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Abstract 
There is a continuing search for dense (6, D) inter- 

connection graphs, that is, regular, bidirectional, degree 6 
graphs with diameter D and having a large number of 
nodes. Cayley graphs formed by the Borel subgroup cur- 
rently contribute to some of the densest (6 = 4, D) graphs 
for a range of D [l]. However, the group theoretic rep- 
resentation of these graphs makes the development of ef i -  
cient routing algorithms dificult. In an earlier report, we 
showed that all Cayley gra hs have generalized chordal ring 
(GCR) representations [2J In this paper, we show that all 
degree-4 Borel Coyley graphs can also be represented by 
more restrictive chordal rings (CR) through a constructive 
proof. A step-by-step algorithm to transform any degree-4 
Borel Cayley graph into CR graphs is provided. Examples 
are used to illustrate this concept. 

1 Introduction 
Amid the many interconnection models for multicom- 

puters, a special class of symmetric graphs, Cayley graphs, 
is an attractive candidate [l, 3, 41. Besides their symmet- 
ric property, Cayley graphs from the Borel subgroup, Borel 
Cayley graphs, are the densest known de Ice-4 graphs for 
a range of diameters (D = 8 ,..., 12) rl, 51. In other 
words, these degree-4 graphs interconnect the largest num- 
ber of nodes for this degree and range of diameter ( D  = 
8,. . . ,12), and thus potentially minimizing communication 
delay in a parallel computer. However, practical imple- 
mentation of these graphs as an interconnection model in 
a multicomputer system is hampered by the lack of a sys- 
tematic representation. Originally, Borel Cayley graphs 
are defined over a group of matrices, which has no sim- 
ple ordering and hence no regular graph structure. This 
representation problem makes the development of routing 
algorithms difficult. 

Generalized Chordal Rin s GCR [SI and the more spe- 
cialized Chordal Rings (CRY[,(, on tRe other hand, are two 
existing topologies that are defined in the integer domain 
and have a systematic and regular structure. Their defi- 
nitions are reviewed in Section 2. In an earlier report, we 
proved and provided an algorithm to transform any Cay- 
ley graphs into Generalized Chordal Rings (GCR). We also 
provided a sufficient condition for Cayley graphs to have 
Chordal Rin CR representations [2]. By transforming 
into GCR [27, L ay 1‘ ey graphs have a systematic represen- 
tation. Furthermore, an optimal, time-eficient routing al- 
gorithm, called Vertex- Transitive routing, is developed for 
Borel Cayley graphs [8]. However, the goal of develop- 
ing an optimal, space-eficient, distance-reduction routing 
algorithm is still elusive. 

This paper concentrates on representations of degree-4 
Borel Cayley graphs. Through the discovery of inherent 
properties of these graphs, we prove another interesting 
proposition. Specifically, all bidirectional, degree-4 Borel 
Cayley graphs have the more restrictive CR representa- 
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tions and hence Hamiltonian cycles always exist for these 
graphs. In the course of proving this proposition, a s t e p  
by-step algorithm is constructed to transform any Borel 
Cayley graph to a CR representation. 

Besides providing a systematic structure for Borel Cay- 
ley graphs, this result on Borel Cayley graphs has an im- 
pact on routing. A Chordal Ring graph includes a Hamil- 
tonian cycle formed by edges connecting adjacent integers 
in the modulo n labels, and thus permitting a distance- 
reduction routing algorithm, called CR routing. Given a 
Borel Cayley graph with n = pk nodes (p is a prime and 
t is a factor of p - l) ,  this distance-reduction algorithm 
requires a small table of O(k). However, the algorithm is 
sub-optimal in the sense that a shortest path is not guar- 
anteed. Simulation shows that a more dynamic approach 
produces path lengths closer to optimal [9]. 

This paper is organized as follows: In section 2, we re- 
view the definitions of GCR, CR, Cayley graphs and Borel 
Cayley graphs. The proposition that all Cayley graphs 
have GCR representations and the sufficient condition for 
a Cayley graph to have a CR representation are also re- 
stated. In section 3, we prove that all degree-4 Borel Cay- 
ley graphs have CR representations. Section 4 includes 
three examples to illustrate the transformation of degree-4 
Borel Cayley graphs to Chordal Rings. Finally in section 
5 ,  we present a summary and conclusions. 

2 Reviews 
In this section we review the definitions of generalized 

chordal rings (GCR , chordal rings (CR), Cayley graphs in 

with the definition of a G C R  
Definition 1 A graph is ageneralized chordal ring (GCR) 
if its nodes can be labeled with integers mod n, the number 
of nodes, and there is a divisor q of n such that node i is 
connected to node j iff node i + q (mod n) is connected 
to node j + q (mod n). 

According to this definition, nodes of a GCR are clas- 
sified into q classes, each class with n/q elements. The 
classification is based on modulo q arithmetic. Two nodes 
having the same residue (mod q )  are considered to be in the 
same class. That is, class i consists of the following nodes: 
i, i + q ,  i + 2 q ,  ..., i + ( m - l ) q  mod n), where m = n / q ;  

connects to j implies i + q  connects to j + q  (mod n), nodes 
in the same class have the same connection rules defined 
by the connection constants or GCR constants. When the 
GCR constants for the different classes are known, connec- 
tions of the entire graph are defined. 

