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Abstract 

A multihop, wavelength division multiplex (WDM)- 
based network, CayleyNet, is proposed for the real- 
ization of terabit lightwave networks. CayleyNets are 
attractive virtual topologies because they support the 
largest number of nodes for four-neighbor connection 
in  n range of diameters. In  general, CayleyNets are 
bi-directional and there are N = p x k nodes, where 
p is a prime and k is a factor of p - 1. Our  analy- 
sis shows that CayleyNet has similar performance an 
channel eJJiciency, total and user throughput as the 
Shuf leNet  with N = 4k x k. However, CayleyNet 
has the advantages of a more flexible network size and 
symmetric transmission distance. Compared with the 
N = 2 k  x k Shuf leNet  and toroidal mesh, the Cay- 
1eyiVet has a superior performance. 

1 Introduction 

With the recent advances in fiber optics, lightwave 
networks composed of optical fibers have embarked on 
an important role in telecommunications. In the real- 
ization of terabzt lzghtwave networks, wavelength divi- 
sion multiplexing (WDM) is used for large-scale con- 
currency on a single fiber [l]. There are two classes of 
WDM-based systems, stngle-hop and multt-hop [2, 31. 
While the single hop approach requires wavelength- 
agile transmitters and receivers, the multihop ap- 
proach, on the other hand, assigns fixed transmission 
frequency to each communication link, and therefore, 
eliminates the need for pre-transmission communica- 
t ions and rapidly tunable devices [3]. Each node has i t  

:)mall number of transmitters, transmitting and receiv- 
ing signals in an assigned and fixed wavelength. This 
arrangement allows simultaneous transmission among 
multiple users and thus attaining the terabit capacity 
of the network. As the word multthop suggested, a 
message may be required to route through intermedi- 
ate nodes, each retransmits the message on a different 

wavelength until it reaches the destination. 
The establishment of an efficient multihop light- 

wave network relies heavily on the proper assignment 
of wavelengths to communication links of each node. 
The goals are to ensure that there is a t  least one 
path between any pair of nodes and that the aver- 
age and maximum number of hops for a message to 
reach its destination should be small. Such assign- 
ments are based on an interconnection topology. Since 
this topology is not directly related to the physical 
connection of nodes, it is referred to as a virtual topol- 
ogy. A number of virtual topologies have been pro- 
posed [3, 41. Of the many options, ShuffleNet and 
the toroidal mesh are among the most popular topol- 
ogy [3]. Performance comparison of these two net- 
works are found in [4, 10, 111. 

For the ShuffleNet, there are N = p k  x k nodes ar- 
ranged in p E  rows and k columns [6, 51. Interconnec- 
tion between adjacent columns is a perfect shuffle [12] 
and transmission is uni-directional. Each node h a s  p 
transmitters and p receivers, each transmitting and 
receiving in a fixed and assigned frequency. Figure 1 
shows an N = 22 x 2 = 8 ShuffleNet. The symbol 
X i j ,  i , j  = 0 , .  . . , 7  corresponds to different transmit- 
ting frequencies. 

The toroidal mesh (or torus) is basically a 2- 
dimensional grid. In general, there are N = p x k 
nodes, where p and k are any integers. Applications 
of toroidal meshes are found in bot,h communication 
networks and parallel computers. A uni-dirdional 
version of the torus is implemented as the Manhat- 
tan Street Network [9] whereas a bi-directional case 
is studied in [13]. In applying the torus as a virtual 
topology for lightwave networks, there arc four or two 
transmitters and receivers, depending if the links are 
bi-directional or uni-directional. 

Whether it is a ShuffleNet or a torus, a virtual 
topology is for wavelength assignments. Physically, 
the network topology can be arbitrary, provided that 
direct transmission exists between adjacent node in 
the virtual network. Popular topologies in local and 
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(a) ShufneNet @) Star Implementation I 
metropolitan area networks such as the bus, star or 
tree networks are sufficient. As indicated in [4], Fig- 
ure 1 (b) shows a star implementation of the 8-node 
ShuffleNet . 

