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ABSTRACT Dense, symmetric graphs are good candidates for effective interconnection
networks. Recently, Cayley graphs have received much attention [1]--[6]. Specifically,
Cayley graphs formed by Borel subgroups are the densest, vertez-transitive degree-4 graphs
known for a range of diameters [1]. In this paper, we propose a new and simpler formu-
lation for these graphs. With this formulation, these graphs resemble the generation of
pseudo-random numbers and hence the name, pseudo-random formulation. Furthermore,
this new formulation demonstrates that Borel Cayley graphs are isomorphic to a special
case of Cayley graphs proposed in [3].

1 Introduction

There is an increasing interest in a special class of graphs based on group theory, known
as Cayley graphs [1]--[6]. Basically, a Cayley graph is constructed from a finite group.
The vertices of the graph are the elements of the group. Connections between vertices are
defined by the group operation and a set of generators. (The formal definition of Cayley
graphs is reviewed in Section 2.) There is no restriction in the choice of the underlying
group. We can construct a Cayley graph over an arbitrary finite group and hence there
are many varieties of Cayley graphs. It is known that all Cayvley graphs are vertex-
transitive [8]. Mathematically, this implies that for any two vertices u and v, there is an
automorphism that maps u to v. Informally, this means the graph looks the same from
any vertex. Such node symmetry allows identical processing/communicating elements
at every node incorporating the same routing algorithm and therefore is desirable in
a multicomputer system. The attractiveness of Cayley graphs was further enhanced
when Chudnovsky et. al discovered that certain Borel Cayley graphs, i.e., Cayley graphs
based on Borel subgroups, are the densest degree-4, non-random graphs known for an

interesting range of diameters [1].



The definition of a Cayley graph requires vertices to be elements of a group but does
not specify a particular group. A family of Cayley graphs that includes some of the
densest degree 4 graphs are formed from a subgroup, the Borel subgroup BLy(Z,), of

the general linear 2 x 2 matrices GL;(Z,). The definition of the Borel subgroup is:

Definition 2 If V is a Borel subgroup, BLy(Z,), of GL3(Z,) with a parameter a, a € Z,
\ {0,1}, then

Y= {(3 !i!) ce=a" (modp), yeZ,, t€ Zk}

where p is prime and k is the smallest positive integer such that a* =1 (mod p).

The vertices of Borel Cayley graphs are 2 X 2 matrices that satisfy the definition of
Borel subgroup. and modular p matrix multiplication is chosen as the group operation *.
Note that N = [V| = p x k, where k is a factor of p — 1 and p is a prime number. By
choosing specific generators, Chudnovsky et al. [1] constructed the densest, nonrandom

(6 =4, D) graphs known for D =7,...,13 from Borel Cayley graphs (Table 1).

Table 1 compares the size of these graphs with that of the known graphs and the
Moore bounds. It is clear that these Borel Cayley graphs show significant improvements
in density. However, many questions about these graphs are not addressed in [1]. Most
importantly, the question of how the choice of parameters contributes to improvements
in density. Motivated by this question, our research focuses on Borel Cayley graphs and
this paper presents some of our findings. It is also worth noting that the Borel Caylev
graph discovered by Chudnovsky with D = 11, § = 4 has n = 38,764. In our research.
we have discovered yet another denser Borel Cayley graph with n = 41,831 for D = 11.
é=4,

In a separate research effort, Dinneen proposed a Cayley graph constructed over a

semi-direct product group [3]. The definition of this group is summarized as follows.

Definition 3 Given two cyclic groups Z,, and Z,, the semi-direct product group SG =

Zm Xq 2y 1s defined by a homomorphism o : Z,, — Aut(Z,). Let an element r be chosen



Diameter Moore Known Graphs Borel Dinneen
Bound (1987) Cayley Graphs | Cayley Graphs
1 4,373 856 1,081 1,081
8 13,121 1,872 2,943 2,943
9 39,365 4,352 7,439 7,439
10 118,097 13,056 15,657 15,657
11 354,293 - 41,831 -
12 1,062,881 - 82,901 -
1 3,118,645 == 140, 607 -

Table 1: Size of Degree 4 Graphs for Certain Diameters

from the group of units U(Z,). Define a mapping o’(k) = (r)* = r** where c is chosen

such that 7" = 1. The group SG has its multiplication table defined by

(1)

(a0, a1) *, (bo, b1) = (ao + b mod m, a; + o'(ag)by mod n).

Using this group, Dinneen constructed some largest known Cayley graphs (Appendix A
of [3]). For the reader’s convenience, these graphs are summarized in Table 1. Interest-
ingly, for the cases of § =4, D = T,...,10, these graphs have the same number of nodes
as the Borel Cayley graphs in Table 1. In section 4, we show that the Borel group is
actually a special case of this semi-direct product group and the dense Cayley graphs

produced by Dinneen are isomorphic to the Borel Cayley graphs in Table 1.