For example, Figure 1 shows a degree 4 GCR with 10 
nodes and q = 2 classes. The connection rules for these 
classes can be defined as: Let V = (0, 1 , .  . . , 9 } .  For any 
i E V, if i mod 2 =: 
“0” : i is connected to i + 2, i + 3, i - 1, i - 2 mod 10 ; 
‘‘1” : i is connected to i + 1,  i + 4, i - 4, i - 3 [mod 101. 

general and Borel 2 ayley graphs in particular. We begin 

and node i is the representing e I ement of class i .  Since i 
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Figure 1: A Degree-4 GCR (n = 10 q = 2) 

In this case, the vertices of the graph are numbered from 
0 to 9 and are divided into even and odd classes. For the 
even vertices, the connection constants are +2, +3, -1, 
and -2; and for the odd vertices, the connection constants 
are +1, +4, -4 and -3. The addition of these connection 
constants to the node label is done in modulo n arithmetic. 

This class-structure of a GCR provides a regufar struc- 
ture, and a concise and simple way of describing connec- 
tivity in the integer domain and therefore making GCR an 
attractive representation. 

A Chordal Ring (CR) is a special case of a GCR, in 
which every node has $1 and -1  modulo n connections. 
In other words, a CR satisfies the connection condition in 
Definition 1 and in addition, all the nodes in the circum- 
ference of the ring are connected to form a Hamiltonian 
cycle. 

Figure 2 shows a degree 4 CR with 10 nodes and q = 2 
classes. The  connection rules for these classes can be 
defined as: Let V = (0, I , .  . . ,9}. For any i E V, if 
i mod 2 =: 
“0” : i is connected to i +  1, i -  1 ,  i + 2 ,  i - 2 mod 10 ; 
“1” : i is connected to i + 1, i - 1 ,  i + 4, i - 4 [mod 101. 
Note that every class has +1 and -1 as GCR constants 
and nodes on the circumference of the ring are connected. 

The construction of Cayley graphs is described b finite 

sists of a set V which is closed under inversion and a single 
law of composition *, also known as group multiplication. 
There also exists an identity element I E V. A group is 
finite if there is a finite number of elements in V. 
Deflnition 2 A graph C = (V, G is a Cayley graph with 

vz * g for some g E G where (V, *) is a finite group and 
G c V\{I}. G is called the generator set of the raph 

The definition of a Cayley graph requires nodes to be 
elements in a group but does not specify a particular group. 
A class of Cayley graphs that contributes to the densest 
degree 4 graphs arises from a subgroup, the Borel subgroup 
BLz(Z,), of the general linear 2 x 2 matrices GLz(Z,). 
The definition of the Borel subgroup is as follows: 
Deflnition 3 If V is a Borel subgroup, BL2(Z,), of 
GLz (Z,), then 

(algebraic) group theory. Recall that a group (V, 1 ) con- 

vertex set V if two nodes VI, v2 E t are adjacent e+ 91 = 

and I is the identity element of the finite group (V, 5 ). 

V = { ( i  y )  : z = a r  (modp),  y E Z , ,  t E Z I )  

where a is a fixed parameter E Z,\{O, l } ,  p is prime and 
k is the order of a. That is, ak = 1 (mod p) and k is a 
factor of p - 1. 

Thus, vertices of Borel Cayley graphs are 2 x 2 matrices 
that satisfy the definition of a Borel subgroup, and mod- 
ular matrix multiplication is chosen as the group opera- 
tion *. Note that the variables of a Borel matrix are t € z k  
and y E Z,. In other words, there are n =I V I =  p x k 
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Figure 2: A Degree-4 CR (n = 10 q = 2) 

nodes. By choosing specific generators, Chudnovsky et al. 
[l] showed that these Borel Cayley graphs are the densest, 
nonrandom 6 = 4, D)  graphs known for D = 8, ..., 12 
(Table g. ‘!‘he Moore Boundshown in Table 1 is an u p  
per boun for the number of nodes in a degree4 graph with 
diameter D. Graphs attaining this Moore bound are called 
Moore gruphs and are the densest possible for that degree 
and diameter. However Moore graphs have been proved to 
be non-existent except for the cases where D = 2, 6 = 3, 
the Peterson graph; or D = 2, 6 = 7, the Hoffman- 
Singleton graph; and possibly for D = 2, 6 = 57 [6]. Given 
this general impossibility of constructing Moore graphs, 
there has been a longstanding search to find the densest 
regular graphs of a given degree and diameter. It is also 
worth noting that the Borel Cayley graph discovered by 
Chudnovsky with D = 11, 6 = 4 has n = 38,764. In 
our research, we have discovered yet another denser Borel 
Cayley graph with n = 41,831 for D = 11, 6 = 4. 

