
SIAM J. DISCRETE MATH
Vol. 6, No. 4, pp. 655-676, November 1993

() 1993 Society for Industrial and Applied Mathematics
010

REPRESENTATIONS OF BOREL CAYLEY GRAPHS*
K. WEND TANGt AND BIUCE W. ARDEN

Abstract. There is a continuing search for dense (, D) interconnection graphs, that is, regular, undi-
rected, degree graphs with diameter D and having a large number of nodes. Cayley graphs formed by Borel
subgroups currently contribute to some of the densest known ( 4, D) graphs for a range of D [1]. How-
ever, the group theoretic representation ofthese graphs makes the development of efficient routing algorithms
difficult. In an earlier report, it was shown that all Cayley graphs have generalized chordal ring (GCR) repre-
sentations [2]. In this paper, it is shown that all degree-4 Borel Cayley graphs can also be represented by the
more restrictive chordal rings (CR) through a constructive proof. A step-by-step algorithm to transform any
degree-4 Borel Cayley graph into a CR graph is provided. Examples are used to illustrate this concept.
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1. Introduction. Multiprocessors and multicomputers are two major categories of
parallel computers [3]. In the former, processors communicate via shared memory,
whereas in the latter, each processor has its own local memory (hence a computer), and
communication is via message passing. Whether it is a shared-memory multiprocessor
or a message-passing multicomputer, an efficient interconnection network to interconnect
the communicating elements is critical to the performance of the parallel computer [4].
In the design of an interconnection network, there are two major issues, the intercon-
nection topology and routing algorithms.

An interconnection topology can be modeled as a graph. To model a multicomputer
system, we consider regular, undirected graphs with no multiple edges between any pair
of nodes. A graph is regular when it has the same number of incident edges, or degree,
at every node [5]. Nodes of the graph correspond to processors with local memory, and
the edges represent connections between these elements. Due to the limited number of
connections that can be made to real chips, we are interested primarily in regular graphs
of small degree. For a given small degree, we are interested in dense graphs [6]. A dense
graph is one with a large number of nodes for a given diameter. The diameter is the max-
imum distance between all node pairs. Here distance between two nodes refers to the
smallest number of hops between the two nodes. A dense graph allows the interconnec-
tion of a large number of processing elements with a potentially small communication
delay. Furthermore, a symmetric graph is also desirable, because then an identical rout-
ing algorithm can be used at every node [3].

A variety of network topologies and routing algorithms have been proposed as
interconnection models [7]-[12]. However, graphs originally generated from these
topologies have not been the densest for their interconnection degree. The search for
(6,D) graphs that connect the maximum number ofnodeswith a degree 6 and diameterD
continues [6]. Among these (6,D) graphs, the degree-4 graphs (i.e., 6 4) receive
special attention because of the realizability of degree-4 interconnections. The
TRANSPUTERTM chips are examples of such connectability [13].

Amid the many interconnection models, a special class of symmetric graphs, Cayley
graphs, is an attractive candidate [1], [14], [15]. Besides their symmetric property, Cayley
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graphs from the Borel subgroup, Borel Cayley graphs for short, are the densest known
degree-4 graphs for a range of diameters (D 7,..., 13) [1]. In other words, these
degree-4 graphs interconnect the largest number of nodes for this degree and range of
diameter (D 7,..., 13), thus potentially minimizing communication delay in a parallel
computer. However, practical implementation of these graphs as an interconnection
model in a multicomputer system is hampered by the lack of a systematic representation
or structure of Borel Cayley graphs. Originally, Borel Cayley graphs are defined over a
group of matrices, which has no simple ordering and hence no regular graph structure.
This representation problem of Borel Cayley graphs makes the development of routing
algorithms difficult.

Generalized chordal rings (GCR) [12] and the more specialized chordal rings (CR)
[10], on the other hand, are two existing topologies that are defined in the integer domain
and have a systematic and regular structure. The definitions and properties of GCR
and CR graphs are reviewed in the next section. In an earlier report, we proved that
any Cayley graph can be represented as GCRs and provided a sufficient condition for
Cayley graphs to have CR representations [2]. This paper concentrates on degree-4Borel
Cayley graphs. We present another interesting result concerning the representations of
these graphs. Namely, all degree-4 Borel Cayley graphs have the more restrictive CR
representations, in addition to other GCR representations. A CR is a special case of a
GCR. It includes a Hamiltonian cycle formed by edges connecting adjacent integers in
the modulo n labels, thus permitting a distance-reduction routing algorithm, called CR
routing. Given a degree-4 Borel Cayley graph with n pk nodes, where p is a prime
number and k < p, is a factor ofp- 1, this distance-reduction algorithm requires a small
table of O(k). However, the algorithm is suboptimal in the sense that a shortest path is
not guaranteed. Simulation shows that a more dynamic approach produces pathlength
closer to optimal. The details ofCR routing, its simulation, and other routing algorithms
are discussed in other papers [16]-[18].

