
Natural Heuristic Dynamic Programming for Dynamic Systems ControlK. Wendy Tangwtang@ee.sunysb.eduDepartment of Electrical EngineeringSUNY at Stony BrookStony Brook, NY 11794-2350 Jahangir Rastegarrastegar@moton.eng.sunysb.eduDepartment of Mechanical EngineeringSUNY at Stony BrookStony Brook, NY 11794-23001ABSTRACT Heuristic Dynamic Programming (HDP) is the simplest kind of Adaptive Critic [1]. Itcan be used to maximize or minimize any utility function, such as total energy or trajectory error, of asystem over time in a noisy environment.In this article, we propose a new version of HDP, called NHDP (Natural Heuristic Dynamic Pro-gramming). This new version incorporates basic HDP algorithm with the following features: (i) useof Trajectory Pattern Method to guarantee smoothness of trajectory and control signals; (ii) use multi-ple critic networks to localize e�ect of each parameter mimicing the natural biological model of humanbrain; and (iii) allow the controller to learn from slow to fast motion, analogous to the natural learningbehavior of humans. A simple dynamic system is used to illustrate NHDP.1 IntroductionRecently Adaptive Critic Design (ACDs) has received increasing attention as a powerful form of neuro-control. A good overview for a range of ACDs can be found in [1, 2]. Basically, the main advantageof ACD is its ability to maximize a utility function such as total energy or trajectory error over time.Among the various ACDs, Heuristic Dynamic Programming (HDP) is the simplest kind.In this paper, our objective is to illustrate how HDP can be e�ectively used to control dynamicsystems when combined with trajectory pattern method. The trajectory pattern method is proposedby Rastegar and Fardanesh in 1991 [3]. It allows motion of the dynamic system be synthesised to containsinusoidals with a fundamental frequency and its harmonics. The task of the controller is essentiallysimpli�ed to identifying the coe�cients of these harmonics that constitute the inverse dynamic equations.Furthermore, by learning the motion from slow to fast through gradual increment of the fundamentalfrequency, the controller learns naturally the characteristics of the motion. The end result is a HDPcontroller that learns naturally to control a motion from slow to fast, hence the name Natural HDP.This article is organized as follows: Section 2 is a description of Natural Heuristic Dynamic Pro-gramming (NHDP). Section 3 illustrates how the algorithm is used for the control of a simple dynamicsystem. Finally, conclusions and a summary are included in Section 4.2 Natural Heuristic Dynamic ProgrammingIn Natural Heuristic Dynamic Programming, the desired motion to be controlled is �rst synthesizedas superpositions of sinusoidals through the Trajectory Pattern Method. Once the motion is synthe-sised, it can be shown that the desired control action and the motion are signals containing only afundamental frequency and its higher harmonics. The task of the controller is simpli�ed to identifyingthese coe�cients. Basic HDP algorithm is then deployed for this task. Furthermore, the controller �rstlearns control of the system in slow motion corresponding to a small fundamental frequency. We then1The authors acknowledge and appreciate discussions with Paul Werbos. This research was supported by the NationalScience Foundation under Grant No. ECS-9626655. 1



gradually tune the fundamental frequency to a higher value for faster motion, mimicing the naturallearning strategy of human beings.In this section, we �rst described how Trajectory Pattern Method is used to synthesis motion. Thena description of NHDP for controlling the synthesized motion is described.2.1 Trajectory Pattern MethodTrajectory Pattern Method is �rst proposed by Rastegar and Fardanesh in 1991 [3]. Readers interestedin more detailed description of the method are referred to [3, 4, 5, 6].Basically, the method can be said to be a generalization of the computed torque method. The desiredmotion is synthesized by the selection of appropriate trajectory parameters to satisfy the desired endconditions and/or tracking requirement.As a simple example, for a one dimensional system with the following dynamic equations:u(t) = m�x(t) + c _x(t) + k _x(t) (1)where u(t) is the control action at time t, x(t); _x(t); �x(t) are the position, velocity and acceleration andm; c; k are constants.The controller's task is to identify the control signals u(t) for a given initial and end position,velocity and acceleration. The dynamic equation (Equation 1) is either assumed to be unknown orhaving inaccurate parameters. In the Trajectory Pattern Method, we synthesize the desired motionas composed of superposition of sinusoidals with a fundamental frequency and its higher harmonics.Furthermore, the parameters of the trajectory is synthesized such that the initial and end conditions asspeci�ed by the problem are met.For this simple example, given that the initial (t = 0) and �nal (t = tf ) position, velocity andacceleration are: x(0) = _x(0) = �x(0) = 0; x(tf) = 1:0; _x(tf ) = �x(tf ) = 0 (2)We can synthesize the desired trajectory as:x(t) = k0 + k1(cos!t� 1=9 cos 3!t)_x(t) = �k1!(sin!t � 1=3 sin 3!t)�x(t) = �k1!2(cos!t� cos 3!t) (3)where k0 = 0:5 and k1 = �9=16 are chosen to meet the initial and end conditions (Equation 2)requirements with the condition that ! tf = �. That is, when the fundamental frequency is small, tf islarge and the motion is slow.Since the desired motion is synthesized to contain sinusoidals with a fundamental frequency ! andits third harmonics 3!, the desired control signal is of the form:u(t) = A cos!t +B sin!t + C cos 3!t+D sin 3!t+ E (4)where A;B;C;D;E are constants analogous to the Fourier coe�cients of the control signals. Oncethis observation is made, the controller's task is now simplied to identifying these constant coe�cients.Because of this simpli�cation, HDP, the simple form of ACDs can now be e�ectively utilized. Anotheradvantage of the Trajectory Pattern Method is that the desired motion is always composed of superpo-sitions of sinusoidal signals with a fundamental frequencies and its higher harmonics. These motion are2



