
Neuro-Remodeling via Backpropagation of UtilityK. Wendy Tang and Girish Pingle 1Department of Electrical EngineeringSUNY at Stony Brook, Stony Brook, NY 11794-2350.ABSTRACT Backpropagation of utility is one of the many methods for neuro-control. Its goal is toprovide a series of control signals to maximize a utility function over time. In this paper, we demonstratehow to use the basic backpropagation and backpropagation through time algorithms as fundamental build-ing blocks for backpropagation of utility. We also explore the parallel implementation of the algorithmon Intel's Paragon computer.The backpropagation of utility algorithm is composed of three subnetworks, the Action network, Modelnetwork, and an Utility network or function. Each of these networks includes a feedforward and afeedback component. A
ow chart for the interaction of these components is included. To furtherillustrate the algorithm, we use backpropagation of utility for the control of a simple one-dimensionalplanar robot. We found that the success of the algorithm hinges upon a su�cient emulation of thedynamic system by the Model network. Furthermore, the execution time can be improved through pattern-partitioning on multiple processors.1 IntroductionNeurocontrol is de�ned as the use of neural networks to emit control signals for dynamic systems. Mostneurocontrol algorithms involve the incorporation of one or more backpropagation neural networks intothe controller. Di�erent approaches exist in the method of incorporating the neural network into thecontroller and of training and adaptation [1]. Among these approaches, there are �ve basic schemes:the supervised control, direct inverse control, neural adaptive control, back-propagation of utility, andadaptive critic networks. Werbos [2] provided a detailed summary of the �ve schemes including the prosand cons of each method. In this paper, our objective is to illustrate the theory of Backpropagation ofUtility through a simple example, the control of a 1-D planar robot. To improve execution time, wealso explore parallel implementation on an Intel Paragon parallel computer.This article is organized as follows: Section 2 is a description of the Backpropagation of Utilityalgorithm. Section 3 illustrates how the algorithm is used for the control of a 1-D planar robot. Parallelimplementation of the algorithms on an Intel Paragon parallel computer is explored in Section 4. Finally,conclusions and a summary are included in Section 5.1The authors acknowledge and appreciate discussions with and contributions from Paul Werbos. This research wassupported by the National Science Foundation under Grant No. ECS-9407363.The authors also like to thank the Center for Scienti�c Computing of the Applied Mathematics Department in SUNYStony Brook for the use of the Intel Paragon parallel computer.1

2 Backpropagation of Utility AlgorithmThe objective of the backpropagation of utility algorithm is to provide a set of action or control signalsto a dynamic system to maximize a utility function over time. The utility function can be total energy,cost-e�ciency, smoothness of a trajectory, etc. For expository convenience, we assume the notationX(t) for system state at time t, u(t) for the control signal, and U(t) for the utility function which isusually a function of the system state.The system is composed of three subsystems, an Action network, a Model network, and a Utilitynetwork, which is often represented as a performance function. The Action network is responsible forproviding the control signal to maximize the utility function. This goal is achieved through adaptation ofthe internal weights of the Action network. Such adaptation is accomplished through backpropagation ofvarious signals. For each iteration, there are feedforward and feedback components. In the feedforwardmode, the Action network outputs a series of control signals, u(t); t = 1; : : : ; T whereas adaptation ofthe internal weights is accomplished through the feedback mode.The Model network provides an exact emulation of the dynamic system in a neural network format.Its function is two folded: (i) in the feedforward mode, it predicts the system state X(t + 1) at timet + 1 for a given system state X(t) and control signal u(t) at time t; and (ii) in the feedback mode, itinputs the derivative of the utility function U(t) with respect to the system state X(t) and outputs thederivative of the utility with respect to the control signal, i.e., @U(t)@u(t) which is used for the adaptationof the Action network. The Utility network or function, on the other hand, provides a measure of thesystem performance U(t) as a function of the system state, X(t). In the feedforward mode, it calculatesa performance value U(t) and in the feedback mode, it identi�es @U(t)@X(t) which is used by the Modelnetwork.The basic idea is that assuming we have an exact model of the system formulated as a neural network(the Model network), we can use the backpropagation method to calculate the derivative of the utilityfunction with respect to the control signal from the action network, i.e., F u(t) = @U(t)@u(t) . Such derivativeis then used to calculate the gradient of the Utility with respect to the internal weights of the actionnetwork. Figure 1 shows a block-diagram representation of the system. The dashed lines represent thefeedback mode, or derivative calculations.The successful application of backpropagation of utility hinges upon an accurate Model networkthat represents the system. The establishment of such a Model network is accomplished through train-2