This paper is organized as follows. In 2 we review the definitions of GCRs, CRs,
Cayley graphs, and Borel Cayley graphs. The proposition that all Cayley graphs have
GCR representations and the sufficient condition for a Cayley graph to have a CR rep-
resentation are also restated. In 3 we prove that all degree-4 Borel Cayley graphs have
CR representations. Section 4 includes three examples to illustrate the transformation
of degree-4 Borel Cayley graphs to CRs. Finally, in 5 we present a summary and con-
clusions.

2. Review. In this section, we review the definitions of GCRs, CRs, Cayley graphs
in general, and Borel Cayley graphs in particular. We begin with the definition of GCR.

DEFINITION 1. A graph R is a GCR if nodes of R can be labeled with integers
mod r (the number of nodes) and if there is a divisor q ofn such that node i is connected
to node j if and only if node i + q (mod n) is connected to node j + q (mod n).

According to this definition, vertices of a GCR are classified into q classes, each
class with n/q elements. The classification is based on modulo q arithmetic. Two vertices
having the same residue (mod q) are considered to be in the same class. That is, class
i consists of the following nodes: i, i + q, i + 2q, ..., i + (m 1)q (mod n), where
m n/q and node i is the representing element of class i. Since i connects to j implies
that i + q connects to j + q (mod n), nodes in the same class have the same connection
rules defined by the connection constants or GCR constants. When the GCR constants
for the different classes are known, connections of the entire graph are defined.

For example, Fig. 1 shows a degree-4 GCR with ten nodes and q 2 classes. The
connection rules for these classes can be defined as follows: Let V {0, 1,..., 9}. For
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any i E V, if

i mod 2 =: "0" i is connected to i + 2, i + 3, i 1, i 2 (mod 10);
=: "1" i is connected to i + 1, i + 4, i 4, i 3 (mod 10).

In this case, the vertices of the graph are numbered from 0 to 9 and are divided into
even and odd classes. For the even vertices, the connection constants are +2, +3, -1,
and -2, and, for the odd vertices, the connection constants are /1, +4, -4, and -3. The
addition of these connection constants to the node label is done in modulo n arithmetic.

FIG. 1. A degree-4 GCR (n 10, q 2).

This class-structure of a GCR provides a regular structure and a concise and simple
way of describing connectivity in the integer domain, therefore making GCR an attrac-
tive representation.

A CR is a special case of GCR, in which every node has +1 and -1 modulo rt con-
nections. In other words, a CR satisfies the connection condition in Definition 1, and, in
addition, all the nodes on the peripheral of the ring are connected to form a Hamiltonian
cycle.

Figure 2 shows a degree-4 CR with ten nodes and q 2 classes. The connection
rules for these classes can be defined as follows: Let V {0, 1,..., 9}. For any i E V, if

i mod 2 =: "0" i is connected to i + 1, i 1, + 2, i 2 (mod 10);
=" "1" i is connected to i + 1, i 1, i + 4, i 4 (mod 10).

Note that every class has +1 and -1 as GCR constants and that nodes on the peripheral
of the ring are connected.

The construction of Cayley graphs is described by finite (algebraic) group theory.
Recall that a group (V, *) consists of a set V, which is closed under inversion, and a
single law of composition *, also known as group multiplication. There also exists an
identity element I V. A group is finite if there is a finite number of elements in V.

DEFINITION 2. A graph (3 (V, G) is a Cayley graph with vertex set V if two nodes
v, v V are adjacent v v 9 for some 9 (, where (V, *) is a finite group
and G c V\{I}. G is called the generator set of the graph and I is the identity element
of the finite group (V, *).

The definition of a Cayley graph requires nodes to be elements in a group but does
not specify a particular group. A class of Cayley graphs that contributes to the densest
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FG. 2. A degree-4 CR (n 10, q 2).

degree-4 graphs arises from a subgroup, the Borel subgroup BL(Zp), of the general
linear 2 2 matrices GL(Zp). The definition of the Borel subgroup is as follows.

DEFINITION 3. If V is a Borel subgroup, BL(Zp), of GL(Zp), then

0 X=

where a is a ed parameter Zp{0, 1}, p is prime, and k is the order of a. That is,
ak 1 (mod p), and k is a factor ofp 1.

us, the nodes of Borel Cayley graphs are 2 x 2 matrices that satis the definition
of a Borel subgroup, and modular matr multiplication is chosen as the group oper-
ation *. Note that the variables of a Borel matr are t Zk and y Zp. In other
words, there are n =[ V ]= p x k nodes. By choosing specific generators, Chudnovs,
Chudnovs, and Denneau [1] constructed the densest, nonrandom (6 4, D) graphs
own for D 7,..., 13 from Borel Cayley graphs (Table 1). In a separate research
effort, Dinneen [20] and Campbell et al. [21] have constructed small diameter symmet-
ric neorks from Cayley graphs foxed by linear groups. Interestingly, for the cases of
6 4, D 7,..., 13, these graphs have the same number of nodes as the Borel Cayley
graphs in Table 1. Our investigation [22] showed that the Borel group can be formulated
as a special case of the linear group described in [20].

