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Abstract—Internet structure possesses many properties of com-
plex networks. However, existing studies are often constrained
to deriving web connections based on partial data collected, and
the actual Internet traffic and user behaviors are far from being
understood. With detailed traffic flow records collected through
powerful hardware-based monitors, we study from the perspective
of complex network the characteristics of four types of traffic:
P2Pdownload, HTTP, Instant Messaging and overall traffic. Based
on the data analysis and comparison of different applications, we
confirm that both the distributions of node degree and strength of
nodes/edges follow power law but they have significant different
exponents. Specifically, taking advantage of the strict timing of
the records, we study the dynamics of flow graphs. The growth
of edges upon nodes is nonlinear. Edges formed between existing
nodes, instead of the ones arriving with new nodes dominate the
growth. We also observe linear preferential attachment behaviors
in the flow graphs.

Index Terms—-Internet flow; power law; degree distribution;
complex network; growth process; preferential attachment.

I. INTRODUCTION

The concept of complex network has been extensively used
to represent an abstract idea and a method of investigating the
interactions among people and things of our world. Almost all
sorts of relations, from the molecular level protein connections,
to food web of animals in nature, and relationship of human
being such as email and scientific cooperation [1], can be
modeled as complex networks. Studies on networks originated
from such a large variety of fields have given out surprisingly
consistent results, making complex network an active and
fruitful research topic [2]. Among the results, the power law
feature [3] and small world [4] phenomena are probably the
most important findings. The most successful explanation of
the power law feature was given by Barabsi and Albert model
(BA model) [3], which models the complex network through the
growth of edges with preferential attachment of edges to nodes
with higher degrees. There are many studies of modifications of
the BA model with respect to different kinds of networks [2].
Although the BA model and its variants are successful in theory,
the supporting data and observations of the actual growth of a
complex network is very difficult to acquire.

The Internet, which may be the largest human engineered in-
frastructure, is a perfect example of a complex network and has
been studied intensively. The physical connections of routers

[5], [6], the routing information of BGP and other routing
protocols [7], the web page and the hyperlink structure [8], [9]
have all shown distinct properties of complex networks, with
their important network parameters such as degree distribution,
diameter of the network and clustering coefficient all following
the complex network models. It is interesting that not only
the physical architecture of Internet itself, but also how people
using it – the total Internet traffic and website visits, possesses
the similar properties of complex networks, with the power law
property as its most significant sign [10].

Although there are tremendous interests in complex net-
works, the earlier studies are mainly based on the manual
collection of data on various relationships, so the data sets are
normally small, and the observations may be biased. Many
recent studies focus on understanding the features of webs,
with the connectivity information collected by various crawlers
or through web data mining. The information traced may not
be complete, and the resulting models or parameters may not
reflect the exact connection characteristics. Due to the lack of
more complete flow data, the characteristics of global behaviors
of web users as well as the actual relation between traffic
and user behaviors are far from being well understood. To our
best knowledge, there are very limited studies on the Internet
behaviors based on actual flow data. In [10], the investigations
were made based on sampled data collected from Abilene
network (Internet2), which carries only academic and research
traffic, and is never congested. Moreover, only those flows
involving TCP connections with an endpoint on port 80 were
considered as web traffic and studied.

In this paper, complex networks built from detailed Internet
traffic flow records are examined. Our flow records were
generated by powerful line-speed monitors each with a capturer
and a classifier to track the traffic of a 10Gbps trunk link
between an access network and the backbone. The records
consist of detailed complete traffic information with accurate
application classifications. This allows us to more closely
observe the interactions among Internet hosts and flows, and
more accurately model the characteristics of complex networks.
Instead of constraining our work to web connections, we study
the user behaviors and transmission characteristics of three
major types of Internet traffic, including P2Pdownload, HTTP,
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and Instant Messaging (IM), as well as the total Internet traffic.
We try to investigate important characteristics of the complex

networks derived from the flow data, such as node degree and
strength distributions by comparing results from different types
of traffic. Particularly, taking advantage of the strict timing
information of the records, we analyze the formation process
of various complex networks in order to better understand the
growth. To the best of our knowledge, we are the first to study
the growth and preferential attachment behavior using all the
timed records instead of taking only a subset of the records
which are sampled from the transmission data, and generate im-
portant and quantitative results of various applications. Instead
of mainly analyzing the web traffic as done in the literature
work, the comparison of connection and traffic features of
different types of applications will also provide a guideline for
better provisioning of Internet resources.