However useful representations of Borel Cayley graphs 
are a challenge. These graphs are defined over a group of 
matrices, which lack a simple ordering that is very helpful 
in the development of efficient routing schemes. Further- 
more, in this original matrix definition, there is no concise 
description of connections. Adjacent nodes can be iden- 
tified only through modular matrix multiplications. The 
problem of finding an optimal path between non-adjacent 
nodes is non-trivial. In an earlier report, we proved that 
all Cayley graphs can be represented by GCR [2]. This 
GCR representation is useful for routing because nodes 
are defined in the integer domain and there is a system- 
atic description of connections. Different time and space 
efficient routing algorithms are devised for Borel Cayley 
graphs as a result of their GCR representations [lo]. We 
restate this proposition as follows: 
Proposition 1 For any finite Cayley graph, C, with ver- 
tex set V, and any T E V such that T” = I, there exists 
a GCR representation of C with divisor q = n/m where 

The proof of this proposition is included in [2] and not 
repeated here. In the course of proving this proposition, 
we have constructed a stepby-step algorithm to transform 
any Cayley graph into a GCR. This algorithm is summa- 
rized in Table 2. The element T i s  referred to as the trans- 
form element and it can be any element in the vertex set. 
I n  other words, this transformation is not unique. In the 
next section, we show that by choosing a specific transform 
element T and class representing elements ai (Table 2), 
all degree-4 Borel Cayley graphs have Chordal Ring (CR) 
representations. 

In [2], we have also provided a sufficient condition for a 
Cayley graph to have a CR representation. For the readers’ 
convenience, we restate this proposition as follows: 
Proposition 2 Let A, B be two distinct generators of a 
finite Cayley graph C. Assume A # B-’ ,Aq  = I and 

n = I  v 1. 
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Diameter Gayley Moore 1987 
Graphs Bound Graphs 

7 1,152 4,371 856 ' 

8 
9 
10 
11 
12 
13 

2,943 
7,439 
15,657 
41,831 
82,901 
140,868 

13,119 1,872 
39,363 4,352 
118,095 13,056 
354,291 

1,062,879 1 
3,118,643 

I Table 1: Comparisons of Degree-4 Graphs I 
m = n/q .  If (AB)"' = I or (A-'B)"' = I then CR r e p  
resentations with divisor q exist. The transform element 
T = A B  or A-'B and the representing element of class 0 
is I and of class i is A', i = 1 , .  .. , q  - 1. 

3 CR Representations 
In this section, we show that all connected degree- 

4, bidirectional Borel Cayley graphs have Chordal Ring 
(CRL representations. During our studies of Borel Cayley 
grap s, we discovered some useful properties of the sub- 
group. These properties and their proofs are presented 
here. Throughout this section, we assume a connected 
degree-4 Borel Cayley graph with n nodes and parame- 
ters a, p and k as defined in Definition 3 and generators 

A, B, A-' and B-', where A = (4: y )  and B = 

(a: y )  . Furthermore, the orders of A and B are k1,  

and k z ,  where kl , k2 E z k .  

Propos i t ion  3 Let X = (aof y )  E BLz(Z,) and X # I 
be a Borel matrix as defined in Definition 3. If q is the 
order of X, i.e. q is the smallest positive integer such that 
X q  = I, then 

where LcM(t,k) stands for "the Least Common Multiple of 
t and k". 

proof: xq = ) apt (a(q-')' + a(q-')' + . . . + a')y 
( 0  1 

XQ = I 
qt = 0 (mod k) and 
( a ( P - - l ) t  + a(P--2)t + . . . + a') = 0 mod p; or 
qt = 0 (mod k) and y = 0. 

+ a(q-z) t  + . . . + a') = 0 (mod p) 

-I 
Case 1: t # 0. In this case, 

+ aqt - 1 = O  (modp)  + qt = 0 (mod k )  
Hence X q  = I + qt = 0 (mod k) + q = w. 
Case 2: t = 0. In this case, y # 0, otherwise X = I. 

(a(q-'): + a(q-2)' + . . . + a')  = 0 (mod p) Also, 
+ q = O  ( m o d p ) + q = p  0 

Propos i t ion  4 B # A" for any integer m E z k .  

Proof If B = A", the generators of the graph are 
A, A", Akl-', Akl-", which implies that all nodes in the 
graph can be written as multiples of A. This means that 
some nodes in the graph are not connected because there 
are at most kl < n different multiples of A. 
Propos i t ion  5 

0 

(1 - ata)yl = (1 - at')yz (mod p) AB = BA (1)  

To generate a GCR with divisor q,  choose an 
element T E V where T" = I and m = n/q .  
For any element a in V, define N(a) as: 
N(4) = {z E V : 2 = T"a} s = 0 , 1 , .  . . , ( m  - 

1. 
1).  

Construct 
N(a,), i = 0, , ( q  - 1) by picking arbitrary 
a, E v/y($:. . /N(ai-l). ao,al , .  . . ,aq-' 
are the initi representative elements in par- 
titions N(ao), N(al), . . . , N(aq-l). 

Associate a, -+ i, i = 0 , 1 , .  . . , ( q  -. 1) and 
T'a, - i + sq, s = 0 , .  . . , ( m  - 1). This forms 
the q classes of the GCR. 
Obtain the connecting constant for each 
class: 

For each class i of the GCR, find the neigh- 
boring nodes of the representing element, a,. 
e.g. if a, is adjacent to a node, b = T'a,, 
then any node w in class i is connected to 
w + j + Sq - i. 

