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ABSTRACT Backpropagation of utility is one of the many methods for neuro-control. Its goal is to
provide a series of control signals to maximize a utility function over time. In this paper, we demonstrate
how to use the basic backpropagation and backpropagation through time algorithms as fundamental build-
ing blocks for backpropagation of utility. We also explore the parallel implementation of the algorithm

on Intel’s Paragon computer.

The backpropagation of utility algorithm is composed of three subnetworks, the Action network, Model
network, and an Utility network or function. Fach of these networks includes a feedforward and a
feedback component. A flow chart for the interaction of these components is included. To further
illustrate the algorithm, we use backpropagation of utility for the control of a simple one-dimensional
planar robot. We found that the success of the algorithm hinges upon a sufficient emulation of the
dynamic system by the Model network. Furthermore, the execution time can be improved through pattern-

partitioning on multiple processors.

1 Introduction

Neurocontrol is defined as the use of neural networks to emit control signals for dynamic systems. Most
neurocontrol algorithms involve the incorporation of one or more backpropagation neural networks into
the controller. Different approaches exist in the method of incorporating the neural network into the
controller and of training and adaptation [1]. Among these approaches, there are five basic schemes:
the supervised control, direct inverse control, neural adaptive control, back-propagation of utility, and
adaptive critic networks. Werbos [2] provided a detailed summary of the five schemes including the pros
and cons of each method. In this paper, our objective is to illustrate the theory of Backpropagation of
Utility through a simple example, the control of a 1-D planar robot. To improve execution time, we

also explore parallel implementation on an Intel Paragon parallel computer.

This article is organized as follows: Section 2 is a description of the Backpropagation of Ultility
algorithm. Section 3 illustrates how the algorithm is used for the control of a 1-D planar robot. Parallel
implementation of the algorithms on an Intel Paragon parallel computer is explored in Section 4. Finally,

conclusions and a summary are included in Section 5.
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2 Backpropagation of Utility Algorithm

The objective of the backpropagation of utility algorithm is to provide a set of action or control signals
to a dynamic system to maximize a utility function over time. The utility function can be total energy,
cost-efficiency, smoothness of a trajectory, etc. For expository convenience, we assume the notation
X (t) for system state at time ¢, u(¢) for the control signal, and U(t) for the utility function which is

usually a function of the system state.

The system is composed of three subsystems, an Action network, a Model network, and a Utility
network, which is often represented as a performance function. The Action network is responsible for
providing the control signal to maximize the utility function. This goal is achieved through adaptation of
the internal weights of the Action network. Such adaptation is accomplished through backpropagation of
various signals. For each iteration, there are feedforward and feedback components. In the feedforward
mode, the Action network outputs a series of control signals, u(t),t = 1,...,T whereas adaptation of

the internal weights is accomplished through the feedback mode.

The Model network provides an exact emulation of the dynamic system in a neural network format.
Its function is two folded: (i) in the feedforward mode, it predicts the system state X (¢4 1) at time
t 4+ 1 for a given system state X (¢) and control signal u(t) at time ¢; and (ii) in the feedback mode, it
inputs the derivative of the utility function U(t) with respect to the system state X (¢) and outputs the
derivative of the utility with respect to the control signal, i.e., %((f)) which is used for the adaptation

of the Action network. The Utility network or function, on the other hand, provides a measure of the

system performance U(t) as a function of the system state, X (¢). In the feedforward mode, it calculates

a performance value U(t) and in the feedback mode, it identifies gg((?) which is used by the Model

network.

The basic idea is that assuming we have an exact model of the system formulated as a neural network
(the Model network), we can use the backpropagation method to calculate the derivative of the utility
function with respect to the control signal from the action network, i.e., F_u(t) = %%l. Such derivative
is then used to calculate the gradient of the Utility with respect to the internal weights of the action
network. Figure 1 shows a block-diagram representation of the system. The dashed lines represent the

feedback mode, or derivative calculations.