One advantage of the ShuffleNet and the torus is 
their simple routing algorithm. Since messages usu- 
ally require multiple hops to get to destinations, the 
goal of routing is to determine an appropriate outgoing 
links for each incoming message. A simple, distributed, 
self-routing algorithm that can identify shortest paths 
based only on address of the destination exists for the 
ShuffleNet and torus [6, 141. The maximum of the 
minimal distance (in hops) between two nodes is called 
the diameter[ l5] .  Obviously, a small diameter implies 
potentially a small communication delay. The diame- 
ter of an N = p k  x k ShuffleNet is 2k- 1 whereas that 
of an N = p x k torus is L f J  + 151. 

While the main disadvantage of a torus is its rel- 
atively large diameter, the disadvantages of a Shuf- 
fleNet include non-symmetric node distance and lim- 
ited number of nodes. Due to ShuffleNet’s uni- 
directional property, distance from node i to j does 
not equal to that from j to i .  In most cases, if node 
i sends a message to its immediate neighbor] the re- 
ply/acknowledge message needs to traverse more than 
half the diameter. Furthermore, the number of nodes 
for a ShuffleNet is restricted to N = pk  x k. When p is 
large, the possible number of nodes becomes limited. 
For example, when p = 4, there are only three pos- 
sible network configurations in the range of 1,000 to 
100,000 users. The number of feasible configurations 
reduces to two when p = 8 for this range of users. 
With the growing number of computer users and net- 
work size, the design of an efficient virtual topology 
that can accommodate thousands of nodes with min- 
imum delay is desirable. 

Figure 1: A n  8-Node ShuffIeNet and Its Implementation. 
In this paper, we propose a new interconnection .~ - .  

graph as the virtual topology for wavelength assign- 
ment in large-scale lightwave networks. This new 
topology is based on a special class of symmetric 
graphs, the Borel Cayley graphs [16, 171. For sim- 
plicity] we call the resultant network, the CayleyNei. 
These Cayley graphs are attractive candidates for vir- 
tual topologies because they are currently] the dens- 
est known degree-4 graphs for a range of diameters, 
D = 7,. . . ]  13. (The degree of a network is the num- 
ber of neighbors at each node.) This property means 
that for a degree-4 connection and the given range 
of diameter, CayleyNet connects the largest number 
of nodes known. This dense property also implies 
that the number of intermediate hops between any 
two nodes is small for CayleyNet. Furthermore, unlike 
the ShuffleNet, CayleyNet is a bi-directional network. 
This property implies symmetric node distance] i.e., 
the distance (in hops) from node i to node j is the 
same as from nodes j to i .  

2 CayleyNet 

The original definitions of Cayley graphs and Borel 
Cayley graphs are based on finite algebraic group the- 
ory [18]. In this section, we first review these original 
definitions and then present a more practical defini- 
tion. 

Definition 1 A graph C = ( V I  G )  is a Cayley graph 
with vertex set V if two vertices 01, vz  E V are adja- 
cent e V I  = vz  * g for some g E G where (VI *) is a 
finite group and G C V \ { I } .  G is called the gener- 
ator set of the graph and I is the identity element of 
the finite group (VI *). 
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This original definition of a Cayley graph requires 
nodes to be elements in a group but does not specify 
a particular group. A Borel Cayley graph is a Cayley 
graph defined over the Borel group of matrices: 

Definition 2 Let, V(p,a) be a set of Borel matrices, 
then 

V ( p , a )  = { ( E  :) : z = Qt (mod PI, 
y E (0, . . , , p - I}, t E (0, . . . , k - I}} 

where p and Q are fixed parameters, p is a prime, a 
E { 2 , .  . . , p  - l}, and k is the order of a .  That  is, 
uk = 1 (modp). 

in other words, the nodes of Borel Cayley graphs are 
2 x 2 Borel matrices, and matrix multiplication (mod 
p )  is the group operation *. Connections of a ver- 
tvx are generated by post-multiplying the vertex by 
elements in the generator set, G. The number of el- 
ements in G determines the number of neighbors a t  
a node and hence the degree of the graph. For bi- 
directional networks, the generator set G is closed un- 
der inversion. In general, we can construct a degree4 
C'ayleyNet by choosing the appropriate generator set 
(6 =I G I ) .  In this paper, we concentrate our efforts 
on degree-4 networks. 

