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Abstract-In the search for regular, undirected dense graphs 
for interconnection networks, Chudnovsky et al. found certain 
Cayley graphs that are the densest degree-four graphs known 
for an interesting range of diameters [l]. However, the group 
theoretic representation of Cayley graphs makes the development 
of effective routing algorithms difficult. This paper shows that all 
finite Cayley graphs can be represented by generalized chordal 
rings (GCR) and provides a sufficient condition for Cayley graphs 
to have chordal ring (CR) representations. Once a Cayley graph 
is represented in the modular integer domain cif GCR or CR, 
existing routing algorithms can be applied. These include a 
progressive algorithm that finds a shortest path in incremental 
steps and a recursive algorithm that finds the entire path in a 
single computation. 

I. INTRODUCTION 

YMMETRIC, regular, undirected graphs are useful mod- S els for the interconnection of multicomputer systems. 
Dense graphs of this sort are particularly attractive. Here 
density means that there are a large number of vertices for 
a given degree and graph diameter. The degree of a regular 
graph is the uniform number of incident edges at each vertex 
and the diameter is the maximum of the minimum number 
of edges between any pair of vertices. A degree of four 
is emphasized in this paper because of its importance for 
practical interconnection. 

Cayley graphs, based on group theoretic constructions, are 
in this category of graphs. Of special interest are Cayley graphs 
based on subgroups of the general linear 2 x 2 matrices where 
the group operation is modular matrix multiplication. These 
matrices are not convenient as labels for a computer address 
space. Hence it is useful to map these matrix elements into in- 
tegers, preserving the inherent symmetry or vertex-transitivity, 
to the extent possible. This paper shows that all Cayley 
graphs can be represented as generalized chordal rings (GCR), 
which have integer labels and are symmetrical. Thus these 
representations are candidates for practical implementation, 
including the development of routing algorithms. 

Paper approved by the Editor for Network Management of the IEEE Com- 
munications Society. Manuscript received August 22, 1989; revised May 3, 
1990. This paper was presented at the 1990 ACM 18th Annual Computer 
Science Conference, Washington, DC, February 20-22, 1990. 

B. W. Arden is with the Department of Electrical Engineering, University 
of Kochester, Rochester, NY. 14627. 

K. W. Tang is with the Department of Electrical Engineering, SUNY at 
Stony Brook, Stony Brook, NY 11794. 

IEEE Log Number 9102281. 

11. CAYLEY GRAPHS 

The construction of Cayley graphs is described by finite 
(algebraic) group theory. Recall that a group (V,")  consists 
of a set V which is closed under inversion and a single law 
of composition *, also known as group multiplication. There 
also exists an identity element I E V .  A group is finite if there 
is a finite number of elements in V .  

Definition I :  A graph C = (V,  G) is a Cayley graph 
with vertex set V if two vertices wl, wp E V are adjacent 

v1 = w2 * g for some g E G where (V,") is a finite group 
and G c V \ { I } .  G is called the generator set of the graph. 

Note that the identity element I is excluded from G. This 
prevents the graph from having self-loops. A Cayley graph 
is undirected if G is closed under inversion, and the graph's 
degree is IGI. In this paper, we are interested in undirected, 
degree-4 Cayley graphs. In other words, we are dealing with 
Cayley graphs whose generator set consists of two group 
elements and their inverses. 

The definition of Cayley graphs requires vertices to be 
elements of a group but does not specify a particular group. 
The flexibility of choosing different groups in the construction 
allows Cayley graphs to be defined in different domains. 
Carlsson [ 2 ] ,  Akers [3],  Margulis [4], and Chudnovsky [l] 
have defined Cayley graphs in various domains. Despite the 
wide range of possible Cayley graphs, all Cayley graphs share 
the following property: 

Theorem 1: All Cayley graphs are vertex-transitive. 
The proof of the theorem can be found in [5] and is not 

An immediate consequence of this theorem is stated in the 

Corollary I :  Let C = (V,  G) be a Cayley graph as defined; 

a, b E V are adjacent e a', b' are adjacent and a', b' E V 

repeated here. 

following corollary: 

where a' = T * a and b' = T * b for any T E V .  
Proof: 

a, b are adjacent e b = a * g for some g E G 
b' = T * b = T * a * g = a' * g e a', b' are adjacent; 

a' and b' are in V because V is closed under *. cl 
We refer to this property as the transformproperty of Cayley 

graphs and the element T as the transform element. It is this 
transform property that allows Cayley graphs in the group 
domain to be transformed to the modular integer domain of 
GCR, as discussed in Section 111. 
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TABLE I 
SIZE OF  DEGREE^ GRAPHS FOR CERTAIN DIAMETERS 

