Department of Electrical Engineering
College of Engineering and Applied Sciences
State University of New York at Stony Brook

Stony Brook, New York 11794-2350

Diagonal and Toroidal Mesh Networks

by

K. Wendy Tang and Sanjay A. Padubidri

B

Technical Report[/# 625

e, -

May 1, 1992



Diagonal and Toroidal Mesh Networks
K. Wendy Tang and Sanjay A. Padubidri

Department of Electrical Engineering
SUNY at Stony Brook, Stony Brook, NY 11794-2350.

ABSTRACT

Diagonal and toroidal mesh are degree-4, point to point interconnection model suit-
able for connecting communication elements in parallel computers, particularly multi-
computers. The two networks have a similar structure. The toroidal mesh is popular
and well-studied whereas the diagonal mesh is relatively new. In this paper, we show
that the diagonal mesh has a smaller diameter and a larger bisection width. It also re-
tains advantages such as a simple, rectangular structure, wirability and scalability of the
toroidal mesh network. An optimal self-routing algorithm is developed for these networks.
Using this algorithm and the existing routing algorithm for the toroidal mesh, we sim-
ulated and compare the performance of these two networks with N = 35 x 71 = 2485,
N =49 x 99 = 4851, and N = 69 x 139 = 9591 nodes under a constant system with a
fized number of messages. Deflection routing is used to resolve conflicts. The effects of
various deflection criteria are also investigated. We show that the diagonal mesh outper-
forms the toroidal mesh in all cases, and thus provides an attractive alternative to the
toroidal mesh network.

Key Words: Massively Parallel Systems, Multicomputers, Interconnection Networks,
Diameter, Bisection Width, and Deflection Routing Algorithm.

1 Introduction

Efficient interconnection networks are critical to the performance of large communication
networks with hundreds and thousands of communicating elements [1, 2]. Applications
can be found in the design of massively parallel computers. Attributes of an interconnec-
tion network include the diameter, bisection width, symmetry, wirability, and scalability.

The diameter is the maximum of the shortest distance (hops) between any two nodes.
An interconnection graph with a small diameter implies potentially a small communica-
tion delay. The bisection width of a network is the minimum number of wires that have to
be removed to disconnect a network into two halves with identical (within one) numbers
of processors [3]. It is a critical factor in determining the performance of a network be-
cause in most scientific problems, the data contained and/or computed by one half of the
network are needed by the other half [3]. Therefore, it is advantageous to have networks
with large bisection width so that efficient communication between the two halves of
the network can be achieved. Furthermore, large bisection width also facilitates higher
degrees of fault tolerance.



A symmetric network is also called vertez-transitive. Mathematically, this implies
that for any two nodes a and b, there is an automorphism of the graph that maps a to b.
Informally, this means that the network “looks” the same from any node. This property
is useful for practical implementation of interconnection networks because every node in
a symmetric network is homogeneous and the same routing algorithm can be applied to
every node. A network is wirable implies reasonable and manageable patterns of wiring
could be devised [4]. Scalability refers to the increase in wire length with the number of
nodes. A scalable interconnection model has less than quadratic increase of wire length
when compared with the number of nodes [4].

Besides the topological properties of the network, routing is an important issue of in-
terconnection networks. The goal of routing is to send messages between any two nodes.
There are two sub-problems: path identification and network performance. Path identifi-
cation determines optimal (shortest) paths between any two nodes; network performance
is concerned with how a network handles traffic in the presence of contention.

For path identification, it is desirable to have a distributed, self-routing algorithm
that can i1dentify shortest paths based only on addresses of the source and destination.
Such a routing algorithm is associated with a particular topology. It provides fast,
decentralized routing decisions without any storage space requirement. For network per-
formance, computer simulations and probabilistic modeling are the tools. When two or
more incoming messages at a node have the same optimal outgoing link as identified
by the path-determination algorithm, conflicts are bound to occur. Priority measures
are needed to resolve these conflicts; and some messages are either routed non-optimally
or stored temporarily in buffers. While a path-determining algorithm is usually asso-
ciated with a particular topology, the same routing algorithm can be used to evaluate
performance of different networks.

Deflection routing is a popular algorithm to evaluate network performance. It is a
bufferless, dynamic routing algorithm proposed for multicomputer networks and local
and metropolitan area networks [5, 6, 7]. Basically, messages are sorted according to a
deflection criterion, such as age or path length. Those with higher priorities are routed
optimally while those with lower priorities are deflected to non-optimal links. There is
no buffer and hence no buffer management at a node. This algorithm is simple and
straightforward to implement.

Many interconnection topologies with different associated routing (path determina-
tion) algorithms have been proposed. Examples include the toroidal mesh, hypercube,
cube-connected cycles, Moebius, DeBruijn, and Cayley networks [2, 8, 9]. Among the
many existing topologies, toroidal mesh is a popular model. It is a degree-4, symmetric or
vertez-transitive, wirable, and scalable network with a simple, decentralized self-routing
algorithm. Recently, researchers have proposed the diagonal mesh as an attractive alter-
native to toroidal mesh networks [10, 11, 12]. Diagonal mesh is similar to the toroidal
mesh, except that nodes in the network are diagonally-connected (Figure 1). In other
words, it is also a degree-4, symmetric or vertez-transitive, wirable and scalable network.



Toroidal Mesh Diagonal Mesh

auEg
Same

n

Figure 1: N =5 x 5 Toroidal and Diagonal Mesh Networks.