For degree-4, bi-directional networks, we have 4 
elements (generators) in the generator set G,  A = 

('2 Y:>, B = (a: "), and their inverses. These 
(jayley graphs are attractive interconnection models 
because they are node-symmetrzc and are currently the 
densest known, degree-4 graphs. The node-symmetric 
property is useful for routing and is reviewed in Sec- 
tion 3. Figure 2 shows the Moore bound, Borel Cayley 
graphs discovered in 1988 and known graphs in 1987. 

The Moore bound is an upper bound for the number 
of nodes for a given degree and diameter. However, 
this upper bound has been proved to be unattain- 
able except for a few trivial cases where the diame- 
ter, D = 2 [19]. Given this general impossibility of 
constructing graphs with the Moore bound, there has 
been a longstanding search to find the densest regular 
graphs of a given degree and diameter. In a techni- 
cal report published in 1988, Chudnovsky et al. an- 
nounced that the Borel Cayley graphs are the dens- 
est known degree-4 graphs for a range of diameters, 
D = 7 , .  . . , 13. Since then, these Cayley graphs re- 
mained the densest for that range of diameter [20]. 

However, with vertices of the graph defined as 2 x 2 
matrices and connection specified through rnodulo p 
matrix multiplications, the original definition of Borel 
Cayley graphs is abstract and complex. In studying 
the degree-4 case, we have used their inherent prop- 
erties to develop a more practical definition i n  the in- 
teger domain. For simplicity, we call the resultant 
degree-4, bi-directional network, the GayleyNel.  

Definition 3 A degree-4, bi-directional, N = p x k 
CayleyNet where p is prime and k is a factor of 
p - -  1 is specified by choosing two generators t l , t 2  E 
(0 , .  .., k-I}, t l  # t 2 ,  and an element a E {2, .  . . , p - 1  
} such that ak = 1 (mod p ) .  Connections of nodes are 
defined as: for any node j E V = ( 0 , .  . . , N -- l}, if 
j = i (mod k), 

j - j + a; ,  j + CY;', j + Pi ,  j + O;', (mod N )  

where 

(Yi = < i + t l  > k + < a ' > p  k - i; 
afl  = < 2 - t i  > k  + < - Q ~ - ~ ~  >p k - i; 

@T1 = < i - t 2  > k  + < -ai- t2  > p  k - i; 
(1)  pi = < i + t z  > k  + < Qi >p k - i; 
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(a) CayleyNet (b) Star Implementation 

Figure 3 :  A 21-Node CayleyNet and Its Implementation. 
the symbol - represents "adjacent to" and < i + t > k  

denotes (i + t )  (mod k). 

This new definition of Bore1 Cayley graphs is actu- 
ally a Generalized Chordal Ring (GCR) representa- 
tion of the graph. Generalized Chordal Rings are 
integer-domain graphs in which nodes are divided into 
k classes according to modulo k arithmetics. Nodes 
belonging to the same congruence class i (mod k )  have 
the same connection constants, aii ,pi ,  af',p,T'. In 
earlier reports, we have proved that any Cayley graphs 
can be transformed into an a GCR with k classes. The 
connection constants, a i ,  pi, a i ' ,  ,Br' corresponds to 
the generators, A, B A-', B-' of the original def- 
inition. The resultant transformation is isomorphic 
to the original graph and hence retains all properties 
including the node-symmetric and dense properties. 
Readers interested in the proof and transformation al- 
gorithm are referred to [21, 221, 

As an example, consider a CayleyNet with p = 7, 
k = 3 and N = 21 nodes. We choose a = 2 (ak  = 
1 modp),  t l  = 0 and t z  = 1. With these choices, the 
diameter D = 3. 

Connections can be defined as: For any j E V, if 
j m o d 3 =  i :  j isconnected t o j + a i , j + a : ' , j + p i ,  
and j + /3,:' (mod N ) ,  where according to Equation 1 

-3 for i = 0; 

9 for i = 2;  

3 for i = 0; 

-9 for i = 2;  
6 for i = 1; ai '  = 

-10 for i =  0; 

-7 f o r i  = 2 .  