3 Parameters of Degree-4 Borel Cayley Graphs

For ease of description, we assume a size N, degree-4 Borel Cayley graph with generators

A,B,A™! and B~!. Furthermore,
A= (“Ml

_ (" n
A= ( 0 1 ) ’ 0 1 @)
B = (“tz 3’2) B-1 — (“‘k_tz < —at Ty >p)
0 1/ 0 ] ’

where < z >, denotes z mod p.

< —afhy >, )

We note that N = p x k and the parameters:

ps @y k,t1,t9,y1 and y, are needed to specify a particular Borel Cayley graph. Among
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N p k a |ty 12 y1 y2| D
1081 | 47 23 2 (1 7 0 1|7
2 10 0 117
i1 B 0 118
% & O 1.3
2943 (109 27 7|1 6 O 1|38
7439 (173 43 16| 4 10 0 1|9
15657 1307 51 4|2 16 0 -1 |10
2 12 b 11D
1 4 0 111
4 13 0 1|12
1 2 0 1115
82901 | 911 91 2 |31 34 0 1|12

Table 2: Parameters of Borel Cayley Graphs

these parameters, p, a, k, related by ¢ = 1 (mod p), are responsible for the determina-
tion of a Borel group (Definition 2). However, connections and hence the diameter are
determined by the generators A, B and their inverses, characterized by t1,%2,y1, and y,.
In our research effort, we investigate how these parameters affect each other and the
diameter of the graph. Table 2 illustrates the variations in diameter D as a result of
different parameter values. In particular, the choices of #; and ¢, have a significant effect
on the diameter D. For instance, a graph with size N = 1081 have diameters ranging
from 7 to 9, depending on ¢; and t;. In the following subsections, we summarize our

results.

3.1 Parameters: p,a,k

As stated before, N = p x k. That is, the size of a graph is determined by p and k.
Furthermore, % is the order of a (mod p), which implies that k divides p— 1. However the
reason to choose a particular value of a is not clear. Particularly, we have the following

questions: (1) Is k the smallest or largest order for all possible a? (2) How many a have
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order k7 (3) For those a of the same order, do they generate the same set of numbers?

In this section, we address these questions.

For any element a € Z,, the smallest order is always 1, when a = 1; and the biggest
order is always p — 1, when a is a primitive root of p. Furthermore, the possible values
of k are the factors of p— 1. For example, when p = 47, p— 1 = 2 x 23, and the possible
values of k are 1, 2, 23 and 46.

The number of ¢ with order & is given by the Euler function ¢(k). Furthermore,
these a generate the same set of numbers. These observations are supported by existing

theorems [15]. They are summarized as follows:

Theorem 1 The number of @ with order k is ¢(k), where ¢() is the Euler function. That

15, 0o S PP SUhY WD B s
k) =kx(1=1/p) x (1 =1/py) x (1 =1/p3) x ...

where pq, p2, p3, . . . are prime numbers.
Theorem 2 For a prime p, if k divides p — 1, then z* = 1 (mod p) has exactly k roots.

The fact that different a generate the same set of numbers, implies that the choice of
a has no effect on the group or the graph. Once p and k are being fixed, the size of the

graph is determined, and any a with order & can be chosen.

3.2 Parameters: t,t, y;, ys

The parameters 1, t5, y1, y2 define the generators A, B, A~! and B!, which in turn define
the connections and hence the diameter of the graph. From Table 2, it is clear that the
choices of ¢; and ¢; play a crucial part in the determination of diameter. Furthermore, our
computer analysis indicates that changing y; and y; do not change the diameter. This
empirical observation is verified through the establishment of the following propositions.
Again, we assume the generators of the degree-4 Borel Cayley graphs are A, B, A~1, B~1,

according to Equation 2.



Proposition 1 (1 —a®?)y; = (1 —a")y, (modp) < AB = BA

The proof of this proposition is a straight forward substitution and is omitted.

Proposition 2 For any paths X, Y, composed of generators A, B, A~! and B, let

- (a<£:1+5:g>k < gy1 + hys >p) and ¥ = (a<i'e1+j*tz>k < gy + h'ys >p)
= 0 1 = 0 1 :

where < z >, denotes z (mod p). Then

=¥
&S it F gty =1t + 7't (mod k)
g = g'and h= 4k (mod p) or
i { (1—-a?)y; = (1 —a")y, (mod p)

The proof of this proposition is included in [12] and is not repeated here. From this
result, if A B # B A,

1 s =it 'ty (mod k) and
Ko W 31+}?2 1'!:]2 ( ) (3)
g=g'and h=h (mod p)
The determination of the diameter of a graph basically involves generating the entire set
of vertices from different compositions of generators. Equation 3 shows that, whether two
different compositions, X, Y correspond to the same node is independent of the values

of y; and y;. In other words, we have a useful corollary:

Corollary 1 The values of y; and y, do not affect the diameter, iff A B £ B A.