TLE I

Diameter Borel Moore Known graphs
Cayley graphs bound (1987)

7 1,081 4,371 856
8 2,943 13,119 1,872
9 7,439 39,363 4,352
10 15,657 118,095 13,056
11 41,831 354,291
12 82,901 1,062,879
13 140,607 3,118,643

The Moore bound shown in Table 1 is an upper bound for the number of nodes in a
degree-4 graph with diameter D. By arranging the nodes of a graph as a tree, the Moore
bound shows that

n < 1 + 6 + 6(6 1) +..-+ 6(6 1)D- 6(6 1)D 2
6-2
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Graphs attaining this Moore bound are calledMooregraphs and are the densest possible
for that degree and diameter. However, Moore graphs have been proved to be nonex-
istent except for some trivial cases. Specfically, these include complete graphs (D 1)
and rings (6 2). Otherwise, it has been shown that Moore graphs exist only for diame-
ter equals 2, degree equals 3, the Peterson graph, or diameter equals 2, degree equals 7,
the Hoffman-Singleton graph, and possibly for diameter equals 2, degree 57 [12]. Given
this general impossibility of constructing Moore graphs, there has been a long-standing
search to find the densest regular graphs of a given degree and diameter. It is also worth
noting that the Borel Cayley graph discovered by Chudnovsky, Chudnovsky, and Den-
neau [1] with D 11, 6 4 has n 38,764. In our research, we have discovered yet
another denser Borel Cayley graph with n 41,831 for D 11, 6 4.

However, useful representations of Borel Cayley graphs are a challenge. These
graphs are defined over a group of matrices, which lack a simple ordering that is very
helpful in the development of efficient routing schemes. Furthermore, in this original
matrix definition, there is no concise description of connections. Adjacent nodes can be
identified only through modular matrix multiplications. The problem of finding an opti-
mal path between nonadjacent nodes is not trivial. In an earlier report, we proved that
all Cayley graphs can be represented by GCR [2]. This GCR representation is useful
for routing because nodes are defined in the integer domain and there is a systematic
description of connections. Different time and space efficient routing algorithms are
devised for Borel Cayley graphs as a result of their GCR representations [16]-[18].

We restate this proposition as follows.
PROPOSITION 1. For any finite Cayley graph (2 with vertex set V and any T E V such

that T" I, there exists a GCR representation of (2 with divisor q n/ra, where n -I V I.
The proof of this proposition is included in [2] and not repeated here. In the course

of proving this proposition, we have constructed a step-by-step algorithm to transform
any Cayley graph into a GCR. This algorithm is summarized in Table 2. The element
T is referred to as the transform element, and it can be any element in the vertex set.
In other words, this transformation is not unique. In the next section, we show that, by
choosing a specific transform element T and class representing elements ai (Table 2),
all degree-4 Borel Cayley graphs have CR representations.

TABLE 2
An algorithm to generate a GCR representation.

To generate a GCR with divisor q,
choose an element T in V where T I and m n/q.
For any element a in V, define N(a) as
N(a)={xEV:x=TSa} s O, 1, (m -1)

1. Construct N(ai), 0,..., (q 1) by picking arbitrary
ai E V\ N (ao)\... \ N(ai-1); a0, al,...,aq-1
are the representative elements in partitions
i(ao), i(al ),..., N(aq-1).

2. Associate ai i, 0, 1,..., (q 1) and Tsai + sq,
s 0,..., (m 1). This forms the q classes of the GCR.

3. Obtain the connecting constant for each class:
For each class of the GCR, find the neighboring nodes
of the representing element, a.
e.g., if ai is adjacent to a node, b T
then any node w in class is connected to w + j + sq i.

In [2] we also provided a sufficient condition for a Cayley graph to have a CR rep-
resentation. For convenience, we restate this proposition as follows.
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PROPOSITION 2. LetA, B be two distinctgenerators ofafinite Cayleygraph C. Assume
that A B-1, Aq I, and m n/q. If (AB)m Ior(A-IB)m I, thenCR
representations with divisor q exist. The transform element T AB or A-B and the
representing element ofclass 0 is I and ofclass i is A, i 1,..., q 1.

3. CR representations. In this section, we show that all connected degree-4 Borel
Cayley graphs have CR representations. During our studies of Borel Cayley graphs, we
discovered some useful properties of the subgroup. These properties and their proofs
are presented here. Throughout this section, we assume a connected degree-4 Borel
Cayley graph with n nodes and parameters a, p, and k, as defined in Definition 3, and
generators A, B, A-, and B-, where

A at Yl and B y2
0 1 0 1

Furthermore, the order of A and B are k and k2, where kl, k2 Zk.
PROPOSITION 3. Let

X= 0 eBL2(Zp)

and X I be a Borel matrix, as defined in Definition 3. If q is the order ofX, i.e., q is the
smallestpositive integer such that Xq I, then

q= { LClVlt(t’ k if t O,
p /ft 0,

where LCM(t,k) denotes the least common multiple of t and k.
Proof. We have

xq ( aqt (a(q-1)t + a(q-2)t + + a)y )0 1

qt 0 (mod k) and (a(q-)t + a(q-2)t +... + a) 0 (mod p)
Xq I or

qt 0 (mod k) and y 0.

