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Absf?act- QoS routing mechanisms allow users identify paths that can
accommodate their performance requirements and reserve the necessary
resources. An important problem is how to conduct such resource idloca-
tion efficiently, not only from the single-connection, but atso from the rret-
work pointof view. We propose the use of pricing mechanisms as a means
to regulate the users’ decisions in a networkwide efficient mamre~ Focns-
ing on Q& architectures that employ rate-bwed schedulers, we formulate
a congestion-based pricing scheme. We establish the structure of the corre-

SpOnd% user-optim~ response, i+ a pafi selection ~gorithm that satisfies
the user’s requirements at minimal cost. We show that the underlying non-
cooperative game among users has a unique equilibrium, for any particular
choice of ptice fonctious. Then, we establish the existence of incentive com-

patible price functions, which drive the network into on equilibrium point
that ccincides with the optimmu of a social function. Specifically, these
price fiumctions arc the derivatives of the social function. We then eztend
our resntts to the case in which users can identify only sub-optimal paths,
as is often the case with mrdtiobjective path optimization.

Keywords— QoS Routing, Networking Games, Pricing, Rate-Based
Schedulers.

I. INTRODUCTION

Brc)adband integrated services networks are expected to sup-
port multiple and diverse applications, with various quality of
service (QoS) requirements. Accordingly, a key issue in the de-
sign clfbroadband architectures is how to provide resources in
order to meet the requirements of each connection, and, more-
over, how to meet that goal in a networkwide efficient manner.
The establishment of efficient QoS routing schemes is one of
the major building blocks in such architectures. QoS routing
has been the subject of several studies and proposaJs (see, e.g.,
[11,u], [91, [181, [221, [261, [291and references therein).

On~ of the major problems in the establishment of a connec-
tion with QoS guarantees arises from the need to map end-to-
end re~uirements, such as delay and/or jitter, onto locat (nodal)
requirements, which would indicate how to reserve resources
along the route. The ability to derive such a mapping depends
to a large extent on the scheduling policy and service discipline
employed at the nodes. Such disciplines are characterized by
bounclson the maximal delay that any node can incur, and hence
a corresponding bound on the end-to-end delay can be derived.
This way, the routing problem can be formulated as identifying
the path that has the best performance according to that bound
and with respect to the QoS requirement. Recent studies have
proposed schedulers that map delay guarantees into rate require-

ments and have each node advertise its residual rate [8], [24],
[30]. The Guaranteed Service Class proposed for the Internet
[28] is based on such rate-based principles. Based on the prop-
erties of such schedulers, several recent studies [10], [11], [18],
[22], [26] have analyzed algorithms for computing paths that
satisfy end-to-end delay bounds. In particular, it has been shown
in [10] that for a given connection with an end-to-end delay con-
straint, the existence and identity of a feasible path can be ob-
tained through up to M’ executions of a standard shortest path
algorithm, where M is the number of network links. In [18],
[26] it was shown that, through this scheme, one can accommo-
date additional connection requirements such as jitter.

An important problem that has not been sufficiently addressed
in the literature on QoS routing is that of efficient allocation
of resources, namely “rates” or “bandwidth”, not only fkomthe
single-connection, but also from the network point of view. In
particular, while each connection can choose the path between
source and destination along with the corresponding bandwidth
reservations, the network provider/manager typically aims at an
allocation of resources that is deemed efficient with respect to
the overall network performance, The underlying assumption in
previous studies on QoS routing is that efficient usage of net-
work resources can be enforced through appropriate choice of
pricing strategies. What constitutes “efficient” resource utiliza-
tion and how it can be achieved through pricing mechanisms are
still open problems. Both these open problems are addressed in
the present study.

Pricing as an allocation mechanism that makes decentralized
decisions compatible with overall efficiency has been studied in
the context of queueing systems; see, e.g., [20]. In computer
networks, pricing has been receiving increasing attention from
both the research and the corporate world, mostly due to the ex-
plosive growth of the Internet, which is evolving from a heavily
subsidized network to a commercial enterprise [5], [13], [14],
[161,[171, [191, [231, [271. The research community has taken
a normative approach, proposing usage-based pricing mecha-
nisms that will motivate the users to adopt a social behavior,
e.g., by regulating their traffic, or by requesting lower grade of
service. Network providers, on the other hand, will benefit from
using network-efficient pricing schemes, but at the same time
are interested in mechanisms that first generate profit and sec-
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ond are more appealing to the end users than the mechanisms of
their competitors.

The interface between the performance- and the market-
oriented approach to pricing, is one of the main factors that will
define the future evolution of public networks – networks where
access is not restricted to members of an enterprise – such as
the Internet. In an attempt to delineate this interface, various de-
bates have arisen within both communities. There seems to be
a consensus, though, that some type of usage-constraining pric-
ing is necessm-ymainly due to congestion considerations. In the
present study we do not attempt to enter these debates. Rather,
within the framework of the normative approach, we demon-
strate how pricing strategies can be used to drive the network to
an operating point that is deemed efficient with respect to the
overal1network performance,

More specifically, we consider a general network with nodal
schedulers that belong to the rate-based class as described in the
specification of the Guaranteed Service for 1P.Each connection
is characterized by its source-destination nodes, maximal packet
size, maximal burst, and an upper bound on the end-to-end de-
lay. The properties of rate-based schedulers allow the derivation
of an upper bound on the end-to-end delay of a connection when
it is routed over a given path at a given reserved rate.