In this paper, we compare the properties and performance of toroidal mesh with
the diagonal mesh networks. We first review the similarities of the two networks and
then develop an optimal routing algorithm and formulate the diameter of diagonal mesh
networks. We show that a diagonal mesh network has a better diameter than its toroidal
counterpart. For an N = n x k network (n, k are odd integers), the toroidal mesh has a
diameter D, = (2* + %—1), whereas the diameter for the diagonal mesh is D; = n — 1
for £ =n and D; = max {n, 5;—1} for £ > n. In other words, Dy = D; for k =n,n + 2.
But when £ is strictly greater than n + 2, the diagonal mesh has a smaller diameter.

The performance of the two networks in the presence of contention are then compared
through computer simulations. Because of its simplicity, we use deflection routing algo-
rithm for performance simulations. We first investigate the effects of different deflection
criteria. We conclude that the age (the period of time a message has been introduced
to the system) is the most efficient criterion. Under this criterion, an “older” message
has a higher priority than a “younger” one. Self-routing algorithms are used to identify
optimal outgoing links of each message for both networks. When conflicts occur, the
“younger” message will be deflected to an non-optimal link. We simulate the perfor-
mance of large diagonal and toroidal mesh network in a constant system with a fixed
number of messages. The average delay and throughput of the system are observed.

This paper is organized as follows: in section 2, we review the properties and routing
algorithms of toroidal mesh networks. Section 3 discusses the properties of diagonal mesh
networks. We develop an optimal routing algorithm, propose and prove the formulation
of the diameter for these networks. Network performance in the presence of contention
is discussed in section 4. This include a description on the deflection routing algorithm,
various constraints of the simulations, a summary of the simulation results, and interpre-
tation of these results. Finally in section 5 we compare and conclude the performance of
toroidal and diagonal mesh networks.



2 Toroidal Mesh

The toroidal mesh is a simple and popular topology. It consists of a 2-dimensional grid
of processing elements with wrap-around connections at edges. Consider an N =n X k

toroidal mesh, where n and k are odd integers, any node (z, y), z € {-52%,..., 51},
y € {—3;—1, . 1“;—1} Connections are defined as:
(z, y) ~ (2, <y+1>4), (2, <y—12>4),

(cz+1>kn ) (<2-1>K13)
where ~ signifies connections and

z, if |z| < &2,
<z>={ z—k ifz>5EL

z+k ifz< —kgl.

Figure 1 shows an N = 5x 5 toroidal mesh in cartesian coordinates. For these networks, a
self routing algorithm based on labels of the source and destination exists and is summa-
rized in Table 1. This routing algorithm is straightforward and its space complexity is of
O(1), independent of the size of the network. Besides a distributed routing scheme, other
merits of a toroidal mesh include a simple, symmetric, rectangular structure, wirability
and scalability. Note that increases in wire length of toroidal mesh is largely of O(XV),
except for wrap-around connections at edges.

However, drawbacks of the mesh are its large diameter and small bisection width. The
diameter of an N = n X k toroidal mesh is

Di=(—5—+—75) (1)

This relatively large diameter implies potentially long communication delay and thus
hampers network performance. The bisection bandwidth of an n X k (n,k are odd and
k > n) toroidal mesh is B; = 2n + 2. In the center column (z = 0), 2 x 2 + (n — 2)
wires connect the two halves because 2 wires from each of the 2 boundary nodes and 1
wire from the rest of the n — 2 nodes. At the edge (z = %2 or z = —%31), there are
n horizontal wires connecting the two halves. These wires are indicated as dotted lines

in Figure 1.

Parallel computers that use the mesh topology include ILLIAC IV, Massively Paral-
lel Processors (MPP), Distributed Array Processors (DAP), and Wire Routing Machine
(WRM) [13]. These parallel computers are used to solve many engineering and scien-
tific problems. Examples include sorting, matrix multiplication and inversion, Fourier
transformation, convolution, signal and image processing, speech recognition, and finite
element analysis [14]. Besides being used to interconnect processors in a parallel com-
puter, the toroidal mesh is also used in local and metropolitan area networks. The
resultant network is called the Manhattan Street Network [15]. Both the uni-directional
and bi-directional case have been studied [15, 16].
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Routing between (21, y1) and (z3, y2) in a toroidal mesh network
with N = n X k nodes where n and k are odd integers.
Step 1: Evaluate z =< 23 — 21 >k, Yy =< Y2 — Y1 >n, Where

z, if |z| < 21,
|z| >

< &= 2—n ilz>%;
z+n if$<—-"2;1.

Step 2: Determine optimal directions

gl > 0, take the X direction; y > 0, take the Y direction;
rz <0, takethe —X direction; y <0, takethe —Y direction.

Distance between (z1, y1) and (2, y2) is |3 + [%].
Table 1: A Routing Algorithm for Toroidal Mesh Networks.

3 Diagonal (Toroidal) Mesh

Diagonal mesh networks are proposed by Arden [10]. It is similar to the toroidal case ex-
cept that nodes have diagonal instead of horizontal and vertical connections. Preliminary
simulations for a few specific cases have been studied by Arden and Li [11]. However,
routing was accomplished by table look-up schemes. In this section, we first review the
definition of diagonal mesh networks in section 3.1. A self-routing scheme based only on
the addresses of source and destination nodes is then developed in section 3.2. Section 3.3
provides the formulation and proof of the diameter of diagonal mesh networks.

3.1 Definition

Diagonal mesh networks are similar to the toroidal case except that nodes have diagonal
instead of horizontal and vertical connections. We consider networks with N = n x k
nodes, where n and k are odd integers. Furthermore, without loss of generality, assume
k > n. Figure 1 shows an N = 5 x 5 diagonal mesh with cartesian node labels. For any

node (z, y), z € {—k%,...,ﬁ;—l}, y € {—27,...,%1}. Connections are defined as:
(KTz+1> <y+1>,), (Kz+1> <y—1>,),
(xa y)w (< 1
T — >k,<y+l>n), (<x_l>ka<y_]->ﬂ)a

where ~ signifies connections and
z,  if |z] < 25
<T>,=4 z—n, ifz>2E (2)

z+n, ifzr<-231.