2. 

3. 

Table 2: GCR Algorithm 

The proof of this proposition is a straight forward substi- 
tution and is omitted. 
Proposition 6 If AB = BA, then for any path X with 
m l  as the net number of generator A and mz as the net 
number of generator B, X = A"' B"Z, where 

ml = number of A - number of A-' ( mod k l )  
mz = number of B - number of B-' ( mod k z )  

Proof 
Since A-' = Akl-' and B-' = Bkz-', it suffices to 

consider paths composed of generators A and B only. We 
use mathematical induction to prove this proposition. 

If ml = mz = 1,  AB = BA. Obviously, the proposi- 
tion also holds for ml = 1, mz = 0 and ml = 0, m2 = 1. 
Hence the proposition is true for ml 5 1 and mz 5 1. 

Assume the proposition holds for ml 5 mi and m z  5 
mi for some integers mi E Zkl and m; E Z k z .  

Consider ml = mi + 1 and mz = m i ,  there exists an 
integer 1 = 0 , .  . . , m; such that 

AB' 
i"'"''j 

x =  
m:A, (m:-I)B 

= A": B":-'AB' (by assumption) 
Furthermore, by assumption, B":-'A = ABm:-'. 

B": . Similarly, the proposition is 
true for ml = mi + 1 and m2 = mi + 1 .  By the principle 
of mathematical induction, the proposition is true for all 
ml E Z k ,  and m2 E z k z .  0 

Based on Propositions 5 and 6, we have three useful 
corollaries: 
Corol la ry  1 AB = BA ($ the graph is disconnected. 
Proof From Proposition 6, an element X in the raph is 
represented as X = I, or A"', or Bma, or A"Bm2, 
where ml = 1 , .  . . , k l  - 1,  m2 = 1 , .  . . , k2 - 1. In other 
words, there are a t  most 

1 + ( E 1  - 1) + ( k 2  - 1) + ( k l  - l)(k2 - 1) 5 k2 
different X .  Since k is a factor of p - 1 (Definition 3), n = 
p x k > kz  which implies some nodes of the graph cannot 
be generated by A, B and hence the graph is disconnected. 
0 

Hence X = A": 
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Corollary 2 The values of t l  and t2 cannot be both zero. 

Proof 

which implies the graph is disconnected by Corollary 1. 0 

Corollary 3 The values of yl and y2 cannot be both zero. 

Proof y1 = y2 = O =+ (1 - a'2)yl = (1  - at1)y2 
e AB = BA 

which implies the graph is disconnected by Corollary 1. 0 

Proposition 7 For any path X composed of generators 
A, B, A-' and B-', 

t i  = t 2  = O j (1 - at2)yl = (1 - a'1)yz 
AB = BA (by Equation 1) 

(by Equation 1) 

< Q Y l  + hY2 > p  

1 )  

= ( a<*tlyt2>k 

+ (1 - a")g + (1 - a t 2 ) h  = 1 - aitltJt2 

Proof We prove this proposition by induction on the 
length of the path. For the single step path X = A, 

i = 1, j = 0, g = 1, h = 0, (1  - a")g = 1 - a t 1  
Therefore, the proposition holds. Similarly the proposition 
holds for X = B, A-', B-' . 
Assume the proposition holds for some path X'. Hence 

(mod p) 

(1 - a';)g' + (1 - a'2)h' = 1 - ai ' t l tJ ' t2i  mod p) 
Consider the path X'A 

= ( a < ( : y l t J ' t 2 > k  < (g' + a : ' t ~ t J ' t 2  )Y1 + h'Y2 >.> . 
1 

By assumption, 

(1 - a,tl)(g' + a l ' t l t J ' t 2  )+,(I  -,at2)h' (mod p) 
- - 1 - a *  t i t J ' t 2  + (1 - t i t J  t2 (mod p) 

(mod P) = 1 - a ( l ' t l ) t 1 t J ' t 2  

That is, the proposition holds for X'A. Similarly, the 
proposition is true for X'A-',X'B,X'B-'. By the prin- 
ciple of mathematical induction, the proposition is true for 
any path X. 0 
Proposition 8 For any paths X, Y, composed of gener- 
ators A, B ,  A-' and B-', let 

1 

Then 
X = Y * it1 + j t z  = i'tl + j ' t2 (mod k) 

g = g'and h = h' (mod p) or 
(1 - a t2)y l  = (1  - at1)y2 (mod p) 

and { 
Proof From Proposition 7, 

(1 - a'1)g + (1  - a'2)h = 1 - a " 1 t J t Z  (mod P) 
(2) (1 - at l )g '  + (1 - at2)h' = 1 - a1't1tJ't2 (mod p) 

=+ it1 + j t2  = i'tl + j 't2 (mod k) 
=+ (1 - a t l ) ( g  - 9') = (1  - at2)(h '  - h) (mod p) 

(*) X = Y  

(3) 
Also X = Y  

+ gyi + hy2 = g'yi + h'y2 (mod p) 
=+ (g - g')yi = (h' - h)y2 (mod p) (4) 

