Natural Heuristic Dynamic Programming for Dynamic Systems Control

K. Wendy Tang Jahangir Rastegar
wtang@ee.sunysb.edu rastegar@moton.eng.sunysb.edu
Department of Electrical Engineering Department of Mechanical Engineering
SUNY at Stony Brook SUNY at Stony Brook
Stony Brook, NY 11794-2350 Stony Brook, NY 11794-2300

1

ABSTRACT Heuristic Dynamic Programming (HDP) is the simplest kind of Adaptive Critic [1]. It
can be used to mazximize or minimize any utility function, such as total energy or trajectory error, of a
system over time in a noisy environment.

In this article, we propose a new version of HDP, called NHDP (Natural Heuristic Dynamic Pro-
gramming). This new version incorporates basic HDP algorithm with the following features: (i) use
of Trajectory Pattern Method to guarantee smoothness of trajectory and control signals; (ii) use multi-
ple critic networks to localize effect of each parameter mimicing the natural biological model of human
brain; and (1i) allow the controller to learn from slow to fast motion, analogous to the natural learning
behavior of humans. A simple dynamic system is used to illustrate NHDP.

1 Introduction

Recently Adaptive Critic Design (ACDs) has received increasing attention as a powerful form of neuro-
control. A good overview for a range of ACDs can be found in [1, 2]. Basically, the main advantage
of ACD is its ability to maximize a utility function such as total energy or trajectory error over time.
Among the various ACDs, Heuristic Dynamic Programming (HDP) is the simplest kind.

In this paper, our objective is to illustrate how HDP can be effectively used to control dynamic
systems when combined with trajectory pattern method. The trajectory pattern method is proposed
by Rastegar and Fardanesh in 1991 [3]. It allows motion of the dynamic system be synthesised to contain
sinusoidals with a fundamental frequency and its harmonics. The task of the controller is essentially
simplified to identifying the coefficients of these harmonics that constitute the inverse dynamic equations.
Furthermore, by learning the motion from slow to fast through gradual increment of the fundamental
frequency, the controller learns naturally the characteristics of the motion. The end result is a HDP
controller that learns naturally to control a motion from slow to fast, hence the name Natural HDP.

This article is organized as follows: Section 2 is a description of Natural Heuristic Dynamic Pro-
gramming (NHDP). Section 3 illustrates how the algorithm is used for the control of a simple dynamic
system. Finally, conclusions and a summary are included in Section 4.

2 Natural Heuristic Dynamic Programming

In Natural Heuristic Dynamic Programming, the desired motion to be controlled is first synthesized
as superpositions of sinusoidals through the Trajectory Pattern Method. Once the motion is synthe-
sised, it can be shown that the desired control action and the motion are signals containing only a
fundamental frequency and its higher harmonics. The task of the controller is simplified to identifying
these coeflicients. Basic HDP algorithm is then deployed for this task. Furthermore, the controller first
learns control of the system in slow motion corresponding to a small fundamental frequency. We then

'The authors acknowledge and appreciate discussions with Paul Werbos. This research was supported by the National
Science Foundation under Grant No. ECS-9626655.

gradually tune the fundamental frequency to a higher value for faster motion, mimicing the natural
learning strategy of human beings.

In this section, we first described how Trajectory Pattern Method is used to synthesis motion. Then
a description of NHDP for controlling the synthesized motion is described.

2.1 Trajectory Pattern Method

Trajectory Pattern Method is first proposed by Rastegar and Fardanesh in 1991 [3]. Readers interested
in more detailed description of the method are referred to [3, 4, 5, 6].

Basically, the method can be said to be a generalization of the computed torque method. The desired
motion is synthesized by the selection of appropriate trajectory parameters to satisfy the desired end
conditions and/or tracking requirement.

As a simple example, for a one dimensional system with the following dynamic equations:

u(t) = mi(t) + ci(t) + ki(t) (1)

where u(t) is the control action at time ¢, z(t), &(t), &(t) are the position, velocity and acceleration and
m, ¢, k are constants.