There is a cost associated with reserving a unit of rate over
a link, which is the price of the link. Focusing on congestion
pricing, we assume that the price of a link is a function of the
aggregate rate reserved at the link. Each connection is estab-
lished so as to minimize the total usage cost while satisfying
its end-to-end delay constraint. The interaction among the var-
ious connections that decide independent y on their individual
routing strategies can be modelled as a game [6], [21]. Any op-
erating point of the network is a Nash equilibrium of that game,
that is, a collection of routing strategies horn which no user has
an incentive to deviate unilaterally.

Link price functions are determined by the network
provider/manager. The goal of the manager is to drive the users
to a Nash equilibrium that is efficient from the network’s point
of view. More specifically, we assume that efficiency is defined
as minimizing a global (social) cost function that quantifies the
overal1network performance and is the sum of link cost func-
tions. The manager seeks a pricing strategy that enforces a
unique Nash equilibrium that minimizes this sociaf cost func-
tion. Any such pricing strategy is called incentive compatible.

We investigate the structure of the QoS-routing game and
show that, for any given set of link price functions (conforming
to a s~t of general assumptions), it has a unique Nash equilib-
rium. Moreover, we establish a set of necessary and sufficient
conditions for a feasible (link) flow vector to be the equilibrium
of the game. Having established these results, we turn our at-
tention to the problem of incentive compatible pricing strate-
gies. We show that if the network manager imposes link price
functions that are equal to the derivatives of the link cost func-
tions, the unique equilibrium of the QoS-routing game coincides
with the network optimum. We note that this type of price func-
tions have been known to enforce the network optimum when
the users implement a much simpler class of optimat routing
strategies, such as in transportation networks [4].

In Ifie sequel, we turn our attention to connections that con-

duct multiobjective, constraint path optimization. A typical set-
ting is to identify a path that minimizes some target function,
e.g., administrative costs, while observing one or more con-
straints, such as end-to-end delay and jitter, For this setting we
show that the previous results about the routing game and the
incentive compatible prices still apply. These results are based
on the assumption that the users are able to determine optimal
routes that provide both delay and jitter guarantees. However,
such multiobjective path optimization problems are, in general,
NP-complete [7], therefore optimal routing solutions are pro-
hibitively complex. On the other hand, there are efficient ap-
proximation schemes which provide t-optimal solutions within
polynomial time complexity (see, e.g., [12]). This means that
users can be expected to make not self-optimizing but only sub-
optimd decisions. This situation presents a harder challenge for
network management, as the response of users to management
schemes becomes unpredictable, An important question is, then,
whether there is still a pricing scheme that drives the network to
an efficient operating point. We indicate that the answer is affir-
mative, Moreover, we show that the required prices are exactly
those that correspond to the standard scenario of self-optimizing
users.

The rest of the paper is structured as follows. In Section II
we present the QoS-routing model and formulate the problem
of incentive compatible pricing. Focusing on end-to-end de-
lay constraints, in Section III we investigate the structure of the
QoS-routing game and study the problem of incentive compat-
ible pricing, The multiobjective path optimization case is con-
sidered in Section IV. Conclusions are presented in Section V.
Due to space limits, proofs are omitted from this version, and
can be found in [15].

II. MODEL AND PROBLEM FORMULATION

We consider a network ~(p, Z), where V is the set of nodes
and C ~ VxVistheset of links, andlet N = IVIandibl’ = I,Cl.
We denote by H the maximal possible number of hops (links) in
a path. For any link 1= (u, v) c Z, define S(l) = u and 7’(1) =
v. Considering a node u ~ V, let In(v) = {1 : T(l) = u}
denote the set of its ingoing links, and Out(v) = {1 : S(l) = u}
the set of its outgoing links. Each link t E L is characterized by
the following parameters:
. A maximal rate (capacity) Rz, which the link can offer to a
new connection. When a new connection with a rate r < R1 is
established through link 1,the value of Rl becomes R1 – r.2
● A comtam delay dl, related to the link’s speed, propagation
delay and maximal transfer unit. Without loss of generality, we
assume that dl takesinteger vatues.

Connections belong to a set Z = {1, 2,...,1} of “types.” A
connection (of type) i E Z is characterized by the following
parameters:
● a source node .si and a destination node ti,

● a bias cri, related to the connection’s maximal burst,
. a maximal packet size Ci,
● an end-to-end delay QoS requirement Di, which, without loss
of generality, is assumed to take integer values,
● a bandwidth QoS requirement bi.

2If the maximat available rate is a nodat property, then we associate it with all
its outgoing links.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE



A connection should be routed through some path p between
the corresponding source and destination nodes. We shall de-
note by n(p) the number of hops of a path p, and by r(p) its
maximal available rate, that is, r(p) = minzcP R1. We assume
that the scheduling policy in the network belongs to the rate-
based class [8], [24], [30], as in the specification of the Guar-
anteed Service for 1P [28]. Accordingly, when a connection i is
routecl over a path p with a reserved rate r < r(p), its end-to-
end delay is upper bounded by:

D(p,r) =
rJi + n(p)c~

+~dh (1)
r

Kp

Let Di (p) = Di(p, r-(p)) denote the minimal possible value
of Di (p, r), which shall be referred to as the guaranteed de-
lay of p. A path p between Si and -$ is said to be~ea$ibJe for
connection i if Di (p) < Di and r(p) ~ bi. Paths that cannot
accommodate the bandwidth requirement of the connection can
be eliminated, thus the bandwidth constrained can be treated as

absent. Therefore, denoting by ai (p) = ~~~fl~~d, the min-

imal rate that satisfies the delay constraint of connection i on
path p, the feasibility of a path can be defined as follows.