From Equations 3 and 4, we have 
(1 - a t 2 ) y i  = (1 -at1)y2 (mod p) or 

g = g '  and h = h' (mod P) 

( G )  Obviously, 
it1 + j t z  = i'tl + j 't2 (mod k) =+ = { g = g '  and h =  h' (modp) 

On the other hand, from Eq. 2 
it1 + j t 2  = i'tl + j 't2 (mod k) 
(1 - a")g + (1 - a'2)h 
(1  - atl)g' + (1 - a'2)h' (mod p) 

+ 
= 

Since (1 - at2)yi  = (1 - at l )yz (mod p) and from Corol- 
laries 2 and 3, 1 1 ,  t2 and y l ,  y2 are not both zero, we have 

= (1 - a t 2 ) y l ( l  - a'1)g' + (1 - at1)y2(l - at2)h' (mod p) * gyi + hy2 = g'yi + h'y2 
+ X = Y O  
Corollary 4 Let X ,  Y as defined in Proposition 8. Then 

(1 - at2)yl( l  - a'1)g + (1 - a t l )yz( l  - a'2)h 

(mod p) 

it1 + j t 2  = i'tl + j 't2 (mod k) and 
X = Y * {  g = g'and h = h' (mod p) 

Proof From Proposition 8, 
X = Y  * it1 + j t 2  = i'tl + j 't2 (mod k) 

and { (1  - at2)yl = (1  -a t1)y2 (modp) 
g = g' and h = h' (mod p) or 

However, from Proposition 5 and Corollary 1 
(1 - a'2)yl = (1 - at1)y2 ( mod p) 

e AB = BA the graph is disconnected. 
Hence for a connected degree-4 Borel Cayley graph, 

x = y  * { g = g '  and h = h '  (modp)  0 
We are now ready to state our proposition: 
Proposition 9 All bidirectional, degree-4 Borel Cayley 
graphs have CR representations. 
Proof: We consider three cases. In the first two cases, the 
idea of the proof is to construct a specific GCR with q = k 
classes. We choose the transform element T = 

y' # 0, and the representing element of class j to be 

a, = (i 7). where i, j = 0 ,..., k - 1 and no two 

classes have the same value for i. These choices ensure 
that any Borel matrix element ($ y ) can be classified 

by the value 2. Furthermore, if we can choose the class 
representing elements such that: 

a0 - a1 - . . . - a k - 1  - T * ao, 
(the symbol - denotes adjacency), we have a CR repre- 
sentation. 

For the third case, we prove that the sufficient condi- 
tion in Proposition 2 is satisfied, and hence produce a CR 
representation. 
Case 1: t l , t 2  # 0 and either ( t 1 , k )  = 1 or t2 ,k)  = 1. 

and k are relatively prime). In other words, multiples of ti 
span the set { 1,  . . . , (k-1) }. Since t2 E (1,. . . ,&k-1)}, we 
have m t i  = t2 for some m = 1 , .  . . , (k - 1). e consider 
a GCR with 

Claim: T = (i f ) for some y' E Z, and y' # 0. 

Proof Note that the superscript t of the first element 

of any matrix ($ y )  can be found by counting the net 

number of generators A and B that composed the matrix. 
As an example, for matrix X = AB, its t value is ti + 
22. Counting the net number of generators A and B in 

it1 + j t2  = i'tl + j't2 (mod k) and 

Without lost of generality, we assume that ( t i ,  \ ) = 1, ( t i  

T = ~ ~ k - 1 - m  B ( A - ~  lm-l. (5) 
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A4 A" 0 f- +-- ( k l - l ) t l  