The successful application of backpropagation of utility hinges upon an accurate Model network

that represents the system. The establishment of such a Model network is accomplished through train-



ing with the basic backpropagation or Werbos’ backpropagation through time algorithms [3]. Once an
accurate Model network is obtained, the internal weights of the Action network is adapted to output
a series of desired control action, according to the flow chart in Figure 3. In this flow-chart, Ac-
tion, Model, Utility represent the feedforward components of the corresponding networks whereas
F_Utility, F_Model, F_Action are the feedback components. Pseudo-computer codes for each of
these blocks are included in [3, 4] and are not repeated here. The details of the construction of the

Model network and the adaptation of the Action networks are described as follows.

2.1 Training of the Model Network

The establishment of a Model network that represents the system is accomplished through training with
either the basic backpropagation or Werbos’ backpropagation through time algorithm [3]. To speed up

convergence, Jacob’s delta-bar-delta rule [5] can be used for weight adaptation.

First, a sufficient number of training samples, Thy must be obtained. These training samples consists
of mys inputs (Xan(t), ¢ = 1,....,mpn, t = 1,...,Tn), and nps desired outputs (Yar(t), ¢ =
1,...,na, t = 1,...,Ty). The objective of a trained Model network is to emulate the dynamic
system. In the feedforward mode, it outputs the system state X (¢ + 1) at time ¢ + 1 for a given
system state X (¢) and control signal u(¢). That is , the inputs of the Model network, Xs(?), consist
of the system state and the control signal (X (¢) and u(¢)). The outputs of the Model network is
composed of the system state X (¢ + 1) at time ¢ + 1. A pseudo-code for training the Model network

with backpropagation through time algorithm can be found in [4] and is not repeated here.

2.2 Adaptation of the Action Network

Upon completion of training of the Model network, we are ready for the adaptation of the Action
network. In this stage, we adapt the weights of the Action network to output a series of desired control
action w;(t), ¢ = 1,...,n for time period ¢t = 1,...,T. The desired system state is Xy;(¢), i =1,...,m.
This adaptation process is accomplished through a number of iterations and is best described through

the flow-chart shown in Figure 3.

There are basically six fundamental building blocks, Action, Model, and Utility in the feedforward
mode; and F_Utility, F_Model, and F_Action in the feedback model. For each iteration, in the

feedforward mode, a series of predicted control signals u(t) for t = 1,...,7T are provided by the Action



routine. These control signals are inputs to the Model routine which outputs the next system state

X(t+ 1) which is then used to calculate the Utility function.

In the feedback mode, the training samples are traversed backward. Since the Utility function is
normally an explicit function of the system state, we can usually obtain Fx(t) = %% analytically.
The value Fx(t) is then input to the routine F_Model which corresponds to the feedback component
of the Model network. F_Action is the next routine which takes the output F_u(t) = %%l from the
F_Model routine to calculate the gradient of the Utility function with respect to the weight-space, i.e.,
FW; = %3 for all weights W;; of the Action network. Once the effect of all training samples are
accounted for in F_W, delta-bar-delta rule is used to update the weights W, and the next iteration can
be repeated. For simplicity, in Figure 3 we use a predefined value Maxz to determine the number of
iterations. Other termination criteria such as a predefined utility value can also be used to determine

the number of iterations. Again, pseudo-codes for these building blocks were included in [3, 4] and are

not repeated here.

3 An Example: 1-D Robot Control

As an example, we consider a simple planar manipulator with one rotational joint (Figure 2). We
assume, without loss of generality, that the robot links can be represented as point-masses concentrated
at the end of the link. The link mass and length are respectively: M = 0.1 kg, L. = 1 m. This simple

dynamic system is governed by the equation:
T(t) = M L?6(t)+ M g L cos(6(1)) (1)

where ¢ = 9.81m/s? is the gravitational constant. We consider that initially, at time ¢ = 0 second,
the state of the manipulator is 6y = 90 = éo = 0, with 79 = 0.981 Newtons. The neural network’s
task is to generate a series of control signals u(t) = 7 (), t = 6t, 26t, ..., ty =T x 6t = 2 seconds
(6t = 0.02,7 = 100) to drive the manipulator from the initial configuration 6y to 8y = 6(t = t;) = 60°
with the following desired trajectory specified by the quintic polynomial [6].