Dejhition ZZJ: A path p between .si and ti is said to be
feasible for a connection (of type) i, if D; > ~zeP dl and

r(p) > ai (p). Let Pi denote the set of all feasible paths for
that connection.

The arrivat process of type i connections with source node u
and destination node j is some ergodic process with rate ~~(j).
We assume that there is an infinite number of type i connections,
each with infinitesimally small rate. There is a usage cost wz as-
sociated with reserving a unit of bandwidth on link 1 c C that
will be referred to as the price of the link. The total cost for re-
serving bandwidth r over path p is, then, r ~lGP W1.Each user
makes its routing decisions (choice of path(s) between source
and destination and corresponding reserved rate) independently,
according to its individual QoS requirements and cost consider-
ations. More specifically, each connection is established so as to
minimize its totat cost, while satisfying its delay constraint.

The price for usage of a link is the same for all connections
and depends only on the aggregaterate reserved on the link.
More specifically, if ~zdenotes the total rate reserved by all con-
necticms on link 1, then the cost for reserving a unit of band-
width (price) on the link is W1(.fl), ~1 will be referred to as
the “flow” on link i. It is important hereto note the underlying
dynamics of the network; users choose feasible paths accord-
ing to link prices, which, in turn, are functions of the aggregate
rates reserved on the links, thus depend on the choices made by
the users. This dynamic behavior can be modeled as a nonco-
opera]~ivegame. An equilibrium of the network, that is, a link
flow clistribution f = {fl :1 c 1} where prices and aggregate
rates remain unchanged, is a Nash equilibrium of the underlying
QoS-routing game.

The set of network equilibria depends on the link price
functions that are determined by the network manager and/or
provider. Depending on the way the network is financed and the
market structure, the manager/provider might choose prices ac-
cording to various objectives that combine, in general, the aim to

operate the network efficiently and, at the same time, generate
revenue. in determining prices, the structure of the user com-
munity, as well as competition by other providers should also be
taken into account. We do not attempt to address all these is-
sues here. Rather, we aim at a rigorous investigation of pricing
strategies that lead to efficient utilization of network resources.

Network efficiency is typically defined as achieving an oper-
ating point that minimizes a global (social) cost function J(f)
that quantifies the overall network performance: the higher
J(f), the lower the network performance under f is. We fo-
cus on social cost functions J(f) = ~le- J1(jz) that are the
sum of link cost functions, where the cost of link 1depends only
on the total flow ~1on the link and satisfies the following.
Assumptions G:
G1. Jz : [0,Rl] -+ [0, co] is continuous.
G2. J1 is increasing and strictly convex.
G3. JZ is continuously differentiable.

Under Assumptions G, there exists a unique operating point
that minimizes J, which shall be referred to as the network op-
timum. The goat of the network manager is to determine a pric-
ing strategy (collection of price functions) {w1(~z) : i e L} that
provides incentives to the users to make choices that lead to a
unique network equilibrium which coincides with the network
optimum.3 Any such pricing strategy is called incentive com-
patible. Here, we concentrate on price functions {wz(fl)} that
satis~ the following.
Assumptions P:
PI, W1(~i) is nonnegative.
P2. W1: [0, Rz] -+ [0,co] is continuous,
P3. w~(J) is increasing.

Existence of incentive compatible pricing strategies is inves-
tigated in the following section. It is shown that an incentive
compatible pricing strategy of the manager always exists and its
structure is specified explicitly.

As already explained, each connection is established so as
to minimize its total cost while satisfying its QoS constraint.
Till now, we have only considered connections with end-to-end
delay constraints. In general, a connection might have multiple
QoS constraints, for example, end-to-end delay and jitter. The
underlying QoS-routing game and the related pricing problem,
under multiple QoS constmints, are investigated in Section IV.

Throughout the paper, we assume that the network can ac-
commodate the total offered load, i.e., that there is a srable net-
work operating point f, in the sense that .jj < RZ for all links
lEL.

III. INCENTIVE COMPATIBLE PRICING STRATEGIES

In this section we investigate the existence of incentive com-
patible pricing strategies, that is, price functions {wt (jl) :16
Z} that induce a unique network equilibrium that coincides with
the network optimum. To do so, we first need to analyze the
structure of the QoS-routing game forgiven link price functions.

St)epending on the pricingscheme, the network might have multiple w@-
tibria, a unique equrhbrium, or no equilibrium at all. Evidently, the manager
would avoid pricing schemes that prevent the network from reaching an oper-
ating point. Similarly, schemes that lead to multiple equilibria are, m general,
undesirable, since the operating point of the network depends on its initial state
and there is no guarantee that it is the equilibrium that correspondsto the des]red
point.
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For ease of exposition, we consider first, in Subsection III-A, the
simple case of a homogeneous network, The results are extended
to the case of a general network in Subsection III-B,

A. Homogeneous Network

Consider a network with homogeneous connections – i.e.,
Di s D, 1# ~ u and Ci ~ c – and homogeneous links –
i.e., dl s d – that will be referred to as a homogeneous net-
work. Denote by ~ti(j) the aggregate (arrival) rate of connec-
tions between a source node u and a destination node j. Let
a “ = -, i.e., a“ denotes the minimal rate required by a
connection over an n-hop path.

