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Abstract

Dense, symmetric graphs are good candidates for effec-
tive interconnection networks. Cayley graphs, formed

by Borel subgroups, are the densest, symmetric graphs
known for a range of diameters [1]. Every Cayley graph
can be represented with integer node labels by transform-
ing into another existing topology, Generalized Chordal
Ring (GCR) [2]. However, generally speaking, GCR
graphs are not fully symmetric. In this paper, we provide
a framework for the formulation of the complete symme-
try (or vertex-transitivity) of Cayley graphs in the integer
domain of GCR representations. Successful realization of
such formulation offers a simple, iterative routing algo-
rithm that is capable of determining multiple, shortest
paths between any source and destination pairs. An ex-
ample from a Borel Cayley graph is used to illustrate this
concept.

Introduction

Muftiprocessorv and multicomputers are two major cat-
egories of parallel computers [3]. In the former, pro-
cessors communicate via shared memory whereas in the
latter, each processor has its own local memory (hence
a computer) and communication is via message pass-
ing. Whether it is a shared-memory multiprocessor or a
message-passing multicomputer, an efficient intercormec-
tion network to interconnect the communicating elements
is critical to the performance of the parallel computer [4].
In the design of an interconnection network, there are
two major issues: the interconnection topology and re-
lated routing algorithms.

An interconnection topology can be modeled as a graph.
To model a multicomputer system, we consider regular,
undirectedgraphs with no multiple edges between any pair
of nodes. A graph is regular when it has the same number
of incident edges, or degree, at every node [5]. Nodes of
the graph correspond to processors with local memory
and the edges represent connections between these
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elements. Due to the limited number of connections that

can be made to real chips, we are interested primarily
in regular graphs of small degree. For a given small de-
gree, we are interested in dense graphs [6]. A dense gmph
is one with a large number of nodes for a given diam-
eter. The diameter is the maximum distance between
ail node pairs. Here distance between two nodes refers
to the smallest number of hops between the two nodes.
Obviously, a dense graph allows the interconnection of a
large number of processing elements with relatively small
communication delay.

Besides density, symmetry or uertez-tmnsitiuityis another
desirable attribute of an efficient interconnection network
topology [7]. Informally, a symmetric or vertex-transitive
graph looks the same from any node [8]. This property al-
lows the use of identical routing algorithms at every node.
The goal of routing is to send messages between pairs of
nodes. There are two aspects. First, we have to identify
a path between non-adjacent nodes. Second, there is the
problem of conflicts when multiple messages at a node
have the same optimal outgoing link. In this paper, we
discuss the first aspect of routing: path identification.

Path identification is a trivial problem for graphs with
path-defining labels that implicitly define shortest paths
bet ween verticez. In thki c=e, optimal routing or shortest-
path identification can be achieved computationrdly with

an algorithm that has a space requirement independent
of graph size, i.e., its space complexity is O(l). The
toroidal mesh [9], hypercube [10] and cube-connected cy-
cles [1I] are examples of such graphs. Clearly, these
graphs have more efficient routing algorithm than graphs
without path-defining labels, However} for massively par-
allel computer systems, with thousands of processing ele-
ments, density is an important factor; and unfortunately
these graphs are far from the densest.

Among the many symmetric interconnections being pro-
posed, Cayley gmphs are attractive because a subclass,
Bored Cayley graphs, are the densest known degree-4
graphs for a range of diameters [1]. However, these graphs
do not have path-defining labels, They are defined over
a group of matrices, the Borel matrices. That is, vertices
are labeled as matrices. There is no inherent, simple or-
dering of node labels and no known computational rout-
ing algorithm with a constant or 0(1) space commitment.
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For graphs without path-defining labels, routing can be
done by tables [7]. At every node, a table of size (n-1)
is stored to record the optimal out-going links from that
node to all other nodes in the network. In the general
case, these routing tables differ at each node. Further-
more, routing is achieved in a progressive, step at-a-time
approach because only the immediate next node is iden-
tified at any node in the path. However, it should be
possible for symmetric networks, such as Cayley graphs,
touse an identical routing table at every node, and hence
an entire path could be obtained at any node.

In an earlier report[2], we have proved that all Cayley
graphs can be represented in the integer domain as Gener-
alized Chordal Rings (GCR). The GCR representation is
isomorphic to and retains all the properties of the original
Cayley graphs. However, as its definition (see section 2)

indicates, generally speaking, a GCR graph is only par-
tially symmetric. In this paper, we provide a framework
to express the fully symmetric or vertex-transitive prop
erty of Cayley graphs in GCR representations. In the case
of Borel Cayley graphs, this framework is further simpli-
fied into a single equation. We then exploit this inherent
symmetry of Cayley graphs to develop an optimal routing
algorithm, Vertez- Tmnsitiue routing, that uses identical
routing tables to determine an entire path at any node.

