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Abstract-Dense, symmetric graphs are useful interconnection models 
for multicomputer systems. Borel Cayley graphs, the densest degree4 
graphs for a range of diameters [I], are attractive candidates. However, 
the group-theoretic representation of these graphs makes the develop- 
ment of efficient routing algorithms difficult. In earlier reports, we 
showed that all degree-4 Borel Cayley graphs have generalized chordal 
ring (GCR) and chordal ring (CR) representations [Z], [3]. In this paper, 
we present the class-congruence prciperty and use this property to de- 
velop the two-phase routing algorithm for Borel Cayfey graphs in a spe- 
cial GCR representation. The algorithm requires a small space complex- 
ity of Ob + k)  for n = p x k nodes. Although suboptimal, the aigorithm 
finds paths with length bounded by 20, where D is the diameter. Fur- 
thermore, our computer implementation of the algorithm on networks 
with 1,081 and 15,657 nodes shows that the average path lengh is on the 
order of the diameter. The performance of the algorithm is compared 
with that of existing optimal and suboptimal algorithms. 

Index Terms-Generalized chordal ring, interconnection network, 
parallel computer. 

I. INTRODUCTION 
A variety of symmetric graphs such as the hypercube and toroidal 

mesh, have been proposed as interconnection models 141, [SI, [6], 
[7], [8], [9]. Systematic node labeling of these graphs can provide the 
bases for routing algorithms. In these systematic instances, labels of 
the source and destination node can be used to determine a next step 
which optimally reduces the distance to the destination. These opti- 
mal, distance-reduction routing schemes are easy to implement and 
thus making these graphs attractive. However, interconnection graph 
density becomes very important for massively parallel systems and 
unfortunately these systematically labeled graphs are not the densest 
graphs. (A dense graph has large number of nodes with a small di- 
ameter and degree. The diameter is the maximum of the minimal 
distance between all node pairs. The degree is the number of neigh- 
boring elements of a node.) 

A special class of symmetric graphs, Borel Cayley graphs are cur- 
rently, the densest known, degree-4 graphs for a range of diameters 
[I]. '  The definition of these graphs is reviewed in the next section. 
Originally, Borel Cayley graphs are defined over a group of matrices, 
which lack a simple ordering. Furthermore, connections are defined 
through modular matrix multiplication. In other words, routing or 
path determination between nonadjacent nodes is not trivial. The 
question arises whether ordering the nodes in some way and labeling 
them with integers can lead to an efficient routing algorithm, pref- 
erably based on a formula. That is, is there an optimal, distance- 
reduction formula based on node labels? None has been found for 
Borel Cayley graphs. 

In this paper, we present the proof of the class congruence property, 
a property we discovered to be pertinent to a special representation of 
Borel Cayley graphs. Based on this property, we developed a two-phase 
routing algorithm that requires a small space complexity of O(p i k) for 
n = p X k nodes. Although suboptimal, the algorithm finds paths with 
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length bounded by 20, where 0 is the diameter of the network. Fur- 
thermore, our computer implementation of the algonthm on networks 
with 1,081 and 15,657 nodes shows that the average path length is on 
the order of the diameter. The performance of the algorithm is then 
compared with that of the existing algorithms 

This paper is organized as follows: In Section 11, we review the 
definitions of GCR, CR, Cayley graphs and Borel Cayley graphs, and 
restate the proposihons on the representations of the general Cayley 
and Bore1 Cayley graphs. An example from Borel Cayley graph is 
used to illustrate these representations. In Section 111, we discuss the 
class-congruence property (CCP), a property pertinents to Borel 
Cayley graphs in a special GCR representation. Section IV presents 
the two-phase routing algorithm and use an example to illustrate the 
algorithm. Section V compares the performance of the algorithm with 
existing optimal and suboptimal algorithms. Finally in Section VI, 
we present a summary and conclusions. 

11. REVIEW 
In this section we review the definitions of generalized chordal 

rings (GCR), chordal rings (CR) [9], [7], Cayley graphs [lo], and 
Borel Cayley graphs [l]. 