ing with the basic backpropagation or Werbos' backpropagation through time algorithms [3]. Once anaccurate Model network is obtained, the internal weights of the Action network is adapted to outputa series of desired control action, according to the
ow chart in Figure 3. In this
ow-chart, Ac-tion, Model, Utility represent the feedforward components of the corresponding networks whereasF Utility, F Model, F Action are the feedback components. Pseudo-computer codes for each ofthese blocks are included in [3, 4] and are not repeated here. The details of the construction of theModel network and the adaptation of the Action networks are described as follows.2.1 Training of the Model NetworkThe establishment of a Model network that represents the system is accomplished through training witheither the basic backpropagation or Werbos' backpropagation through time algorithm [3]. To speed upconvergence, Jacob's delta-bar-delta rule [5] can be used for weight adaptation.First, a su�cient number of training samples, TM must be obtained. These training samples consistsof mM inputs (XMi(t); i = 1; : : : ; mM ; t = 1; : : : ; TM), and nM desired outputs (YMi(t); i =1; : : : ; nM ; t = 1; : : : ; TM). The objective of a trained Model network is to emulate the dynamicsystem. In the feedforward mode, it outputs the system state X(t + 1) at time t + 1 for a givensystem state X(t) and control signal u(t). That is , the inputs of the Model network, XM(t), consistof the system state and the control signal (X(t) and u(t)). The outputs of the Model network iscomposed of the system state X(t + 1) at time t + 1. A pseudo-code for training the Model networkwith backpropagation through time algorithm can be found in [4] and is not repeated here.2.2 Adaptation of the Action NetworkUpon completion of training of the Model network, we are ready for the adaptation of the Actionnetwork. In this stage, we adapt the weights of the Action network to output a series of desired controlaction ui(t); i = 1; : : : ; n for time period t = 1; : : : ; T . The desired system state is Xdi(t); i = 1; : : : ; m.This adaptation process is accomplished through a number of iterations and is best described throughthe
ow-chart shown in Figure 3.There are basically six fundamental building blocks,Action, Model, andUtility in the feedforwardmode; and F Utility, F Model, and F Action in the feedback model. For each iteration, in thefeedforward mode, a series of predicted control signals u(t) for t = 1; : : : ; T are provided by the Action3