As in the toroidal case, modular wrap-around connections exist at edges. For example,
node (2,2) connects to nodes (—2,-2), (=2,1), (1,—2) and (1,1). Strictly speaking,
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Figure 2: Node Label Transformation Between Coordinates.

diagonal mesh is also toroidal, but for simplicity, we use the name diagonal mesh to refer
to these networks. In this paper, we consider both n and %k are odd numbers. If n and
k are both even integers, the graph will have two disconnected halves, the white and
shaded nodes in Figure 1.

The bisection bandwidth of an n x k (n,k are odd and k£ > n) diagonal mesh is
By = 4n because 2n wires at the center (z = 0) and 2n wires at the edge (z = “%1 or

= u%) need to be removed to disconnect the graph into two equal halves (within
one node). In Figure 1 we identify these wires by dotted lines. Recall from Section 2
that the bisection width of a toroidal mesh is B; = 2n + 2. In other words, an n x k
diagonal mesh with n,k odd and k£ > n always has a larger bisection width than its

toroidal counterpart.

3.2 Routing

To establish a label-determined, self-routing algorithm, we introduce a new coordinate
system X'-Y’ by transforming the original coordinates X-Y through an anticlockwise
rotation of 45° and scaling the axes by v/2. In essence, this new coordinate frame corre-
sponds to the diagonal connections of the network. Transformation between coordinates
can be formulated mathematically.

In Figure 2, a coordinate frame X-Y is rotated anticlockwise by an angle ¢ to form
a new frame X'-Y’. Given a point (z,y) in the X-Y frame,

2 =L coin
y = Lsina,

(3)



where L and a are the length and angle associated with the point (see Figure 2). The
coordinates of this point in the X’-Y’ frame are:

' = Lcos(a— @)
= Lcosacosd+ Lsinasing
=zcosp+ysing

y' = Lsin(a — @)
= Lsinacos ¢ — Lcosasin ¢
= —zsind+ycoso

In this case, ¢ = 45° and the X,Y axes need to be scaled by V2. In other words, the
resultant transformation is:

z' =2 (zcos45° + ysin 45°)
=;1:+y

y' = /2 (—zsin45° + y cos 45°)
=—z+y

(5)

That is, given a point (z,y) in the cartesian frame, its node label in the new coordinate
system is (z',y’), where
!

r =zr+y,

!

y =-z+y. (6)

We call this node label transformation frame transformation and is summarized as follows:

frame ! y

transformation ——
(z,y) — (z+y,—z+y) (7)

The node labels of the 5 x5 diagonal mesh after this transformation are shown in Figure 3.
Diagonal mesh networks are symmetric or vertez-transitive in graph terminology [17]. Be-
cause of this symmetry, routing between any two nodes (z1,y;) and (z, y2) is tantamount
to routing between (0,0) and (< z2 — 21 >k, < Y2 — Y1 >n), Where < z > is defined in
Equation 2. Therefore, it suffices to establish a routing algorithm between node (0,0)
and all other nodes in the graph. In this section, we develop an optimal routing algorithm
between (0,0) and any other node (z’,y’) in the X'-Y' frame. The algorithm is optimal
because all directions (£ X', £Y”) contributing to shortest paths from (0,0) to (z’,y’) are
identified. We first consider (i) routing between (0,0) and even nodes (those with even

z',y’ values); and then (ii) routing between (0,0) and odd nodes (those with odd z’,y’
values).

When the graph is represented in the new X’-Y” coordinate system, routing between

node (0,0) and the “even” nodes is similar to the toroidal case. We summarize the
algorithm as follows:



Figure 3: An N =5 x 5 Diagonal Mesh Network in X'-Y' Coordinates.

Proposition 1 A routing algorithm between (0,0) and (z’,y’), where 2’ and y’ are even.

It z' >0, take the X’ direction,
=0 take the — X’ direction;

(8)

.t y' >0, take the Y’ direction,
y' <0, take the —Y" direction,

and the distance (number of hops) between (0,0) and (2, y’) is || + |3§1

Proof: In the X'-Y’ frame, node (0,0) connects to (2,0), (—2,0), (0,2), and (0,—2).
Therefore, shortest paths between (0,0) and even nodes (z',y’) correspond to those be-

tween (0,0) and (%, %) in a toroidal mesh. m]

As an example, consider routing between (0,0) and (2, —2) in the X’-Y” frame. Since
z'=2>0and y = -2 < 0, both X’ and —Y"’ directions contribute to optimal paths
with distance |%| + | 32| = 2.

However, routing between (0,0) and the “odd” nodes (those with odd z’,y’ values)
are not as simple. Wrap-around connections need to be considered. Due to modular
wrap-around connections at edges of the network, a node (z,y) has four other equivalent
node labels in the X-Y frame:

~ G = (xry_n): c2 = (:E:y'i'n)a
T,y) = 9
(<, 9) {(33 = (z—k,y), ¢ = (z+ky). - 9
From Equation 7, the node labels of cy,...,cs in the X’-Y’ frame are:
zl’ yl Ii’ yl
; o, o N, e, e,
G = (x+y_n’1 _$+y_n)7 Cr:} — ($+y—ka _$+y+k): (10)
z’ y' z' y'
——, pr— — —_— e e,
¢, = (x+y+n,—z+y+n), ¢, = (z+y+k, —z+y—k).