A. GCR and CR Graphs 
DEFINKION 1 A gruph R is a generalized chordal ring (GCR) Lf 

nodes of R can be labeled with integers mod n, the number of 
nodes, and there is a divisor q of n such that node i is connected 
to node J iznode i + q (mod n) is connected to node j + q (mod n) 
A chordal ring (CR) is a special case of GCR, in which every node 
has +1 and -1 modulo n connections In other words, a CR is a 
GCR and, in addition, all nodes on the circumference of the ring 
are connected to form a Hamiltonian cycle 

B. Cayley and Borel Cayley Graphs 
The construction of Cayley graphs is described by finite 

(algebraic) group theory. Recall that a group (V, *) consists of a set 
V which is closed under inversion and a single lay of composition *, 
also known as group multiplication There also exists an identity 
element I E V. 

DEFINITION 2. A graph C = (V, G) is a Cayley graph with vertex set 
v iftwo vertices v,, v2 E v are adjacent W vI = v, * g for some 
g E G where (V, *) is afinite group and G c V \ {I} .  G is called 
the generator set of the graph and I is the identity element of the 
JTnife group (Y, *). 

The definition of a Cayley graph requires nodes to be elements in a 
group but does not specify a particular group. A Borel Cayley graph 
is a Cayley graph defined over the Borel subgroup of matrices: 

DEFINLTION 3. Let V,,,, be a set of Borel matrices, then 

where p and a are fix parameters, p is a prime, a E Z,, \ { 0, 1 ), 
and k is the order of a. That is, ak = 1 (mod p). 

In other words, the nodes of Borel Cayley graphs are 2 X 2 Borel 
matrices, and modular p matrix multiplication is chosen as the group 
operation *. Note that p and a are fixed parameters and the vari- 
ables of a Borel matrix are t E Z k  and y E Z,. In other words, there 
are n = IVI = p x k nodes. By choosing specific generators, Chud- 
novsky et al. [ l ]  constructed the densest, nonrandom, degree-4 graph 
for diameter D = 7, . . ., 13 from Borel Cayley graphs. It is also worth 
noting that the Borel Cayley graph discovered by Chudnovsky with / '  
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D = 1 I has n = 38,764. In our research, we have discovered yet an- 
bther denser Borel Cayley graph with n = 41,83 1 for D = 1 1 .  

Borel Cayley graphs are defined over a group of matrices, which 
lack a simple ordering that is very helpful in the development of ef- 
ficient routing schemes. Furthermore, in this original matrix defini- 
tion, there is no concise description of connections. Adjacent nodes 
can be identified only through modular p matrix multiplications. The 
problem of finding an optimal path between nonadjacent nodes is not 
trivial. In earlier reports, we proved that all Borel Cayley graphs can 
be represented by GCR [2] and CR graphs [3]. These GCWCR repre- 
sentations are useful for routing because nodes are defined in the 
integer domain and there is a systematic description of connections. 
We restate these propositions as follows: 

PROPOSITION 1. Allfinite Cayley graphs have GCR representations 

PROPOSITION 2. All degree-4 Borel Cayley gruphs have CR represen- 
tations. 

The proofs of these propositions are included in [ 2 ] ,  [3] and 
therefore not repeated here. Basically, these representations are 
achieved by choosing a transform element T and class representing 
elements ai, i = 0,  . . ., q - 1 .for the q classes of a GCRKR from the 
vertex set. The choices of these elements are mainly arbitrary for the 
GCR case; and more specific for the CR case [2 ] ,  [3]. 

C. AnExample 

As an example, consider a Borel Cayley graph with p = 7, a = 2, 
k = 3, and n = 21 nodes. For undirected, degree-4 Cayley graphs, the 
generator set G = {A, B, A-', B-'1. Suppose 

0 I 2 3 4 S I 6 1  

-10 7 10 6 9 S -6 
6 -7 -6 -S I O  -10 -9 

the diameter D = 3. 

form element 
To obtain a GCR representation, we arbitrarily choose the trans- 

with T7 = I and class-representing elements 

a , = ( ;  p) 
for class i (see GCR algorithm in [2]). With these choices, the divisor 
q = k = 3 and V = (0, 1, . . ., 20). Connections can be defined as: For 
any j E V, i f j  mod 3 = i : J is connected to j + a;, j +a;', j + pi. and 

j + PI' (mod n),  where the GCR constants a,, a;', pi and pf' are 
listed in Table I. This GCR rcprcscntation is depicted in Fig. I .  