Diameter Moore Bound Known Graphs (1987) New Cayley Graphs 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

53 
161 
485 
1457 
4373 
13121 
39365 
118 097 
354 293 

1 062 881 
3 118645 

40 
95 
364 
73 1 
856 
1872 
4352 
13056 - 
- 
- 

_____ 

36 
90 

320 
730 
1081 
2943 
7439 
15657 
38764 
82901 
140607 

Among the various Cayley graphs, we have a special interest 
in Cayley graphs constructed by Margulis and Chudnovsky. In 
these two cases, subgroups of the general linear 2 x 2 matrices 
GL2(Zp) and modular matrix multiplication are chosen and 
the vertex set and the group operation, respectively. The 
vertices of these graphs are 2 x 2 matrices whose elements 
are in 2, (2, is the ring of integers {0,1, . . . , p - 1) and 
p is prime). The group operation is the modular prime p 
matrix multiplication and the generators are two matrices and 
their inverses. Cayley graphs constructed by Chudnovsky are 
among the densest. That is, the number of vertices for a 
degree-4 graph of a given diameter is larger than previously 
known graphs of the same degree and diameter (Table I). 
The generally unrealizable Moore bound shown is obtained 
by considering four, degree-3 trees joined at a common root 
vertex. In the following subsections, we discuss the Cayley 
graphs of these two subgroups separately. 

A.  Cayley Graph over SL2(Z, )  

C over the group of simple linear 2 x 2 matrices, SL2(Zp): 
Margulis [4] gave an explicit construction of Cayley graphs 

C = ( V , G )  

where V = SL2(Zp) and G = { A , B , A - ' , B - l }  with 
A = (h 4 )  and B = ( g  y ) .  

The group of simple linear 2 x 2 matrices SL2(ZP), con- 
sists of unimodular (mod p )  2 x 2 matrices whose elements 
are in 2,. Note that a matrix is unimodular (mod p )  if its 
determinant is one (mod p).  A Cayley graph constructed over 
this group has n = [VI = p ( p 2  - 1) elements because there 
are p 2 ( p  - 1) matrices (: i )  with a # 0 and p ( p  - 1) 
matrices with a = 0. 

One of the features of these Cayley graphs is the regularity 
of their cycle structure. Since Ap = BP = I ,  all cycles 
generated solely by A or B have length p .  As examples, for 
p = 3, there are 24 vertices and the diameter is 4; and for 
p = 5, there are 120 vertices and the diameter is 6. These 
graphs are not the densest for their degree and diameter. 
However, they stimulate investigation of Cayley graphs over 
subgroups of the general 2 x 2 matrices. 

B. Cayley Graphs over BL2(2,)  
Chudnovsky et al. constructed some of the densest (degree- 

4, diameter-D) graphs as Cayley graphs over the Borel sub- 
group, denoted as BL2(2,), of the group of general linear 
2 x 2 matrices. In this section, we provide the definition of 

Definition 2: If V is a Borel subgroup of GLz(2,) with a 
BL2 ( 2,). 

parameter a ,  a E Z,\{O, l}, then 

where p is prime and k is the smallest positive integer such 
that uk = 1 (modp). 

The vertices of Borel Cayley graphs are linear 2 x 2 matri- 
ces that satisfy the definition of a Borel subgroup, and modular 
matrix multiplication is chosen as the group operation *. Note 
that n = [VI = p x k .  By choosing specific generators, 
Chudnovsky et al. [ 11 showed that Cayley graphs constructed 
over BL2(Z,) are the densest, nonrandom degree-4 graphs 
currently known for diameter 7 to 13 (Table I). 

Interestingly, the densest degree-4 graphs have been shown 
by Bollobas [6] to have a random structure and to have asymp- 
totic diameter of log, n+log3 o.5(log3 n)  + 1. By comparison, 
all but one of Chudnovsky's degree-4 Cayley graphs have 
a diameter less than this bound [l]. Apparently the modu- 
lar arithmetic introduces a pseudo-random connectivity that 
contributes to the favorable diameters. Strictly random graphs 
are obviously not symmetric whereas Cayley graphs have 
the distinct advantages of explicit construction and vertex- 
transitive symmetry. These properties can lead to an efficient 
routing algorithm. 

111. REPRESENTATIONS 
In this section we recall the definition of GCR [7], which is 

defined in the modular integer domain. We prove that all finite 
Cayley graphs can be transformed into the integer domain of 
GCR. We also provide a sufficient condition for a general 
Cayley graph to be represented by a special kind of GCR, 
called a chordal ring (CR) [8]. 