Case 1. t O. In this case,

because

Hence

(a(q-1)t d- a(q-2)t +’" q- a) 0 (mod p) qt 0 (mod k)

(a(q-1)t -+- a(q-2)t -f- A- a) 0

=: (a 1)(a(q-)t 4- a(q-2)t 4-’" A- a) 0

:ez aqt --1 =0

qt =0

(mod p)
(mod p)
(mod p)
(mod k).

xq--I qt O (modk)

= q LCM (t,)
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Case 2. t 0. In this case, y 0; otherwise X I. Hence

qt 0 (mod k)Xq I =#
(a(q-1)t + a(q-2)t +-.. + a) 0 (mod p),

and

(a(q-1)t + a(q-2)t +... + a) 0

=, q= p.

(mod p)
(mod p)

PROPOSITION 4. We have

B A’ for any integer m E Zk.

Proof. If B Am, the generators of the graph are A, A", Akx-1, Alex-m, which
implies that all nodes in the graph can be written as multiples of A. This means that
some nodes in the graph are not connected because there are at most k < n different
multiples of A. U

PROPOSITION 5. We have

(1) (1 at )y (1 atx )y2 (mod p) : AB BA.

The proof of this proposition is a straightforward substitution and is omitted.
PROPOSITION 6. If AB BA, then, for any path X with ml as the net number of

generator A and with me as the net number ofgenerator B,

X ATM B"2

where

m number ofA number ofA-
m2 number ofB number ofB-

( mod k1),
( mod k).

Proof. Since A- Akx- and B- Bk2-, it suffices to consider paths com-
posed of generators A and B only. We use mathematical induction to prove this propo-
sition.

If ml m2 1, AB BA. Obviously, the proposition also holds for ml
1, m2 0 and m1 0, me 1. Hence the proposition is true for m < 1 and me < 1.

Assume the proposition holds for m < m and me < m for some integers m E

Zkx andm Zk.
Consider ml m + 1 and m2 m. There exists an integer 0,...,m such

that

AB

mA, (m2-1)B

AmBm-tAB (by assumption).

Furthermore, Bm-tA AB"-t by assumption. Hence
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Similarly, the proposition is true for mt= m + 1 and m2 m + 1. By the principle of
mathematical induction, the proposition is true for all ml E Zkl and m2 Zk2. D

Based on Propositions 5 and 6, we have three useful corollaries.
COROLLARY 1. IfAB BA, then the graph is disconnected.
Proof. If AB BA, from Proposition 6, an element X in the graph is represented

as

X I or ATM or B"2 or A’mB’,

where ml 1,..., k 1, mz 1,..., kz 1. In other words, there are at most

1 + (kl 1) + (k2 1)+ (kl 1)(k2 1) <_ 1 + 2(k- 1)h- (k- 1)2 k2

different X. Since k is a factor of p 1 (Definition 3),

n=pxk>k2,

which implies that some nodes of the graph cannot be generated by A, B, and hence
the graph is disconnected. D

COROLLARY 2. The values of t and tz cannot be both zero.

Proof. We have

tl --t2=0
= (1 at )yl (1 atx )y2
> AB BA (by (1)),

which implies the graph is disconnected by Corollary 1.
COROLLARY 3. The values ofy and Yz cannot be both zero.

Proof. We have

Yl :y2:0

(1 at)yl (1 atx)y2
AB BA (by (1)),

which implies that the graph is disconnected by Corollary 1.
PROPOSITION 7. For anypath X composed ofgenerators A, B, A-1, and B-1,

X ( a<it+jtz>O (gyl q- hy2>P

=: (1 atl)g + (1 at2)h 1 ait+jt: (mod p),

where (x) k denotes x mod k.
Proof. We prove this proposition by induction on the length of the path. For the

single step path X A,

i 1, j O,
g 1, h O,

(1 at )g 1 at

Therefore, the proposition holds. Similarly, the proposition holds for X B, A-1 B-1
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Assume the proposition holds for some path X’. That is,

X ( a
0

and

mod p).

Consider the path

((i’+)+j’t) ((g’ + ai’t+J’t)y + h’y2)p)X’A
0 1

(1 at )(g’ + aCt+’t + (1 at )h’ (mod p)
(1 -at)g + (1 -at)h + (1 -at)aCt+’t (mod p)

1 ai’tl+j’t2 + (1 atl)ai’t+j’t2 (mod p) (by assumption)

1 a(+)t+’t2 (mod p).

That is, the proposition holds for X’A. Similarly, the proposition is true for X’A-1,
X’B, X’B-1. By the principle of mathematical induction, the proposition is true for any
path X. U

PROPOSITION 8. For anypaths X, Y, composed ofgenerators A, B, A-, and B-,
let

x=(a(Ug-jt2) (gy+hy2)P)l and y= (a(i’j’)’ (9’y+h’y2)p)1

where (X)p denotes x (mod p). Then

X=Y

itl + jtu i’t + j’tu (mod k)

and

g g’and h h’ (mod p)
(1 at- )y (1 atl )yz

or

(mod p).

Proof. Since

y

0

0

(gy + hy2 p
1 ]

(9’Y1 + h’y2)p
1 ]

from Proposition 7,

(2) (1-at)g + (1- at2)h 1- ait+jt

(1 atl)g + (1 at)h 1 ai’tx+j’tz

(mod p),

(mod p)
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(3)

X=Y

= it: + it2 i’t: + j’t2 (mod k)

= (1 at’)g + (1 at)h (i at’)g + (I at-)h
= (1 at’)(g g’) (1 at-)(h’- h)

Also,

(mod p)
(mod p)

X=Y

(4) gy: + hy2 g’y: / h’y2 (modp)

= (g g’)y: (h’ h)y2 (mod p).