Let us start by studying the routing problem faced by a user.
Given a set of nonnegative link prices {wJ},4 the routing prob-
lem of a type i user can be defined as follows.
Homogeneous Network - User Problem (HU):
Find a path p* c Pi that achieves the minimum:

It is easy to see that Problem HU is solved by the following
algorithm.
Algorithm HU:

1. For all 1 s n < ~, run a Bellman-Ford shortest-path al-
gorithm [2], with respect to the rnctric {wl }, in order to jind a
shortest path P“, among those that have at most n hops. De-
note: W“ = &p. wl.
2. Le,tn* = arg minl<n<% an W“. The required path is p* =

Pn”.

We now proceed to characterize the structure of the QoS-
routing game. Considering the network at equilibrium (as-
suming that one exists), denote by ~~ (j) the aggregate (ar-
rival) rate of connections from source node u to destination
node j, which are established over n-hop paths. Similarly,
let .f~(j) be the aggregated flow over a link 1, correspond-
ing to connections destined to node j, which are routed over
paths for which link 1 is the n-th hop away from the destina-
tion. By a slight abuse of notation, define the link flow vector
f = <{j~(j) : 1 s n < %,J c J2,j c v]. Similarly, define

7 = (7~(~) : ~ < n < ~,u,j ● V,u # j}. Flow vectorsf
and T must satis~ the following feasibility constraints.
Constraints KY:

4. Vj, uCVu#,j, Vl~n <$: ~$(j)~O.
The first constraint is a flow conservation constraint: it states

that &v fuo (j), i.e., the aggregate flow to a destination j for
which a node u is at the starting-point of the n-th hop, is equal
to the sum of ~ ~ev .KT’ (~), i.e., the aggregate ftow to j for
which node u is at the end-point of the (n + 1)–st hop, plus

4Recal] that there is an infinitenumber of connections tach with infiUit~i-
mally small rate. ‘llms, the routing decisions of a single user do not affect link
prices, which can be treated as constants with respect to the user optimization
problem.

y: (j)an, i.e., the aggregate rate of connections established be-
tween u and j over n-hop paths,s The second constraint simply
states that each connection should be routed over some path.
The third and forth are obvious nonnegativity constraints, Let
2% denote the set of feasible flow vectors (f, ~) for the homo-
geneous network, i.e., those that obey the above four constraints.

Let (f, T) bean equilibrium flow vector. Then, the total flow

on any link 1 c L is fl = ~~~~–1 ~jev ftn(j). By Algo-
rithm HU, it is clear that a path chosen by a user is a short-
est n-hop path with respect to the metric {wl (fl) }, for some n,
1 ~ n < $?. This observation leads to the following equilibrium

(2)

(3)

(4)

The equilibrium conditions can be explained as follows.
At(j) is the minimal equilibrium price for reserving one unit
of rate over an n-hop path between a source u and a destination
j; expression (2) simply states that, among paths with the same
number of hops, users will prefer those with minimal per-unit
rate prices. ~U(j ), in turn, is the minimal equilibrium cost for
establishing a connection between a source u and a destination
j; expression (3) is just a restatement of the observation made
above.

The structure of the QoS-routing game in a homogeneous net-
work is given by the following theorem.

Theorem 111.1: In a homogeneous network, for any set of
link price functions {wl (~1)} that satisfy Assumptions P:
1. There exists a unique equilibrium flow vector (f, ~) ~ .?7+.
2, Conditions (2)–(4) are necessary and sufficient for equilib-
rium, that is: a flow vector (f, -y) e 7% is an equilibrium if and
only if there exist finite numbers {Al(j) : 1 < n < ~, u, j c

V,u # j} and {~u(j) : u,j c V,u # j}, such that (2)-(4)
hold,

We now turn our attention to the manager’s problem. The
manager aims at enforcing the network optimum, i.e., a flow
vector (f, -y) that minimizes the social function J(.) over the set
of all feasible flow vectors. The manager can only decide upon
link price functions {wl (fl) }. According to Theorem 111.1,each
choice of a set of link price functions that comply with Assump-
tions P induces a unique network equilibrium. Therefore, the
problem faced by the network manager can be stated as follows.
Homogeneous Network – Manager Problem (HM):
End a set of link price &nctions {W8 (j&)} that satisfi Assuznp-

tions P and lead to a network equilibrium, which coincides with
the network optimum, i.e., a jlow vector (f, y) that solves the
following problem.

5Indeed, such connections arrive at rate ~~ (j), and each requiresarwervatimr
of an units of rate.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE



Minimize:

subject to Constraints 2%
Before we investigate the existence of incentive compati-

ble pricing strategies, let us first prove the following proposi-
tion, which characterizes the structure of the network optimum
through a set of necessary and sufficient conditions.

Proposition ZZZJ; Given a social cost function J(o) that con-
forms with Assumptions G and a homogeneous network, a flow
vector (f, ~) is the network optimum if and only if there exist
(Lagrange multipliers) {Afi(j) :1< n < ~, u, ~ C V,u # ~}

and {~~(j) : u, j e V, u # j}, such that the following (Kuhn-
Tucker) conditions are satisfied:
VU,j e V,u #j, vlJ E Out(u), vl < T1< ~:

{

= A;(j)f@ , ~;(j) >0xti(~) < y(j)a~ , y:(j) = o (6)
.

y(j) = Ij(j) = o. (7)
Theorem 111.1and Proposition III. 1 imply that link price func-

tions {J/ (.f~)} lead to a unique equilibrium that minimizes the
social cost function. We have, thus, established the main result
of this subsection.

17morem ZZZ.2:For link price functions wt (~t) ~ J((jz),
1 E L, the flow vector (f*, T*) that minimizes the social cost
timction J over Y?f is the unique equilibrium of the homoge-
neous network.