A.  GCR Representations 

In section 2, we provided the definition of Cayley graphs 
and discussed the transform property. Such a transform prop- 
erty is analogous to the definition of a GCR [7] which is 
restated as follows: 

Definition 3: A graph R is a generalized chordal ring (GCR) 
if vertices of R can be labeled with integers mod n (n is the 
number of vertices), and there is a divisor q of n such that 
vertex i is connected to vertex j iff vertex i + q (mod n) is 
connected to vertex j + q (mod n). 

According to this definition, vertices of a GCR are numbered 
from 0 to n - 1 and are classified into q classes. The 
classification is based on modulo q arithmetic. In other words, 
two vertices having the same residue (mod q) are considered 
to be in the same class. The connection rules of a vertex 
can be defined according to its class. Each class has a set 
of connection rules or connection constants. In short, a GCR 
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can be characterized by its class structure and the modulo n 
addition that defines the connection rules for each class. 

In the following proposition, we prove that for all finite 
Cayley graphs there exists an isomorphic mapping of the 
vertices of a Cayley graph C from the group element domain 
to the GCR integer (mod n)  domain. The graph obtained after 
the mapping is thus a GCR representation of C in the modular 
integer domain. The GCR representation, with integer labels 
and modular connectivity rules, is not a Cayley graph because 
the group theoretic definition does not apply in this domain. 
But, importantly, the connectivity, and hence the diameter, of 
the Cayley graph is preserved. We state our proposition as 
follows: 

Proposition 1: For any Cayley graph C = (v ,G)  as de- 
fined, a generalized chordal ring (GCR) representation of C is 
always possible if V is a finite group. 

Proof: Since V is finite, any T in V satisfies T” = I 
and 71 = IVI = m,q for some integer q. This implies 
the elements of V can be partitioned into p classes: 
N(ao) ,  N(al) ,  . . . ,N(aq-l) ,  such that 

N(a0) = { ao, T * a,, . . . , T”-l * a,} 

N(a1) = {al ,T*al , . . . ,T”-l  * a,}  

N(a,-l) = {aq-l,T*aq-l,...,Tm-l*ap-l} . 
i.e., For any a E V 

a = T“ * a, for some s = 0,1 , .  . . , (m - 1) 
and i = 0, 1, . . . , ( q  - 1). 

Consider the following function f from the group domain to 
the integer domain: 

f : a - + i + s q .  

Note that, for s = 0 

a - + i  
+ T * a  + z + q .  

Hence the connection of a Cayley graph after transforming into 
a GCR is preserved under this mapping. Also the function f 
is one-to-one: 

For any two distinct a,  b E V a = T” * a,, b = TS‘ * a,/ for 
some s ,  s ’  = 0, . . . , (m  - 1) and a ,  i’ = 0 , .  . . , ( q  - 1). 

i.e., a -+ a + sq,  b -+ i’ + s‘q. 
a # b + s # s‘ or i # i‘ or both. 

* 2 + sq # i’ + s’q 
+ f is one-to-one. 0 

The facts that f is one-to-one and preserves the transform 
property imply that the graph obtained after the mapping is 
a GCR with divisor q. Hence we proved that GCR repre- 
sentations exist for all finite Cayley graphs and the divisor 
of the GCR depends on the choice of the transformation 
element T .  In the course of proving the proposition, we 
have essentially constructed an algorithm that finds a GCR 
representation of the graph. By definition, a GCR graph is 

Fig. 1. GCR representation of BLz(Z7).  

partially vertex-transitive among vertices of the same class 
because i connects to j implies i + q(mod n) connects to 
j + q(mod n). However it is unclear that the general vertex- 
transitive property of the original Cayley graph is readily 
expressed in GCR representations. We deal with this issue 
in a separate report. In [9], we formulate a framework for 
expressing a Cayley graph’s vertex-transitive property in the 
integer domain of a GCR. 

B. Example of GCR Representation 

In this section, we show an example of GCR representation 
from BL2 (2,). 

We consider the Cayley graphs over BL2(ZP) with a = 2 
a n d p  = 7. A = (’ 1 ) ,  B = (i t )  and their inverses are 
the generators. Note that is this case we have k = 3, p = 7, 
n = p x k = 21, and the diameter is 3. We choose T = (i i )  
with T7 = I to produce a GCR representation. The divisor 
q = 3. 

Let V = {0,1,. . . ,20}. For any i E V ,  if i mod 3 =: 

“0” : i is connected to i + 3, i - 3, i + 4, i - 10; mod n 
“1” : i is connected to i + 6, i - 6, i + 7, i - 4; mod n 
“2” : i is connected to i - 9, i + 9, i + 10, i - 7.mod 410) 

We show such a GCR representation of the graph in Fig. 1. 