The main contributions of this paper are as follows:
1) We construct graphs from complete flow records of

three different applications, namely P2Pdownload, HTTP,
Instant Messaging, and the overall traffic. We analyze
these graphs from the perspective of complex networks
and results such as the power law distribution are given.
We observe a significant difference in degree distribution
of different types of traffic. We provide detailed analyses
on the results.

2) We examine the growth of flow graphs in a detailed and
timely manner. We confirm the linear growth of newly
added nodes and edges. On the other hand, the analysis
also reveals that the number of edges formed between
existing nodes is large and grows nonlinearly.

3) We investigate the preferential attachment processes with
flow records. We confirm that the preferential attachment
of all applications is linear.

The rest of the paper is organized as follows. In Section 2, we
provide a brief review of related work. We introduce our data
sources and the flow graph construction procedures in Section
3. We then present and discuss our analysis results in Section
4. Finally, we conclude the paper in Section 6.

II. RELATED WORK

Internet has been studied from the complex network point of
view in many aspects. The most basic and straight forward
physical structure of routers and links connecting them is
observed to follow the power law based on snapshots of Internet
topology, with power law exponents of out-degree between 2.15
and 2.48 [6]. On top of the physical links, autonomous system
(AS) level connections provide another view of Internet as a
complex network. Studies based on BGP and other routing
information show that network among ASs also possesses
power law and small world properties, while many other
important metrics such as joint degree distributions, clustering
coefficient, eigenvalue and spectrum properties reveal more
detailed properties of Internet [7]. The structures of routers and
ASs are already large-scale examples of complex networks,
however, they are still impacted by factors such as human
engineering or geographic constraints. The huge network of

the World Wide Web, consisting of web pages and hyperlinks,
is enormous in size and constructed in a totally uncontrolled
and distributed manner. The WWW of billions of pages and
links presents perfect properties of scale free and small world
[9], indicating that the theory of complex network provides a
fundamental way of describing how things in our world interact
with each other.

The complex network of Internet goes beyond the static
scenarios. For example, dynamic traffic and flows of data are
created when people surf the web. The dynamic traffic and
flows may be of more importance, because they reflect how the
web works – carrying information among people. Traffic flows
give us another view of Internet, by forming a dynamic and
active complex network where power law and other properties
are also observed [10]. In [10], flow records captured in
Internet2 were analyzed and the strength of edges, which is
the number of bytes of a flow, showed power law behavior
over several orders. The power-law exponents of the strength
range from 1.7 to 2.4, which are different with respect to the
types of nodes (i.e., servers or clients) and directions (in or
out). The large variation range implies the traffic distribution is
highly skewed and fluctuated, which limits the use of traditional
statistics such as mean and deviation. The studies in [10],
however, were limited to traffic passing through the port 80,
and due to the limitation in the traffic snoopers used, only
the sampled traffic data were recorded. Also, Internet2 is used
between academic organizations and often under-utilized. In
this paper, we make detailed analyses of the characteristics
of Internet traffic and user behaviors taking advantage of the
complete flow records collected by powerful network traffic
monitors. We obtain more interesting results by analyzing traffic
from various types of applications.