routine. These control signals are inputs to the Model routine which outputs the next system stateX(t+ 1) which is then used to calculate the Utility function.In the feedback mode, the training samples are traversed backward. Since the Utility function isnormally an explicit function of the system state, we can usually obtain FX(t) = @U(t)@X(t) analytically.The value FX(t) is then input to the routine F Model which corresponds to the feedback componentof the Model network. F Action is the next routine which takes the output F u(t) = @U(t)@u(t) from theF Model routine to calculate the gradient of the Utility function with respect to the weight-space, i.e.,F Wij = @U(t)@Wij for all weights Wij of the Action network. Once the e�ect of all training samples areaccounted for in F W , delta-bar-delta rule is used to update the weights W , and the next iteration canbe repeated. For simplicity, in Figure 3 we use a prede�ned value Max to determine the number ofiterations. Other termination criteria such as a prede�ned utility value can also be used to determinethe number of iterations. Again, pseudo-codes for these building blocks were included in [3, 4] and arenot repeated here.3 An Example: 1-D Robot ControlAs an example, we consider a simple planar manipulator with one rotational joint (Figure 2). Weassume, without loss of generality, that the robot links can be represented as point-masses concentratedat the end of the link. The link mass and length are respectively: M = 0:1 kg, L = 1 m. This simpledynamic system is governed by the equation:�(t) = M L2��(t) +M g L cos(�(t)) (1)where g = 9:81m=s2 is the gravitational constant. We consider that initially, at time t = 0 second,the state of the manipulator is �0 = _�0 = ��0 = 0, with �0 = 0:981 Newtons. The neural network'stask is to generate a series of control signals u(t) = � (t); t = �t; 2�t; : : : ; tf = T � �t = 2 seconds(�t = 0:02; T = 100) to drive the manipulator from the initial con�guration �0 to �f = �(t = tf) = 60�with the following desired trajectory speci�ed by the quintic polynomial [6].�d(t) = �0 + 10(�f � �0)(t=tf)3 � 15(�f � �0)(t=tf)4 + 6(�f � �0)(t=tf)5_�d(t) = 30(�f � �0)(t2=t3f)� 60(�f � �0)(t3=t4f) + 30(�f � �0)(t4=t5f)��d(t) = 60(�f � �0)(t=t3f)� 180(�f � �0)(t2=t4f) + 120(�f � �0)(t3=t5f) (2)The system consists of an Action network, a Model network, and an utility function. Like in super-vised control, in backpropagation of utility, our goal is to train the Action network to provide a set of4

control signal u(t) = �(t); but unlike supervised training, the desired control signals �d(t) are not used asfeedback. Instead, the training of the Action network is accomplished through feedback from the Modelnetwork and the Utility function. The Model network basically acts as a system emulator whereas theUtility function provides a performance measure. In the following subsections, we �rst describe howthe Model network is trained, and later how to use the trained Model network for the adaptation of theAction network which provides a series of control signals for the speci�c task described here.3.1 Training of the Model NetworkBefore the adaptation of the Action network begins, the Backpropagation of Utility algorithm involves�rst training of the Model network. Again, the Model network accepts as inputs the system state (i.e.,�(t); _�(t); ��(t)) and the control signal �(t) at the current time. Its function is to provide the actualsystem state for the next time period (�(t+1); _�(t+1); ��(t+1)). From our experimentation, we foundthat it is more e�cient if the Model network is trained to generate the change in system state insteadof the actual value. Therefore, we train the model network to generate ��(t); � _�(t); ���(t). The systemstate of the next time period can then be computed:�(t + 1) = �(t) + ��(t); _�(t+ 1) = _�(t) + � _�(t); ��(t+ 1) = ��(t) + ���(t):To obtain an adequate representation of the system, we need to train the Model network with su�cientnumber of training points. In this case, we use the basic backpropagation algorithm with delta-bar-delta rule. The network has two hidden-layers with ten nodes in each layer. As stated in [7], progressivetraining in which the number of training samples increases gradually helps to maintain stability andprovide fast convergence. Therefore, we start the training on TM = 20 samples and gradually increaseto TM = 500 training samples. Each training set consists of four inputs (mM = 4): �(t); _�(t); ��(t); �(t)and three desired outputs (nM = 3): ��d(t); � _�d(t); ���d(t).Each of these training samples is obtained by �rst generating a random system state �(t); _�(t) ��(t)with the following constraints: �(t) 2 f0; 2�g radians;_�(t) 2 f�3; 3g radians/second;��(t) 2 f�5; 5g radians/second2:For the given system state, we compute or measure the corresponding torque value, �(t� �t) and thengenerate a random ��(t) with the constraint that��(t) 2 f�0:02; 0:02g Newtons5