From (3) and (4), we have

(=) Obviously,

(1 at)y: (1 at: )Y2
g=g and h=h

(mod p)
(mod p).

it: + jr2 i’t: + j’t2
g=g’ and h=h’

On the other hand, from (2),

(mod k)
(mod p)

from (2)

or

it1 + jr2 i’t: + j’t2 (mod k)
= (I at,)# + (1 at2)h (1 at’)g + (1 at=)h (mod p).

Since (1 ate)y: (1 at:)y2 (mod p) and from Corollaries 2 and 3, t:,t2 and yl,y2

are not both zero, we have

(mod p)
(1 ate)y:(1 at’)g + (1 at’)y2(1 at:)h
(1 at-)yl(1 atX)g + (1 atX)y2(1 at)h
gYl + hy2 gy: + hy2 (mod p)

= X=Y. 121

COROLLARY 4. Let X, Y be defined as in Proposition 8. For a connected degree-4
Borel Cayley graph,

it: + jr2 i’t: + j’t2 (mod k) and
X Y :

g’ h’g andh (modp).

and

Proof. From Proposition 8,

X=Y

= it1 + jr2 i’tl + j’t2 (mod k)

g g’ and h h’ (modp) or

(1 at )y: (1 at‘ )Y2 (mod V).
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However, from Proposition 5 and Corollary 1,

(1 a)y (1 a)y (mod p) AB BA the graph is disconnected.

Hence, for a connected degree-4 Borel Cayley graph,

it1 + jr2 itl + jt2 (mod k) and
X =Y :

g’ =h’g andh (modp).

With the above propositions and corollaries, we are now ready to state the main
result of this paper.

PROPOSITION 9. All connected degree-4 Borel Cayleygraphs have CR representations.
Proof. We consider three eases. In the first two cases, the idea of the proof is to

construct a specific GCR with q k classes. We choose the transform element

T= y’ 0
0 1

and the representing element of class j to be

aj
0 1

where i, j 0,..., k 1, j e Zp and no two classes have the same value for i. These
choices ensure that any Borel matrix element

0 1

can be classified by the value t. Furthermore, if we can choose the class representing
elements such that

ao al ak-1 T ao

(the symbol denotes adjacency), we have a CR representation.
For the third case, we prove that the sufficient condition in Proposition 2 is satisfied

and hence a CR representation.
Case 1. t, t 0 and either (t, k) i or (t, k) 1. Without loss of generality,

we assume that (tl, k) 1, ( tl and k are relatively prime). In other words, multiples of
1 (mod k) span the set {1,..., (k 1)}. Since t (1,..., (k 1)}, we have

m/;1 /;2 (mod k) for some m 1,..., (k 1).

We consider a GCR with

(5) T BAk-I-mB(A-)ra-.
Claim. It holds that

for some y’ Zv and y’ #- O.
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Proof. Note that the superscript t of the first element of any matrix

at Y)0 1

can be found by counting the net number of generators A and B that composed the
matrix. As an example, for matrix X AB, its t value is t + tz (mod k). Counting the
net number of generators A and B in (5),

t= + (k- 1 m)tl + t= + (m- 1)(k- tl) 0 (mod k).

Hence the first element of T is 1. We proceed to prove that T % I. Since mtl t=
(mod k), we let B HA’, where H ( ) for some z E Zp and z - 0 because
B % A" as stated in Proposition 4,

(a contradiction).

Hence T I. According to Proposition 3,

T= 1 = TP I"

We can construct a GCR with divisor q k and choose the representing elements ac-
cording to (5). That is, the representing element of class j, aj is the composition of the
first j elements in (5). Specifically,

ao I;
al B;
a2 BA;

aq-m B Ak-l-m"

aq-m+l B Ak-l-m B;
aq-m+2 B Ak-l-m B A-1",

aq-1 B Ak-l-’ B (A-l)m-=.
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Note that

ao al ao B;
al a2--al*A;

aq-2 aq-1 aq-2 * A.-1"

%-1 T ao 2" %_1 A-,

where the symbol denotes adjacency. Furthermore, given

a
aj

0 1

the i values for representing elements ao,..., aq_ are

where t2 mt (mod k). Since (t, k) 1, these values of i span the entire set of
{0,..., k 1 }. In other words, we have a CR representation.

An alternate way to construct a CR representation is to choose

T B-I(A-1)k-I-mB-1Am-1.

In this case,

ao I;
al =n-I"

a2 B-1 A-l;

aq-m B-1 (A-1)k-l-m"
aq-m+l B-1 (A-l)k-l-m B-l;
aq--rn+2---B-1 (A-l)k-l-m B-1 fit_;

aq-1 --B-1 (A-l)k-l-m ]3-1 Am-2.