Besides observations of ubiquitous existence of power law
behavior in complex networks, people tried to find out the
intrinsic reason of this feature. Power law behavior is explained
most successfully by the BA model [3], which describes the
network growth with two necessary parts, the incremental
growth and the preferential attachment. The growth of scientific
citation networks and other types of networks are studied to
verify BA model and its variants. The growth of WWW was
also studied and different models were presented to explain
the observed data [11]. However, due to the large scale of
these networks, only a few snapshots can be captured to
demonstrate the growth in most cases. Different from the
snapshots produced by crawler or other static records, the
flow data or call detail records (CDR) contain strict timing
information and precise traffic conditions, and are thus capable
of revealing more detailed growth processes of the flow graphs.
However, although complex networks constructed by these data
were also reported [10], [12], the timing information was not
fully utilized to capture the growth process. One purpose of
this paper is to investigate in detail the growth process, and to
compare the characteristics of different applications, based on
the strict timing information incorporated with the flow records.
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Fig. 1. Network Traffic Monitor and Network

III. DATA SETS AND FLOW GRAPH

Before presenting our analysis, we introduce the data used
in the study of this paper.

Flow data were collected by placing high-performance net-
work traffic monitors on the trunks between an access network
(AN) and the backbone. The AN itself is large in scale. It
covers a province in southern China, comprises several service
systems and Internet Data Centers (IDCs), and serves more
than 10 million users. The conceptual diagram of the network
architecture is shown in Fig.1.

Each trunk has the capacity of 10Gbps, with its average
throughput over 50% and peak traffic over 90% of the total
capacity. The network traffic monitor has a high performance
hardware probe that captures and classifies every packet passing
through the trunk in both directions, which provides continuous
flow records. Comprehensive algorithms are used to classify
flows into different applications such as Web, FTP, Email, VoIP,
Video Stream, P2P, etc. Each flow record contains information
about a single network flow, which is defined as one or more
packets sent from a source host and port, to a destination host
and port, using a particular protocol, and over a certain time
interval.

The flow data we use were collected by network traffic
monitors in a 24-hour period on March 23, 2010. A total of
1.5 billion flow records were collected with detailed entries
including the time stamp, source and destination IP addresses
and ports, the total number of packets and bytes in the flow, and
the application type in each flow record. Among the more than
15 applications recognized, this paper focuses on P2Pdownload,
HTTP, Instant Messaging (IM), which are some of the most
typical applications and constitute more than 60% records of
the total flow data. We also aggregated all the flow records
to construct an overall graph as a reference. The constructed
graphs are called flow graphs. Of these traffic types, the
P2Pdownload is generally machine-oriented, in the sense that

TABLE I
BASIC METRICS OF FLOW GRAPHS

Graph P2Pdownload HTTP IM Overall
N 362057 174449 24858 1209038

E 560861 571237 36210 2482610

< d > 3.10 6.56 2.92 4.10

< di > 1.55 3.28 1.46 2.05

< do > 1.55 3.28 1.46 2.05

max(d) 2065 19614 2304 19820

max(di) 1328 13868 2192 14017

max(do) 878 5746 228 5979

σd 9050.61 26754.58 3982.61 40827.33

σdi 5414.12 17571.75 3569.27 24841.64

σdo 3946.91 11179.81 994.47 18278.09

the connections are made by computer programs in a distributed
manner, while HTTP and IM traffic are human-oriented which
involve human users to decide when and whom to contact and
require supports from servers.

Flow records were used to construct flow graphs in the
following way: each IP address in the records represents a host
or a node; each flow record between two hosts forms an edge;
multiple records between the same pair of hosts are considered
as the same edge, but the bytes are summed up to give a weight
property of the edge, which is called strength of the edge. Since
the flows are directional, the flow graphs generated are directed
as well.

The flow records we use are far from revealing all the traffic
in the network. Actually, only the flows between AN and the
backbone were captured, the flows within AN or backbone are
not seen by the monitors. So we have no idea how heavy
the traffic is within the two parts, and the graph recovered
from the data set is far from a complete one. However, our
study is still very important. By focusing on the flows crossing
the border, we can understand more precisely the interactions
between different network segments. In the real network, these
are often interactions between autonomous systems, and the
interface under monitoring is often the place where billing and
traffic control are incurred, and is also the traffic bottleneck
in many cases. The analysis in this paper is helpful for better
network management and engineering.