The controller’s task is to identify the control signals wu(t) for a given initial and end position,
velocity and acceleration. The dynamic equation (Equation 1) is either assumed to be unknown or
having inaccurate parameters. In the Trajectory Pattern Method, we synthesize the desired motion
as composed of superposition of sinusoidals with a fundamental frequency and its higher harmonics.
Furthermore, the parameters of the trajectory is synthesized such that the initial and end conditions as
specified by the problem are met.

For this simple example, given that the initial (f = 0) and final (¢ = ;) position, velocity and
acceleration are:

2(0)=2(0) = 2(0)=0; a(ty) =1.0,4(ty) = &(ty) =0 (2)
We can synthesize the desired trajectory as:
x(t) = ko4 ki(coswt —1/9 cos3wt)
#(t) = —kw(sinwt —1/3sin3wt) (3)
i(t) = —klw*(coswt — cos 3wt)
where kg = 0.5 and k4 = —9/16 are chosen to meet the initial and end conditions (Equation 2)

requirements with the condition that w ¢y = m. That is, when the fundamental frequency is small, 7 is
large and the motion is slow.

Since the desired motion is synthesized to contain sinusoidals with a fundamental frequency w and
its third harmonics 3w, the desired control signal is of the form:

u(t) = Acoswt + Bsinwt 4+ C cos 3wt + Dsin 3wt + F (4)

where A, B,C. D, FE are constants analogous to the Fourier coefficients of the control signals. Once
this observation is made, the controller’s task is now simplied to identifying these constant coefficients.
Because of this simplification, HDP, the simple form of ACDs can now be effectively utilized. Another
advantage of the Trajectory Pattern Method is that the desired motion is always composed of superpo-
sitions of sinusoidal signals with a fundamental frequencies and its higher harmonics. These motion are

smooth functions similar to that of natural motions. Furthermore, when the fundamental frequency w
is small, the motion is slow. By gradually increasing w, the motion becomes faster.

Once the Trajectory Pattern Method has been incorporated into the control problem, in the next
section, we discuss how the original HDP algorithm can be used to learn the coefficients A, B,C, D,
first for a slow motion and then for a faster one.

It should be noted also that in the above example, we synthesized the desired motion to contain the
fundamental frequency and its third harmonics (w, 3w). In general, however, the synthesized motion
may contain the fundamental frequency w and any of its higher harmonics. Readers interested in more
advanced Trajectory Pattern Method are referred to [3]-[6].

2.2 Natural Heuristic Dynamic Programming (NHDP) Components

The key element of the HDP design is the “Critic” network. The function of the critic network is to
learn the cost-to-go J function in the Bellman equation of dynamic programming [7, 2]:

k=co
J(t) =Y AUt +k) (5)
k=0

where 7 is a discount factor and U(-) is the utility function. The basic idea is that the current action
should be optimized to minimize or maximize not just current utility but future utility. This goal is
achieved through minimization/maximization of .J, since it is a sum of current and future utility. The
multilayered backpropagation neural networks is a convenient tool for such optimization as the gradient
of J can be obtained through backward propagation. However, during our practice with HDP, we found
that the algorithm does not perform well for problems involving multiple variables. This perhaps is the
major reason that ACD practitioners generally opted for the more advanced design such as DHP.

From a seminar in neurobiology, we recently learned that in the human brain, various functions are
highly localized [8]. Each subset of neurons is only responsible for a specific local task. This combined
with the approach on Trajectory Pattern Method, gives rise to a new form of HDP that mimics the
natural learning behavior of humans, hence the name Natural HDP.

From the discussions in Trajectory Pattern Method, the original control problem is transformed to
the problem of identifying the coefficients, A, B,C, D, F as in the example of Section 2.1. To localize
the effect of each parameters, we use five critic networks, each learning how changes in each coefficient
affects the cost-to-go J function. The end results is schematically depicted in Figure 4. From Figure 4,
the neuro-controller contains five simple, critic networks, each can perform backpropagation in parallel.
Such a neuro-architecture is consistent with the biological model that a subset of neurons is responsible
for a local task, learning J as a function of a specific coeflicient. Such learning is accomplished in
parallel, taking the full advantages of the Neural Network properties.

