
r

P
ro

d
u

c
t

Cannon's algorithm
PGA with N=2, p=13, Degree=34
PGA with N=2, p=13, Degree=38
PGA with N=4, p=7 (Estimation)

Figure 3: The performance comparison of our PGA algorithms
v.s Cannon’s algorithm.

As shown in Figure 3, our PGA algorithm for p=13,
=38 outperforms Cannon’s method for any matrix
dimension, but not for =34. It tells the coefficient
setting of our PGA algorithm is crucial to govern the
performance for matrix multiplication. Hence, we
have an estimation result for N=4, p=7 on the figure
to show that the different setting can significantly

Proceedings of the 5th IEEE/ACIS International Conference on Computer and Information Science and 1st IEEE/ACIS
International Workshop on Component-Based Software Engineering, Software Architecture and Reuse (ICIS-COMSAR’06)
0-7695-2613-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 26, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

influence the performance. For example, for matrix
with dimension 27, the time-processor product for our
PGA for N=2, p=13, =38 is 220.6; for =34 is 221.5;
and for N=4, p=7 is 219.7 whereas that of Cannon is
221. Thus, our PGA algorithm can be tuned by
choosing different coefficients to tower over any
other existing algorithms.

5. Conclusion
In this paper, we reviewed our PGA matrix
multiplication algorithms and discuss its performance
in time complexity, space complexity, and the time-
processor product. We also compare the time-
processor product of our PGA algorithm with that of
Cannon’s algorithm. Indeed, our PGA algorithm
outperforms existing methods with the proper setting
of the PGA coefficients.

References
[1] K. Wendy Tang, A. Yavuz Oruç, “Programmable
Graph Architecture (PGAs) For Matrix Operations”,
2003 Conference on Information Science and
Systems, The John Hopkins University, March 2003.
[2] M. Peng, K. Wendy Tang and A. Yavuz Oruc,
“Matrix Multiplication via Programmable Graph
Architectures”, Proceedings of the 16th IASTED
International Conference on Parallel and Distributed
Computing and Systems, MIT Cambridge, MA,
November 9-11, 2004.
[3] B.W. Arden and K.W. Tang, ``Representations
and Routing of Cayley Graphs", IEEE Transactions
on Communications, 39(11):1533-1537, November,
1991.
[4] K.W. Tang, Dense and Symmetric
Interconnection Networks, Ph.D. Dissertation,
Department of Electrical and Computer Engineering,
1991, University of Rochester, Rochester, NY.
[5] D.V. Chudnovsky and G.V. Chudnovsky and
M.M. Denneau, Regular Graphs with Small Diameter
as Models for Interconnection Networks, IBM
Research Division, RC 13484(60281), February,
1988.
[6] A. Yavuz Oruç, Vinod Peris, and M. Y. Oruç,
System and method for performing fast algebraic
operations on a permutation network, US Patent No.
5,270,956, Dec. 14, 1993.
[7] A. Yavuz Oruç, Vinod Peris, and M. Yaman Oruç,
Parallel Modular Arithmetic on a Permutation
Network, Proc. of 1991 Int. Conference on Parallel
Processing, August, 1991, Vol 1., pp. 706-707.
[8] M. B. Lin and A. Yavuz Oruç, Constant-time
Inner Product and Matrix Computations on
Permutation Network Processors, IEEE Transactions
on Computers, 1994, pp. 1429-1434.

[9] Liang Fang and A. Yavuz Oruç, Matrix
Computations on Permutation Networks. Proc. of 29th

Annual Conference on Information Sciences and
Systems, Mar 1995, pp. 804-809.
[10] J. J. Rotman, The Theory of Groups. 2nd Ed.
Allyn and Bacon, Pub. 1Boston, 1973, p 156.
[11] S. Huss-Lederman, E. M. Jacobson, J. R.
Johnson, A. Tsao, T. Turnbull, “Implementation of
Strassen’s Algorithm for Matrix Multiplication”,
IEEE Transactions on Computers, 1996.
[12] K. Li, Y. Pan, S. Q. Zheng, “Fast and Processor
Efficient Parallel Matrix Multiplication Algorithms
on a Linear Array with a Reconfigurable Pipelined
Bus System”, IEEE Transactions on Parallel and
Distributed Systems, Vol 9. No. 8, 1998.
[13] W. Y. Tu, H. K. Chau, Muling Peng, Sangjin
Hong, Alex Doboli, K.Wendy Tang, A. Yavuz Oruç,
“Design Study of (2x2) Processing Core Architecture
for Cayley Graph Matrix Multiplcations”, 2004.
[14] Volker Strassen, “Gaussian elimination is not
optimal". Numerische Mathematik, 14(3):354-356,
1969.
[15] D. Coppersmith and S. Winograd, “Matrix
Multiplication via Arithmetic Processing”, In
Proceeding of the Nineteenth Annual ACM
Symposium on Theory of Computing, Page 1-6, 1987.
[16] L.E. Cannon, “A Cellular Computer to
Implement the Kalman Filter Algorithm,” PhD thesis,
Montana State Univ., 1969.
[17] J. Choi, J. J. Dongarra, and D. W. Walker,
PUMMA: Parallel Universal Matrix Multiplication
Algorithms, Concurrency: Practice and Experience,
Vol. 6, No. 7, pages 543-570, October 1994.
[18] Robert van de Geijn and Jerrell Watts,
``SUMMA: Scalable Universal Matrix Multiplication
Algorithm,'' Department of Computer Sciences, The
Unversity of Texas, TR-95-13, April 1995. Also:
LAPACK Working Note #96 , May 1995.
[19] Hyuk-Jae Lee, J.A.B. Fortes, "Toward Data
Distribution Independent Parallel Matrix
Multiplication", Proc. Int. Parallel Processing Sym.,
p436 --440, Apr 1995.
[20] M Krishnan, J Nieplocha, “SRUMMA: A Matrix
Multiplication Algorithm Suitable for Clusters and
Scalable Shared Memory Systems”, IEEE Parallel
and Distributed Processing Symposium, 2004.

Proceedings of the 5th IEEE/ACIS International Conference on Computer and Information Science and 1st IEEE/ACIS
International Workshop on Component-Based Software Engineering, Software Architecture and Reuse (ICIS-COMSAR’06)
0-7695-2613-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 26, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