IV. RESULTS AND ANALYSIS

In this section we present results from the detailed flow
records, together with analysis. We begin with degree distri-
bution which illustrates the basic complex network property of
the graphs generated from the flow records, and proceed with
more results on the properties of complex network growth and
connection formation.

A. Degree and basic graph metrics

From the flow records, we construct four flow graphs, namely
the P2Pdownload, HTTP, IM and the overall traffic. For HTTP,
some properties are further studied for servers and clients
separately. Basic metrics are summarized in Table I. In Table
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I, N and E are the number of nodes and edges respectively;
d, di, do are degree in total, in-degree and out-degree; max()
is the maximum of the corresponding variable, <> stands for
the average value and σ is the standard deviation of a variable.
For all graphs, < d > is calculated as:

< d >= 2E/N (1)

< di > and < do > are statistically counted, i.e. a summation
of < di > is calculated by adding di of every node in a graph
and then average over the number of nodes, and < do > is
obtained similarly. For all graphs, we can see that:

< di >=< do >=< d > /2 (2)

which should be exactly like this by definition in a directed
graph. This is one evidence that our statistics are correct.

As can be seen in Table I, the average degree values of
P2Pdownload and IM are smaller than those of HTTP, and
the differences of max(d) between the three applications are
about an order, which is significant. This observation may
imply that P2P applications are distributed and connected
more evenly through the network, and thus probably can use
network resources more efficiently. However, this may not be
the only reason for their low average degrees, since P2P and IM
applications are likely to have more local connections within in
AN, which are not captured by our monitor. P2P applications
generally favor fast connections which are likely to be local,
while in IM applications people that chat might live in the same
area therefore being served by the same access network. The
HTTP application has the highest max() value, which clearly
shows there exist servers acting as hubs in the graph. For all
graphs, σ values are at least 3 order larger than those of <>,
which shows there are really heavy tails in degree distributions.
As we know, if the distribution of the degree follows power law
with γ > 2, the second moment does not have a bound. Again
the HTTP has larger σ values than those of P2Pdownload.
The IM has the lowest average degree values of all graphs,
partially because human users are not capable of maintaining as
many connections as machines do. We will show more results
on the differences between human oriented applications and
machine oriented ones in this paper. While these differences
are already observed in social and technology networks [17],
our data provide more details for this situation. Being different
from P2Pdownload where the file can come from any of the
file owners, IM traffic often flows between specific users or
from the servers. Therefore, although the < d > of IM is
roughly the same as P2Pdownload, the max(di) of IM is
larger than that of P2Pdownload, because central servers exist
in IM application. The overall graph contains not only the three
applications above, but many more others, so the scale of the
overall graph is larger than simply the summation of the three
graphs. HTTP has the largest max() values, implying HTTP
servers are the most concentrated hosts of Internet.

For HTTP applications, we further differentiate between
server nodes and client nodes, since the roles of clients and
servers are totally different, and should show clear differences
in statistics. The results were presented in Table II. As expected,

TABLE II
STATISTICS OF SERVERS AND CLIENTS OF HTTP

N < d > < di > < do > max(d) max(di) max(d0)

s 49446 10.85 5.37 5.48 19614 13868 5746

c 125003 4.85 2.45 2.40 1410 666 744

TABLE III
POWER LAW EXPONENTS OF GRAPHS

P2Pdownload HTTP IM overall HTTP S HTTP C
γin 2.05 1.9 2.15 2.05 1.6 2.14

γout 2.08 2.05 2.22 2.1 1.75 2.2

the number of servers is much smaller than that of clients, while
both the average degree and the maximum degree of servers
are significantly larger. The average values of clients are larger
than that of P2Pdownload and IM, showing web browsing
is the most active application in the Internet. The max(di)
of servers is much larger than max(do), which means that
many visits to web sites do not get responses. This observation
may imply that in general, servers are overloaded and may
have difficulties of providing qualified services. While this is
generally acceptable for free web services in most cases, it
can be a big problem when considering the quality of service
or service level agreement, since when a web site cannot be
visited, it is hard for the end users to tell whether it is a server
problem which is not the responsibility of an Internet carrier,
or a network problem which should not happen since they pay
monthly fees.