TABLE I 
THE GCRICR CONSTANTS 

-10 
-6 -4 

2 -9 -7 

' I  CR Constants I 

I463 

GCR Representation CR Representation 

Fig. I .  A Borel Cayley graph v(7.2) 

To obtain a CR reprlesentation, we choose the transform element 
T = A-IB where T3 = I and class-representing elements a, = A' for 
class i. With these choices, the divisor q = 7 and connections can be 
defined as: For any j E V, if j mod 7 = i : j is connected to j + 1, j - 1, 

j + x, a n d j  + Ai (mod n ) ,  where the CR constants, x and Ai are listed 
in Table I.  We show this CR representation of the graph in Fig. I .  

111. CLASS-CONGRUENCE PROPERTY (CCP) 
In the transformation of a Cayley graph to a GCR, the choices of 

the transform element lr and the class representing elements a, are 
arbitrary (see GCR algorithm in [ 2 ] )  By chosing specific choices of 

T = ( h  ;) 
and 

for a Borel Cayley graph, we can provide a formulation of the GCR 
constants. This result is summarized in the following proposition: 

PROPOSITION 3. For any Borel Cayley graph with n = p x k, and ak = 1 
(mod p), we assume the generators A, B and their inverses to be: 

If we choose the tran,sform element 

T = ( b  ;) 
and the representing element of class i as 

(: :)2 

we have a GCR representation of the graph with divisor q = k,  and 
the graph is deJned in GCR terms as: if vertex j belongs to class i, j is 
connected to j + a,, j +a;', j +pi, and j + pi' (mod n), corre- 
sponding to generators A, A-I, B, and B-', where 

q - i; ai = e: i + t, + < a'y, >/? 

a;' = .: i - t > + < -a'-'lyl >/, 4 - i; 
(1) 

' 4 

pi = <: i + t2 + < a'y, >,, q - i; 

P;' = i - t 2 > 4 + < -a'-'2 Y2 >,, 4 - i; 

and < i + C-, denotes (i  + t )  (mod 4) .  
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PROOF. By transforming the graph with 

and choosing the representing element of class i as 

[: 
we paitition the graph into q = k classes: 

According to this partition and the mapping defined in [2], matrix 

is mapped to i+ yq. The representing element of class i is 

and 

According to the partition, these imply that i is connected to 

< + t, >', + < aryl >,> q, < z - t1 >(/ + < - P ' y 1  >p 4, 

< 1 + t2 > q  + < a'y, >[, q, and < I - t, >q + < -a'-f2y2 >,, q 

The formulae for a,, a;', p , ,  p;' thus foIlow 

In other words, by choosing the transform element 

T=(k i). 
and the representing element of class i to be 

we impose a natural numbering system for the matrices in the group. 
If is this numbering system that allows us to deduce analytic formulae 
for the GCR constants, a,, PI,  a;', and f for class i. We notice 
that these constants are different for the different classes. However 
they are congruent modulo q. This implies that every class has the 
same class-connectivity and hence we name this property the class- 
congruence property (CCP). 
PROPOSITION 4. The class-congruence property (CCP) The GCR 

constants associated with a Borel Cayley graph with 

and 

are congruent modulo q, where q zs the number of classes in the 
GCR. Speclficatly, 

c, = a ,  (modq)=t ,  V I ,  

c, = a;' (mod q)  = q - t, V,, 

c3 = PI (modq)=t2 Vt, 

c, = p;' (mod q )  = q - t2 VI  

(2) 

The proof of this proposition zs simply the modulo q arithmetic of 
the connec&7. constants a , ,  a;', P I ,  and p;' in (1) 

We can verify (I)  and (2) with the 21-node Borel Cayley graph 
described in Section 1I.C In that section, we have a GCR representa- 
tion of the graph with choices of T and a, that match the specifica- 
tions in Propositions 3 and 4 A simple substitution shows that the 
values of a,, a;', P I ,  and P;' in Table I satisfy (1) and (2) In other 
words, even though the GCR constants, a,,ay',/3,, and p;' are 
different for the three classes, they are congruent modulo q = 3 This 
property is useful for routing because it facilitates the decoupling of 
the original graph into two smaller subgraphs We call the resulting 
algorithm the two-phase routzng algorithm 

IV. TWO-PHASE ROUTING 
In general, the goal of routing is to send messages between pairs 

of nodes. There are two aspects: path identification between nonad- 
jacent nodes, and how to resolve conjicts when multiple messages in 
a node have the same outgoing links. In this paper, we discuss the 
first aspect: path identification. 