Since z’,y’,n and k are odd numbers, c},...,c; are all even nodes (their z’, y’ values
are both even), which implies the routing algorithm (Proposition 1) established for even
nodes applies. However, some of the four labels may not correspond to shortest paths
between (0,0) and (z,y). From Proposition 1, the distance between (0,0) and c},...,c,
are:

i = s{l&=nl+ly-nl}, d = F{l&'~kl+|y+kl},
dy = s{l'+nl+ly+nrl}, d = F{l'+E +]y -k},

where 2’ = z+y and y’ = —z+y. This implies that node (z, y) can be reached at distances
dy, dy, d; or d from node (0,0). To establish an optimal routing algorithm between (0, 0)
and (z,y), we need to identify ¢; (: = 1,...,4) such that the corresponding distance

(11)

d; = dppin = min {d}, d}, s, d}. (12)
In the following propositions and corollaries, we establish a simpler expression for d;, .. ., d;

and identify d; = d,,;, for different z, y values.

Proposition 2 Let di,...,d, be defined as in Equation 11,

dy = max{|z|, n —y}, dy=max{ly|, k—z}=k—z,
dy = max{|z|, n+y}, dy=max{ly|, k+2z}=k+z

Proof: From Equation 11,

2dy = |z+y—n|+|-z+y—n|
= le—(n=y)|+]z+(n-y)]
_ {le—(n—y)+!xl+(n—y), if |[z] >n—y;
—lzl+(r—y)+lz|+(n—y). iflz|<n-y;

_ ] 2=, if 2] 2n—y;
Tl 2ln—-y), iflz|<n-—y.

Hence d; = max {|z|, (n —y)}. Similarly,
dy = max{|z|, n+y};
dy = max{|y|, k —z };
dy = max{|y|, k+z }.

Since € {—%31,... &1} y ¢ {-231,...,%1}, and k > 1,

r<kf2 = k—=z>|yl,
>—-kf2 = k+z>|y|

Hence
dy=k—z and d,=k+uz. 0



Figure 4: |z| + |y] < n.

Corollary 1 Let d!,...,d, be defined as in Equation 11 and d,,;, as in Equation 12.
For |z| <,

if y =0, & <d;

ify=0, df =d;;

ify <0, d,<d.

Proof: From Proposition 2,

If y>0
dy = max(|z|, n - [y])
dy = max(|z|, n + |y|)

=n+y| because |z| < n
= dy>d)
dy = |z| and d} = |z]
= dy =d,
If y>0

dy = max(|z|,n — [y|)
dy = max(|z[,n + |y|)
=n+|y| because |z| < n
= dh € d} m]

10



Proposition 3 Let d;,...,d, be defined as in Equation 11 and dmin as in Equation 12.

For |z| < n;,
it (lzl+ |yl <n) and (|| - |y| > k —n),
B _Jdy ifz>0
biambeiol=) W s 20

d #g=0
else  dmin = max(|z|, n —|y|) = { di ify <0

Proof: From Proposition 2 and Corollary 1,

min(dy,dy) = max(|z|, n - |y[); min(dy, dy) = k—|z[;
B dy, ify>0; B dy, ifz2>0;
T 4y, ify <0 -l Hz <0,
Also,
2| > n—y] k
= min(d}, d}) = |z| < k — |z| = min(d3, d}) because |z| < 51
= s = min(d); &)
(lzl <n—lyl) and (n = [y| > k — |z])
= min(d},d}) =n — |y| > k — |z| = min(d}, d})
= s = moin(dy; d})
(lel < .~ [y]) and (n — |y] < k — |2])
= min(d},d) = n — ly| < k — || = min(dj, di)
= i, =man(ddh)
Hence

it (ol +lyl < n) and (n = Iyl > k — J2])
dmin = min(dy, d})
else dpin = min(dy, d;). O

Proposition 4

(lz] + 1yl <n) & (lz|=ly|>k—n)
= k < 2n

Proof: The shaded regions in Figures 4 and 5 show the values of z and y satisfying
(lz] + ly| < n) and (|z| — |y| > k& — n) respectively. If z and y satisfy both regions, the

shaded regions must overlap; i.e.,

k—n < n
— k < 2n. O

From Propositions 3 and 4, we have two useful corollaries:

11



Iyl = kel + k-n

Figure 5: |z| — |y| < k —n.

Corollary 2 Let di,...,d} be as defined in Equation 11 and dp.;, as in Equation 12.

If (k>2n) & (lz|<n)
dmin = min(d], d})
d;: if y > 0;
& Hy=0

Corollary 3 Let di,...,d, be defined as in Equation 11 and d,.;, as in Equation 12.
For n <k < 2n and |z| < n,

if  (lz]+ |yl <n)and (|z] = |y| > k —n),
B [y, ifz>0
dm*“—"“‘”"{d;, if 2 < 0.
dy, ify=>0;

else d’min = max(|:r|, = |y|) = { d’27 lfy = 4.

These two corollaries are direct consequences of Proposition 3 and 4; and the proofs
are omitted. They are particularly useful for routing between (0, 0) and odd (z’, y’) where
|z| < n. To determine optimal directions between (0,0) and (z,y), where |z| > n, we
present another proposition:

Proposition 5 If [z| > n, the shortest distance between (0,0) and (z,y) is dpin = |z|.
Also, optimal directions from (0,0) are X’ and —Y” if z > n; or —X’ and Y if z < —n.