(1) = b0+ 1000 — 00)(1/17° — 15(6; — Bo)(t/t,)" + 6(67 — Bo)(1/1)°

B4(1) = 308 — 60)(2/£3) — 60(6; — B0)(£/14) + 30(6; — 00)(14/15)

Ga(t) = 60(0; — 00)(1/t3) — 180(05 — 0o)(£2/th) + 120(8; — 6o )(£3/15) (2)

The system consists of an Action network, a Model network, and an utility function. Like in super-

vised control, in backpropagation of utility, our goal is to train the Action network to provide a set of



control signal u(t) = 7(¢); but unlike supervised training, the desired control signals 74(¢) are not used as
feedback. Instead, the training of the Action network is accomplished through feedback from the Model
network and the Utility function. The Model network basically acts as a system emulator whereas the
Utility function provides a performance measure. In the following subsections, we first describe how
the Model network is trained, and later how to use the trained Model network for the adaptation of the

Action network which provides a series of control signals for the specific task described here.

3.1 Training of the Model Network

Before the adaptation of the Action network begins, the Backpropagation of Utility algorithm involves
first training of the Model network. Again, the Model network accepts as inputs the system state (i.e.,
8(t), (), 6(t)) and the control signal 7(¢) at the current time. Its function is to provide the actual
system state for the next time period (8(t+1), 8(t+1), 6(t+1)). From our experimentation, we found
that it is more efficient if the Model network is trained to generate the change in system state instead

of the actual value. Therefore, we train the model network to generate 66(t), 86(t), 66(t). The system

state of the next time period can then be computed:

Ot +1)=0(t)+660(1), O(t+1)=40(1)+680(1), G(t+1)=40(t)+ 86(¢).

To obtain an adequate representation of the system, we need to train the Model network with sufficient
number of training points. In this case, we use the basic backpropagation algorithm with delta-bar-
delta rule. The network has two hidden-layers with ten nodes in each layer. As stated in [7], progressive
training in which the number of training samples increases gradually helps to maintain stability and
provide fast convergence. Therefore, we start the training on Thy = 20 samples and gradually increase
to Thy = 500 training samples. Fach training set consists of four inputs (may = 4): (1), (t), 8(t), 7(t)
and three desired outputs (nas = 3): 804(t), 684(t), 664(1).

Each of these training samples is obtained by first generating a random system state 6(t), 8(t) 6(t)

with the following constraints:

6(t) € {0, 2r} radians,
6(t) € {—3, 3} radians/second,
f(t) € {5, 5} radians/second?.

For the given system state, we compute or measure the corresponding torque value, 7(¢ — 6t) and then

generate a random 67(t) with the constraint that

67(t) € {—0.02, 0.02} Newtons



An Euler integrator [6] is then used to solve for the actual system state 8(t+1), 8(t+1), 8(t+1) for the

given 7(t) = 7(¢t — 6t) 4+ 67(¢) and 0(t),6(t),6(t). The desired outputs of the training set are computed

as:

804(1) = 0(t + 1) — 0(t), 604(1) = 0(t+1)—0(t), 664(t)=0(t+1)—8(1)

3.2 Adaptation of the Action Network

With the Model network successfully trained, we are ready for the adaptation of the Action network.
Asg illustrated in Figure 3, the adaptation of the Action network involves both a feedforward and a
feedback component. In the feedforward mode, the Action network accepts the desired system state,
namely, 84(t),04(1), 64(t) as inputs. The output of the Action network is to provide the signal 7(t) to
drive the manipulator. For efficient training, we choose to train the action network to generate é7(¢).