The implication of Theorem 111.2is that, by setting link price
functions that are equal to the derivatives of the social cost func-
tions, the manager can drive a homogeneous network to the re-
quired social optimum.

B. General Network

We consider now the general case, i.e., general connections –
with values Di, Oi, c; – and general links – with values dz. Let
~n, d,a _ u’ +nc’Dt_d, where lSn SH, i<Z, andl~d<Di,
i e ~,%d>~is the minim~ rate required by a type-i connection... ,
established over a path of n hops and total constant delay d.

Again, we start by studying the routing problem faced by a
user. Given a set of nonnegative link prices {wl}, the routing
problem of a type-i user in a general network can be defined as
follows:
General Network – User Problem (GU):
Find a path p“ c P%that achieves the minimum:

The above problem belongs to a class of combinatorial path
optimization problems with rational objective functions. That

class has been investigated in [10], where a polynomial solu-
tion was established. The complexity of that solution, when ap-
plied to our case, is 0(N2M log(N ‘Wt L” Di,n,n,‘c w,, )) ~though
the complexity here is higher than in the fiomogeneous case, it
is still of a reasonable polynomial rank. Thus, just as in the ho-
mogeneous case, users can be expected to identify their optimal
paths, given a set of link prices. To summarize:
Proposition111.2: Problem GU is solvable through a poly-

nomial, 0(N2 M(log(iV ~J~;~; J Di)) algorithm.
We now proceed to characterize the structure of the QoS-

routing game in a general network. Considering the network at
equilibrium (assuming that one exists), denote by Y;’d>i(j) the
aggregate (arrival) rate of type-i connections from source node
u to destination node j, which are established over aths with n

%~~(j) be thehops and total constant delay d. Similarly, let ,ft
aggregate flow over a link 1,corresponding to type-i connections
destined to node j, which are routed over paths, for which link
1 is the n-th hop away from the destination and the total con-
stant delay on the remainder of the path is d. By a slight abuse
of notation, define the link flow vector f = {.f~’d’z(j) : 1 <
n < H,i c 1,0 s d ~ D’,1 e C,j c V}. Similarly, define
-y={~;di(j):l <n< H,iEZ, OSd SDi,u, j 6V, U#
j}. Flow vectors f and ~ must satisfy the following feasibility
constraints.
Constraints FL7:
l. Vi,’dj, uEVu#j, Vl~n~H, VO <d<Di:

~f~$d’z(j) = ~fn+ld+d~.’(j) +Y:,d,i(j)an,d,i,vu
Ucv Vcv

“-1 “d’i(~) = 7:(.0;2. ~i,yj,u~vu+j:x;=l~d=o ~u
3. Vi, VjEV, V(u, v)6L, Vl~n sH, VO~d<Di:

fxd’i(~) 2 Q
4. Vj, uEVu#j, VI SnSH, VO<d<D~: @’i(j)>
o.

The above constraints are similar to the set of constraints 7’%
except that now we differentiate flows not only according to the
destination and remaining number of hops, but also according to
the connection type and remaining units of constant delay. Let
~~ denote the set of feasible flow vectors (f, -y) for a general
network, i.e., those that obey the above four constraints.

Let (f, ~) bean equilibrium flow vector. Then, the total flow

“d’’(~).on any link 1 c L is .fJ = ~~=1 Xicz ~~!~l ~jGV .f~

We observe that a path chosen by a user (i.e., that solves Prob-
lem GU) has a minimal price among paths between the same
source and destination with the same number of hops and con-
stant delay. This implies that chosen paths have the following
local optimality property: if PI and P2 are two paths between a
node u and a destination node j, each of n hops and having the
same propagation delay d (that is, ~lePl dl = Elcpz dl = d),
and if PI is a subpath of a path chosen by some user whose
destination is j, then &p, wz < Xlcp, W.

leads to the following equilibrium conditions:
Vi, Vu, j E V,u # j,Vv E Out(u), Vl s n
Di:

A:’d(j)
{

= %(.fu.) + x-l’d-d” o(~) ,
‘-’’d-duv (~) ,s ‘wLv (fw) + &

This observation

~H,VO~d<

f:Jd’~(j) >0
f#;&~(j) =()

(8)
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The equilibrium conditions can be explained as follows.
Afid(.j) is the minimal equilibrium price for reserving one unit
of rate between a source u and a destination j, over a path with
n hops and constant delay d, expression (8) simply states that,
among paths with the same number of hops and constant$elay,
users will prefer those with minimal per-unit rate prices. A;(j),
in turn, is the minimal equilibrium cost for establishing a con-
nectic,n of type i between a source u and a destination j; expres-
sion (’9)is just a restatement of the observation made above.

The structure of the QoS-routing game in a general network
is given by the following theorem.

Theorem ZZZ.3;In a generrd network, for any set of link price
functions {wl(~l)} that satisfy Assumptions P:
1. There exists a unique equilibrium flow vector (f, ‘y) E .?’~.

2. Conditions (8)–(10) are necessary and sufficient for equilib-
rium, that is: a flow vector (f, T) E %~ is an equilibrium if and
only if there exist finite numbers {A$’d(,j) : 1 ~ n < H, O ~
d ~ maxiez Dt, u,j G V,u # j} and {~~(j) : i c ~,u,j c
V, u # j}, such that (8)–(10) hold.