smooth functions similar to that of natural motions. Furthermore, when the fundamental frequency !is small, the motion is slow. By gradually increasing !, the motion becomes faster.Once the Trajectory Pattern Method has been incorporated into the control problem, in the nextsection, we discuss how the original HDP algorithm can be used to learn the coe�cients A;B;C;D;E�rst for a slow motion and then for a faster one.It should be noted also that in the above example, we synthesized the desired motion to contain thefundamental frequency and its third harmonics (!; 3!). In general, however, the synthesized motionmay contain the fundamental frequency ! and any of its higher harmonics. Readers interested in moreadvanced Trajectory Pattern Method are referred to [3]-[6].2.2 Natural Heuristic Dynamic Programming (NHDP) ComponentsThe key element of the HDP design is the \Critic" network. The function of the critic network is tolearn the cost-to-go J function in the Bellman equation of dynamic programming [7, 2]:J(t) = k=1Xk=0 kU(t+ k) (5)where  is a discount factor and U(�) is the utility function. The basic idea is that the current actionshould be optimized to minimize or maximize not just current utility but future utility. This goal isachieved through minimization/maximization of J , since it is a sum of current and future utility. Themultilayered backpropagation neural networks is a convenient tool for such optimization as the gradientof J can be obtained through backward propagation. However, during our practice with HDP, we foundthat the algorithm does not perform well for problems involving multiple variables. This perhaps is themajor reason that ACD practitioners generally opted for the more advanced design such as DHP.From a seminar in neurobiology, we recently learned that in the human brain, various functions arehighly localized [8]. Each subset of neurons is only responsible for a speci�c local task. This combinedwith the approach on Trajectory Pattern Method, gives rise to a new form of HDP that mimics thenatural learning behavior of humans, hence the name Natural HDP.From the discussions in Trajectory Pattern Method, the original control problem is transformed tothe problem of identifying the coe�cients, A;B;C;D;E as in the example of Section 2.1. To localizethe e�ect of each parameters, we use �ve critic networks, each learning how changes in each coe�cienta�ects the cost-to-go J function. The end results is schematically depicted in Figure 4. From Figure 4,the neuro-controller contains �ve simple, critic networks, each can perform backpropagation in parallel.Such a neuro-architecture is consistent with the biological model that a subset of neurons is responsiblefor a local task, learning J as a function of a speci�c coe�cient. Such learning is accomplished inparallel, taking the full advantages of the Neural Network properties.Furthermore, due to the gradient decent nature of backpropagation, the initial values of the coef-�cients A;B; : : : ; E is important. To have an intelligent guess of the initial coe�cients, we �rst useBackpropagation of Utility [7, 9] to �nd the coe�cients for a very slow motion with a small values forthe fundamental frequency ! and large value of tf .Once a good initial guess is obtained, Natural Heuristic Dynamic Programming with multiple criticnetworks is used to control the system for a faster motion (larger value for the fundamental frequency!). Learning is achieved in two phases. In phase I, each critic network learns the cost-to-go func-tion J associated with each coe�cient through standard backpropagation. Then in Phase II, through3



backpropagation, the gradient of J with respect to the coe�cients is computed and a new coe�cientis obtained through gradient decent. As an example, for the �rst critic network, we obtain @JA=@Athrough backward propagation. New values of the coe�cient A is then computed as:New A = Old A� �@JA@A (6)where 0 < � < 1 is a constant learning rate. Once a new coe�cient is obtained the two phases repeatedfor another iteration until the current utility is less than/ bigger than a prescribed value if we areminimizing/maximizing the utility function.3 A Simple Dynamic SystemTo illustrate Natural HDP, we used the simple example outlined in Section 2.1. The dynamic equationis described by Equation 1 with the constants assuming the following values: m = 10; c = 2; k = 5:5.The desired initial and �nal position, velocity, and acceleration are speci�ed by Equation 2. First, weuse backpropagation of utility to learn a very slow motion, ! = 0:01�; tf = 100. The desired coe�cientsare: A = �3:088; B = 3:534e� 2; C = 3:382e� 1; D = �1:178e� 2; E = 2:75Using Backpropagation of Utility, the coe�cients are identi�ed as:A = �3:097; B = 4:080e� 3; C = 3:456e� 1; D = �1:017e� 2; E = 2:774 (7)Next we use these as initial values to control a faster motion, ! = 0:1�; tf = 10. Since the coe�cients,with the exception of E are functions of the fundamental frequency, !. The desired coe�cients for thisfaster motion are:A = �2:539; B = 3:534e� 1; C = �2:114e� 1; D = �1:178e� 1; E = 2:75For each of the coe�cient, with the exception of E, we created a critic network that inputs a coe�cientand outputs its corresponding cost-to-go function J as de�ned in Equation 5. The discount factor andthe learning rate in Equations 5 and 6 are  = � = 0:1 and the Utility function is:U = Z tf0 (x(t)� xd(t))2dtwhere x(t) is the actual position as a result the action signals u(t) and xd(t) is the desired position asdescribed in the synthesized motion (Equation 3). Obviously, the neuro-controller's task is to �nd thecoe�cients that can minimize this utility function over time.Once the coe�cients are determined by the multiple critic networks, the control signals are deter-mined by Equation 4. Figure 2 is a comparison of the control signal u(t) at various iterations versustime (t = 0; :::; tf = 10). The result at Iter = 0 corresponds to the initial coe�cients (Equation 7 withtf = 100). As the iteration progresses, the control signal approaches that of the desired value. Figure 3plots the absolute error between the obtained and the desired control signals.Figure 4 is a comparison for the position trajectory at various iterations. Again, the position ofthe dynamic system gradually approaches that of the desired values. Note that at all iterations, thetrajectory is a smooth function. This is a direct consequence of the Trajectory Pattern Method. Thetrajectory pro�le for velocity and acceleration depicted similar behavior and is not shown here. Figure 5plots the absolute trajectory error between the actual and desired position, velocity and accelerationafter 5,000 iterations. In all cases, the absolute error is less than 3:0e�2 which means that the obtainedcontrol signals generated a trajectory that is very close to their desired values.4



4 SummaryIn this paper, we presented a new version of HDP which is the simplest kind of ACDs. The mainfeatures of this new version include: (i) use of Trajectory Pattern Method to guarantee smoothness oftrajectory and control signals; and simpli�cation of the control problem; (ii) use multiple critic networksto localize e�ect of each parameter mimicing the natural biological model of human brain; and (iii) allowthe controller to learn from slow to fast motion, analogous to the natural learning behavior of humans.In other words, this new version of the HDP algorithm use the natural model of human learning as areference, hence the name Natural HDP.As a preliminary result, we applied the algorithm for a simple, one-dimensional, linear dynamicsystem. The results are encouraging. The NHDP controller is able to control the system from slow tofast motion. It is also important to point out that the strength of the NHDP algorithm will be moreapparent for complex, non-linear system as the Trajectory Pattern Method provides a greater degreeof simpli�cations for these systems. We are currently working on the application of NHDP to a morecomplex, nonlinear dynamic system.References[1] Paul J. Werbos. Approximate Dynamic Programming for Real-Time Control and Neural Modeling.In White D, A and D.A. Sofge, editors, Handbook of Intelligent Control, pages 493{525. Van NostrandReinhold, 1992.[2] D.V. Prokhorov and D.C. Wunsch II. \Adaptive Critic Designs". IEEE Transactions on NeuralNetworks, 8(5):1997{1007, September 1997.[3] J. Rastegar and B. Fardanesh. \Inverse Dynamic Models of Robot Manipulator Using TrajectoryPatterns - With Application to Learning Controllers". In Proceedings of the 8th World Congress onthe Theory of Machines and Mechanisms, Czechoslovakia, 1991.[4] B. Fardanesh and J. Rastegar. \A New Model Based Tracking Controller for Robot Manipulators Us-ing the Trajectory Pattern Inverse Dynamics". IEEE Transactions on on Robotics and Automation,8(2):279{285, 1992.[5] Q. Tu and J. Rastegar. \Manipulator Trajectory Synthesis for Minimal Vibrational Excitation Dueto Payload". Transactions of Canadian Society of Mechanical Engineers, 17(4):557{566, 1993.[6] Q. Tu, J. Rastegar, and R.J. Singh. \Trajectory Synthesis and Inverse Dynamic Model Formulationand Contorl of Tip Motion of a High Performance Flexible Positioning System". Mechanism andMachine Theory, 29(7):959{968, 1994.[7] Paul J. Werbos. \Backpropagation Through Time: What It Does and How to Do It". Proceedingsof the IEEE, 78(10):1550{1560, October 1990.[8] Anotoio Damasio. \The gost in the Machine: Exploration on the Minded Brain", Neurobiologyseminar, SUNY Stony Brook, 1997.[9] K. W. Tang and Girish Pingle. \Neuro-Remodeling via Backpropagation of Utility.". Journal ofMathematical Modeling and Scienti�c Computing, May 1996. Accepted for Publication.5
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Figure 1:Schematic Representation of NHDP Architecture
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Figure 2: Comparison of Control Signals at Various Iterations
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Figure 3: Force Error After 5,000 Iterations
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Figure 4: Comparison of Trajectory at Various Iterations
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Figure 5: Trajectory Error after 5,000 Iterations
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