If the distribution of degree follows the power law, i.e.

p(k) ∼ k−γ (3)

where p(k) is the probability of a node has a degree k, and γ is
a constant for a particular network, it can be easily identified on
a loglog plot as a straight line. The loglog plots of the degree
distributions of the four graphs are shown in Fig.2. The power
law is obvious in all graphs, with the γ ranging between 1.6
and 2.25. As expected, all distributions have heavy tails.

For HTTP applications, the degree distributions of servers
and clients are also power law. The γ values of all graphs are
listed in Table III, where γin and γout are power law exponents
of incoming and outgoing degree, while HTTP S and HTTP C
mean HTTP server and HTTP client. We can see that besides
the differences in average and max degrees in Table II, the
exponent γ of servers and clients are clearly different, with γ
of servers smaller than γ of clients. The smaller γ of servers
shows that the fraction of high degree nodes of servers is much
larger than that of clients.

The graphs of weights are then constructed. The weight of
nodes and edges is called strength. The strength of an edge is
defined as the accumulated flow bytes between two nodes:

se(i, j) = (bytes from node i to j) i, j ∈ [0, n− 1] (4)

where se(i, j) is the strength of edge (i, j). A node has two
strengths, an incoming one and an outgoing one, calculated by
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Fig. 2. Degree Distributions of flow graphs

adding all strengths of incoming or outgoing edges of the node,
i.e.:

sin(i) =
∑
j

se(j, i) (5)

son(i) =
∑
j

se(i, j) (6)

where sin(i) is the incoming strength of node i, and son(i) is
the outgoing strength of node i.

While the degrees of flow graphs show how websites are
connected when the Internet is visited, the strengths of nodes
and edges reveal the traffic features of the visits, i.e. how many
data are transmitted over an edge or how heavily a website is
visited. The distributions of strength of aggregated web traffic
were studied in [10] and power law feature also holds. We
further studied the strength distribution of different applications,
and results are presented in Table IV and Fig.3-4. The results
in Table IV are interesting. The < se > of P2Pdownload is
larger than that of HTTP, which is reasonable. The max(se) of
P2Pdownload is smaller than the max(se) of HTTP, and the

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1  10  100  1000 10000 100000

N
um

be
r 

of
 n

dg
es

Edge strength(bytes)

Edge strength of
P2Pdownload

exponent = 1.38

(a) Edge strength of P2P

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1  10  100  1000  10000

N
um

be
r 

of
 n

dg
es

Edge strength(bytes)

Edge strength of
HTTP

exponent = 1.6

(b) Edge strength of HTTP

 1

 10

 100

 1000

 10000

 100000

 1  10  100  1000  10000

N
um

be
r 

of
 n

dg
es

Edge strength(bytes)

Edge strength of IM

exponent = 1.5

(c) Edge strength of IM

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1  10  100  1000 10000 100000

N
um

be
r 

of
 n

dg
es

Edge strength(bytes)

Edge strength of
overall

exponent = 1.65

(d) Edge strength of Overall

Fig. 3. Edge strength distributions of flow graphs
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Fig. 4. Node strength distributions of flow graphs

