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Abstract—The inference of the network traffic matrix from
partial measurement data becomes increasingly critical for var-
ious network engineering tasks, such as capacity planning, load
balancing, path setup, network provisioning, anomaly detection,
and failure recovery. The recent study shows it is promising
to more accurately interpolate the missing data with a three-
dimensional tensor as compared to interpolation methods based
on two-dimensional matrix. Despite the potential, it is difficult
to form a tensor with measurements taken at varying rate in a
practical network. To address the issues, we propose Reshape-
Align scheme to form the regular tensor with data from dynamic
measurements, and introduce user-domain and temporal-domain
factor matrices which takes full advantage of features from
both domains to translate the matrix completion problem to
the tensor completion problem based on CP decomposition
for more accurate missing data recovery. Our performance
results demonstrate that our Reshape-Align scheme can achieve
significantly better performance in terms of two metrics: error
ratio and mean absolute error (MAE).

Index Terms—Internet traffic data recovery, Matrix comple-
tion, Tensor completion

I. INTRODUCTION

A traffic matrix (TM) is often applied to track the volume
of traffic between origin-destination (OD) pairs in a network.
Estimating the end-to-end TM in a network is an essential
part of many network design and traffic engineering tasks, in-
cluding capacity planning, load balancing, path setup, network
provisioning, anomaly detection, and failure recovery.

Due to the lack of measurement infrastructure, direct and
precise end-to-end flow traffic measurement is extremely d-
ifficult in the traditional IP network [1]. Thus previous work
on TM estimation focus on inferring the TM indirectly from
link loads [2], [3], and the methods taken are often sensitive
to the statistical assumptions made for models and the TMs
estimated are subject to large errors [4].

As an alternative, TM is directly built through the collection
of the end-to-end flow-level traffic information using flow
monitoring tools such as Cisco NetFlow, and the recent
OpenFlow [5]. Unlike commodity switches in traditional IP
networks, flow-level operations are streamlined into OpenFlow
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switches, which provides the possibility of querying and
obtaining the end-to-end flow traffic statistics. Despite the
progress in flow-level measurements, the collection of the
traffic information network wide to form TM at fine time scale
still faces many challenges:

• Due to the high network monitoring and communication
cost, it is impractical to collect full traffic volume infor-
mation from a very large number of points. Sample-based
traffic monitoring is often applied where measurements
are only taken between some random node pairs or at
some of the periods for a given node pair.

• Measurement data may get lost due to severe communi-
cation and system conditions, including network conges-
tion, node misbehavior, monitor failure, transmission of
measurement information through an unreliable transport
protocol.

As many traffic engineering tasks (such as anomaly detec-
tion, traffic prediction) require the complete traffic volume
information (i.e., the complete traffic matrix) or are highly
sensitive to the missing data, the accurate reconstruction of
missing values from partial traffic measurements becomes a
key problem, and we refer this problem as the traffic data
recovery problem.

Various studies have been made to handle and recover the
missing traffic data. Designed based on purely spatial [6]–[8]
or purely temporal [9], [10] information, the data recovery
performance of most known approaches is low. Recently
matrix-completion-based algorithms are proposed to recover
the missing traffic data by exploiting both spatial and temporal
information [11]–[17]. Although the performance is good
when the data missing ratio is low, the performance suffers
when the missing ratio is large.

Based on the analyses of real traffic trace, recent work in
[18] reveals that the traffic data have the features of temporal
stability, spatial correlation, and periodicity. Specially, the
periodicity features indicate that users usually have similar
Internet visiting behaviors at the same time of a day, so the
measurements for an OD pair taken at the same time slots of
two consecutive days are similar. The authors [18] thus model
the traffic data as a 3-way tensor to concurrently consider
the traffic of different days for more accurate missing data
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interpolation.
Tensors are the higher-order generalization of vectors and

matrices. Tensor-based multilinear data analysis has shown
that tensor models can take full advantage of the multilinear
structures to provide better data understanding and information
precision. Tensor-based analytical tools have seen applications
for web graphs [19], knowledge bases [20], chemometrics
[21], signal processing [22], and computer vision [23], etc.

Compared with matrix-based data recovery, the tensor-based
approach can better handle the missing traffic data and will
be used in this paper. Although promising, the traffic tensor
model in [18], [24] is built with a strong assumption that
the network monitoring system adopts a static measurement
strategy with a fixed sampling rate. However, in a practical
network monitoring system, the rate of measurements is often
adapted according to the traffic conditions (i.e., varying in
different periods of a day) and some traffic engineering re-
quirements (i.e., to more timely detect anomaly). The dynamic
measurements make it hard to form a regular traffic tensor for
further processing. Some challenges due to the variation of the
measurement rate are:

• Difficult to align the matrices of different days. The
traffic matrices of different days would have different
number of columns, which makes it hard to integrate the
traffic matrices of different days to form a standard tensor
and recover the missing data.