We now turn our attention to the problem of the manager.
As before, the manager aims at selecting link price functions
{w1(j;)} that enforce the network optimum, i.e., a flow vector
(f, V) that minimizes the social function J(.) over the set of all
feasible flow vectors. According to Theorem 111.3,each choice
of a set of link price functions that comply with Assumptions P
induces a unique network equilibrium. Therefore, the problem
faced by the network manager can be stated as follows.
General Network - Manager Problem (GM):
Find a set of link price fimctions {WZ(fl )} that satis’ Assuntp-
tions P and lead to a network equilibrium, which coincides with
the network optimum, i.e., a jlow vector (f, T) that solves the
following problem.
Minimize:

subject to Constraints Fg.
The following proposition characterizes the structure of the

netwc~rkoptimum through a set of necessary and sufficient con-
ditions.

Proposition ZZZ.3: Given a social function J(.) that conforms
with Assumptions G and a general network, a flow vector (f, T)
is the network optimum if and only if there exist (Lagrange mul-
tipliers) {~~’d(j) : j,u e V,u # j,l ~ n ~ H,O < d <
maxiEz Di} and {~u(j) : j,u G V,U # j}, such that the fol-
lowing (Kuhn-Tucker) conditions are satisfied:
Vi,Vu, j ~ V,u # j,Vv c Out(u), Vl < n ~ H,V1 ~ n <
H,VCI < d < Di:

Vi, Vu, jEV, u#j, V15ns H, V05d<Di:

A; ’d(j)~ i;(j) R (). (13)
We have thus established the main result of this section.
Theorem ZZZ.4: For link price functions

the flow vector (f*, V*) that minimizes the sociat cost function
J over Tg is the unique equilibrium of the general network.

Again, the implication of Theorem 111.4is that, by setting link
price functions that are equal to the derivatives of the social cost
functions, the manager can drive a general network to the re-
quired sociaJ optimum.

Remark ZZZJ: It is important to note that, while the equilib-
rium conditions (8)–( 10) are stated with a considerably large
number of variables, namely O(max;ez Di , H . N oM) La-
grange multipliers, the optimality problem faced by each user
is of polynomial size, as established by Proposition 111.2.Sim-
ilarly, the large number of variables with which the optimality
conditions (11)–(13) are stated has no implication on the man-
ager: as established by Theorem 111.4,the size of its strategy,
i.e., optimal price vector, is just O(M).

Ill Speciat Cases

The general network model, formulated above, includes the
following cases of special interest.
. Saturation: Suppose that each link has a “capacity” cl, and
the goal of the manager is to avoid link saturation, i.e., ~t should
be kept below cl. This case can be accommodated by choos-
ing any price function W1,which complies with our standard
assumptions, and, in addition, satisfies limf, +., W1(~1) = cm.
● Exponentialprices: Taking a competitive analysis standpoint,
It has been indicated that it is a good practice to route connec-
tions over paths that minimize the sum of link weights, each
being some exponential function of the relative load on the link
(see, e.g., [25] and references therein). In our framework, im-
plementing this indication would correspond to choosing link
prices that are some function F’(.) of an exponent of the rel-
ative load ~, where c1 stands for the capacity of a link 1;

i.e., W1(fl) = $’(e~ ), where F’(.) should be increasing and
(weakly) convex.
. Elastic demand: Suppose hat a user may choose not to estab-
lish a connection, say of type i, when the incurred price is too
high, say higher than some value w~ax. This environment can
be modeled in our framework in the following way. Consider
each traffic demand Y:(j), i.e., type-i traffic between a source
u and a destination j: add a fictitious node si, which becomes
the new source of ~~(j); connect si tos through a fictitious link
(.s’,s), and set d,;. = w$t~ = O,i.e., (s+,s) has zero constant
delay and zero price; connect Si to j through a fictitious link
(Si, j), and set d,~. = Di – (at+ Ci), W$.$ = w;,,=. It is easy
to verify that a connection of type i, to destination j, can be (fic-
titiously) established over the direct link (si, s) with a single unit
of reserved rate and corresponding price w&X; thus, whenever
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the connection cannot be established over the real network at a
lower price, it is deferred to the fictitious link, hence modeling
an actual cancellation,
● Taq;et operating point; In some cases, the target operating
point might be specified explicitly, rather than implied by some
social cost fimction. An easy way to accommodate such cases
in our framework is as follows. Given a target operation point
f”$ choose the following price functions: w; ($1) = .fl – ~~?
Indeed, the unique minimum of the cost function J; = ~ w} dft
is f*. By Theorem 111.4,this is also the network’s unique equi-
librium point. Intuitively, w? discourages the over-utilization of
a link, by imposing (positive) tolls when jl > ~~; whereas when
ft < ~~, an incentive is given to use that link, in the form of a
“back payment” to the user. Once equilibrium is reached, the
price {overall links is zero.

C. Big User

Suppose that, except for the (infinitely) many (infinitely)
small users, there is one “big” user, i.e., with a non-negligible
amount of flow. For example, consider a network service
provider that implements its infrastructure on top of the consid-
ered network. It is easy to verify that, in the presence of such a
user, our regular pricing scheme will not work. Intuitively, such
a user should take into account the externalities imposed by its
routing decisions, i.e., the effect that each connection has on
the rest of the user’s flow. Hence, its optimal policy is different
than that implied by ProblemGU. In this subsection we devise
a pricing scheme for the big user, which, together with the reg-
ular scheme elaborated for small users, constitute an incentive-
compatible pricing strategy.

The arrival process of type i connections corresponding to the
big user, with source node u and destination node j, is some er-
godic process with rate ~~’t(j). Considering a network at equi-
librium, denote by ~~’n’d’i(j) the aggregate arrival rate of type-i
connections corresponding to the big user, with source node u
and destination node j, which are established over paths with n
hops and total constant delay d. Denote by jlB the aggregate
flow of the big user on link 1. Then, .fl-B = jl – .f~ is the
aggregate flow of all other (small) users.