same situations hold for sin and son. This again gives us the

2086



TABLE IV
STATISTICS OF STRENGTHS OF FLOW GRAPH

Graph P2Pdownload HTTP IM Overall
< se > 1237865.97 335192.47 69872.83 436320.27

max(se) 675817801 20135828685 305441256 2013595208

< sin > 1151394.33 1097594.95 101781.93 895928.28

max(sin) 1629060848 3199769428 305537550 3452844589

< son > 1151394.33 1097594.95 101781.93 895928.28

max(son) 1663789775 2013582868 305441256 2152802983

γes 1.38 1.6 1.5 1.65

γnis 1.18 1.33 1.32 1.33

γnos 1.25 1.13 1.2 1.45

evidence that the P2Pdownload application is better designed
with more balanced traffic transmissions through Internet, thus
is more network friendly. The IM application has weights
smaller than both P2Pdownload and HTTP. The loglog plots
of strength distributions in Fig.3 confirm that the power law
exists for all traffic tested. The γ of P2Pdownload (Fig.3a)
is smaller than the γ of HTTP (Fig.3b), showing a flatter
shape of the power law. This indicates that there is a higher
percentage of large weight values for P2Pdownload than that
for HTTP, which is the reason for its larger average strength.
The strength distribution of the overall graph (Fig.3d) seems to
have a consistent bend in the plot, which may imply that the
strength of some traffic unknown does not follow the general
power law. While the power law behavior is confirmed by
our results, the value of γ obtained here is small, ranging
from 1.13 to 1.65 compared with 1.7 to 2.4 in [10]. This
may be due to the reason that our records are complete, while
records in [10] are sampled. Sampled data tend to favor the
data transmitted at a higher frequency, thus in our case, favor
the strength with smaller values. Due to the extremely skewed
power law distribution, favoring samples with smaller strength
values could significantly reduce the number of samples with
higher strength values, and thus result in a faster decreasing
distribution, i.e. a larger γ.

B. Growth of Graph

BA model [3] is the most successful one to explain the power
law which is commonly used in complex networks. In BA
model, new nodes are constantly added to the network, and
edges are created between the newly added nodes and existing
nodes. The nodes and edges are added linearly, i.e. in each step,
a constant number of nodes and edges are added to the graph.
The edges are created in a way called preferential attachment
[3], which means the probability of a node gets connected by an
edge is proportional to the number of edges the node already
has. The linear growth of nodes and edges leads to a γ of
3, which is not the case in a practical complex network where
most γ vary between 1.2 and 2.5 [2]. In the original BA model,
only edges associated with a new node are added, and there
are no new edges formed between the nodes already existing,
which may not be the case in a practical network. In reality, as
in the web case, some web sites are modified constantly, adding
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Fig. 5. Node growth of flow graphs

and removing links. To compromise these cases, BA model is
modified in many ways including considering nonlinear growth
[13] and considering birth of new edges between the existing
nodes [14]. However, although efforts are made to study the
growth models of complex networks, the actual growth is not
easy to observe. Our flow graphs, generated based on flow
records with strict timing information, give us the opportunity
to observe the actual growth of a graph, so we can better
understand how nodes and edges are added, e.g. whether the
additions are linear or how many edges are formed among the
existing nodes. This will provide an insight for the growth, and
thus better guide future studies on complex networks.

We have analyzed the growth of the four flow graphs. The
node growth processes over time are shown in Fig.5. The
node growth over time is almost constant for the P2Pdownload
applications and the overall traffic, which indicates that nodes
do arrive at a constant rate when the associated traffic does
not depend on human activities. The node growth of IM and
HTTP vary with time, showing that there are busy hours when
the applications are more active. The beginning parts of all the
graphs have a curve shape showing nonlinearity. The reason of
this inconsistency lies in the way the graph was constructed:
the graph was built from an empty graph without any nodes
or edges, and each flow created two new nodes and a new
edge at the beginning. After a while, some flow records do
not create new nodes and edges, since these flows are between
nodes that are already in the graph. Only flow records with an
IP address never shown before will create one or two nodes
and an edge. So at the beginning, the growth of nodes and
edges are faster than the later when the graph creation becomes
stable. Indeed, the growth at an earlier time should contribute
to the accumulative value of the later time. The actual flow
graph should not be built from the blank. A flow record is not
necessarily brand-new because there may be connections before
the time point we start monitoring. So the actual growth should
be like the latter part of the plot. In a real network, the actual
rate of node increasing should vary with different applications
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Fig. 6. The growth of edge vs. node
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Fig. 7. The growth of edge vs. node

and time of the day, i.e. in busy hours, flows and thus nodes
arrive faster. However, during the period of our records and thus
the construction of graphs, the rates remain almost constant. We
can see the node arrival rate of the overall graph is much larger
than those of other graphs, which indicates many other types
of applications exist besides the three we study.