Path identification is a trivial problem for graphs with path- 
defining Iabels that implicitly define shortest paths between vertices. 
In this case, optimal routing or shortest-path identification can be 
achieved computationally with an algorithm that has a space re- 
quirement independent of graph size, Le., its space complexity is 
O(1). The toroidal mesh [ l l ]  and hypercube [6] are examples of such 
graphs. However, there is no existing path-defining label for Borel 
Cayley graphs. 

When Borel Cayley graphs are represented in the special GCR 
representation specified in Proposition 3, two optimal routing (path 
identification) schemes become feasible. The first algorithm is a pro- 
gressive, table look-up scheme that can be applied to any network in 
the integer domain [12]. The second algorithm, called vertex transi- 
tive routing, is based on the symmetric property of the network [ 121. 
Both algorithms are optimal in the sense that shortest paths are guar- 
anteed. However, both have a large space commitment of O(n) at 
each node, or O(n2) for the entire network of size n. To reduce the 
space-commitment, we propose a suboptimal routing algorithm the 
two-phase routing for Borel Cayley graphs in the special GCR repre- 
sentation specified in Proposition 3. The algorithm is suboptimal 
only because shortest paths are not guaranteed. The performance of 
the algorithm is evaluated in Section V. 

We call this algorithm "two-phase'' routing because the original 
large Borel Cayley graph with n = p x k nodes is divided into two 
smaller graphs. Such decoupling is made simpler because of the 
class-congruence property of Borel Cayley graphs described in Sec- 
tion 111. The algorithm is divided into two phases. Jn Phase I, we 
have a degree-4 GCR graph of size n1 = k. In Phase 11, we have an- 
other graph with size n, = p .  In essence, Phase I deals with class-to- 
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class routing while Phase I1 routes messages within the same class. A 
message is first sent to an arbitrary node of the same class as the final 
destination, then in Phase 11, it is routed to the destination node. We 
describe these two phases separately: 

A. Phase I: Class-to-Class Routing 
This phase of the algorithm is responsible for routing messages 

from the source node to an arbitrary node of the destination class. We 
can, therefore, consider a smaller graph with size nl = k for the q = k 
original classes. Through the use of the class-congruence property, 
we proceed to show that this smaller graph is actually a GCR with 
one class. 

Proposition 3 provides explicit formulae for the connection 
constants a,, a;', p,, p;' for class 1 of a Borel Cayley graph in a 
special GCR representation. Furthermore, Proposition 4 (the class- 
congruence property) shows that: 

a .  I = C. I = t .  I ?  a-I I = c 2 -  - -tl, pi = c3 = t2, p;' = c4 = -t2(mod q )  V j  

The fact that c1 to c4 are independent of class implies the "class connec- 
tion'' pattern of the original graph is the same for nodes in different 
classes. For any node j in class i, j is connected to nodes in class i + ti, i 
- tl, i + t2, i- t2 (mod q) through generators A, A-I, B, and B-', respec- 
tively. That is, each node in Phase I which actually represents a class in 
the original graph has the same connectivity constants, cI  to c4. In other 
words, we have a smaller and simpler GCR graph with k nodes and one 
class. We can, therefore, apply the vertex-transitive routing algorithm 
(see [ 121 for details) for this smaller GCR graph. With only k nodes, the 
space complexity for this phase is reduced to k x 6 and the time com- 
plexity is O(Dl), where D1 is the diameter for this phase, DI I D ,  and 6 
is the degree of the graph. With only one class, vertex transitivity be- 
comes simple: If i connects to j by a sequence of generators, 0 connects 
to j' = j - i through the same sequence of generators. 