This paper is organized as follows: In section 2, we review
the definitions of GCR, Cayley graphs and Borel Cay-
Iey graphs. In section 3, we discuss the vertex-transitive
property of Cayley graphs in GCR representations. Sec-
tion 4 discusses the special case, Borel Cayley graphs.
Section 5 consists of a routing algorithm that exploits
the vertex-transitivity of Cayley graphs in the GCR do-
main. A Borel Cayley graph is then used to demonstrate
the routing algorithm. Finally in section 6, we summarize
and conclude this paper.

Review

In this section we review the definitions of Generalized
Chordal Rings (G CR) [12], Cayley graphs in generaI and
Borel Cayley graphs in particular [13] [1].

GCR

Definition 1 A gmph R is a Generalized Chordal Ring
(GCR) if vertices of R can be labeled with integers
{o,..., n – I}, and there is a divisor of n, say q, such

that vertez i is connected to vertez j ifl vertex i + q (mod
n) is connected to vertez j + q (mod n), where n is the
number of vertices.

According to this definition, vertices of a GCR are labeled
from O to n – 1 and are classified into q clssses, each class
with n/q elements. The classification is based on modulo
q arithmetic. Two vertices having the same residue (mod
q) are considered to be in the same class. That is, class i
consists of the following nodes: i, i+q, i+2q, . . . . i+mq
(mod p), where m = n/q – 1; and node i is the represent-
ing eiement of class i. Since i connects to j implies i + q

Fig. 1. A Degree-4 GCR (n = 10 q = 2)

connects to j + q (mod n), nodes in the same class have
the same connection rules. In other words, connections
of the entire graph is defined if connections of each class
representing element are known.

The connection rules of each class representing element
are defined by connection constants, the GCR constants.
For degree 4 graphs, there are four GCR constants in each
class, defining the 4 neighbors. For example, Figure 1
shows a degree 4 GCR with 10 nodes and q = 2 classes.

The connection rules for these classes can be defined as:
Let V={ O, l,..., 9}. For any i E V, if i mod 2=:

Uno : disconnected toi+2, i+3, i—l, i—2
(mod 10);

‘l”: disconnected toi+l, i+4, i-4, i-3
(mod 10).

In this case, the vertices of the graph are numbered from
O to 9 and are divided into even and odd classes. For
the even vertices, the connection constants are +2, +3,
– 1, and –2; and for the odd vertices, the connection
constants are +1, +4, –4 and –3. The addition of these
connection constants to the node label is done in modulo
n arithmetic.

This class-structure of a GCR provides a reguiar layout,

and a concise and simple way of describing connectivity in
the integer domain and therefore making GCR an attrac-
tive representations. Furthermore, GCR are obviously
symmetric within a cl.ws. Nodes of the same class have
the same GCR constants and hence identical connection
structure. However, symmetry between nodes of different
classes is not a necessary property of a GCR. One of our
contributions in this paper is to provide a framework for
expressing the complete
GCR representations.

symmetry of Cayley graphs in
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Cayley Graphs

Definition 2 A gmph C = (V, G) is a Cayley gmph
with uertez set V if two vertices ul, VZ E V are adjacent
* w = V2 * g for some g E G where (V, *) is a jinite
group and G c V \ {1}. G is called the genemtor set o~
the gmph.

Note that the identity element 1 is excluded from G.

This prevents the graph from having self-loops. A Cay-
ley graph is undirected if G is closed under inversion, and
the graph’s degree is I G 1. Because of the availability of
degree-4 transputer chips [14], we are interested in undi-
rected, degree-four Cayley graphs. In other words, we
are concerned with Cayley graphs whose generator set
consists of two group elements A, B and their inverses.

Borel Cayley Graphs

The definition of a Cayley graph requires vertices to be el-
ements of a group but does not specify a particular group.

A family of Cayley graphs that includes some of the dens-
est degree 4 graphs are formed from a subgroup, the Borel
subgroup BL2(ZP), of the general linear 2 x 2 matrices
GLz (ZP) [I]. The definition of the Borel subgroup is:

Definition 3 If V is a Borer subgroup, BLz (ZP), of
GLz(ZP) with a parameter a, a E ZP \ {O, 1}, then

{( )v=:; :x=a*

where p is prime and k is

such that ak = 1 (modp).