12



Proof: We first consider |z| = n. Notethatz € {—%5%,..., 5 }andy € {-25%,..., 551}
Hence, |y| < n and |z|] = n = k > 2n. According to the frame transformation (Equa-
tion 7), node (z,y) is represented as (z’,y’) in the X'-Y’ frame, where z’ = z 4+ y and
y' = —z+y. Since |z| = n is odd, if y is also odd, z’, y' are both even and Proposition 1
can be applied for routing. In this case,

dmin =1/2 (lz+y|+|—z+y|) =|z| =n, because |y| <n.
Furthermore,

% =N
= ’=n4+y>0andy’=y—n<0

According to Proposition 1, both X’ and —Y” are optimal directions. Similarly,

r=-n
= 2’=-n4+y<0andy' =y+n>0,

both — X’ and Y’ are optimal directions.

If |z = n and y is even, 2’ = 2+ y and y' = —z + y are odd. We consider the
alternate node labels of (z,y), ¢1,...,cq as defined in Equation 9. These alternate node
labels are represented as cj,...,c, in the X'-Y' frame according to Equation 10. Using
Proposition 2, for |z| = n, the corresponding distance between ¢},...,c; and (0,0) are
yyx vy gy WhHiETE

17" 1 n—y ify<0 27 1 n ify <0’
g — k—n ifz=n e k+n ifz=n
37l k+n ifz=-n" * | k—n ifz=-n "
That 1s,
min{d;,d5} = n, min{d;,d,} = k — n.
Also,
k> 2n
= k—-n>n
=  dmin = min(d;,d;)
di=n if y >0
=8 i =di=n fy=10
=0 ify <0
If y >0,
¢ =(z+y—n,—z+y—n)
— (y,y—?n)=(>0,<{}), ifx:n;
(y—2n,y)=(<0,>0), ifz=—n.
Ify=0,

C; = (01 —2n) = (0,<0),
g =(2n,0) =(>0,0).

13



Routing between (z1, y1) and (z2, y2) in a diagonal mesh network
with N =n X k nodes and n < k < 2n — 1 (n,k are odd).
Step 1: Evaluate z =< 23 — 21 >, y =<y — y1 >n, Where

z, if |z| < Eg-l
< E o=l =N ifx>”—;1;
z+n ifz< -2
Step 2: Calculate z' =z +y; y' =-—-z+y.
Step 3: If 2/,y’ are odd,

if |z|+|yl<nand|z|—|y|>k—n

=2'+n, y=y'+n, ifz>0
Pr=gtdh W ==k el
l glemlaan,, i SW=n, iy
ese =2'+n, y=y'+n, ify<0.

Note that when y = 0, there are two z’, y’ values to be applied in Step 4.
Step 4: Determine optimal directions

I z’ >0, take the X’ direction; y' > 0, take the Y’ direction;
z' <0, take the —X’ direction; y' < 0, take the —Y’ direction.

Distance between (z1, y1) and (z2, y2) is |%’| - |%|
Table 2: A Routing Algorithm for n x k Diagonal Mesh, n < k < 2n — 1.

If y <0,
& =(xz+y—n,—z+y—n)
[ @n-lyhy)=(>0,<0), ifz=n;
| (y,2n—y])=(<0,>0), ifz=—n.

Hence all nodes at |z| = n are at distance n from (0,0) with X’ and —Y” as optimal
directions if z = n; or —X’ and Y’ as optimal directions if z = —n. This implies that
all nodes at distance |z| > n are at distance |z| from (0,0) with X’ and —Y” as optimal
directions if z > n; or — X’ and Y’ as optimal directions if z < —n. O

To summarize, Proposition 1 determines optimal directions from (0, 0) to even (z’,y');
Corollaries 2 and 3 provide routing between (0,0) and odd (z’,y’) with |z| < n; and
Proposition 5 identifies optimal paths between (0,0) and any node (z,y) with |z| >
n. Based on these propositions and corollaries, we summarized routing algorithms for
diagonal mesh network with N = n X k nodes in Tables 2 and 3. Table 2 corresponds
ton < k < 2n and Table 3 to £ > 2n. These routing algorithms identify all optimal
directions and shortest path length between any two nodes for the two cases.

14



Routing between (zy, y1) and (3, y2) in a diagonal mesh network
with N =n X k nodes and k > 2n + 1 (n, k are odd).
Evaluate £ =< z9 — 21 >k; ¥ =< Y2 — Y1 >n, Where

z, if || < 221
W Su= ¢ F—l if;r:>“7‘1;
z+n ifz< -2

Case I:
If £ > n, both X’ and —Y’ are optimal.

If £ < —n, both — X’ and Y’ are optimal.
Distance between (z;, y;) and (z2, y2) is |z|.

Case II: If |z| < n,
1. Calculate ' =z +y; y' =-z+y.

! !
2. If 2/, y’ are odd, phes plioun gt fen, iy 0
g =2'4+n, y=y+n, ify<0.
Note that when y = 0, there are two z’, y’ values to be applied in Step 3.

3. Determine optimal directions

It z' >0, take the X’ direction; y' > 0, take the Y’ direction;
z' <0, take the —X' direction; y' <0, take the —Y’ direction.

Distance between (z1, y1) and (z2, y2) is |%| + |%’]
Table 3: A Routing Algorithm for n X k Diagonal Mesh, k > 2n + 1.

3.3 Diameter Analysis

Besides facilitating the development of routing algorithms, the propositions and corol-
laries described in Section 3.2 also allow formulation of the diameter of a diagonal mesh.
We present such formulation in the following proposition:

Proposition 6 For an N = n x k diagonal mesh network, assume n, k are odd, £k > n
and Dy 1s the diameter.

k=1y :
{ max(n, 5+), if k> n; (13)

n—1, if k= n.
Proof: Let d be the shortest distance between node (0,0) and node (z,y), where z, y
are not both zero.

Case I: k£ > n.
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Consider |z| < n.
If both z, y are even or odd, i.e., 2’ = 2+ y and y' = —x + y are even,
the routing algorithm (Proposition 1) for even z’, y' applies. In this case,
according to Proposition 1,

=]$;y|+|_$2+y[=|x|or ly| < n.