Besides using the vertex-transitive algorithm in this phase, the fact 
that this phase involves a simple GCR with just one class facilitates 
an entirely computational algorithm without any storage requirement. 
Such an algorithm is described as follows: 

A. I A Compututionul Phase I Algorithm 

From Proposition 4, we assume a GCR graph with k nodes and 
just one class. That is, for any vertex i in this phase, i is connected to 
c I ,  c2, c3, and c4, where 

ci = t], c2 = -I{,  C% = t 2 ,  c4 = -t2. 

In other words, we have a simple GCR with k nodes and the con- 
stants are: *tl, &t2, and diameter is D l .  Without lost of generality, we 
assume tl > 1,. Then for any node r E V. 

r = mltl + m2t2 (mod k) 

where -DI I m l ,  m2 S DI and lmll + Im21 I Dl. The problem of routing 
is the same as identifying m, and m2. We define the following con- 
stants I , ,  12, and Q such that 

Then 

r = miti + m2t2 (modk) ~ 

r + l k  or 

r + 1 k = m,tl 4- %t2 

=(mq3Qf)t, -td 0 1 . Q ' I Q , ] m 2 f 2 ~ = Q f t i + d  

- Q - 1 C. Q' 1. Q 

*m,  = ( r + l k ) / t ,  -Q' 

( r  + Ik) - mltl 
m2 = -- 

f2 

Similarly, 

r - (1 + 1) k = mitl + m2t2 

( l + l ) k - r  

tl 

( 1  + I)k - r +m,t, 

r2 

j -mi = -- - Qf - Q - q l Q ' S Q  

-%=- 

We summarize this iterative algorithm in Table 11. There is no storage 
space required for this algorithm. However, the time complexity is of 
O(D:). Once a message reached a node in the same class as the final 

destination, either by the: vertex-transitive algorithm or by the compu- 
tational scheme, we proceed to the second phase. 

TABLE I1 
A COMPIJTATIONAL PHASE I ALGORITHM 

for ( I  = 0; 1 I II + 12; ++ 1) 
for (e'= -Q - q; Q S  Q; ++Q) 
( ml = ( r  + I k )  / ti - Qf; 

if ( r  + I k - mltl) mod f2 = = 0 
{ m2 = ( r  + I k - mltl)/ f2; 

print (mi, m d l  
( I  + 1)lc - r 

m1=--- Q'; 
ti 

if ( ( I  + 1) k -- r + mltl) mod t2 = = 0 
{ m2 = ( ( E  -I- 1 )  k - r + mltl)/t2; 

I print (-ml, --md 1 

B. Phase 11: Within Class Routing 
In this phase, we consider routing messages within the destination 

class. We assume both source and destination nodes belong to the 
same class. In other words, the source node i = mlq + ci  and the des- 
tination node j = "29  + c2, where ci = c2. Our original vertex- 
transitive property (see [12] for details) becomes: if i connects to J 

through a sequence of generators, then vertex 0 connects to vertex j' 
through the same sequence of generators, where 

j f = < a k ~ ' ~ ( m 2 - m l ) > / , q + < c 2 - c l  >q 
(3 ) 

where < n >,, denotes n (mod p) .  That is, if i and J are different by some 
multiple of q, j' is also some multiple of q. Because of this property, 
we can establish a database that stores all the paths from node 0 to 
nodes q, 29, .,., 0, - 1)q. Routing between any nodes i and j can be 
achieved by looking up the corresponding row J' of the table. To con- 
clude, this phase needs a table of O(p) and the time complexity is of 
0(D2) wherep is the number of nodes and D2 5 D is the diameter in this 
phase. The following example illustrates this algorithm. 

C. AnExample 
In this example, we find a path between vertex 0 and 16 of the Borel 

Cayley graph in GCR representation described in Section ILC. This 

' p  q> = < - ( I  (W -mi 1 

where 0 I 1  < lI + 12. Consider 
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set2 set 3 set4 
7 1 3 
8 2 6 
8 8 9 

574 576 5 7 2  
6 6 6 
7 7 7 

Borel Cayley graph hasp = 7, n = 21 nodes, q = 3 classes, diameter D = 
3, and the connectivity are defined as: For any i E V, if i mod 3 =: 

" j "  : i is connected to i + a,, i +a;', i + p j ,  i + p7'; 
"0" : i is connected to i + 3, i - 3, i + 4, i - 10; 
"1" : i is connected to i + 6, i - 6, i + 7, z - 4; 
"2" : i is connected to i - 9, i + 9, I + 10, i - 7. 