We impose on the big user a pricing scheme {w?}, which
depends both on the aggregate link flow ~1 and on the user’s
flow ,flB, i.e., wlB = w? (~lB,fz). Given such price functions,
and gwen f ‘B, the big user’s problem on a general network can
be stated as follows.
General Network - Big User Problem (GBU):
Minimize:

.wbject to:

6f * must be feasible.
7~lle ~ese functions do not comply with Assumption PI, ouranalysism

aeeomtnodate a relaxation of that assumption.

l. Vi, Vj, ueVu#j, Vl<n<H, VO ~d <D’:

U(W ‘LEv

“-’ “n’w) = ‘-t’w);2. vi, vj, uEvu#j:z:=lx~=o 7.
3. Vi, VjGV, V(u, TJ)EZ, Vl <n< H, VO~d<Di:
ffi%d>i(j) ~ ();

4. Vj, uEVu#j, Vl<n <H, VOsd<Di:

%3n’d’i(j) 20,
Problems GM and GU remain the same, except hat now the

-y-valuesinclude the connections of both the small users and the
big user.

Consider the following price functions:

w?bt’,.fd = J~(.fJ) – Jt(.fz – &B). (15)

Intuitively, t$ (jlB, jj) charges the big user for the increment
in the function J1 induced by its aggregate flow .fzB.In [151we
establish the following result.

Theorem ZZZ.5:Let the price functions imposed on the small
users be as in (14), and the price functions imposed on the big
user be as in (15). Then, the flow vector f * that minimizes J(f )
over 7G is the network’s unique equilibrium.

IV. INCENTIVE COMPATIBLE PRICING STRATEGIES FOR

MULTI-OBJECTIVE PATH OPTIMIZATION

We turn to consider the case where a connection needs to ac-
commodate additional constraints, besides end-to-end delay. In
order to concretize the discussion, we focus on jitter constraints,
and denote by r< the maximal end-to-end jitter constraint of a
type i connection.

As before, we assume that the scheduling policy in the net-
work belongs to the “rate-based” class [28]. Accordingly, when
a connection i is routed over a path p with a reserved rate
r- s r-(p), the following upper bound Ti (p, r-) on the end-to-
end jitter applies:

(16)

Let Ti (p) = Ti (p, r(p)) denote the minimal possible value of
#(p, r), which will be referred to,as the guaranteedjitter of p.
Accordingly, a path p between s’ and tiis said to be feasible
for connection i if Di(p) < Di, r(p) z bi, and Ti(p) < -ri; as
before, we can disregard the bandwidth constraint bi. Let:

denote the minimal rate that satisfies both the delay and the jit-
ter constraints of connection i over path p. The set T’i of paths
between source si and destination $’ that are feasible for a con-
nection (of type) i is defined as in Definition 11.1,where d(p)
is given by eq. (17). Therefore, the QoS-routing problem faced
by a user z can Destated as follows.
Jitter-Delay Problem (JD):
Find a path p“ G Pi that achieves the minimum:

1
min (ai + n(p)ci) max(~ )~w,.

I-t ‘ Di – &P ‘1 l~ppa=’;
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Proposition ZV1: Problem JD is NP-Complete.
The above situation is typical of multi-objective path op-

timization. These problems are, in general, intractable, but
solvable through pseudo-polynomial algorithms, based on dy-
namic programming principles. A pseudo-polynomial solution
for ProblemJD would incur a time complexity of O(DiMH).
If users could be expected to afford such a solution, the equilib-
rium conditions would be the same as (8)–(10), only that O@>i
now becomes:

CTi+ nci (7 + TLci
a “d’s = max( ). (18)

Ti ‘~’ - El.p d

Proceeding as before, it can be shown that theorems 111.3and
111.4hold here too, i.e., the manager can lead the users to the
(system’s) optimal point by setting wz = J;. However, pseudo-
optimal solutions are usually prohibitively complex for connec-
tion establishment. We thus conclude that, when facing both
delay and jitter constraints, users cannot be expected to iden-
tify their optimal solutions. This means that we cannot establish
equilibrium conditions that are based on user-optimality con-
siderations. On the other hand, such multi-objective path opti-
mizat ionproblems have efficient approximation schemes, which
provide ~-optimal solutions within polynomial time complexity
(e.g., [12], [22] and references therein).

In the following, we investigate the possible design of effi-
cient pricing schemes when users employ such e-optimal ap-
proximations. In order to concretize the discussion, we focus
on approximations that are based on scaling techniques [12]. In
our context, that means that users replace the original set of link
prices {wZ} with a new set {iill} of scaled values. Compared to
prices {wz}, scaled prices {@l} take values in a smaller set, thus
reducing the size of the problem. To simplify the presentation,
we assume that there is a lower bound ~lnin on the price that can
be imposed on a link (per unit of rate). By considering the scaled
prices {01} and running an appropriate (dynamic-programming
based) algorithm, a user can identify a feasible path whose price
is at most 1 + c times larger than the optimal value. Time com-
plexity varies among the various algorithmic versions, however
it is polynomial in the input size (N, log Di) and linear in ~.

The structure of the QoS-routing game is similar to the sim-
pler case of Problem GU, Equilibrium flow vectors f and -ymust
satisfy the feasibilityy constraints FG’. The equilibrium condi-
tions are identical to (8)–(10), where {wtiv(~~.}) are replaced
with I{OUO($titi)}.