4 A Pseudo-Random Formulation

In section 3.1 and 3.2, we have shown that the choices of a, y; and y, do not affect
the connections of a Borel Cayley graph. The parameters that determine a Borel Cayley
graph are: p, k,t;,¢,. Based on this finding, we can use a constrained, simpler formulation
of a Borel group. Assume a Borel group as defined in Definition 2. we define a Borel

coordinate group B, as follows:



Definition 4 For any prime number p and a factor of p — 1. k. choose any a such that

a* =1 (mod p). We have a B, with size N = p x k and
Byi={{l;y): L€ i€ Z,}
For any (t,y), (¢,y') € B,, the group operation * is defined as:

(t,y) * () = (K t+1 >k, <a'y'+y>). (4)
Accordingly, the generators A, B in the group can be defined as:

A= (tl, 91), A~l = UJ — 1, < "Gk_tlyl >p)
B= (t:Za yZ)a B = (k el —ﬂk_tgyz >p)

Since y; and y, do not affect the diameter, the simplest choices for y; and y, are

_J0ift; #£0 ~_J 0 ifty#O0and y; #0
= 1if; =0 ¥2=1 1 il ts=0 o =0

Basically this new formulation has eliminated non-essential parameters and retained
the properties of the original group. In this new formulation, only two integers are needed
to specify an element; while in the original group, an element is represented by a 2 x 2
matrix, which requires four integers to specify. However, we observe that the elements on
the second row of a Borel matrix are always 0 and 1, which implies that such a formulation
carries redundant information. In our new formulation, modular integer arithmetic has

replaced the more complicated, modular matrix multiplication of the original group.

Furthermore, the new group operation * (Equation 4) resembles the generation of
pseudo-random numbers. The generation of pseudo-random numbers by digital comput-
ers has been well studied. The almost universally used method is the mized congruential
scheme, given by

Tigg=Az;+¢ (mod T) (5)

where A and c are fixed odd integers and the z; < T are the sequence of random numbers.
We observed that the operation on the y-coordinate in Equation 4 is similar to the
mixed congruential scheme, Equation 5. Because of such similarity, we called this new

formulation, a pseudo-random formulation of Borel Cayley graphs.



In comparing Equations 4 and 1, we also found a striking resemblance. Indeed, the
Borel coordinate group, B, j, defined in Definition 4 is a sub-class of the semi-direct
product group SG proposed by Dinneen and defined in Definition 3. More specifically, if
we choose, m = k,n = p,r® = a (Definition 3), SG = Z,, X, Zi = By, where a has order
kin Z,. It is therefore not surprising that the densest known degree-4 Cayley graphs
provided in [3] have the same number of nodes as that of Table 1. Using a computer
program, we have also verified that the generators listed in [3] produce the same diameter

in our pseudo-random formulation of the corresponding Borel Cayley graph.

5 Conclusions

Dense, symmetric graphs are good candidates for the interconnection topology of a mul-
ticomputer system. Borel Cayley graphs are attractive since they are symmetric and
provide densest known degree-4 graphs for a range of diameters [6]. These graphs are
constructed over a group of matrices. Connections of the graph are defined by postmul-
tiplying vertices with generators in the generator set. Appropriate choices of generators

are critical to the diameter of the graph.

Despite the increasing interest of Borel Cayley graphs as interconnection models, lit-
tle is known about the parameters of these graphs. Most importantly, the relationship
between the generators and the diameter of the graph is unknown. Currently, identifi-
cation of “good” generators are achieved through random or extensive systematic search
of all possibilities [4]. In an effort to resolve this problem, we investigate the parameters

of Borel Cayley graphs. This technical report summarizes our findings.

By eliminating redundant information, we propose a new and simpler formulation
of Borel Cayley graphs. This new formulation is defined in the integer domain and the
group operation resembles the generation of pseudo-random numbers, hence the name
pseudo-random formulation. In this new formulation, elements of the group are defined

as coordinate pairs. For a degree-4 Borel Cayley graph. the generators are now considered

as A = (t1,y1) and B = (t3, y2).



Through the establishment of propositions and corollaries, we proved that the values
of y; and y, do not affect the diameter if and only if AB # BA. This result provides
a guideline in choosing appropriate generators and thus reducing the computation time
in the search of “good” generators. Using this new formulation, we also show that Borel

Cayley graphs are isomorphic to the dense Cayley graphs proposed by Dinneen [3].
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