Furthermore, due to the gradient decent nature of backpropagation, the initial values of the coef-
ficients A, B,..., E is important. To have an intelligent guess of the initial coeflicients, we first use
Backpropagation of Utility [7, 9] to find the coefficients for a very slow motion with a small values for
the fundamental frequency w and large value of ¢;.

Once a good initial guess is obtained, Natural Heuristic Dynamic Programming with multiple critic
networks is used to control the system for a faster motion (larger value for the fundamental frequency
w). Learning is achieved in two phases. In phase I, each critic network learns the cost-to-go func-
tion J associated with each coefficient through standard backpropagation. Then in Phase II, through

backpropagation, the gradient of J with respect to the coeflicients is computed and a new coefficient
is obtained through gradient decent. As an example, for the first critic network, we obtain 0.J4/0A
through backward propagation. New values of the coefficient A is then computed as:

0J4

New A= Old A—a—— 6

JA (6)
where 0 < a < 1 is a constant learning rate. Once a new coefficient is obtained the two phases repeated
for another iteration until the current utility is less than/ bigger than a prescribed value if we are
minimizing/maximizing the utility function.

3 A Simple Dynamic System

To illustrate Natural HDP, we used the simple example outlined in Section 2.1. The dynamic equation
is described by Equation 1 with the constants assuming the following values: m = 10,¢ = 2,k = 5.5.
The desired initial and final position, velocity, and acceleration are specified by Equation 2. First, we
use backpropagation of utility to learn a very slow motion, w = 0.017, ¢; = 100. The desired coefficients
are:

A= -3.088, B=3534e—2, (' =3.382e—1, D=—-1.178¢ -2, £ =2.75

Using Backpropagation of Utility, the coeflicients are identified as:
A= -3.097, B=4.080e —3, (' =3.4h6e—1, D= —-1.01Te -2, £ =2.774 (7)

Next we use these as initial values to control a faster motion, w = 0.17, ¢y = 10. Since the coefficients,
with the exception of E are functions of the fundamental frequency, w. The desired coeflicients for this
faster motion are:

A=-2539, B=3534e—1, C = -211de—1, D= —1.178¢ — 1, E = 2.75

For each of the coefficient, with the exception of ¥/, we created a critic network that inputs a coefficient
and outputs its corresponding cost-to-go function J as defined in Equation 5. The discount factor and
the learning rate in Equations 5 and 6 are v = a = 0.1 and the Utility function is:

v= /otf(x(t) — z4(t))*dt

where z(t) is the actual position as a result the action signals u(t) and x4(¢) is the desired position as
described in the synthesized motion (Equation 3). Obviously, the neuro-controller’s task is to find the
coefficients that can minimize this utility function over time.

Once the coeflicients are determined by the multiple critic networks, the control signals are deter-
mined by Equation 4. Figure 2 is a comparison of the control signal u(t) at various iterations versus
time (¢ = 0,...,ty = 10). The result at Iter = 0 corresponds to the initial coefficients (Equation 7 with
ty = 100). As the iteration progresses, the control signal approaches that of the desired value. Figure 3
plots the absolute error between the obtained and the desired control signals.

Figure 4 is a comparison for the position trajectory at various iterations. Again, the position of
the dynamic system gradually approaches that of the desired values. Note that at all iterations, the
trajectory is a smooth function. This is a direct consequence of the Trajectory Pattern Method. The
trajectory profile for velocity and acceleration depicted similar behavior and is not shown here. Figure 5
plots the absolute trajectory error between the actual and desired position, velocity and acceleration
after 5,000 iterations. In all cases, the absolute error is less than 3.0e — 2 which means that the obtained
control signals generated a trajectory that is very close to their desired values.