(modp), y E ZP, t E zk
}

the smallest positive integer

The vertices of Bore/ Cayley gmphs are linear 2 x 2 ma-
trices that satisfy the definition of Borel subgroup, and
modular matrix multiplication is chosen as the group op

eration *. Note that n =! V 1= p x k, where k is a factor
of p -1. By choosing specific generators, Chudnovsky et
aL [1] produced Borel Cayley graphs that are the densest,
nonrandom degree 4 graphs currently known for diame-
ters 7 to 13 [1].

In our earlier report, we proved that all Cayley graphs
can be transformed into GCR and provided an explicit
algorithm to generate a GCR from a Cayley graph [2]. In
essence, the algorithm involves choosing an arbitrary ele-
ment from the group, called the the tmnsform elment T.

The well known Lagrange theorem [15] guarantees that
T“ = I (mod p) implies n = mg, where 1 is the identity
element, n is the number of elements and g is an inte-
ger. The elements of the group are then partitioned into
q classes by premultiplying the transform element with
the representing element of each class, which is arbitrar-
ily chosen. The following is an example of a Borel Cayley
graph in a GCR representations:

An Example

As an example, we consider the Cayley graphs over
BLz (ZP) with a = 2 and p = 7. Since we are inter-
ested in undirected, degree-4 graphs, there are four gen-

()
erators: A, B, A-l and B-l. Let A = ~ ~ and

()
B=;; . Note that in this case, we have k = 3,

p = 7, n = p x k = 21 and the diameter is 3. We arbi-

()

11
trarily choose the transform element T = o ~ wit h

T’ = I (mod p) to produce a GCR represent ation. Fur-
thermore, we choose the representing element of class i

(’ )

a’ O
to be al= o ~ ,:=0 ,.. .,l–l. Since m=7, the

divisor q = n/m = 3. Let V = {0,1,.. .,20}. For any
ieV, ifimod 3=:

“O” : iia connected toi+3, i-3, :+4, i–10
(mod 21);

“l”: iisconnectedt oi+6,i-6,i+7,i-4
(mod 21);

Un2 : i is connected to i – 9, i + 9, i + 10,
i – 7 (mod 21).

Note that, the modular integer labels have imposed an
order on the original vertices of the Cayley graph and
then divided these vertices into 3 classes according to
their residue (modulo 3). The connection rules of each
class are summarized above. For instance, any node i
that belongs to class O connects (mod 21) to i + 3, i -3,
i+4and i-10.

Vertex-Transitivity

In the introduction, we mentioned that all Cayley graphs
share the following property:

Theorem 1 All Cayley graphs are vertez-tmnsitive.

The proof of the theorem can be found in [13] and is not
repeated here.

Mathematically this implies that for any two nodes a and
bin the graph there exists an automorphism of the graph
that maps a to k Thw property is very useful for practical
implementation of interconnection networks. Most of the
well known interconnection graphs, such as the toroidal
mesh, hypercube and cube-connected cycle, efilblt thw
property [9, 10, 11].

A useful interpretation of the vertex-transitive property
can be summarized in the following corollary:

Corollary 1 Let C = (V, G) be a Cayley gmph as de-
fined. Assume a, b, c E V. 1. a and b are connected
through a sequence of genemtors, then c and c * a-l * b

are connected through the same sequence of generators.
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Proof:
Assume gl, gz, ..., g, is a sequence of generators connect-
ing a and b. We have

b —— a*gl*gz*. ..*gi
+ g~*g2*. .. *g, = a-l *b

+ C*gl*gz*. ..*gi = c*a-l*b

c1

The above interpretation of the vertex-transitive prop
erty simplifies the problem of finding a path between two
arbitrary nodes to one of finding a path from a fixed node,
say the identity, to another node. In other words, rout-
ing between nodes a and b can be determined by find-
ing paths between the identity and a-l * b. This prop
erty is the basis for our routing algorithm described in

the routing section. However it is expressed here in the
group theoretic domain of Cayley graphs. As mentioned
in [2], elements in such domains are usually not simply

ordered. By transformation to a GCR, the nodes of a
Cayley graph are necessarily given integer labels and are
henced ordered.