4 for i = 0; 

10 for i =  2;  
7 for i = 1; p,~' = 

Figure 3(a) shows an N = 7 x 3  = 21 CayleyNet rep- 
resented in the integer domain as GCR graphs. Simi- 

lar to the ShuffleNet, the CayleyNet is only a virtual 
topology. Physical implementation is arbitrary. Fig- 
ure 3(b) shows a star-implementation. But unlike the 
ShuffieNet, CayieyNet is bi-directional and there are 
four transmitters and four receivers a t  each node. 

3 Routing for CayleyNet 

Since CayleyNet is a multi-hop network, the pur- 
pose of routing is to identify intermediate nodes be- 
tween and source and destination pair. Ideally, an 
optimal routing algorithm identifies the shortest path 
between any two nodes thorough a computational 
scheme with a space (storage) requirement indepen- 
dent of the graph size, i.e., space complexity is of O(1). 
However, to our knowledge, such an algorithm does 
not exist for CayleyNet. In this section, we review 
an routing algorithm, the Vertez-Transitive Routing, 
that identifies shortest path with a table of O ( N )  a t  
every node. 

Vertex-Transi tive Routing exploits the node- 
symmetric (or vertex-transitive) property of Cay- 
leyNet. By definition, a node-symmetric graph implies 
that there is an automorphism (mapping) that maps 
vertex i to vertex j for any i , j  in the vertex set [la]. 
A useful interpretation of this property for CayleyNet 
can be summarized in the following proposition [22] .  

Proposition 1 Let i = mlk + c1, j = mzk + C Z ,  and 
i' = m'k + c'. If i connects to j through a sequence of 
generators a ,  p, . . ., then i' connects t o  j' through the 
same sequence of generators, where 

j' =< m ' + a < C ' - c ' > k  (mz-ml)  >p k+ < c'-cl+cz > k  . 
( 2 )  
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Given source i = mlk + cl and destination j = mzk + c2.  

While ( i  # j) do Steps 1-4 
Step 1: Identify new destination, 

Step 2: 
Step 3: 

j' =< ak-cl(mz - ml) >p k+ < c2 - C 1  > k  

From row j' of database, determine which link to take. 
Identify new source, i' = mk + c and 
m = 1, 
ni = 1, 
ni = p -  < a k - t l  >p,  

m = p -  < & k - t 2 : y 2  >p, 

c =: t l ,  

c =: t 2 ,  

if link a was chosen 
if link p was chosen 

c =< - t 2  > k ,  

c =< - t l  > k ,  i f a - l  was chosen 
if p-' w a s  chosen 

Step 4: i = i' and j = ,j' 
Table 1: Vertex-Transztive Routing for  CayleyNet. 

I 

paths between the two nodes, namely: 

path 1 : 0 - P 4 5 10 5 16 

path 3 :  0 - P - l  11 -% 2 16 

-1 P - 1  

path 2 :  0 18 - 1 5 16 

The proof of the above proposition is included 
in [22] and is not repeated here. This interpretation 
of vertex-transitivity is useful for routing. It allows us 
to transforni the original problem of routing between 
nodes i and j to  a new problem of rout#ing between 
node i' = 0 and j', where using Equation 2 

j'  =< a < k - C ~ > k  (1712 - rill) >p < c' - c1 + c2 > k  . 
(3) 

This suggests that a table-based routing algorithm 
can be used to determine all shortest paths between 
any two nodes. At each node, we store a table with 
N - 1 rows and 4 columns. Row i of the table indicates 
all optimal links from node 0 to node i. We empha- 
size that. the same routing table is used a t  every node. 
When a message is generated at source i to destination 
j ,  this is equivalent to routing between 0 and j ' where 
j' is identified by Equation 3. Then using row j ' of 
the routing table, we can determine the link that cor- 
responds to a shortest path. Once a link is identified, 
we can find the neighboring node by using the ap- 
propriate connection c,onsta,nts, a ,  CY-', 0, p-' for the 
corresponding class. We then have a new problem of 
routing between this neighboring node and j ' .  This 
procedure is repeated until the source and destination 
are the same. Table 1 con:sists of a pseudo-code for 
the algorithm. We observe that, this routing algorithm 
finds all possible shortest path(s) and in addition, is 
capable of determining the entire path from the source 
using the same routing table. 