f B-' 
I, d d f ~ + ( k l - l ) f l  

A A A 

Figure 3: A Hamiltonian Cycle for t l  = 2. 
~~~~ 

Equation 5 ,  
t2 + (k - 1 - m)t1 + t2 + (m - l ) ( k  - t l )  = 0, 

hence the first element of T is 1. We proceed to prove 
that T # I. Since mtl = t2, we let B = HA" where 
H =  (A ; ) forsomezEZ,andz#ObecauseB#A",  

as stated in Proposition 4. Also, assume A-' = 

where t' = -a-tlyl (mod p). 
T = I  * BAk-1-m B =Am-' 

HAmAk-l-mHAm = Am-' * * HA-'H =A-'  

* 
=2 ak-'l = -1 mod p * 2(k-tl = 0 mod k 
=2 ( t l , d  # 1, 

which contradicts to the assumption that t1 and k are rel- 
atively prime. Hence T # I. According to Proposition 3, 

T =  (i $) *TP=I .  
We can construct a GCR with divisor 9 = k and choose 
the representing elements according to Equation 5. That 
is, the representing element of class j is the composition 
of the first j elements in Equation 5. Specifically, 

a0 -+ I;  
a1 -* B; 
a2 -, BA; 

a9-2 - a9-1 = a9-2 * A-'; 
a9-1 - T * a0 = T = a,-] * A-'. 

where the sy,mbol - denotes adjacency. Furthermore, 

given a3 = ($ 7 ) , the i values for representing ele- 

ments a0 ,... ;a9-] aie: 0 , m  t l ,  ( m  + 1) tl, . . . ,  (k - 
1) t l ,  (m - 1) tl,  (m - 2 t l ,  . . ., 11, where t z  = mtl .  
Since ( t 1 , k )  = 1, these v al ues of i span the entire set of 
{p, . . . , k - 1). In other words, we have a CR representa- 
tion. 

Figure 4: A Hamiltonian Cycle for t l  = 3. 

Case 2: t l , t z  # 0 and ( t l , k )  # 1 and ( t z , k )  # 1. 
In this case (t1,tz) = 1 ( t l  and t2 are relatively prime) 

because otherwise not all the k values can be generated and 
the graph is disconnected. Furthermore, tlkl = t2kZ = k. 
Since t l  and t z  are relatively prime, t1 is a factor of kz, 
and k2 2 t 1 ,  which implies that we can divide the set 
(0,. . . , k- 1) into t l  distinct subsets each with k l  elements: 

t l  I ..., (kl - l)tl}, 
{tz, 12 + t l ,  ..., 12 + (k l  - l ) t l} ,  
IO, 

{(t l  - l)t2, (11 - 1)t2 + 1 1 ,  . . . , (tl - 1)tz + (k l  - l)tl}. 
As discussed in the outset of this proof, the idea is to 
construct a specific GCR by choosing the transform el- 

ement T = (: $), y' # 0, and the representing el- 

ement of class j ,  a, = (; ?) such that the super- 

script i spans the set (0, 1, . . . , k - 1). If each number in 
the subsets represents the superscript i of a class repre- 
senting element, the corresponding class representing ele- 
ment within one subset (on the same row) can be cycli- 
cally connected by generator A, and those on the same 
column can be connected, but not cyclically, by genera- 
tor B. The problem of finding proper choices for T and 
class representing elements ao, . . . , a 1 is the same as find- 
ing a Hamiltonian cycle to "march &rough" these k num- 
bers, starting from 0. There are two ways of constructing 
this Hamiltonian cycle, depending on whether tl is odd 
or even. Figures 3 and 4 show a Hamiltonian cycle for 
21 = 2,3. In these cases, T = BAkl-'B-'(A-')kl-' 
and T = Bti-'Ah-1 {?-I ( ~ - l ) k i - Z ~ - l ~ k l - 2  }A. The 
mathematical formulations of these two subcases are as 
follows. 
Subcase 1: t l  is odd. We define the integer d = 9. 
In this case, we consider a GCR with 

Claim: T = (A $) for some y' E Z, and y' # 0. 

Proof By counting the net numbers of A and B in Equa- 
tion 6, 

T = ~t1-lAki-1 {B-I ( ~ - l ) k i - 2 ~ - - I ~ k l - 2  d 1 A (6) 

11 - 1 
(t l  - 1)t2 - t l  + 2(-tz + 2tl  - t2 - 2tl) + t l  = 0, 

the first element of T is 1. We proceed to prove that T # I. 
Let 

T = I  
=+ ( 0  1 L7Yl-+hY2) 1 = ( 0  O Y l  y Y 2 )  
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For any degree-4 Bore1 Cayley graph with n = I  V I =  p x k, assume A, B, and their inverses are generators: 

In each of the following cases, we construct a CR representation with divisor q, by following the procedure 
summarized in Table 2. But instead of using arbitrary transform element and class representing elements, 
we have specific choices. 

(A-Ilm-l Case 1: 11,  t z  # 0 and ( t l ,  k) = 1. Assume t z  = mtl for some integer m. T = B Ak-l-m B 
The representing element of class 0 is I and of class j is the composition of the first j elements in the above 

Case 2: 11, t z  # 0 and ( t l ,  k) # 1 and ( t z ,  k) # 1. Assume Akl = I. 

The representing element of class 0 is I and of class j is the composition of the first 1 elements in the above 

equation. With these choices, there are q = k classes. 

Subcase 1: tl is odd, let d = ( t l  - 1)/2. T = Bt~-'Ak~-l{B-l(A-l)kl-zB-lAk~-z )dA. 

equation. With these choices, there are q = k classes. 
Subcase 2: 21 is even, let d = t 1 / 2  - 1. T = BL1-lAC1-l{B-'(A-l)kl-zIj--lAkl-z } B-l(A-l)&l-I. 