It is clear that in the GCR representation, nodes of the
same class carry the vertex-transitive property of the orig-
inaf Cayley graphs. For example, if a and b are connected
through a sequence of generators, then a+q are connected
to b+q through the same sequence of generators. However
it is unclear that the general vertex transitive property of
Cayley graphs is as readily expressed after the transfor-
mation to GCR form. In order to formulate the property
in the integer domain, we need more information on the
particular group. Recall that in [2], choices of the trans-
form element T (Tm = 1) and the representing element
(a, for class i, i = 0,1,. . . . q– 1) of each class are arbitrary
and hence a G CR representation of a Cayley graph is not
unique. To formulate the vertex-transitive property we
need more information on these choices. In particular,
we need three tables or alternately three functions of the
indices appearing on the left:

1. a table of the inverse of the representing elements;

–1
a, = T“ * art i=o, l,, .,, q-l (1)

2. a multiplication table of the representing elements:

a, * aj = Ti’I * at,, i,j =0,1,. ... q–l (2)

3. a multiplication table of a, and Z’h (i = O, 1,. ... q-
1; h= O,l,...,l ),),

a, * Th = TiIh * a~,~ (3)

Here /,, /,, and i,h range from O to m – 1; whereas r,, ~il
and ;$A range from O to g – 1. once we have these tables,
Corollary 1 in the integer domain of GCR can be stated
u:

Corollary 2 For a Cayfey graph in the GCR domain,
given: = mlq+ cl, j = m2q+c2 andi’ = m’q+ c’. If

i is connected to j through a sequence of genemtors, i’ is
connected to j’ through the same sequence oj generators,
then j’ can be found according to equations (1) to (s) with
the following mapping or junctional composition:

j’ + Tm’ * ac’ * axll * l-ma-m’ * % (4)

The proof can be obtained by noting that i, j, a~d i’

correspond to elements Tml *acl, T“’a *a=2 and T’” * a=,
in the group domain. Using equations 1 to 3, the right
hand side of equation 4 can be simplified to Tt * a=, where
O~t<mand O~c<qand j’= t*q+c.

For some finite groups, we can make simplifying choices of
the transform element T and the representing elements a,
(i= O,l,..., q-1) such that these tables can be expressed
as equations. We use Borel Cayley graphs to illustrate
this concept.

Borel Cayley Graphs

In this section we discuss Cayley graphs obtained from
the Borel subgroup. Let a and k be integers as defined in
Definition 3. In this group, we can choose the transform

()11
element T =

01
where Tp = I. We then have

q = n/P = k clm’ses. we choose the representing element

()ai O
of each class as a, =

01”
These choices make it

possible to reduce the tables t: simple equations:

-1 =
a, aq-[

a,*aj = a<i+J>Q (5)

a,*Th = T<.’ A>p * ai,

where < >P signifies the operation within the bracket

< > is done in modulo p. As usual, contiguous variables
indicate multiplication. That is, < a’h >P means a’ times
h modulo p and < i+ j >q means i plus j modulo g. The
derivation of equations 5 is as follows:

We observe that with such T and ai, a matrix

()

at y

()
= T“*a,. In other words, ~’ ~

01
is mapped

to yq + t. With this mapping in mind, ‘

a8*aJ=(a<’~’>qo=a<{+3>,
ai * Th

= c’0“(:0=(:‘a’:’p)
The vertex transitivity in the integer domain can then be

summarized:
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Given source i = ml g + c1 and destination j = mzg + C2.
While (i # j)
Step 1: Find j’ according to equations (1) to (4).
Step 2: Choose an outgoing link according to row j’ of routing table.
Step 3: Determine the new source i’ according to the GCR constants

associated with each link.
Step 4: i=i’andj= j’.

Table 1: A Pseudo-Code for the Routing Algorithm

Corollary 3 Amurne a Bond C’ayle~ gmph in GCR rep-

()

11
reaentation with transform element T = 0) and

()

ai O
representing element of each class i as al = 01”

Leti=ml q+cl, j=m2q+c2 andi’=m’q+ c’. Jt
i is connected to j with a sequence of genemtorw then i’
is connected to j’ with the same sequence of genemtors,
where

.! =< ml+a<.’-cl>q
J (mz-ml) >, g+ < C’-CI+CZ >q .

(6)

The proof of equation 6 is a simple substitution of equa-
tions 5 to equation 4. The corollary above provides an
explicit formula to identify j’. With this formula, an it-
erative routing algorithm that involves transforming the
original problem of finding a path between nodes i and
j to a new problem of routing between node O and j’ is
feasible. We present such a routing algorithm in the next
section.