The value 7(t) can then be computed by:
(1) =7(t— 1)+ 67(¢). (3)

where t = 6t, 26t, ..., T x 6t and in this example, 7(t = 0) = 75 = 0.981 Newton.

The computed torque 7(¢) (Equation 3) is then passed to the trained Model network which accepts
the desired system state, 84(),84(1),04(t) along with 7(¢) as inputs. As described in the previous
section, the output of the Model network indicates the change of the system state from its input state,
i.e, 80(t), 80(t), 66(t). The actual system state for the next sample can then be computed according

to:

O(t+1) = 0g(t)+80(t), O(t+1)=0q4(t)+680(t), H(t+1)=04(t)+66(¢).
The last step in the feedforward mode is to compute the “utility” or performance of the action network.

Since our objective here is tracking control, we use the utility function
1 L .

U(1) =5 > (0(8) = fa(t))* + (B(t) = 6a(1))* + (B(1) = 6a(1))”. (4)

t=1

After a series of 7(¢) and the corresponding U(¢) are produced, in the feedback mode, the gradient
of the Utility with respect to system state is:

8U(t) R R . .
= [6(t) — 04(¢ 6(t) — 04(t 6(t) — 64(1)].
ax (1) ~ L) = Ba(t)]+ [0(2) = Ba(t)] + [6(1) — Ba(1)]
This result is used by the Model network (}_Model routine) to determine F'_u(t) = gg((f)) which is then

Z[I{V(;)v the gradient of the utility with respect to the weight space. Basically, the idea

used to determine

is to change the output of the action network in the direction of F'_u(t) by adjusting its weights.



In our implementation, we found that the adaptation process is more robust if the weights of the
Action network are adjusted through multiple iterations for the same F_u(?) computed by the F_Model
routine. This is due to the fact that steepest descent, in general, takes multiple iterations to achieve
a particular desired output. Therefore, in this example, we have modified the feedback mode of the
flowchart in Figure 3 to include an inner loop of iterations to adjust the internal weights of the Action
network for a given F'_u(t) from the F_Model routine. Figure 4 shows the modified feedback component.
The choice of the value for the number of inner iteration, Maxz_In depends on the problem. In this

example, we have use both Maz_In = 1,000 and 10, 000.

Figure 5 plots the generated torque
T(t) =7(t - 1)+ 67(t)

versus time where 67(t) is generated by the Action network. Note that at iteration one (Iter=1), the
generated torque is far from the desired value. But through multiple iterations, the generated torque
gradually converges to the desired value. The iteration number shown here corresponds to the number
of outer iterations. Figure 6 plots the error of the generated torque with the desired value |74(¢) — 7(1)|

after approximately 5,000 iterations. From this graph, the maximum error is bounded by 0.02 Newtons.

Again, unlike basic supervised control, the Backpropagation of Utility algorithm does not require
the desired value 74(¢) be available to the Action network. They are used here only to illustrate the
performance of the action network. These figures show clearly that the weights of the action network is
adapting to generate a forecast of the desired control signals based solely on the feedback signals F_u(t)

from the F_Model routine.

4 Parallel Implementation

To improve the execution time, we explore parallel implementation of these algorithms. Both the basic
and backpropagation through time algorithm (the building blocks of backpropagation of utility) can
be parallelized by two techniques - node partitioning and pattern partitioning [8]. Node-partitioning
implies that the entire network is partitioned among different processors, each computing for the whole
set of training samples. Pattern-partitioning, on the other hand, partitions the training patterns among
the processors with each one representing the entire network. Our preliminary investigation found
that node-partition helps to reduce execution time only for large networks. In our example, both the

Action and Model network only have 10 hidden nodes in each layer. For such small networks, the



communication overhead involved in node-partitioning actually slows down the overall execution time.

We, therefore, consider only the pattern-partitioning scheme.