The representing element of class 0 is I and of class j is the composition of the first j elements in the above 

Case 3: t i  = 0 In this case, we can have a CR with q = p classes and the transform element and class 
equation. With these choices, there are q = k classes. 

representing elements are: T = A-'B, a, = A', i = 0 , .  . . , q - 1. 

Table 3: CR Algorithm. 

lquations 7 and 8 are obtained by observing that 
T = BzdA-l{B-lAZB-lA-z}dA 

and 

j E:'=, aZ('--l)t2 

(10) - ( a t Z - t l  + e'"-' a''Z(mod p )  
1=0 

- 
Using Equations 9 and 10, we have 

= + l)(aZdt2 - I )  
- - 22dta-t1 - a - t l  .+ p 2  - 1 

(atz-'1 - l ) (a(t l - l ) tz  - 1) = o (since 2d = t l  - 1) 

j 

j 

u ( 2 d t 1 ) t ~ - t ~  - a f 2 - t ~  = aZdtz - 1 
a t ~ - t ~ ( a Z d t 2  - 1 )  = a Z d t ~  - 1 

+ 
That is, T = I j t l  = t2  or t l  = 1 or 22 = 0 which contra- 
dict to ( t l , t z )  = 1, ( t l , k )  # 1 and t 1 , t z  # 0. Hence T # I. 
Similar to Case 1, we can now construct a GCR with divi- 
sor q = k, and choose the representing elements according 
to Equation 6. That is, the representing element of class 
j is the composition of the first j elements in Equation 6. 
Specifically, 

ao - I; 

a2 - BZ; 
-+ B; 

~ Btl-1~kl-l {B-l(A-l)kl-2B-lAk]-z d 
aqr -1 1 

Again, we assume that the representing element of class j 

is ($ 7 ) .  With these choices, the superscript i spans 

the set of {0,1,. . . , k - 1). Furthermore the representing 
elements are connected to each other: a0 - a1 - ... - 
a,-] - T * ao. Hence we have a CR representation. 
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Figure 5: CR Representation of BLz(Z7) 

Subcase 2: t l  is even. We define the integer d = 5 - 1. In this case, we consider a GCR with 

I d  T = B'I-~A~I-~(B-~(A-')~~-~B-~A~~-Z 
B-'(A-' P-' (11) 

Again, using similar techniques as in subcase 1, we can 

prove that T = A 
Similar to Subcase 1, we can now construct a GCR with 

divisor q = k, and choose the representing elements to be: 
aO, 81,. . . , aq-l according to Equation 11. The represent- 
ing element of class j is determined from the compositon 
of the first j elements in Equation 11. That is, 

for some y' E Z, and y' # 0. ( ') 

8 0  --* 1; 
a1 -+ B; 
a2 -, B2; 

a,-1 -, B'~-lAk~-l(B-I(A-~)kl-2B-lAk~-Z d 1 1 -  
B-1 (A-')k1-2. 

As before, the superscripts of the first element of all class 
representing elements span the set of (0, 1, . . . , k-I}. Also, 
the representing elements are connected to each other: 
ao - ai - . . . - aq-l - T * 80. Hence we have a CR 
representation. 
Case 3: t l  = 0 In this case we can assume that ( t 2 ,  k) = 
1 (12 and k are relatively prime), otherwise not all k values 
can be generated and the graph is disconnected. According 
to Proposition 3, t l  = 0 j AP = I. Consider 

A - ~ B  = (a: ~2 - ~ 1 )  
1 

= k  LCM (t23 k) (A-~B)" = I m = 
t2 

Hence m = n / p  = k = LCMI(ztZ*kl. According to the suffi- 
cient condition in Proposition 2, we choose T = A-'B 
and the representing element of class i, a,  = A' (i = 
0,. . . , p - 1) to construct a CR representation with divisor 
q = p .  0 

In the above proposition, we proved that all bidirec- 
tional, degree4 Borel Cayley graphs have CR representa- 
tions. In the course of proving the proposition, we provided 
an algorithm for the construction of a CR representation. 
This algorithm is summarized in Table 3. 
4 Examples 

In this section, we use three examples to illustrate the 
three cases discussed in the constructive proof of CR repre- 
sentations (section 3). Again, we assume a degree4 Borel 
Cayley graph with parameters n ,  p ,  a, k as defined in Defi- 
nition 3. Furthermore, n = p x k and A, B, A-', B-' are 

the generators, where A = (a: Y ) , B =  (a: y ) ,  
t1 , tz  E ( 0 , .  . . , k - l}, y1,yz E (0, .  . . , p  - I}, and k i , k 2  E 
(0,. . . , k - 1) are the orders of A and B. 
4.1 Case 1 

We consider a Borel subgroup with p = 13, k = 12, 
a = 2, n = 156. We choose parameters for the generators 
as 11 = 5, 12 = 2, yl = 1, y2 = 1. That is, A = 

B = (40 :). For this set of generators, diameter D = 5. 
Since t l ,  t2 # 0 and (t1,k) = 1, the conditions for case 1 
in Table 3 are satisfied. Furthermore, t2 = 10 tl (mod k). 
Accordingly, we choose 

T = B A B ( A - ' ) ' =  (A 'p) 
We thus have a CR representation with divisor q = k = 12. 
For any i E V, if i mod 12 =: 
"0" : i is connected to i + 1, i - 1, i + 14, i - 38 
"1" : i is connected to i + 1, i - 1, i - 22, i - 69 
"2": i i s c o n n e c t e d t o i + l , i - l , i - 1 4 , i - 5 7  
"3" : i is connected to i + 1, i - 1, i + 22, i - 58 
"4" : i is connected to i + 1, i - 1, i - 34, i - 69 