4

4 Summary

In this paper, we presented a new version of HDP which is the simplest kind of ACDs. The main
features of this new version include: (i) use of Trajectory Pattern Method to guarantee smoothness of
trajectory and control signals; and simplification of the control problem; (ii) use multiple critic networks
to localize effect of each parameter mimicing the natural biological model of human brain; and (iii) allow
the controller to learn from slow to fast motion, analogous to the natural learning behavior of humans.
In other words, this new version of the HDP algorithm use the natural model of human learning as a
reference, hence the name Natural HDP.

As a preliminary result, we applied the algorithm for a simple, one-dimensional, linear dynamic
system. The results are encouraging. The NHDP controller is able to control the system from slow to
fast motion. It is also important to point out that the strength of the NHDP algorithm will be more
apparent for complex, non-linear system as the Trajectory Pattern Method provides a greater degree
of simplifications for these systems. We are currently working on the application of NHDP to a more
complex, nonlinear dynamic system.

References

[1] Paul J. Werbos. Approximate Dynamic Programming for Real-Time Control and Neural Modeling.
In White D, A and D.A. Sofge, editors, Handbook of Intelligent Control, pages 493-525. Van Nostrand
Reinhold, 1992.

[2] D.V. Prokhorov and D.C. Wunsch II. “Adaptive Critic Designs”. IFFEE Transactions on Neural
Networks, 8(5):1997-1007, September 1997.

[3] J. Rastegar and B. Fardanesh. “Inverse Dynamic Models of Robot Manipulator Using Trajectory
Patterns - With Application to Learning Controllers”. In Proceedings of the 8th World Congress on
the Theory of Machines and Mechanisms, Czechoslovakia, 1991.

[4] B. Fardanesh and J. Rastegar. “A New Model Based Tracking Controller for Robot Manipulators Us-
ing the Trajectory Pattern Inverse Dynamics”. IEFE Transactions on on Robotics and Automation,
8(2):279-285, 1992.

[5] Q. Tu and J. Rastegar. “Manipulator Trajectory Synthesis for Minimal Vibrational Excitation Due
to Payload”. Transactions of Canadian Society of Mechanical Engineers, 17(4):557-566, 1993.

[6] Q. Tu, J. Rastegar, and R.J. Singh. “Trajectory Synthesis and Inverse Dynamic Model Formulation
and Contorl of Tip Motion of a High Performance Flexible Positioning System”. Mechanism and
Machine Theory, 29(7):959-968, 1994.

[7] Paul J. Werbos. “Backpropagation Through Time: What It Does and How to Do It”. Proceedings
of the IEEE, 78(10):1550-1560, October 1990.

[8] Anotoio Damasio. “The gost in the Machine: Exploration on the Minded Brain”, Neurobiology
seminar, SUNY Stony Brook, 1997.

[9] K. W. Tang and Girish Pingle. “Neuro-Remodeling via Backpropagation of Utility.”. Journal of
Mathematical Modeling and Scientific Computing, May 1996. Accepted for Publication.

A B
Figure 1:Schematic Representation of NHDP Architecture

Force u(t)

Figure 2: Comparison of Control Signalsat Various Iterations

6
5|

L Iter=2000
a4k
sr Iter=1000
P

| —— Desired
1k —O— lter=0

L =0 Iter=1000
ol === Iter=2000
1 . L L L . . L L L . .

E

Position x(t)

=
3

[
w

=
HN

o
©

o
3

o
3l

o
w

o
=

o
2

| —O— |nitial
L —— Desired §
=k~ lter=1000 Bl

---A-- Iter=2000

Iter=1000

wilk Figure 3: Force Error After 5,000 Iterations
F
SF
N
2107F
wF
o
o
S ‘F
L 3F
N
10°F
Wb
3 L 1 L L L 1 L 1 L L L 1 L 1 L 1 L L L 1 L L L
0 1 2 3 4 5 6 7 8 9 10
Time (t)
Figure5: Trajectory Error after 5,000 Iterations
acceleration position
107
ne
o 3
o
Eo2f
w
2 108k
§10°F
2 E
o
S Lf
=
2r = —O— position
. velocity -0 velocity
10° —A-- acceleration

Time (t)