An Euler integrator [6] is then used to solve for the actual system state �(t+1); _�(t+1); ��(t+1) for thegiven �(t) = �(t� �t) + ��(t) and �(t); _�(t); ��(t). The desired outputs of the training set are computedas: ��d(t) = �(t + 1)� �(t); � _�d(t) = _�(t+ 1)� _�(t); ���d(t) = ��(t+ 1)� ��(t)3.2 Adaptation of the Action NetworkWith the Model network successfully trained, we are ready for the adaptation of the Action network.As illustrated in Figure 3, the adaptation of the Action network involves both a feedforward and afeedback component. In the feedforward mode, the Action network accepts the desired system state,namely, �d(t); _�d(t); ��d(t) as inputs. The output of the Action network is to provide the signal �(t) todrive the manipulator. For e�cient training, we choose to train the action network to generate ��(t).The value �(t) can then be computed by:�(t) = �(t� 1) + ��(t): (3)where t = �t; 2�t; : : : ; T � �t and in this example, �(t = 0) = �0 = 0:981 Newton.The computed torque �(t) (Equation 3) is then passed to the trained Model network which acceptsthe desired system state, �d(t); _�d(t); ��d(t) along with �(t) as inputs. As described in the previoussection, the output of the Model network indicates the change of the system state from its input state,i.e, ��(t); � _�(t); ���(t). The actual system state for the next sample can then be computed accordingto: �(t + 1) = �d(t) + ��(t); _�(t+ 1) = _�d(t) + � _�(t); ��(t+ 1) = ��d(t) + ���(t):The last step in the feedforward mode is to compute the \utility" or performance of the action network.Since our objective here is tracking control, we use the utility functionU(t) = 12 TXt=1 (�(t)� �d(t))2 + (_�(t)� _�d(t))2 + (��(t)� ��d(t))2: (4)After a series of �(t) and the corresponding U(t) are produced, in the feedback mode, the gradientof the Utility with respect to system state is:@U(t)@X(t) = [�(t)� �d(t)] + [_�(t)� _�d(t)] + [��(t)� ��d(t)]:This result is used by the Model network (F Model routine) to determine F u(t) = @U(t)@u(t) which is thenused to determine @U(t)@Wij , the gradient of the utility with respect to the weight space. Basically, the ideais to change the output of the action network in the direction of F u(t) by adjusting its weights.6

In our implementation, we found that the adaptation process is more robust if the weights of theAction network are adjusted through multiple iterations for the same F u(t) computed by the F Modelroutine. This is due to the fact that steepest descent, in general, takes multiple iterations to achievea particular desired output. Therefore, in this example, we have modi�ed the feedback mode of the
owchart in Figure 3 to include an inner loop of iterations to adjust the internal weights of the Actionnetwork for a given F u(t) from the F Model routine. Figure 4 shows the modi�ed feedback component.The choice of the value for the number of inner iteration, Max In depends on the problem. In thisexample, we have use both Max In = 1; 000 and 10; 000.Figure 5 plots the generated torque �(t) = �(t� 1) + ��(t)versus time where ��(t) is generated by the Action network. Note that at iteration one (Iter=1), thegenerated torque is far from the desired value. But through multiple iterations, the generated torquegradually converges to the desired value. The iteration number shown here corresponds to the numberof outer iterations. Figure 6 plots the error of the generated torque with the desired value j�d(t)� �(t)jafter approximately 5,000 iterations. From this graph, the maximum error is bounded by 0:02 Newtons.Again, unlike basic supervised control, the Backpropagation of Utility algorithm does not requirethe desired value �d(t) be available to the Action network. They are used here only to illustrate theperformance of the action network. These �gures show clearly that the weights of the action network isadapting to generate a forecast of the desired control signals based solely on the feedback signals F u(t)from the F Model routine.4 Parallel ImplementationTo improve the execution time, we explore parallel implementation of these algorithms. Both the basicand backpropagation through time algorithm (the building blocks of backpropagation of utility) canbe parallelized by two techniques - node partitioning and pattern partitioning [8]. Node-partitioningimplies that the entire network is partitioned among di�erent processors, each computing for the wholeset of training samples. Pattern-partitioning, on the other hand, partitions the training patterns amongthe processors with each one representing the entire network. Our preliminary investigation foundthat node-partition helps to reduce execution time only for large networks. In our example, both theAction and Model network only have 10 hidden nodes in each layer. For such small networks, the7