Lei $ (.f~) ~ ~ @t(.fi)d!~ and ~(f) ~ &~ $ (.fl). Follow-
ing the same steps as in the analysis of Problems GU and GM,
one can prove that Proposition 111.3,and Theorems 111.3and
111.4,hold in this case~oo, but for link price functions {til(.ft)}
and a social function J(f). In particular, this means that the net-
work has a unique equilibrium (?, ~), which minimizes the cost

function >over ~g.
The relation between @ and wl depends on the precise scal-

ing method used by the user. A general (and quite conservative)
bound is the following:

Wz(fl) < wl(fJ) < Wl(fl) + ew,~~~ (19)

where w~.x is an upper-bound on the price of a link under a net-
work flow that is fairly close to the optimum f*; in other words,

it is a bound on the price at a link under reasonable congestion
conditions. Consequently, we obtain the following result.

Theorem ZW: For link price functions WI(.fi) ~ J~(.f~),1 ~

L, the network has a unique equilibrium (~, ~), for which the
following relation holds:

J(?) ~ J(f*) , (1+ ~=). (20)

As prices can be expected to take small values, i.e., around
W*~i*i, at operating points that are in the proximity of f*, we
conclude that the ratio = is typically small. Hence, the above
theorem establishes that, by setting link price functions that are
equal to the derivatives of the social cost functions, the manager
can drive the network into an efficient equilibrium.
Remark: Consider a general constrained path optimization
problem, in which links are characterized by flow-sensitive costs
{cl(.fl)} and constant delays {dl}, and users attempt to identify
paths of minimal cost while obeying an end-to-end delay con-
straint D. That is, the user problem is to identify a path p such
that ~i=P c1is minimal while ~l=P dl < D. Under this setting
there is no direct dependence of path costs and delays – as op-
posed to Problem GU where the two values depend on the rate –
making the problem NP-complete. Hence, users tie expected to
employ suboptimal approximations, The analysis in this section
can accommodate this general scenario, by simply dropping the
dependence on the hop count, setting Wz($1) ~ c1(~1) on all
1 c L, and setting the c@i values to 1.

V. CONCLUSION

QoS network architectures that employ rate-based schedul-
ing mechanisms have been widely investigated, and eventually
consolidated into concrete proposals, e.g., [28]. However, the
efficient consumption of rates throughout the network remained
an open problem, whose successful resolution is a requisite for
the successful deployment of such architectures. In this study
we established a novel solution methodology, based on a load-
sensitive pricing mechanism.

Congestion pricing, as a network management tool, has been
proposed in the past, both in the context of best-effort commu-
nication networks (e.g., [16], [19]), as well as in the (rather sim-
ilar) context of transportation networks [4]. A novelty of the
present study is to consider congestion at the rate reservation

level, and price rates accordingly. A major complication in such
a framework is that the path optimization problems faced by the
users are considerably more complex than in a best-effort (or
transportation) network. Indeed, in the latter, the user’s routing
scheme consists of a simple shortest-path computation; while
with QoS routing, the user’s scheme has been shown to be much
more complex, in particular when rate-based schedulers are in-
volved [18], [22], [26]. Moreover, many QoS routing problems
are intractable, hence only sub-optimal solutions can be sought.
Yet, we have shown that, in spite of these difficulties, simple and
efficient pricing schemes can be constructed.

More specifically, we considered the employment of a pric-
ing scheme that is based on rate consumption and depends on
the aggregate reservation at the various links. Investigation of
the users’ response to such prices revealed the existence of a
unique network equilibrium. Consequently, we established a
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fundamental result in spite of the complexity of the QoS rout-
ing schemes employed by the users, the network manager can
drive the system into social optimum, by employing a simple
pricing scheme. The corresponding incentive compatible prices
are the derivatives of the social function. It is remarkable that the
soluthn is as simple as in the much simpler setting of a single-
class transportation network [4]. Moreover, we indicated that
other related problems of special interest can be accommodated
as special cases of our general setting.

Our study is also the first to consider the relation between
pricing schemes and multi-objective path optimization, Specifi-
cally, we established the intractability of the related QoS routing
problcm when both pricing optimization as well as delay and
jitter requirements are considered. The implication of this re-
sult is that, in general, users cannot identify their optimal paths,
however we indicated that e-optimal solutions can be expected.
Accordingly, we established that, under certain conditions, the
manager can still drive the network to an efficient operating
point. Moreover, the corresponding pricing scheme is the same
as in the standard setting, i.e. when users do identify their opti-
mal paths. We generalized our analysis to multi-objective path
optimization problems that are not necessarily related to rate-
based schedulers.

An important implication of our results is that the manager
does :notneed to know the exact characteristics or behavior of
the network users. Specifically, the manager does not need to
be aware of the specific values of the connection parameters and
QoS requirements, neither it should know the exact structure of
their QoS routing schemes. Moreover, the manager can choose
to neglect some of the link properties, such as the constant de-
lays. Indeed, the pricing solution is insensitive to all these, and
depends solely on the corresponding social function.

Some important issues remain for future investigation. One is
the incorporation of such pricing schemes in actual protocols.
Another issue of practical importance is the dynamic behav-
ior and convergence properties of these schemes. Some related
simulation work is currently being performed. In addition, we
conjecture that better performance bounds can be established
for the multiobjective (e-optimal) case. While much is yet to
be learned and understood, we believe that the findings of the
present study provide encouraging support for the deployment
of incentive compatible pricing schemes in rate-based QoS net-
work architectures.
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