C. CR Representations 

In Section 111-A, we have proved that all finite Cayley 
graphs possess GCR representations. It is tempting to think 
of the possibility of representing a Cayley graph in a special 
case of GCR. When the peripheral vertices are each connected 
to their nearest neighbor (i.e., each class has a +1 and a 
-1 connection to other vertices), we have a special case of 
GCR, called a chordal ring (CR) [8]. Clearly for a CR to 
exist the graph must have a Hamiltonian cycle. The following 
proposition provides a sufficient condition for representing a 
Cayley graph by a CR. 

Proposition 2: Let A, B be two distinct generators of a 
finite Cayley graph C. Assume A # B-l, An = I and m = 
n/q. If (AB)” = I or (A-lB)” = I then CR representa- 
tions with divisor q exist; and the transform element T = AB 
or A - ~ B .  
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Proof: AQ = I and n = mq implies that there are m 
cycles, each with q elements, generated solely by A. If all 
these m cycles are connected by another generator B, we have 
a Hamiltonian cycle. This is equivalent to either (AB)" = I 
or (A-lB)" = I .  To obtain the CR representation, we choose 
the transformation element T = (AB) or (A-'B),  such that 
T" = I .  This choice insures that all q elements in each of 
the m cycles are named consecutively and hence are a CR 
representation. 0 

IV. ROUTING 
In Section 111, we proved that all finite Cayley graphs have 

GCR representations and provided a sufficient condition for 
Cayley graphs to have CR representations. By transformation 
to a GCR or CR, the vertices of a Cayley graph are necessarily 
given integer labels and are hence ordered as integers modulo 
n. Furthermore, the "class-connection" rules of a GCR or 
CR provide concise formulae for describing connections in 
Cayley graphs. Such a description facilitates the construction 
of routing algorithms. In this section we summarize a progres- 
sive routing algorithm [lo] and reference a recursive routing 
algorithm [11]. We emphasize that the application of these 
algorithms for Cayley graphs is made possible because of the 
transformation to GCR or CR. 

In (101, Reed and Fujimoto suggested a routing algorithm 
based on table lookup procedures for irregular networks. The 
idea is to produce a routing table of size ( n  - 1) x 6 at each 
vertex (6 is the degree and n is the number of vertices). The 
table consists of (n  - 1) rows and there are 6 bits in each 
row, corresponding to the number of available links at each 
vertex. At vertex i, the 1-bit locations on row j of the table 
indicate the communication links that lead to shortest paths 
from vertices i to j. For example, if there are two shortest 
paths from vertex i to vertex j ,  and one corresponds to taking 
link 1 and the other corresponds to taking link 3, then at vertex 
i, row j of the routing table would have only the first and the 
third bit marked as 1. 

In essence, the algorithm assumes that an incoming mes- 
sage, whether originating at the vertex or in transit from 
another vertex, contains the address of its ultimate destination. 
When such a message with ultimate destination j arrives at 
vertex i, row j of the routing table will be used to route the 
message to an appropriate outgoing link leading to a shortest 
path between i and j. In other words, this table lookup scheme 
finds shortest path(s) between any two vertices and works for 
any network. Routing is achieved through a routing table, 
which identifies outgoing links for any incoming message 
according to its destination. The space complexity of the 
algorithm is of O(n2)  for the entire network because each 
vertex needs (n - 1) x S bits and there are n vertices in the 
network. Since the time complexity for a single table lookup 
scheme is O(1), it is O ( D )  overall, where D is the graph 
diameter. This algorithm is progressive in that an incremental 
path computation is done at each vertex. Since alternative 
shortest paths are included in the tables, the algorithm is useful 
for the avoidance of contention. However, in some instances 
it is desirable to determine an entire shortest path in one step. 

This would be true when computation at vertices is separated 
from the message-passing function or when the path is of 
intrinsic interest. 

There is a straight forward augmentation of the table look-up 
procedure to permit the determination of a complete, shortest 
path. Each vertex would contain a table of size nDrlog, 61 
where each entry specifies an entire shortest path to the desired 
destination. This requires more space than the progressive 
approach by roughly a factor of D. Whenever entire paths are 
generated at the source, the resultant algorithm is necessarily 
oblivious or insensitive to routing alternatives at intermediate 
vertices. 