(4) 

Furthermore, 

cl =ai (modq)=O V j ;  

c2 = a:' (mod q)  = 0 Vi; 
c 3 = p j  (modq)= l  Vj; 

cq = p7' (mod q)  = -1 V j .  

In Phase I, we have a simple GCR with three nodes where each 
one connects to k1. In other words, routing can be achieved in a sin- 
gle step; taking path B for +1 and taking path B-I for -1. In this ex- 
ample, source node i = class (0) = 0, destination node j = class (1 6) = 
1. We apply our vertex-transitive formula with j' = < j - i ><, = 1. 

That is, taking path B gets to the correct destination class. Furthes- 
more our GCR constants show that taking path B corresponds to +4 
in class 0. Hence our problem now becomes finding a path between 
node 4 and node 16, both of which belong to class I .  

In Phase 11, we apply our vertex-transitive algorithm to a graph with 
p nodes. Accordingly, we have a table of size (p - 1)D. Such a table is 
shown in Fig. 2. We apply our vertex-transitive formula (3) for this 
phase and find j' = 2q. We then look up row 2 of the database and find 
the corresponding path to be: AA. This concludes the routing process 
and we have found path BAA between nodes 0 and 16. 

Fig. 2. A phase 11 routing table for BLz(Z7). 

V. PERFORMANCE EVALUATION 

We use a computer program to implement the two-phase routing 
algorithm. To evaluate the performance of the algorithm, a message is 
sent from an arbitrary source node, say node 0, to all other nodes in 
the network. The path length obtained through two-phase routing is 
recorded and compared with the optimal (shortest path) case. 

The performance of the algorithm is also compared with another 
suboptimal routing algorithm, CR routing. CR routing exploits the 
CR representations of Borel Cayley graphs. For this algorithm, each 
node stores only two CR constants in addition to an implied +1 and 
-1. Messages are routed to intermediate nodes that decrease the pe-  
ripheral distance from the destination node. Here peripheral distance 
refers to distance around the circumference of the CR graph. For 
example, node 1 is closer to node 3 than to node 4 in the peripheral 

sense. For obvious reasons, paths obtained by this algorithm are 
suboptimal in length. Instead of choosing an intermediate node fr 
the immediate neighbor of the source node, a more dynamc appro 
is to choose intermediate nodes from all nodes within a certain 
tance d from the source In other words, the source node "lookp 
ahead" a certain distance and routes the message towards the node 
that is "closest" (in the peripheral sense) to the destination node Thjs 
dynamic approach requires more storage, 2q = 2k constants, inst 
of two constants, need to be stored in each node 

ofp. The first case deals with p = 47, k = 23, a = 2, and n = 1,081, 
in the second case p = 307, k = 51, a = 4, and n = 15,657. In b 
cases, we consider graphs with four different sets of generators 
hence different diameters, the first of which corresponds to the dens- 
est degree-4 graphs. We assume the following notations. tl and t2 

define the generators' 

We inveshgate large Borel Cayley graphs with two different values 

L) stands for the diameter, "g is the determnistic average path length, 
which is determined by t&ng the average of all optimal path length9 
between any two nodes. The following parameters are obtained from 
the program: avg for the average path length, and m u  for the maximum 
path length The results are summanzed in Table 111 and Table IV In 
the case of CR rouhng, parameter d corresponds to the different "look 
ahead" distance For d = 1, only the immediate neighbors are consid- 
ered and for d = 4, the neighbors at distance 1, , 4 are considered 
Furthemore, the average path length and the path length distnbution 
for the densest cases are also plotted in Figs 3 and 4 