While the rate of nodes added can vary with time, the
edges added and their association with nodes can give us more
insights of the growth of a graph. Though nodes are added to
the graph almost constantly, it is not the case for the increase
of edges. In Fig.6, we show the plots of the number of edges
against the number of nodes as the graph grows, and they are
clearly nonlinear. The up-bending curve means that edges are
not added to the network in proportion to nodes added, but at
a faster pace. We show the same plots in Fig.6 again in Fig.7,
but with loglog scale. The straight lines clearly show that the
edges are added super-linearly with the increase of nodes, i.e.:

e ∼ nα (7)

with α being 1.22 for P2Pdownload (Fig.7a), 1.36 for HTTP
(Fig.7b), 1.15 for IM (Fig.7c) and 1.24 for the overall (Fig.7d).
So for the flow graphs, with the number of nodes in the flow
graph growing linearly with time, i.e. nodes are added at a
constant rate, edges are added faster and faster. Besides the
average degree, a complex network has many properties, for
example, clustering coefficient, diameter, average path length,
betweenness, etc. These properties are all impacted by the
creation rate of new edges in the network. Therefore, the studies
and observations on the edge growth process have a profound
effect on the research of complex networks. The further studies
on the other properties of complex networks will be left for our
future work, and are beyond the scope of this paper.

From Fig.6 and Fig.7, the nonlinearity is obvious for
P2Pdownload, HTTP and overall traffic, but it is not clear
for IM. The edge growth process of IM in Fig.6 roughly
follows a straight line, and has the smallest exponent in Fig.7.
The linear growth hypothesis of BA model is supported by
some observations of human interactions, such as citations
and social networks, which are similar to the IM application,
but are different from machine-oriented applications such as
P2Pdownload. This may imply that we should consider different
models for different types of complex networks.

Most growth models of complex networks predict that the
parameters of network grow slowly with the network size
[2], i.e. the diameter and average path length of the network
grow with the number of nodes n as log(n) or log(log(n)).
However there are observations that these properties actually
decrease with the increase of n, i.e. network shrinks over time
and growth [11]. The growth of our flow graphs reveals a
possible reason for this: with a faster rate of edge creation over
node increase within the network, the network becomes better
connected, i.e. has a smaller diameter and average path length.
According to this observation, the growing models of complex
networks should not only consider the edges associated with
new nodes, but also those between existing nodes.

Now it is clear that edges are added to the flow graph super-
linearly to nodes added. Next, we try to answer the following
questions: how many edges are added with the addition of
new nodes and how many edges are created among the old
ones. We classified each flow record and counted the number
of edges associated with new nodes and old nodes separately.
The results in Fig.8 show that the nonlinear part of the edge
growth is clearly due to the edges formed between the old
nodes, while the number of edges added in association with
new nodes is linear with the growth of nodes. Moreover, the
edges added between old nodes are much more than the edges
coming with new nodes in the HTTP graph. This demonstrates
that, for some applications, when the graph is large enough,
the edges changing and forming between existing nodes will
dominant the change of the network topology, and is thus much
more important than the arrival process of new nodes.

C. Preferential Attachment

Preferential attachment (PA) is another key factor in BA
model for the node degrees to achieve power law distributions
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besides the incremental growth. PA means if π(k, t) is the
probability of an edge connecting to any node with k degree at
time t, then for a larger k, π(k, t) is larger. However, it is not
clear that whether the relationship is linear. Some observations
show linearity in one kind of graph [15], while some others
show nonlinearity [16].