If z is even and y is odd, or vice versa, z’, ¥’ are odd. From Proposition 3,

d

d:{ k— |zl if (|z] + |y| < n) and (|z| - |y| > k — n);
max(|z], n —|y|), if (Jz[ + [y] = n) or (|z] - |y| < k —n).

From Figures 4 and 5, the smallest |z| such that the following conditions:
(Iz] + [y] < n) and (2] - |y| > k —n)
holds is |z| = k —n + 1. In this case, d = n — 1. Also,

|z| < n = max(|z|, n — |y|) < n.

Hence
P, { n—1, if (|z[+|y| <n) and (l2] = [y| > &k —n);
=1 n if (lz] + [y| 2 n) or (|z] = [y| < k —n); i)
_fn-1, iflz|=k-n+1,y=0;
and d_{n? if |¢] <k—n,y=0.
Consider |z| > n. From Proposition 5,
k-1 k—1
d= |z ST; and d:—é—— when |$[=k%1. (15)
From Equations 14 and 15,
-1
D4 = max(n, ), of ke
Case II: k£ =n.
In this case, z, y € {—ﬁgl, . ..,"‘7‘1}, i.e., |z| + |y| is always < n.
If z, y are both even or odd, z’, y’ are even, and
d=lzfor ly| < 2
2
If z is even and y is odd, or vice versa, according to Proposition 3 with k£ = n and
z| + |y| < n,
d={n_|xl1 iflxl_]y‘>0§
max(|z|,n —y[) if [z - |y| < 0.

axy fi n—1, if|z]—|y| > 0;
“ | n-1, ifl|z|-]y| <O.
and d=n-1, when |z|=1,y=00rz =0, |y| = 1.
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Figure 6: Node Distance of N =3 x 9 Diagonal Mesh Network.

Thus
Di=n—=1, ifk=n. 0O

Based on Equations 1 and 13, we have the following relationship between D, and Dj,:

Proposition 7 For an N = n x k network, assume n, k are odd, k > n.

-1 for £ = n.

D,=D;=n

D,=Dj=mn for k=n+2.
Dt—Dd:%(k—n—2)>D forn+2<k<2n-1;
D,—Dy=122 %50 for k> 2n + 1.

The proof of this proposition is a straightforward comparison of Equations 13 and 1, and
therefore is omitted. We observed that when k = n,n + 2, the diameter of a toroidal
mesh equals to that of a diagonal mesh; but when k is strictly greater than n + 2,
diagonal mesh has a smaller diameter and hence potentially smaller communication delay.
Furthermore, it is obvious that a diagonal mesh network retains all advantages such as
a simple, rectangular structure, wirability and scalability. Based on these results and
observations, we conclude that diagonal mesh is an attractive alternative to toroidal
mesh networks.

3.4 Examples

In this section, we use three examples to verify the diameters of diagonal mesh networks.
Figures 6 and 7 show the distance of all nodes from the center node (0,0) of N =5 x 5,
N =3 x5 and N =3 x 9 diagonal mesh networks. In other words, the number at the
center of each node shows how many hops the particular node is away from the center
node (0,0). From these figures,

(1]

when k =n =
when n =3,k
k

when n = 3,

1

Dy =

9;
9.

g
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3 X5 Diagonal Mesh

5X5 Diagonal Mesh
Figure 7: Node Distance of 5 x 5 and 3 x 5 Diagonal Mesh Networks.

According to Equation 13, the diameters are:

1=4 Hk=n==5
=3 ifn=3,k=5;
= itn=3k=29.

Dy =

Using Equation 1, the diameters for toroidal mesh networks are:

4, when k=n=235;
D: =% '8 “wheif=3,k=05
5. whenn=3,k=9.

Hence Propositions 6 and 7 are true.

In summary, the diagonal mesh network has a smaller diameter (when £ > n+2) and
a larger bisection width than the toroidal mesh. It is also obvious that a diagonal mesh
network retains all advantages such as a simple, rectangular structure, wirability and
scalability of the toroidal mesh. Based on these results and observations, we concluded
that the diagonal mesh is potentially an attractive alternative to the toroidal mesh net-
work. In the next section we further investigate and compare the performance of these
two networks under a constant system with a fixed number of messages.

4 Network Performance

In this section, we discuss simulation of diagonal and toroidal mesh networks using de-
flection routing algorithm. We first discuss deflection routing algorithm and various de-
flection criteria. To investigate effects of different deflection criteria, we compare results
from toroidal and diagonal mesh networks with N = 35x 71 = 2485 nodes. We then com-
pare the performance of the two networks with NV =35 x 71 = 2485, N = 49 x 99 = 4851
and N =69 x 139 = 9591 nodes.
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4.1 Deflection Routing

Deflection routing was first proposed in 1964 [18] under the name hot potato routing for
communication networks. Since then, it has been used in both computer and communi-
cation networks [19, 5, 6, 20, 21] under the name dynamic routing and deflection routing.
Popular examples include the Connection Machine [19], a massively parallel computer,
and the Manhattan Street Network [6], a metropolitan area network.

Basically, messages are sorted according to a deflection criterion. Those with higher
priorities are routed optimally while those with lower priorities are deflected to non-
optimal links when conflicts for optimal links occur. The idea is for nodes to get rid of
all incoming messages at each cycle. There is no buffer and hence no buffer management
at a node. This routing algorithm is simple and straightforward to implement. We use
this algorithm to evaluate performance of large diagonal and toroidal mesh networks.