From these results, we observe that the two-phase routing has aver- 
age path length comparable with the diameter D and maximum path 
length bounded by 20 The CR routing, on the other hand, has large 
path lengths in general, even though its performance improves with the 
"look ahead" distance d at the expense of a higher time complexity To 
conclude, two-phase routing gives good performance (maximum path 
lengths are bounded by 2 0  and average is close to the diameter D )  with 
a small space complexity of O@ + k) ,  where n = p x k 

TABLE 111 
SIMULATlON RESULTS FORp = 47, )Z = I ,08 1 

I p=47, k = 2 3 ,  a=2, n = 1,081 

tl 

t2 
D 
Qvg 
- 

a 

Routing 
d = 2 m a x  

d = 3  max 

d=4max 

Two-Phase max 
Routing 

13.67 1 14.17 I 14.24 1 12.68 
25 I 26 1 24 1 20 WFI 

767 8.12 850  803  
I I I 
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Fig. 3. Path length distribution. 
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Fig. 4. Path length distribution. 

VI. CONCLUSIONS 

A variety of network topologies have been proposed as efficient 
interconnection networks. In many cases, the networks are symmetric 
and have systematic vertex labels. Furthermore, knowing the vertex 
labels of the source and destination often permits the optimal choices 
of the next step in a multistep path. These choices are optimal  in the 
sense that the distance to the destination node is reduced. Such 
distance-reduction routing property is essential in the efficient im- 

plementation of the network. However, these systematically labeled 
graphs are not the densest, an important factor in the construction of 
massively parallel systemis. 

A special class of symmetric graphs, Cayley graphs,  has received 
special attention as interconnection models [ 11, [ 131, [ 141. One of its 
subclass, Borel  Cayley g,ruphs, are currently the densest known, con- 
structive, degree-4 graphs for diameter D = 7, .. ., 13 [l]. These Borel 
Cayley graphs are originally defined over a group of matrices, the 
Borel matrices. Unlike other existing networks, Borel Cayley graphs 
lack a systematic vertex llabeling that can induce a distance-reduction 
routing algorithm. For Bore1 Cayley graphs, knowing the labels of 
the source and destination nodes does not render the determination of 
a path. In other words, path determination between nonadjacent 
nodes is a not a trivial prloblem. 

In earlier research effort, we have proved that all Borel Cayley 
graphs have GCR and CIP representations. These GCR/CR graphs are 
existing topologies, defined in the integer domain. Furthermore, there 
is a concise description of connections based on class-structure. This 
novel concept of transforming Borel Cayley graphs into GCWCR 
made two optimal routing schemes, a general  table look-up scheme 
and the vertex-transitive routing, feasible [15], [ 121. However, these 
schemes require a space (commitment of O(n) at every node and O(n2) 
for the entire network of n nodes. 

In this paper, we presented and proved a property pertinent to 
Borel Cayley graphs in1 a special GCR representation, the class-  
congruence property  (CCP). Based on this property, we developed a 
suboptimal routing algorithm with a smaller space complexity, the 
two-phase routing. Its space commitment is of O@ + k) with time 
complexity O(D), or O@) with time complexity O(D2). Even shortest 
paths are not guaranteed, the path length is bounded by 2 0 ,  where D 
is the diameter. Computer implementation of the algorithm shows 
that the average path length is close to the diameter. The performance 
of the algorithm is also compared with another suboptimal routing 
algorithm, the CR routing. The results indicated that two-phase rout- 
ing gives much shorter path lengths than that of CR routing. 
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Survival Reliability of Some Double-Loop 
Networks and Chordal Rings 

Frank K Hwang and Paul E. Wright 

Abstract-Three of the most well known double-loop networks are 
the distributed double-loop computer network (DDLCN), the daisy 
chain, and the braided ring. We compute the exact reliabilities of all 
three networks. We also extend the results on double-loop networks to 
directed chordal rings. 

Index Terms-Double-loop network, daisy chain, fault tolerance, reli- 
ability, consecutive-2-out-of-n system, chordal ring. 