The proof of this construction is similar to the one shown above and is not repeated.
Case 2. t, t 0 and (t, k) 1 and (t, k) 1.
In this case, (t, t2) 1 (t and t2 are relatively prime) because otherwise the graph

is disconnected. Furthermore, tlk t2k2 k. Since tl and t2 are relatively prime, we
can divide the set {0,..., k 1} into tx distinct subsets each with kx elements as follows:

{O, tl,...,(kl--1)tl},
{t2, t2 + tl,...,t2 q- (kl 1)t},

{(t 1)t2, (tl 1)t2 + t,..., (tl 1)t2 + (kl 1)t}.
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If each number in the above subsets represents the superscript i of a class representing
element

aj
0 1

where yj is an integer in zp, the corresponding class representing element within one
subset (on the same row) can be cyclically connected by generator A, and those on the
same column can be connected, but not cyclically, by generator B. As discussed at the
outset of this proof, the idea is to construct a specific GCR by choosing the transform
element

T y’ #0,
0 1

and the representing element of class j,

such that the superscript i spans the set {0, 1,..., k 1} and 0
T 0, where the symbol denotes adjacency.

In this case, the problem of finding such choices for T and class representing ele-
ments o,..., %-1 is the same as finding a Hamiltonian cycle to "march through" the
k numbers in the subsets, starting from 0. There are two ways of constructing this
Hamiltonian cycle, depending on whether t is odd or even. Figures 3 and 4 show
a Hamiltonian cycle for tl 2,a. In these cases, T BA-B-(A-1)-1 and
T Btl-IAkl-I{B-I(A-1)kl-2B-1Akl-2}A. The mathematical formulations of
these two subcases are as follows.

Subcase 1. tl is odd. We define the integer d= (tl 1)/2. In this case, we consider
a GCR with

(6) T

Claim. It holds that

for some y E Zp and y : 0.

Proof. By counting the net numbers of A and B in (6),

tl--1(tl 1)t2 tl + 2
(-t2 + 2tl t2 2tl) + tl 0 (mod k),

the first element of T is 1. We proceed to prove that T I. Let

(1 gyl+hy2)(1 0yl+0y2)(7) = 0 1 0 1

where
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A"t A
0 t -
t2 t2+t

A A

F6. 3. A Hamiltonian cyclefor 2.

(k-l)t

0 t

2tz 2tz+t
A A

(k-l)t 0

1
tz+(k 1) t

.2tz+(kl.l) t
A

(8)

FIG. 4. A Hamiltonian cyclefor 3.

d

g _a2d-t + E{a(2i-1)t--$ @ a(2i-1)$ a2(i-1)$. a2(i-1)t.-t }
i--1

Wa-tl (mod p),

2d-1 d

(9) h E ait E{a(ui-x)t-t’ + a2(i-)t+tl } (mod p).
i--0 i-1

Equations (8) and (9) are obtained by observing that, from (6),

T Bt-Ak-{B-(A-)k-2B-Ak-2}dA
B2dA-{B-A2B-A-2}dA,

and, for any Borel matrix,

( at ) (at+tx (yTaty)p)0
A=

0 1

0 Yl A- (Y at-tl
0 1

( at ) (at+t (Yd-aty2)p)0 Yl B=
0 1

( at ) --_( at-t )0
B-1 (Y at-t’Y2)P

0 1
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Hence

/
B2d la2dt2

0

2d-1

air2 Y2
i=0

1

/
B2dA-1 /a2dt2-tl

0

2d-1

air2 Y2 a2dt2-tlyl
i=0

1

B2dA-B- 21 aitg- a(2d-1)tz-tx ) Y2 -a2dt-tx
i=0

1

Yl

1B2dA-:{B-:A2B-:A-2}dA 0
gYl + hy2

1 )
where g and h are described by (8) and (9).

From (7) and Corollary 4, g h 0(mod p). That is,

g 0 (mod p)

d

:: a2dt2-tl --a-t1 E {a(2i-1)t2-tl
i--1

a2(i-1)t2-t }

(10)

d-2 (a(2i-1)t2 a2(i-1)t2 } (modp)
i--1

(11)

Similarly,

h=0

d d

(ate- 1)E a2(i-1)t= -t. _i_ (ate. 1)E a2(i-:)t,

i=1 i=1

d

(a-t’ + 1)(at 1)E a2(’-:)t (mod p).
i-----1

(mod p) =v
2d-1 d

E ait (at-t’ + at’)E
i=0 i=1

d 2d-1

i=1 i=0

(mod p)

(mod p)

(mod p).

Using (10) and (11), we have
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2d-I

(a$2-1 + a) (a2dtg-tl a-1) (a-1 + 1) (a 1) a (mod p)
i--0

2d-1

a(2dA-1)t2-2t at2-2tl - a2dr2 1 (at2-tl a-tl - at2 1) ait2

i:0

2d-1

(a(i+l)t2-t’ ait2-tl + a(i+l)t2 air2}
i:0

+ 11( 1)
22dt-t a-t W a2dt 1

g(2d+l)t-t gt-t g2dt 1

(t,-t 1)((t-l)t, 1) 0 (because 2d tl- 1).