As an example, we conrjider the CayleyNet with 
p = 7 and k = 3,  given in section 2. There are N = 
p x IC = 21 nodes. At each node, we store a size 20 x 
4 routing table shown in Figure 4. Again, row i of 
the table indicat,es all optimal links from node 0 to 
node i. To illustrate that vertex-transitive rout'ing is 
capable of identifying all optimal shortest paths, we 
use the algorithm to route #a message from node 0 to 
16. According to  Figure 3(a) there are three shortest 

At iteration 0, i = 0 and j = 16 According to Step 
1 of Table 3,  we identify j ' as 16. From row 16 of the 
routing table, there are three choices corresponding to 
the three shortest paths. Arbitrarily we choose link I? 
According to step 3, the new source i' = 4 Now at 
iteration 1, we have i = 4 and j = 16 Step 1 iden- 
tifies j ' to be 6. From row 6 of the routing table, we 
pick link C Y ,  which determines the new source z' = 3 
Then at iteration 2,  j is 3 and i IS 6 For tliis source 
and destination pair we have j' = 3, which tileans link 
CY should be taken according to row 3 of the routing 
table. The equations in step 3 then determine i' to 
be 3. Finally a t  itc,ration 3 ,  both source and desti- 
nation are 3 and the algorithm tcxrminates. We have 
thus successfully found path 1 ( d  0 a )  1ietwt.en 0 arid 
16. The iterations of this example are surnniarized in 
Table 4. Recall that a t  iteration 0,  there are tliiree 
optimal links, p, c y - ' ,  p-'. We have arbitrarily (cho- 
sen p which leads to shortest path 1 Had we chosen 
link a-', we would have found path 2.  And similarly, 
the choice for link p-' will lead to path 3 .  

4 Performance 

In this section, we compare the performance of Cay- 
IeyNet with other popular networks, such as the Shuf- 
fleNet and Torus. Analogous to the work in [5 ]  and [6], 
the performance attributes considered are channel ef- 
ficiency, 8;  network throughput, C ;  and user through- 
put, c. Assuming the traffic load is uniformly dis- 
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Figure 4:  A Routing Table for a CayleyNet 

ributed, these attributes are defined as: 

3 = E[numbe: of hops] c = 3 w  
c = q w  

where W is the total number of channels in the net- 
work and w is the number of channels per user. For an 
N = p k  x k ShuffleNet, according to [6], the channel 
efficiency, 7.5 is 

2(P - 1) (Pkk - 1) 3.5 = k p k  ( p  - 1) (3k  - 1) - 2k ( p k  - 1) 

The total number of channels, the number of chan- 
nels per user, the total and the user throughput are 
respectively [6] , 

Ws = k p k + '  
w.5 = p 

cs = P 3.5 

( 4 )  C.5 = k p k + '  V S  

For an N = p x k bi-directional toroidal mesh, the 
channel efficiency, 3~ is 

4 
v7T- 

The total number of channels, the number of chan- 
nels per user, the total and the user throughput are 
respectively, 

P + k  

WT = 4 p k  

CT = WTW (5) 
WT = 4 

C T  = 4 W  

For an N = p x k bi-directional CayleyNet, we 
do not have a closed form solution for the expected 

4 16 a 
3 6  a 
3 3 -- -- -- 

Table 2:  A Summary of Iterations 
number of  hops. Instead, we use the average path 
length obtained by our computer implementation of 
the Vertex-Transitive routing algorithm to determine 
channel efficiency, qc. For the total number of chan- 
nels, the number of channels per user, the total and 
the user throughput, we have 

Assuming a 1-Gb/s user transmission rate, the 
channel efficiency and network throughput for differ- 
ent sizes of the ShuffleNet (S-N, p = 2 ,4 ) ,  degree-4 
toroidal mesh (T-M) and degree-4 CayleyNet (C-N) 
are investigated and plotted in Figures 5 and 6. In 
the case of the torus, we have assumed the best con- 
figuration in which p = k = &?. 