Since both diagonal and toroidal mesh are bi-directional, degree-4 networks, there
are 4 input and 4 output links at each node. We assume the network operates in a
synchronous manner. At the beginning of each cycle, nodes receive incoming messages
and at the end of a cycle, messages are routed to output links. At cycle 0, there are
Nmsg =1,...,4 at each node. When Nmsg = 1 the system is lightly loaded and when
Nmsg = 4 the system is at its full capacity because every node has only 4 bidirectional
links. A pseudo-random number generator with uniform message distribution is used to
generate the destination of each message. In the begining of each subsequent cycles, the
router at a node ¢ checks the destination of all incoming messages. If the destination
of a particular message, say m, is 7, message m is then deleted and a new message is
generated at node : to replace the deleted message. In other words, the total number
of messages in the system remains constant N * Nmsg. Subsequently, all incoming and
new messages are sorted according to a deflection criterion. These messages are routed
to output links according to their priorities. The optimal routing (path-determining)
algorithms summarized in Tables 1 and 3 are used to determine the optimal out-going
links for each message.

For simplicity, we assume a two-phase scheduling algorithm. In the first phase, the
router goes through all messages in the input links according to their priorities. If a
message has only one optimal output link which is not occupied by a message with a
higher priority, the message is assigned to the optimal link. If a message has more than
one optimal output link, the router chooses an available optimal link arbitrarily. In the
case that there are no unoccupied optimal link, the message is left in the input links until
all messages have been through the first phase. In the second phase, all messages left in
the input links are routed arbitrarily to available output links. This two-phase scheme is
simple to implement but is only sub-optimal because a message m1 may have more than
one optimal link and one of which, say I/, may be the sole option for another message
m2 at a lower priority. This two-phase scheme may assign m1 to [ and introduce un-
necessary deflection for m2. A more sophisticated scheduling scheme can be developed
to improve the performance but at a higher time complexity.
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For deflection routing, proper choice of a deflection criterion is important to network
performance. Inappropriate deflection criteria may cause livelock situation, in which a
message is trapped in the system indefinitely. We have investigated six deflection criteria:

1. random: messages are routed in an arbitrary order;

2. age: an “older” message has a higher priority;

shortest: a “shorter” message has a higher priority;

Ll

longest: a “longer” message has a higher priority;

o

age + shortest: an “older” message has a higher priority but for messages with the
same “age”, a “shorter” message has a higher priority; and

6. age + longest: an “older” message has a higher priority but for messages with the
same “age”, a “longer” message has a higher priority.

An “older” message refers to one that has been introduced into the system earlier; a
“shorter” /“longer” message is one that has a shorter/longer distance (hops) from its
final destination. The “age” of a message is the number of cycles that a message has
been in the system.

We have performed simulation of diagonal and toroidal mesh networks with N =
35 x 71 = 2485, N = 49 x 99 = 4851 and N = 69 x 139 = 9591 nodes. Using Equations 1
and 13, the diameters for these networks are:

D.=53, Dij=3 IcN=3xT
De=hH3 D,; =49 for N =49 x 99 (16)
Dy=103, Dy =69 for N =69 x 139

Obviously, the diagonal mesh has a smaller diameter in all cases. In the next section, we
present our simulation results on the performance of these two networks in the presence
of contention. We first discuss the effects of the six deflection criteria. We conclude that
age is a simple and effective deflection criterion. We then compare the performance of
diagonal mesh and toroidal mesh networks using age as the deflection criterion.

4.2 Simulation Results

In this section, we present the simulation results. This include the effects of the six
deflection criteria, and performance comparisons of diagonal and toroidal mesh networks
with the same deflection criterion. For each network with a constant number of messages
(N x Nmsg), we observe the average delay, mazimum delay and throughput of the system
for 750 cycles. Average/maximum delay is the average/maximum path length (hops) in
the system; and throughput is the average number of messages reached destination per
cycle. Our data shows that 750 cycles are enough for the system to saturate.

20



4.2.1 Deflection Criteria

Figures 8 to 11 show the effects of the six deflection criteria listed in Section 4.1 for
networks with N = 2485 nodes and Nmsg = 4. Since Nmsg = 4, the network is heavily
loaded and a proper choice of the deflection criterion is critical. For average delay, the
criterion with longest path first has an unbounded delay. This phenomenon is a result of
the non-optimal two-phase scheduling scheme and the topological properties of diagonal
mesh network. Figure 12 shows the average number of optimal links versus a message’s
distance from final destination. We observed that far away messages (those close to
the diameter) have a larger number of optimal outgoing links than shorter messages.
This property and the fact that two-phase scheduling is sub-optimal imply that more
unnecessary deflections are introduced when longer messages have higher priorities and
thus result in the unbounded increase in the average delay.

For the same reason, the curve for shortest path first demonstrates the smallest av-
erage delay. The is because by giving a shorter message (with fewer optimal options)
a higher priority, unnecessary deflections are minimized. However, the maximum delay
(Figure 10) for shortest path first is among the highest. This is because a message’s age is
not considered and a long message may be trapped in the system. On the contrary, when
a message'’s age is part of the deflection criterion, the maximum delay saturates after a
certain number of cycles (Figure 10). Therefore, livelock problem or high maximum delay
can be avoided only if age is part of the deflection criterion.,

For average delay (Figure 8), the curve corresponding to age + longest follows that of
longest initially when all messages have the same age; and later traces that of age when
messages began to have different ages. Furthermore, the average and the maximum delay
among age, age+shortest and age + longest are almost indifferentiable. The effects of
these criteria for larger networks (N = 4851,9591) have also been investigated and again,
their differences are diminutive. We therefore concluded that age alone is a simple and
efficient criterion for diagonal mesh networks of these sizes.