That is, T I = tl t2 or tl I or t2 0, which contradict (t, t2) 1, (t, k) : 1,
and t, tz 0. Hence T # I. Similar to Case 1, we can now construct a GCRwith divisor
q k and choose the representing elements according to (6). That is, the representing
element of class j is the composition of the first j elements in (6). Specifically,

ao I;
al B;
a2 B2;

at1-1 St1-1"

atl Bt-lA;
a,+ Bt*-A2;

att+k-2 ltt-lAkl-l"

at,+kt-1 Btt-Ak-B-"
at+k, Bt*-A-IB-A-;

at,+l+ Bt*-Ak*-lB-t(A-t)2;

}e.

Again, we assume that the representing element of class j is

With these choices, the superscript i spans the set of {0, 1,..., k 1}. Furthermore, the
following representing elements are connected to each other: 0 %-1
T 0. Hence we have a CR representation.
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Subcase 2. tl is even
a GCR with

We define the integer d= (tl/2)- 1. In this case, we consider

(12) T Bt-IA-{B-(A-1)’-ZB-1A-Z)dB-(A-)x-1.
Again, using similar techniques as in Subcase 1, we can prove that

for some and 0. A GCR with divisor q k can then be constructed with
class representing elements, o, 1,...,-, determined from the composition of the
first j elements in (12). That is,

ao I;
a B;
a2 B2;

aq_ Bt-Ak-{B-I(A-)-2B-A-2}dB-(A-X)-2.

As before, the superscripts of the first element of all class representing elements span
the set of {0, 1,..., k- 1}. Also, the representing elements are connected to each other:
ao a aq_ T ao. Hence we have a CR representation.

Case 3. tl 0 In this case, we can assume that (t2, k) 1 (t2 and k are relatively
prime); otherwise the graph is disconnected. According to Proposition 3, t 0
Ap I. Consider

A-B= (atz y2-yl)0 1

(A-B)" I :: m LCM (t2, k)
t2

Hence m nip k LCM (tz, k)/t2. According to the sufficient condition in Propo-
sition 2, we choose T A-1B and the representing element of class i, ai A
(i 0,..., p 1) to construct a CR representation with divisor q p. V1

In the above proposition, we proved that all degree-4 Borel Cayley graphs have CR
representations. In the course of proving the proposition, we provided an algorithm for
the construction of a CR representation. This algorithm is summarized in Table 3. For
simplicity, Table 3 only shows one possible way of constructing a CR representation in
Case 1, even though an alternate way exists.

4. Examples. In this section, we use three examples to illustrate the three cases dis-
cussed in the constructive proof ofCR representations (3). Again, we assume a degree-
4 Borel Cayley graph with parameters n, p, a, k as defined in Definition 3. Furthermore,
n p k and A, B, A-, B-1 are the generators, where

at Yl B Y= 0 1 0 1

t,t2 {0,...,k- 1}, andy,y2 {0,...,p- 1}.
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TAaLE 3
An algorithm to generate a CFt representation.

For any degree-4 Borel Cayley graph with n =IV =/9 x k,
assume A, B, and their inverses are generators

A-- ( atx

In each of the following cases, we construct a CR representation
with divisor q, by following the procedure summarized in
Table 2. Instead of using arbitrary transform element and
class representing elements, we have specific choices.

Case 1. tl,t2 0and (tl,k) 1.
Assume t2 ret for some integer re;

T B Ak--’ B (A-)’-.

The representing element of class 0 is I and of class j is the
composition of the first j elements in the above equation.
With these choices, there are q k classes.

Case 2. tl,t2 7 0and (tl,k) I and (t2,k) 1. sume
Subcae 1. t is odd, let d (t 1)/2;

e representing element of class 0 is I and of class j is the
composition of the first j elements in the above equation.
With these choices, there are q k classes.

Subcae 2. t is even, let d t/2 1;

e representing element of class 0 is I and of class j is the
composition of the first j elements in the above equation.
With these choices, there are q k classes.

Case 3. O.
In this case, we can have a CR with q p classes and the transfo
element and class representing elements are

T=A-1B and aj =Aj j=0,1, q-1

4.1. Case 1. We consider a Bocci subgroup with p 13, k 12, a 2, n 156.
We choose parameters for the generators as t 5, t2 2, yl 1, y2 1. That is,

(0 1), B (04 ). For this set of generators, diameter D 5. Since t, tz #
and (tl, k) 1, the conditions for Case 1 in Table 3 are satisfied. Furthermore,

10 tx (mod k). Accordingly, we choose

T=BAB (A-I)9 (
We thus have a CR representation with divisor q k 12. For any i E V, if i mod 12 ="

"0" i is connected to i + 1, i 1, i + 14, i 38 (mod n);
"1" i is connected to i + 1, i 1, i 22, 69 (mod n);
"2" i is connected to i + 1, i 1, i 14, i 57 (mod n);
"3" i is connected to i + 1, i 1, i + 22, i 58 (mod n);
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"4" i is connected to i + 1, i 1, i 34, i 69 (mod n);
"5" i is connected to i + 1, i 1, i + 74, i + 58 (mod n);
"6" i is connected to i + 1, i 1, i + 14, i + 34 (mod n);
"7" i is connected to i + 1, i 1, i 22, i 74 (mod n);
"8" i is connected to i + 1, i 1, i + 50, i 14 (mod n);
"9" i is connected to i + 1, i 1, i + 62, i + 22 (mod n);
"10" i is connected to i + 1, i 1, i + 38, i 50 (mod n);
"11" i is connected to i + 1, i 1, i 57, i 62 (mod n).