Routing
Routing is an important practical aspect of communica-
tion networks. Our goal haa been to develop time and
space etlicient routing algorithms for large, dense graphs.
So far we have produced ditTerent routing algorithms for
Cayley graphs in general and Borel Cayley graphs in par-
ticular [2] [16] [17]. In this section, we present a routing
algorithm that exploits the vertex-transitive property of
Cayley graphs,

Recall that for an irregular network, which has arbitrary
connection rules, routing can be achieved by suitable ta-
ble lookup [3]. The idea is to produce a routing table of
size (n - 1) x 6 at each node (6 is the degree and n is
the number of nodes). The table consists of (n - 1) rows
and there are 6 bits in each row, corresponding to the
number of available links at each node. At node i, the
l-bit locations on row j of the table indicate the commu-
nication links that lead to shortest paths from nodes i to
j. Consider a degre4 graph with links A, B, A-l and
B-]. Suppose there are two shortest paths from node i
to node j, one path corresponds to taking link A and the
other path corresponds to taking link B from node i. At
node i, row j of the routing table would then have the

entries correspondhg to link A and B marked as 1 and
the other two entries marked O.

This table lookup scheme finds multiple, shortest path(s)
between any two nodee and works for any network. Rout-
ing is achieved through a routing table, which identifies
appropriate outgoing links for any incoming message ac-
cording to its destination. The space complexity of the
algorithm is of 0(n2) for the entire network because each
node needs (n – 1) x 6 bits and there are n nodes in the
network. The time complexity for a table lookup scheme
is constant or 0(1) at a single node and O(D) for a com-
plete path. One drawback of thm algorithm is that it is
strictly progressive which means it is generally not pos-
sible to determine the entire, multi-step path at a single
node.

In Corollary 1, we provided an interpretation of the
vertex-transitive property. Such an interpretation allows
us to transform the original problem of routing between
two nodes a and b to a new problem of routing between
the identity and a-] * b. ThB provides the basis for im-
proving the table lookup scheme described above.

However the facts that both the original graph and Corol-
lary 1 are expressed in the group domain hinder the de
velopment of practical routing algorithm. As mentioned
in [2], elements in group domain are often not ordered. In

[2], we have successfully transformed Cayley graphs to a
GCR format, which provides integer labels for the group
elements as well as a concise description of the connec-
tion rules for the graph. To properly exploit the vertex-
transitive property of Cayley graph in GCR, we need to
express such a property in the integer domain. In the last
sect ion we provided a framework (specificaUy equations
(1) to (4) for general Cayley graph and equation (6) for
Borel Cayley graph) for expressing the vertex-transitive
property in GCR representations.

With this framework, we can identify a destination node
j’ with origin node O given any source and destination
pair, i and j. This suggests a table-based routing algo-
rithm that will permit the determination of a multi-step
path at a single node. At node O, the database consists of
a routing table as described earlier. An identical routing
table is then used at every other node. When a message

1184



For a degree-4 Borel Cayley graph in GCR representations

“’’T=(: :)anda$ =(: :))
we have q = k classes, where ak = 1 (mod p).
Assume the generators to be A, B, A-l and B-l, where

‘=(”Z OandB=(a~ ‘0
Given source i = ml q + c1 and destination j = m2q + C2.

While (i # j)
Step 1: Identify new destination,

j’ =< aq-ci(m2 —ml) >~ q+ < Cz —c1 ‘q

Step 2: From row j’ of database, determine which link to take.
Step 3: Identify new source, i’ = mg + c and

m=yl, C=tl, if link A was chosen
m=yz, c = t2, if link B was chosen
m=p-<aq-tlyl>P, C=~–tl, if A-l was chosen
~ = p- < aq-tayz >P, C=q —tz, if B-l was chosen

Step 4: i=i’andj=j’

Table 2: Itemtiue Routing for Borel Cayley Graphs

is generated at source i with destination j, the frame- At each node, we store the size 20x 4 routing table shown
wo~k (equation ( I ) to (4) for general Cayley graph and

equation (6) for Borel Cayley graph) described in the last
section is used to identify j’. Then using the routing ta-
ble at row j’, we can determine the link that corresponds
to a shortest path. Once a link is identified, we can find
the neighboring node by using the GCR constants. We
then have a new problem of routing between this neigh-
boring node and j’. This procedure is repeated until the
source and destination are the same. Table 1 consists of
a pseudo-code for the algorithm. We observe that this

improved routing algorithm retains the ability of find-
ing multiple, shortest path(s) and in addition is capable
of determining the entire path from the source without
increasing the space complexity, which is asymptotically
0(n2 ) for the entire network of size n. The multi-step
algorithm is iterative, and the time complexity is still
O(D), where D is the diameter. The following exam-
ple illustrates such a routing algorithm for Borel Cayley
graph.