Of the degree-4 networks (i.e, C-N, T-MI and S-N 
with p = 4), we observe that the CayleyNet and the 
ShuffleNet with p = 4 have the best and comparable 
performance. However, we recall that the ShuffleNet 
has non-symmetric node distance and limited number 
of nodes. In the range of 1,000 - 100,000 nodes, there 
are only three possible configurations for p = 4 Shuf- 
fleNet. In other words, the bi-directional Cayleynet 
provides similar performance to the p = 4 ShuffleNet 
without the problems associated with ShuffleNet. 

The p = 2 ShuffleNet provides more possible net- 
work configurations. However , because of its smaller 
degree, its performance is significantly less than that 
of the CayleyNet. The toroidal mesh has the most 
flexible network size, N = p x k where p ,  k can be any 
integers. Nevertheless, because of its relatively large 
path length, the toroidal mesh has the worst perfor- 
mance compared with the ShuffleNet and CayleyNet. 

5 Conclusions 

Wavelength division multiplexed (WDM) systems 
are useful in the realization of terabit lightwave net- 
works. For WDM systems, there are the single-hop 
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Figure 5: Channel Ef ic iency  vs. Size of Networks 

pre-transmission communication and wavelength-agile 
transmitters, the multihop approach is readily imple- 
mentable [5]. In a multihop network, a user has a small 
number of transmitters and receivers, each transmit- 
ting and receiving signals in a fixed and assigned wave- 
length. The wavelength assignment is based on a vir- 
tual topology. Existing examples include the Shuf- 
fleNet, MSN, and hypercube. 

An efficient virtual topology implies that a large 
number of users are connected through a small number 
of hops. Of the many topologies, the ShuffleNet and 
toroidal mesh are among the most popular options [3]. 
However, ShuffleNet’s limit ations and disadvantages 
include a restricted number of nodes, p E  x k ,  and an 
asymmetric transmission distance between two nodes. 
In most cases, if node i connects to node j in one hop, a 
message from node j to node i takes more than half t,he 
diameter. The toroidal mesh, on the other hand, has 
symmetric transmission distance and a very flexible 
network size. However, its relatively long path length 
iinplies messages need to route through large number 
of intermediate nodes and therefore not suitable for 
1 ar ge-scale networks. 

To alleviate these problems, we propose the use of 
C‘ayley graphs from the Bore1 group [l6]. These net- 
works are attractive because they have been known as 
the densest degree-4 graphs for an interesting range 
of diameter, D = 7 , .  . . ,  13 [16, 171. ‘This property 
implies that the number of hops between two nodes is 
small, compared with the size of the network. Further- 
more, it is a bi-directional network with four trans- 
mitters and receivers a t  each node. Analogous to the 
uni-directional ShuffleNet, we called the resultant net- 
work, CayleyNel. In general, a CayleyNet has p x k 

nodes, where p is a prime and k is a factor of p - 1. 
This more flexible network size is another advantage 
of the CayleyNet. 

We further evaluate performance of the CayleyNet, 
ShuffleNet ( p  = 2 ,4 )  and toroidal mesh in terms 
of channel efficiency, network and user throughput. 
We found that the CayleyNet provides similar perfor- 
mance as the p = 4 ShuffleNet with the added advan- 
tages of (i) a symmetric transmission distance and (ii) 
more available network size. When compared with the 
p = 2 ShuffleNet and toroidal mesh, CayleyNet has su- 
perior performance. However, we caution readers that 
this is achieved at  a higher cost of bi-directional links 
and more complex routing algorithm. Finally, a s  it 
has been noted in [4], we emphasize that there is no 
ideal universal topology. An efficient topology is ap- 
plication dependent and is subject to various physical 
and economical constraints. One of the purposes of 
this paper is to suggest CayleyNet as a design option 
in pursuit of terabit lightwave networks 
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