I. INTRODUCTION 
Distributed loop architectures have become increasingly popular 

in recent years for local area networks due to their low cost and high 
performance. However, a simple unidirectional loop is unreliable 
since any failure in an interface or communication link destroys the 
function of the loop. On the other hand a multiloop requires compli- 
cated control and routing at the interfaces. Therefore the double loop 
is a happy compromise. The three most well-known double-loop 
networks are the distributed double-loop computer network 
(DDLCN) of Liu et al. [ l l ] ,  [12], [Zl], [22] which is used in the 
FDDI network [ 181, the daisy chain of Gmarov, Kleinrock, and Gerla 
[3], and the braided ring which is used in SILK [7]. Another way to 
add reliability and performance to a simple loop is to add a single 
link to each interface. The bidirectional version was first proposed by 
Arden and Lee [I]  and the network is called a chordal ring. Here we 
considered the unidirectional version called a directed chordal ring. 

Two measures of reliability have often been used. The terminal-pair 
reliability [3], [SI, [ 141, [ 151, [ 161, [ 171 averages the 2-terminal reli- 
ability over all ordered pairs of nodes. The survival reliability [2], [6], 
[7], [SI, [9], [ 191, [20] computes the probability that the set of working 
(surviving) nodes is strongly connected. Computing either the terminal- 
pair reliability or the survival reliability is a difficult problem. Even 
though node failures and link failures are usually not treated together 
except in [ 3 ] ,  [13], exact reliabilities were given only for the DDLCN 
in the terminal-pair reliability case [ 3 ] ,  [13] and for the braided ring in 
the survival reliability case 121, [SI. Exact reliabilities were also given 
under additional conditions such a as small number of nodes or failed 
nodes [ 5 ] ,  [14], [15], [16], [19] or the existence of a central-control 
node and every 2-terminal connection is from or to this node [IO]. Ap- 
proximations and bounds were given elsewhere [ 6 ] ,  [9], [19]. In par- 
ticular, Grnarov, Kleinrock, and Gerla [3] assumed that both nodes and 
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Ei& can fail with distinct probabilities and gave approximate terminal- 
pair reliability for the daisy chain 

In this paper, we not only allow falures of both nodes and links, 
we also allow links of the two loops to fail with different probabili- 
ties to accommodate the case that the two types of links have differ- 
ent lengths or constructions (the approach works for the more general 
case that each node and link has its own failure probability). We 
present a new approach and the first efficient method to compute 
exact survival reliabilities for both the daisy chain and the braided 
ring (the DDLCN is easy). We also prove a relation between directed 
chordal rings and a class of double loop networks (which include the 
three above-mentioned networks) such that any reliability results for 
the tatter applies to the former. 

11. A GENERAL APPROACH 

A double-loop network DL(n, a ,  b) can be represented by a di- 
graph with n nodes 0, 1 ,  , n - 1 and 2n links, n of each type 
i + i + a m o d n , i + ~ + b m o d n , z = O , 1 , .  , n - 1  Thus, 
D u n ,  1, IZ - 1) is the DDLCN, DL(n, 1, n - 2) is the daisy chain and 
DL(n, 1,2) is the braided ring (see Fig. 1) We assume that each node 
has failure probability q (= 1 - p ) ,  each a-link fals with probability 
qa (= 1 - pa), each b-link fails with probability q b  = ( 1  - pb), and the 
states of all nodes and links are independent. Let R(n, a, b) denote the 
survival reliability of DL(n, a,  6). For completeness, we define 
R(1, a,  b) = 1. 

THEOREM 2. I. For n 2 2, 

PROOF. It is easily seen that a DDLCN tails if there exist two nonad- 
jacent faled nodes Suppose that there exists a sequence of 
k, 1 < k I n - 2 consecutive failed nodes Then the n - k - 1 
a-links and the n - k - 1 b-links between the surviving n - k nodes 
must a11 work for the two end nodes to communicate Since there 
are n ways of selecting k consecutive failed nodes, each summand 
in the first term of (2 1) captures the probability of such an event 
for a fixed k. 

If all nodes work, then the network fails if there exist one failed 
a-link and one faled 6-link which are not coupled (1 e ,  one 1s 

1 + I + 1 and the other is L + 1 + z) The first member of the sec- 
ond term of (2 I) gives the probability of the event that either all 
a-links or all 6-links work, while the second member accounts for 
the event that the (single) pair of failed nodes IS coupled 
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