Our flow graphs are also useful for studying PA behavior. We
follow the method used in [15], by defining a relative proba-
bility R(k) as the relative probability of an edge connecting to
a node with k degree, then the probability π(k, t) of an edge
connecting to any node with degree k can be represented as:

π(k, t) = R(k)p(k, t) (8)

where p(k, t) is the probability of a node with k degree at time
t. We can use n(k, t)/N(t) to estimate p(k, t):

p(k, t) ≈ n(k, t)/N(t) (9)

where n(k, t) is the number of nodes with degree k at time t,
and N(t) is the total number of nodes in the graph at t.

Choosing a time t at which the flow graph is sufficiently
large, we retrieve n(k, t) and then start counting newly arrived
edges to acquire u(k, t), which is the number of new edges
connected to nodes of k degree. After a certain time interval
dt, we stop counting and u(k, t) can be used to estimate π(k, t).
By studying the relationship between u(k, t) and n(k, t), R(k)
can be estimated. If dt is small compared to t, this sample of
u(k, t) and n(k, t) is accurate enough for the estimation.

We plot the histogram of u(k, t) weighted by 1/n(k, t). If
there is a linear preferential attachment, i.e. R(k) ∼ k, we
should see a straight line with its slope greater than 0 in the plot.
If there is no preferential attachment, R(k) should be a constant
for all k values. In Fig.9, where the histogram of incoming and
outgoing u(k, t)/n(k, t) of the four flow graphs are shown, the
relationship is clearly not constant. In order to make a better
estimation of R(k), we assume that R(k) takes an exponential
form, so we have:

R(k) ∼ kβ ∼ u(k, t)/n(k, t) (10)
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TABLE V
EXPONENTS OF PREFERENTIAL ATTACHMENT

P2Pdownload HTTP IM Overall
βin 1.08 1.11 1.2 1.07

βout 1.05 0.97 1.12 1.0

By plotting u(k, t)/n(k, t) against k in a loglog plot (Fig.10),
we can estimate the β. The values of β are summarized in Table
V. All applications have β close to 1, showing preferential
attachment is almost linear for both incoming and outgoing
degrees.

V. CONCLUSIONS

In this work, we construct weighted flow graphs based on
detailed Internet traffic flow records. The flow graphs reveal
not only the structure or connections of different Internet sites,
but also the way various sites are visited. By studying flow
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Fig. 10. π(k, t) vs. n(k, t),loglog

graphs from the complex network point of view, we give out
results on node degrees and their distributions of several types
of applications, including P2Pdownload, HTTP, IM. Besides
the power law behavior persisting in all applications, the
average/maximum degrees and power law exponents show the
differences in the nature of applications, which are helpful for
both understanding the characteristics of Internet traffic and
managing/engineering the Internet.

Taking advantage of the timing information of the flow
records, we study the growth of flow graphs. We identify the
nonlinearity of the growth of edges vs. nodes, and discover
that many edges are formed between existing nodes. The
number of edges added between existing nodes is larger than
that associated with new nodes in some applications, which
indicates that edges created between existing nodes are more
important for studying the properties of a graph. Moreover, we
found the existing connections are used repeatedly over time.

This indicates that instead of only studying whether two nodes
are connected, it may be more important to understand how
they are connected, i.e. how many data are exchanged, how long
the connection is active, etc. For this purpose, data exchanged
between nodes are calculated as the strength of edges, and their
distributions are also observed to exhibit power law behavior.

We also study the preferential attachment behavior based on
the timing information of the records. Our observations confirm
that PA exists, i.e., more edges are connected to a node with a
higher degree, and the preference is almost linear. Our findings
of linear preference and nonlinear growth of edges, especially
the large number of edges formed between existing nodes are
important in developing complex network models.

Our studies of different applications produce more com-
prehensive results. The parameter comparisons of IM and
P2Pdownload clearly show the difference in traffic character-
istics between human-oriented and machine-oriented applica-
tions, implying that the connection mechanism has a profound
impact on the formation of complex networks, and more flexi-
ble models need to be investigated to capture the characteristics
of different applications.
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