The preceding schemes could be accomplished with any 
mapping of group elements into integers, but the symmetry 
of Cayley graphs suggests that it ought to be possible to 
determine complete paths through the repeated use of an 
identical, length (n  - 1) table stored at each vertex. However, 
in order to accomplish this, and thus achieve complexity 
measures of the same order as the progressive algorithm, the 
relationship between the integer vertex labels in the GCR 
representation must be carefully constructed. As it turns out, 
such a construction is always possible for Cayley graphs based 
on Borel subgroups [9]. This is fortuitous because instances 
of these graphs are among the densest known [1]. 

There is yet another algorithm for complete path determi- 
nation which leads to a space complexity of 0 (n2q log, D )  , 
where q is the number of classes [11]. This tree-matching7 re- 
cursive algorithm has a parallel time complexity of O(log, D) 
or a serial complexity of O ( D ) .  However, the algorithm does 
not necessarily produce a shortest path. Instead it generates a 
path whose length is bounded by 2'-' < path length 5 2", 
where the length of the shortest path S is similarly bounded, 
i.e., 2s-1 < s 5 2s. 

V. CONCLUSION 
In this paper we analyze a special class of interconnection 

networks, derived from group theoretic Cayley graphs. These 
regular, undirected graphs are vertex-transitive, or symmetric, 
and some examples are among the densest known. Due to their 
vertex-transitivity, any Cayley graph can be represented as a 
generalized chordal ring (GCR). The graph vertices can thus be 
labeled with integers (modulo n), a more tractable addressing 
scheme for computer application. 

An example Borel Cayley graph is used to illustrate the 
generation of GCR representations. Also a sufficient condition 
is given for the representation of a Cayley graph as an 
important special case of a GCR, namely a chordal ring (CR). 
Interestingly, this representation is always possible for Borel 
Cayley graphs [12]. 

With the integer (modulo n) labeling of GCR representa- 
tions, a straight forward, progressive routing algorithm based 
on table look-up is summarized. The algorithm has a time 
complexity of O ( D )  and a space complexity of O ( n 2 ) .  
This algorithm is readily extended to one for total path 
determination but in the general case the space complexity 
becomes 0 ( n2D) .  

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on March 12, 2009 at 18:12 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 39, NO. 11, NOVEMBER 1991 1537 

REFERENCES 

[ I ]  D. V. Chudnovsky, G. V. Chudnovsky, and M. M. Denneau, “Regular 
graphs with small diameter as models for interconnection networks,” 
Tech. Rep. RC 13484-60281, IBM Res. Division, Feb. 1988. 

[2] G. E. Carlsson, J. E. Cruthirds, and H. B. Sexton, “Interconnection 
networks based on a generalization of cube-connected cycles,” IEEE 
Trans. Compuf., vol. 34, pp. 769-772, Aug. 1985. 

[3] S.B. Akers and B. Krishnamurthy, “A group-theoretic model for 
symmetric interconnection networks,” IEEE Trans. Comput., vol. 38, 
pp. 555-565, Apr. 1989. 

[4] G. A. Margulis, “Explicit construction of graphs without short cycles 
and low density codes,” Combinaforica, vol. 2, no. 1, pp. 71-78, 1982. 

[SI N. Biggs, Algebric Graph Theory. London, England: Cambridge Uni- 
versity Press, 1974. 

[6] B. Bollobas and W. Fernandex De La Vega, “The diameter of random 
regular graphs,” Combinaforica 2, vol. 2, pp. 125-134, 1982. 

[7] J. C. Bermond, C. Delorme, and J. J Quisquater, “Tables of large graphs 
with given degree and diameter,” Inform. Processing Lett., vol. 15, 
no. 1, pp. 10-13, 1982. 

[8] B.W. Arden and H. Lee, ‘‘Analysis of chordal ring network,: IEEE 
Trans. Compuf., vol. 30, 291-295, Apr. 1981. 

[9] K.-M. W Tang and B. W. Arden, “Vertex-transitivity and routing for 
Cayley graphs in GCR representations,” Tech. Rep. EE-90-01, Dep. 
Elec. Eng. Univ. Rochester, Rochester, NY, Mar. 1990, to be published. 

[lo] D. A. Reed and R. M. Fujimoto, Multz-Computer Networks. Cambridge 
MA: MIT Press 1987. 

[ l l ]  B. W. Arden and K-M. W. Tang. “Routing for generalized chordal 
rings,” in Proc. ACM 18th Compuf. Sci. Conf, Washington, DC, 
Feb. 20-22 1990. 

[12] K.-M. W. Tang and B W. Arden, “Representation and routing of Bore1 
Cayley graphs,” Tech. Rep. EL-89-07, Dep. Elec. Eng., Univ. Rochester, 
Rochester, NY, 1989, to be published. 

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on March 12, 2009 at 18:12 from IEEE Xplore.  Restrictions apply.