An Example

As indicated in Corollary 3, we can choose a specific
transform element, T, and a special set of representing
elements for Borel Cayley graphs such that there exists
a concise formula for j’ (Equation 6). The existence of
such a formula simplifies the use of the iterative routing
algorithm. In short, the algorithm can be summarized in
Table 2.

As an example, we consider the Borel Cayley graph with
p = 7 and a = 2, given in section 2.3.1. Note that the

choices of the transform element T and the class repre-
senting elements a, in this example satisfy the conditions

described in Corollary 3, which means Equation 6 is true.

in Figure 2. “The numbers 3, 4, 18, and li in Figure 1

correspond to the values of i’ for the different links in Step
3 of Table 2. Suppose we need to route a message from
node O to 16. There are three shortest paths between the
two nodes, namely:

pathl: O ~ 4 ~ 10 ~ 16
AQ, A-t

path 2: 0 1851+16
B-1 B-,

path3: O ~ 11 ~ 2 + 16

We begin with iteration O, i = O and j = 16. According
to Step 1 of Table 2, we identify j’ as 16. From row 16 of
the routing table, there are three choices corresponding
to the three shortest paths. Arbitrarily we choose link B.
According to step 3, the new source i’ = 4. Now we enter
iteration I with i = 4 and j = 16. Step 1 identifies j’ to be
6. From row 6 of the routing table, we pick link A, which
determines the new source i’ = 3. Then at iteration 2, i is
3 and j is 6. For this source and destination pair we have
j’ = 3, which means link A should be taken according to
row 3 of the routing table. The equations in step 3 then

determine i’ to be 3. Finally at iteration 3, both source
and destination are 3 and the algorithm terminates. We
have thus successfully found path 1 (BAA) between O
and 16. The iterations of this example are summarized
in Table 3.

Conclusions

Because of their vertex-transitive property and density,

Cayley graphs and Borel Cayley graphs in particular are

interesting interconnection models for multicomputers.
However, Borel Cayley graphs are defined in the matrix
domain, which does not have simple ordering and it is
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1
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3

4
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6

7

8

9

10

A B At B-l

11

12

13

14

15

16

17

18

19

24

Fig. 2. A Routing Table for BLZ(ZT)

difficult to design routing algorithm in this domain.

GCR provided an integer-domain representations of Cay-
ley graphs. Such a representation is isomorphic to the

original Cayley graph, and thus retains all the proper-

ties, includlng density and symmetry. GCR graphs are

obviously partially symmetric. Nodes within the same

class have the same connection rules. More specifically,

if i connects to j through a sequence of generators, then

i + m’ q (mod n) connects to j + rn’g (mod n) through
the same sequence of generators, where m’ is any integer.

Since Cayley graphs are symmetric, it should be possible
to establish a more general relationship: if i connects to
j through a sequence of generators, then i’ connects to
j’ through the same sequence of generators, where i’ is

any integer vertex-labels and j’ is a function of i, j, and
i’. In this paper, we provided a framework for expressing
thk relationship. Basically, we need to identify three ta-
bles or functions that specify the arbitrary choices of the
transform element T and class representing elements in
the transformation from Cayley graphs to GCR. In the
case of Borel Cayley graphs, these tables can be simpli-
fied into equations, and j’ is a non-linear function of i, j

and i’ (Equation 6).

With the establishment of such a framework, an itera-

tive routing algorithm that exploits the vertex-transitive
property is developed. Such a routing algorithm is an im-
proved version of the routing table scheme introduced in
[3], which is capable of finding multiple, shortest path(s)
between any source and destination pair. The advantage
of this new algorithm is that the ability of finding mul-
tiple, shortest path(s) is retained whale the entire path
can be determined at the source without increasing the
space complexity of the algorithm. An example from a
Bore] Cayley graph is used to illustrate the formulation

iteration I i j link
o 10 16 B
1 4 16 A

2 36 A
3 3 3 –-

Table3: A Summar~ of Itemtions

of vertex-transitivity in GCR and the exploitation of the
property in routing. The asymptotic space complexity for
the entire net work of sise n of the improved algorithm is
0(n2) and the time complexity is of O(D), where n is the
number of nodea and D is the diameter of the graph.
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