In our implementation of the pattern partitioning scheme, training samples are equally divided
among the number of processors. That is, for T' training sets, and N, number of processors, each
processor computes both the feedforward and the feedback components of the T, = Nl training samples.

r

(We assume that N, divides T).

At the end of the backward loop, the weight changes computed based on the subset of the training
samples of each processor are broadcasted. Once this information is received by all processors, the total

weight changes I'_W;; are computed at every processor:
NP
FWi; =3 FWi(k)
k=1

where F_W;;(k) is the weight gradient of processor k computed based on its own subset of training
samples. Upon obtaining the total weight gradient, delta-bar-delta rule is applied at all processors to
update the weights which completes one iteration. A flow chart for the basic backpropagation with
pattern partitioning in included in Figure 8. The case of backpropagation through time can be obtained
in a similar manner [4]. Figure 7 plots the execution time per outer iteration versus different number of
processors. The amount of inner iterations is Maz_In = 1,000. (See Figures 3 and 4 for the definition

of outer and inner iterations).

We observe that, initially, the execution time decreases with increasing number of processors, but
when the number of processors is greater than four, the execution time starts to increase. We attribute
this phenomenon to the amount of communication among the processors when the samples are par-
titioned into too many processors. In particular, the local weight gradient (F'_W (k) for processor k,
k =1,...,N, processors) needs to be broadcasted to all before each Delta-Bar-Delta routine can be
called (see flowcharts in Figures 3 and 4). Because of our modified feedback mode, for each outer iter-
ation, there are Maxz_I'n = 1,000 number of inner iterations. Each of this inner iteration requires each
processor to broadcast its local weight gradient to all. In other words, eventually, the communication
overhead associated with multiple processors will outweigh the advantages of parallel execution and the

execution time per iteration starts to increase.

To provide an approximate comparison of the performance of the pattern-partitioning scheme, we
implemented the algorithm on different computer platforms (Intel Paragon; Sun Sprac I, and Sun Sparc

LX) for the 1-D example in Section 3. For the single-processor machines (Sun Sparc II and LX), we



executed the compiler-optimized program only when a single-user is logged on. The execution time
for one outer iteration with 1,000 inner iterations are 10.2 sec, 43.7 sec, and 84.8 sec for the 4-node
Paragon, Sun Sparc II, and Sun Sparc Lx, respectively. The 4-node Paragon implementation indeed
gives the best performance. Furthermore, we believe as the size of the problem grows larger, say bigger
network, more training samples, the advantages of parallel execution will be more pronounced and the

difference between multiple- and single-processor implementation will increase.

5 Conclusions

Backpropagation of Utility is one of the methods for neuro-control. Its goal is to provide a series of
control signals to maximize a utility function. Basically, the system is composed of three subnetworks,
the Action network, Model network and the Utility network which sometimes can be represented as a
simple Utility function. Each of these networks has the feedforward components Action, Model and
Utility and the feedback components F_Action, F_Model and F_Utility, respectively. The algorithm
involves first training of the Model network to emulate the dynamic system and later adaptation of the
internal weights of the Action network to generate a series of control signals. Such adaptation involves
interactions of the three networks and are best described in the flow chart of Figure 3. To further
illustrate the algorithm, we use the algorithm to control a 1 — D planar robot. We showed that the

Action network is capable of generating a series of control signals that maximize the utility function.

In short, backpropagation of utility is a simple neuro-control technique that uses a neural network
(the Model network) to emulate the dynamic system and to provide proper feedback to adjust the
weights of the Action network. It differs from supervised control in that the desired control signals are
not needed in the feedback mode. However, the main drawback of the algorithm is its slow execution
time. To alleviate this problem, we investigated parallel implementation of the algorithm on multiple
processors of Intel’s Paragon parallel computer. In conclusion, we believe that backpropagation of utility

with parallel implementation is a powerful tool for neurocontrol or neuromodeling.
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