4.2. Case 2. We consider the same Borel group as in Case 1, but with a different set
of generators. The parameters for the generators are tl 2, t2 3, t/1 1, /2 1.
That is, A ( ), B ( ). For this set of generators, diameter D 6. Since
tl, t2 0, (t, k) 1, and (t2, k) 1, the conditions for Case 2 in Table 3 are satisfied.
Furthermore, k 6, and t 2 is even. Accordingly, we choose

T B A’ B-1 (A-1)zi ( 41).
We thus have a CR representation with divisor q k 12. For any i E V, if i mod 12 =:

"0" i is connected to i + 1, i 1, i 5, i + 64 (mod n);
"1" i is connected to i + 1, i 1, i + 5, i 16 (mod n);
"2" i is connected to i + 1, i 1, i + 54, i 51 (mod n);
"3" i is connected to i + 1, i 1, i + 28, i + 67 (mod n);
"4" i is connected to i + 1, i 1, i 64, i + 77 (mod n);
"5" i is connected to i + 1, i 1, i + 18, i 33 (mod n);
"6" i is connected to i + 1, i 1, i 5, i + 40 (mod n);
"7" i is connected to i + 1, i 1, i + 5, i 28 (mod n);
"8" i is connected to i + 1, i 1, i + 33, i 54 (mod n);
"9" i is connected to i + 1, i 1, i 77, i + 16 (mod n);
"10" i is connected to i + 1, i 1, i 67, i 40 (mod n);
"11" i is connected to i + 1, i 1, i + 51, i 18 (mod n).

4.3. Case 3. We consider a smaller Borel Cayley graph with a 2, p 7, k 3,
n 21, diameter D 3, and the generators A ( 1), B ( 1). Note that, in this
case, we have tl 0, t2 1, q p 7, and n/q LCM (t2 t,k)/(tz t) 3.
According to Table 3, we choose T (A-B), aj AJ to produce a CR representation
with divisor, q p 7. Let V {0, 1,..., 20}. For any i V, if i mod 7 =:

"0" i is connected to i + 1, i 1, i 10, i + 6 (mod n);
"1" i is connected to i + 1, i 1, i + 7, i 7 (mod n);
"2" i is connected to i + 1, i 1, i + 10, i 6 (mod n);
"3" i is connected to i + 1, i 1, i + 6, i 5 (mod n);
"4" i is connected to i + 1, i 1, i + 9, i + 10 (mod n);
"5" i is connected to i + 1, i 1, i + 5, i 10 (mod n);
"6" i is connected to i + 1, i 1, i 6, i 9 (mod n).

We show this CR representation of the graph in Fig. 5.

5. Conclusions. Dense, symmetric graphs are good candidates for the interconnec-
tion topology of a multicomputer system. Being a class of symmetric graphs, Cayley
graphs are attractive. In our earlier research effort, we discussed the representations
and routing of Cayley graphs [2]. In this paper, we analyzed a special class of Cay-
ley graphs, the Borel Cayley graphs, which generates the densest known, constructive,
degree-4 graphs with diameter D 7,..., 13.
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FIG. 5. CR representation of BL2(Z7).

Borel Cayley graphs are defined over a group ofmatrices, the Borel matrices. That is,
nodes are labeled as matrices. There is no inherent, simple ordering of node labels and
no known computational routing algorithm with a constant or O(1) space commitment.
GCRs and CRs, on the other hand, are two existing topologies defined in the integer
domain and have systematic structure.

By transforming into GCRs [2], Cayley graphs have a systematic representation.
Furthermore, an optimal, time-efficient routing algorithm, called vertex-transitive routing,
is developed for Borel Cayley graphs [18]. However, the goal of developing an optimal,
space-efficient, distance-reduction routing algorithm is still elusive.

Through the discovery of inherent properties of degree-4 Borel Cayley graphs, we
proved that CR representations always exist for these graphs. A step-by-step algorithm
and examples are used to illustrate the transformation to CR representations. This spe-
cial case of a GCR includes a Hamiltonian cycle formed by edges connecting adjacent
integers in the modulo n labels, thus permitting a distance-reduction routing algorithm,
called CR routing. Given a Borel Cayley graph with n pk nodes (p is a prime and k
is a factor of p 1), this distance-reduction algorithm requires a small table of O(k).
However, the algorithm is suboptimal in the sense that a shortest path is not guaranteed.
Readers interested in CR routing are referred to [17].

Aside from facilitating the development of a space-efficient routing algorithm, the
existence of a CR representation for any degree-4 Borel Cayley graphs also partially
proved the long-standing conjecture that all Cayley graphs have Hamiltonian cycles [19].
Obviously, a CR graph, by definition, contains a Hamiltonian cycle. In fact, its class
structure and connection rules impose a stronger condition. By providing a CR rep-
resentaion, we have thus shown that all connected, degree-4 Borel Cayley graphs have
Hamiltonian cycles.
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