"5" : i is connected to i + 1, i - 1, i + 74, i + 58 
"6" : i is connected to i + 1, i - 1, i + 14, i + 34 
"7" : i is connected to i + 1, i - 1, i - 22, i - 74 
"8" : i is connected to i + 1, i - 1, i + 50, i - 14 
"9" : i is connected to i + 1, i - 1, i + 62, i + 22 
"10" : i is connected to i + 1, i - 1, i + 38, i - 50 
"1 1" : i is connected to i + 1, i - 1, i - 57, i - 62 

( E  ;), 

4.2 Case 2 
We consider the same Borel group as in case 1, but 

with a different set of generators. The parameters for the 
generators are t l  = 2, t2 = 3, y; = 1, y2 = 1. That is, 

A = ( 40 ; ) , B = ( ) . For this set of generators, di- 

ameter D = 6. Since t 1 , t z  # 0, t ~ ,  k) # 1, and ( t z ,  t) # 1, 

more, k l  = 6 and t l  = 2 is even. Accordingly, we choose 
the conditions for case 2 in Tab \ e 3 are satisfied. Further- 

T = B A' B-' 
= (' 0 1)  

We thus have a CR representation with divisor q = k = 12. 
For any i E V, if i mod 12 =: 
"0" : i is connected to i + 1, i - 1, i - 5 ,  i + 64 
"1" : i is connected to i + 1, i - 1, i + 5, i - 16 
"2" : i is connected to i + 1, i - 1, i + 54, i - 51 
"3" : i is connected to i + 1, i - 1, i + 28, i + 67 
"4" : i is connected to i + 1, i - 1, i - 64, i + 77 
u5" : i is connected to i + 1, i - 1, i + 18, i - 33 
"6" : i is connected to i + 1, i - 1, i - 5, i + 40 
"7" : i is connected to i + 1, i - 1, i + 5, i - 28 
"8" : i is connected to i+ 1, i - 1, i+ 33, i - 54 
"9" : i is connected to i + 1, i - 1, i - 77, i + 16 
"10" : i is connected to i + 1, i - I ,  i - 67, i - 40 
"11" : i is connected to i + l ,  i -  1, i+51, i- 18 
4.3 Case 3 

We consider a smaller Borel Cayley graph with a = 2, 
p = 7, k = 3, n = 21, diameter D = 3, and the generators 
A = ( :  : ) , B = ( i  :). 

Note that in this case we have tl = 0, t2 = 1, q = p = 7 ,  
and ,,Icl = LCM(tZ-t l#kl  = 3. According to Table 3, we 

b - ' 1  

choose T = (A-IB) to produce a CR representation with 
divisor, q = 7. Let V = {0,1,. . . ,20}. For any i E V, if 
i mod 7 =: 
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“0” : i is connected to  i + 1, i - 1, i - 10, i + 6 (mod n); 
“1” : i is connected to  i + 1, i - 1, i + 7, i - 7 (mod n); 
u2” : i is connected to i + 1, i - 1,  i + 10, i - 6 (mod n); 
“3” : i is connected to  i + 1, i - 1 ,  i + 6, i - 5 (mod n); 
“4” : i is connected to  i + 1, i - 1, i + 9, i + 10 mod n ; 
“5” : i is connected to  i + 1, i - 1,  i + 5, i - 10 [mod n]; 
“6” : i is connected to  i + 1, i - 1, i - 6, i - 9 (mod n). 
We show this CR representation of the graph in Figure 5. 

5 Conclusions 
Dense, symmetric graphs are good candidates for the in- 

terconnection topology of a multicomputer system. Being 
a class of symmetric graphs, Cayley graphs are attractive. 
In our earlier research effort, we discussed the representa- 
tions and routing of Cayley graphs [2, 8 . In this paper, we 
analyzed a special class of Cayley grap L s, the Bowl Cay- 
ley graphs which generates the densest known, constructive 
graphs degree-4) with diameter D = 8, .  . . ,12.  

trices, theBorel matrices. That  is, nodes are labeled as 
matrices. There is no inherent, simple ordering of node la- 
bels and no known computational routing algorithm with a 
constant or 0 ( 1 )  space commitment. Generalized Chordal 
Rings (GCR) and Chordal Rings (CR), on the other hand, 
are two existing topologies defined in the integer domain 
and have systematic structure. 

By transforming into GCR [2], Cayley graphs have a 
systematic representation. Furthermore, an optimal, time- 
efficient routing algorithm, called Vertez- Transitive rout- 
ing, is developed for Borel Cayley graphs [8]. However, 
the goal of developing an optimal, space-efficient, distance- 
reduction routing algorithm is still elusive. 

Through the discovery of inherent properties of degree- 
4 Borel Cayley graphs, we proved that CR representa- 
tions and hence Hamiltonian cycles always exist for these 
graphs. A stepby-step algorithm and examples are used to 
illustrate the transformation to CR representations. This 
special case of a GCR includes a Hamiltonian cycle formed 
by edges connecting adjacent integers in the modulo n la- 
bels, and thus permitting a distance-reduction routing al- 
gorithm, called CR routing. Given a Borel Cayley graph 
with n = pk nodes (p is a prime and k is a factor of p - l) ,  
this distance-reduction algorithm requires a small table of 
O ( k ) .  However, the algorithm is sub-optimal in the sense 
that a shortest path is not guaranteed. Readers who are 
interested in CR routing are referred to [IO]. 

Bore I Cayley graphs are defined over a group of ma- 
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