communication overhead involved in node-partitioning actually slows down the overall execution time.We, therefore, consider only the pattern-partitioning scheme.In our implementation of the pattern partitioning scheme, training samples are equally dividedamong the number of processors. That is, for T training sets, and Np number of processors, eachprocessor computes both the feedforward and the feedback components of the Tp = TNp training samples.(We assume that Np divides T).At the end of the backward loop, the weight changes computed based on the subset of the trainingsamples of each processor are broadcasted. Once this information is received by all processors, the totalweight changes F Wij are computed at every processor:F Wij = NpXk=1F Wij(k)where F Wij(k) is the weight gradient of processor k computed based on its own subset of trainingsamples. Upon obtaining the total weight gradient, delta-bar-delta rule is applied at all processors toupdate the weights which completes one iteration. A
ow chart for the basic backpropagation withpattern partitioning in included in Figure 8. The case of backpropagation through time can be obtainedin a similar manner [4]. Figure 7 plots the execution time per outer iteration versus di�erent number ofprocessors. The amount of inner iterations is Max In = 1; 000. (See Figures 3 and 4 for the de�nitionof outer and inner iterations).We observe that, initially, the execution time decreases with increasing number of processors, butwhen the number of processors is greater than four, the execution time starts to increase. We attributethis phenomenon to the amount of communication among the processors when the samples are par-titioned into too many processors. In particular, the local weight gradient (F W (k) for processor k,k = 1; : : : ; Np processors) needs to be broadcasted to all before each Delta-Bar-Delta routine can becalled (see
owcharts in Figures 3 and 4). Because of our modi�ed feedback mode, for each outer iter-ation, there are Max In = 1; 000 number of inner iterations. Each of this inner iteration requires eachprocessor to broadcast its local weight gradient to all. In other words, eventually, the communicationoverhead associated with multiple processors will outweigh the advantages of parallel execution and theexecution time per iteration starts to increase.To provide an approximate comparison of the performance of the pattern-partitioning scheme, weimplemented the algorithm on di�erent computer platforms (Intel Paragon; Sun Sprac II, and Sun SparcLX) for the 1-D example in Section 3. For the single-processor machines (Sun Sparc II and LX), we8

executed the compiler-optimized program only when a single-user is logged on. The execution timefor one outer iteration with 1; 000 inner iterations are 10:2 sec, 43:7 sec, and 84:8 sec for the 4-nodeParagon, Sun Sparc II, and Sun Sparc Lx, respectively. The 4-node Paragon implementation indeedgives the best performance. Furthermore, we believe as the size of the problem grows larger, say biggernetwork, more training samples, the advantages of parallel execution will be more pronounced and thedi�erence between multiple- and single-processor implementation will increase.5 ConclusionsBackpropagation of Utility is one of the methods for neuro-control. Its goal is to provide a series ofcontrol signals to maximize a utility function. Basically, the system is composed of three subnetworks,the Action network, Model network and the Utility network which sometimes can be represented as asimple Utility function. Each of these networks has the feedforward components Action, Model andUtility and the feedback components F Action, F Model and F Utility, respectively. The algorithminvolves �rst training of the Model network to emulate the dynamic system and later adaptation of theinternal weights of the Action network to generate a series of control signals. Such adaptation involvesinteractions of the three networks and are best described in the
ow chart of Figure 3. To furtherillustrate the algorithm, we use the algorithm to control a 1 � D planar robot. We showed that theAction network is capable of generating a series of control signals that maximize the utility function.In short, backpropagation of utility is a simple neuro-control technique that uses a neural network(the Model network) to emulate the dynamic system and to provide proper feedback to adjust theweights of the Action network. It di�ers from supervised control in that the desired control signals arenot needed in the feedback mode. However, the main drawback of the algorithm is its slow executiontime. To alleviate this problem, we investigated parallel implementation of the algorithm on multipleprocessors of Intel's Paragon parallel computer. In conclusion, we believe that backpropagation of utilitywith parallel implementation is a powerful tool for neurocontrol or neuromodeling.References[1] D. Psaltis, A. Sideris, and A. Yamamura. \A Multilayered Neural Network Controller". IEEEControl Systems Magazine, pages 17{21, April 1988.[2] Paul J. Werbos. Neurocontrol and Supervised Learning: an Overview and Evaluation. In D.A.Whiteand D.A. Sofge, editors, Handbook of Intelligent Control, pages 65{89. Van Nostrand Reinhold, 1992.9