Figures 9 and 11 show the average and maximum delay for a toroidal mesh with
N = 35 x 71 = 2485 nodes and Nmsg = 4. Again, when the age of a message is
not part of the deflection criterion, maximum delay is much higher. Also, the average
delay for age, age + shortest and age + longest becomes indifferentiable after the system
saturates. We therefore also concluded that age alone is a sufficient criterion for toroidal
mesh networks of these sizes.

It 1s worth noting that the curve for longest path first does not experience the un-
bounded increase as in the diagonal case. Figure 13 shows the average number of optimal
links versus a message’s distance from final destination for this toroidal mesh. We ob-
served that the majority of messages have 2 optimal links regardless of their distance
from destinations. In other words, by giving a longer message a higher priority will not
introduce additional unnecessary deflections to a shorter message.
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4.2.2 Performance Comparisons

Figures 14 to 19 show the average delay for diagonal and toroidal mesh networks with
N = 2485,4851,9591 nodes and Nmsg = 1,4 using age as the deflection criterion. Note
that Nmsg = 1 corresponds to a network with very light load whereas Nmsg = 4 implies
the network is fully loaded. We observed that the average delay saturates after certain
number of cycles. This result is consistent with our constant system model. Under this
model, there is a fixed number of messages NV x Nmsg in the system and their destinations
are uniformly distributed. Intuitively, there should be a characteristic average associated
with each network and network load. This average path length should be bigger for
larger networks and network loads. These arguments are confirmed by our simulations.
Furthermore, the diagonal mesh network always have a smaller average path length at
saturation. Such difference between the two networks also increases with the network
size and network load.

Figures 20 to 25 show the throughput for diagonal and toroidal mesh networks with
N = 2485,4851,9591 nodes and Nmsg = 1,4 using age as the deflection criterion. Again,
due to the constant number of messages, the throughput of the system saturates after a
certain number of cycles. This saturation occurs later for larger networks and networks
with heavier loads. Similar to the average delay, the diagonal mesh network always have
a higher (better) throughput and this difference in performance increases with network
size and network load.

Figures 26 to 31 show the marimum delay for diagonal and toroidal mesh networks
with N = 2485,4851,9591 nodes and Nmsg = 1,4 using age as the deflection criterion.
As in the cases for the average delay and throughput, the diagonal mesh always have a
smaller (better) maximum path length than it toroidal counterpart.

5 Conclusions

The toroidal mesh is a popular and well-studied network. It is a symmetric, wirable and
scalable network with an optimal self-routing algorithm. However, its drawbacks include
a relatively large diameter and a small bisection width. For an N = n x k toroidal mesh
with n,k odd and k£ > n, the diameter and bisection width are: D, = (”"—;1 - kfl) and
B; = 2n + 2. These drawbacks imply potentially long communication delay and thus
hamper network performance.

Diagonal mesh is similar to the popular toroidal mesh, except that nodes are diag-
onally connected. In other words, it is also a degree-4, point to point interconnection
model suitable for connecting communication elements in parallel computers, particu-
larly multicomputers. Furthermore, it retains advantages such as symmetry, wirability
and scalability of the toroidal mesh.

In this paper, we developed an optimal, self-routing algorithm, proposed and proved
an analytic formula for the diameter of diagonal mesh networks. We showed that for an
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N = n x k diagonal mesh with n, k odd and k > n, the diameteris: Dy =n—1for k=n
and Dy = max(n, %) for k > n. In other words, Dy = D; for k = n,n + 2. But when
k is strictly greater than n + 2, the diagonal mesh has a smaller diameter and thus a
potentially smaller communication delay. We also showed that the bisection bandwidth of
the corresponding diagonal mesh network is B; = 4n, which is also an improvement over
the toroidal mesh. These topological properties show that the diagonal mesh network has
a potentially better performance than the toroidal mesh. This result is further strengthen
by our computer simulations.

We have simulated and compared the performance of diagonal and toroidal mesh net-
works in the presence of contention. For both diagonal and toroidal mesh, we considered
networks with N = 35 x 71 = 2485, N = 49 x 99 = 4851, and N = 69 x 139 = 9591
nodes. We assume communication i1s achieved in a synchronous manner, in which every
node receives incoming or new messages at the beginning of a cycle and routes messages
to output links at the end of a cycle. At cycle 0, every node has Nmsg = {1,...,4} to
be routed. When a message reaches its destination z, a new message is generated at :
to replace the deleted message. In other words, the network is a constant system with a
fixed number of messages N x Nmsg.

To evaluate the performance of the network, we use the deflection routing, a dy-
namic and bufferless routing algorithm popular for both computer and communication
networks. There is a deflection criterion that determines the priority of messages. When
conflicts for the same optimal outgoing links occur among messages, those with lower
priorities are deflected to non-optimal out-going links. There is no buffer and hence no
buffer management at a node. However, a proper deflection criterion is critical to the
performance of the network.

Using networks with V = 35x 71 = 2485, we showed that the age, the number of cycles
a message has been in the system, is a simple and efficient deflection criterion. We then
use this deflection criterion to simulate the performance of networks with N = 35x 71 =
2485, N = 49x99 = 4851, and N = 69x 139 = 9591 nodes and Nmsg = 1,4. We observe
the average delay, throughput and the mazimum delay of the system. Due to the constant
system model, the performance of these networks saturates after a certain number of
cycles. In all cases, the diagonal mesh outperforms the toroidal mesh. Furthermore,
the difference in performance increases with the network size and network loads. Based
on these results, we concluded that a diagonal mesh network, particularly a rectangular
one with N = n X k nodes and ¥ > n + 2, is an attractive alternative to its toroidal
counterpart.
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Figure 9: Average Delay for Toroidal Mesh with Different Deflection Criteria
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