[3] Paul J. Werbos. \Backpropagation Through Time: What It Does and How to Do It". Proceedingsof the IEEE, 78(10):1550{1560, October 1990.[4] K. W. Tang and Girish Pingle. Exploring Neuro-Control with Backpropagation of Utility. In OhioAerospace Institute Neural Network Symposium and Workshop, pages 107{137, Athens, Ohio, August21-22 1995.[5] Robert A. Jacobs. \Increased Rates of Convergence Through Learning Rate Adaptation". NeuralNetworks, 1:295{307, 1988.[6] J. J. Craig. Introduction to Robotics, mechanics and Control. Addison-Wesley Publishing Co., NewYork, NY, 1986.[7] K. W. Tang and H-J Chen. A Comparative Study of Basic Backpropagation and BackpropagationThrough Time Algorithms. Technical Report TR-700, State University of NY at Stony Brook,College of Engineering and Applied Sciences, November 1994.[8] V. Kumar, S. Shekhar, and M.B. Amin. \A Scalable Parallel Formulation of the Backpropagation Al-gorithm for Hypercubes and Related Architecture". IEEE Transactions on Parallel and DistributedSystems, 5(10):1073{1089, October 1994.
ML

θ
τ

Figure 2: A 1-D Planar Robot

Figure 1: A Backpropagation of Utility System

Action
Network

Model
Network

X(t+1)

u(t)
Control Signal

System State

U(X(t+1))

Utility Function

e

X(t)

e

U

e

u(t)

e

U

X (t)System State
d

10

Delta Bar Delta Rule

u (t)

X (t+1)

U (X(t+1))

Action

Model

Utility

for (t=1 to t=T)

X d(t)

++ tt > T

 for
Iter = 1 to Max

++ I t e rI t e r > M a x

S T O P

Set F_W=0

S T A R T

Initialization

feedforward mode

F_X(t)

F_u (t)

Update F_W

F_Action

F_Utility

F_Model

for (t=T to t=1)

-- tt < 1

feedback mode

Figure 3: Adaptation of Action Network

Set F_W=0

F_X(t)

F_u (t)

Update F_W

F_Action

F_Utility

F_Model

 for
 t =T to 1

-- t
t < 1

feedback mode

for (In_Iter=1
 to Max_In)

F_u (t)

for t=T to 1
Call F_Action

For t=1 to T
Call Action

++ In_Iter

In_Iter > Max_In

Delta Bar Delta Rule

to compute New W

Delta Bar Delta Rule

to compute New W

Exit Feedback Mode

From feedforward mode

Figure 4: Modified Feedback Mode

time (second)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

To
rq

ue
 (

Ne
wt

on
)

Iter=1

Iter=400

Iter=600Iter=2,000

Desired
Iter=1

Iter=400
Iter=600

Iter=2,000

Figure 5: Generated Torque at Different Iterations11

0.0001

Feedforward
Computation

 for
t=1 to Tp

++ tt > Tp

 for
Iter = 1 to Max

++ I t e rI t e r > M a x

S T O P

Reset
F_W (k)=0

Concurrent Computation
 on processor k=1 to Np

S T A R T

Initialization

Divide the T training samples among the Np processors,
 each having Tp = T/Np training samples

 for
t=Tp to 1

-- tt < 1

Feedback
Computation
Update F_W(k)
at processor k

Broadcast F_W (k) to all other processors

Delta Bar Delta Rule

F_W = F_W{k)Σ
k=1

Np

Receive F_W (q) , q = k from all other processors

Figure 8: Pattern Partitioning of Basic Backpropagation

Figure 6: Errors in Control Signal

1e-05

0.001

0.01

0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (second)

Figure 7: Execution Time for Backpropagation of Utility

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20

Se
co

nd
s/

It
er

Number of Processors

| τ
d

−
τ

| (
N

ew
to

n)

12