• Difference in the length of the time slot. The sample
data in a column of the traffic matrix may correspond to
a time slot with a different length, which further brings
the difficulty of recovering the missing items through the
temporal and spatial correlation among traffic data.

Despite the challenges, the traffic matrix has some special
features: 1) The traffic matrices of different days record the
data of the same OD pairs in the network, and 2) The user
traffic data follow a daily schedule. Therefore, there should
exist some common user-domain and time-domain features
that can be exploited for more accurate interpolation.

In this paper, we propose a novel traffic data recovery
scheme in the presence of variation of traffic measurement
rate. Our scheme will first construct a regular tensor with the
reshaping and alignment of traffic matrices with inconsistent
number of columns and different length of time slots, and then
enable more accurate traffic data recovery taking advantage
of the data correlation in a three dimensional tensor. The
contributions of this paper can be summarized as follows:

• We propose a matrix division algorithm for time align-
ment, which exploits our novel time rule to efficiently
divide the traffic matrices into sub-matrices with each
corresponding to one time segment with the same sam-
pling rate.

• We reshape and align traffic matrices from dynamic
measurements to form a regular tensor, taking advantage
of multi-dimensional data correlation for more accurate
traffic data recovery. To address the challenge of inte-
grating matrices of different dimensions into a tensor,
we introduce user-domain and temporal-domain factor
matrices to translate the problem of matrix completion

for different days to the problem of tensor completion
based on CP decomposition.

• We compare the proposed Reshape-Align scheme with
the state of the art matrix-based algorithms, and our
results demonstrate that our scheme can achieve signifi-
cantly better performance in terms of two metrics: error
ratio and mean absolute error (MAE).

To the best of our knowledge, our Reshape-Align scheme
is the first one that considers the traffic recovery problem
under dynamic measurement in a practical network system,
and provides a novel reshaping and alignment technique that
allows the integration of inconsistent traffic matrices to form
a standard tensor for more accurate missing data recovery.

The rest of the paper is organized as follows. We introduce
the related work in Section II. The preliminaries of tensor
are presented in Section III. We present the problem and our
overview solution in Section IV. The proposed algorithms on
matrix division for time alignment, and matrix reshaping and
alignment for tensor completion are presented in Section V and
Section VI, respectively. Finally, we evaluate the performance
of the proposed algorithm through extensive simulations in
Section VIII, and conclude the work in Section IX.

II. RELATED WORK

A set of studies have been made to handle the missing
traffic data. Designed based on purely spatial [6]–[8] or purely
temporal [9], [10] information, most of the known approaches
have a low data recovery performance.

To capture more spatial-temporal features in the traffic
data, SRMF [11] proposes the first spatio-temporal model of
traffic matrices (TMs). To recover the missing data, SRMF is
designed based on low-rank approximation combined with the
spatio-temporal operation and local interpolation. Following
SRMF, several other traffic matrix recovery algorithms [12]–
[15], [17] are proposed to recover the missing data from
partial traffic measurements. Compared with the vector-based
recovery approaches [6]–[10], as a matrix could capture more
information and correlation among traffic data, matrix-based
approaches achieve much better recovery performance.

However, a two-dimension matrix is still limited in captur-
ing a large variety of correlation features hidden in the traffic
data. For example, although the traffic matrix defined in [11]
can catch the spatial correlation among flows and the small-
scale temporal feature, it can not incorporate other temporal
features such as the feature of the traffic periodicity cross
day. Therefore, a matrix is still not enough to capture the
comprehensive correlations among the traffic data, and the
data recovery performance under the matrix-based approaches
is still low.

To further utilize the traffic periodicity feature for accurate
traffic data recovery, the recent studies [18], [24] combine the
traffic matrices of different days to form a tensor to recover
the missing data. Several tensor completion algorithms [25]–
[28] are proposed for recovering the missing data by capturing
the global structure of the data via a high-order decomposition
(such as CANDECOMP/PARAFAC (CP) decomposition [29],
[30] and Tucker decomposition [31]). Tensor has proven to be
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good data structure for dealing with the multi-dimensional data
in a variety of fields [19]–[23]. Although promising, the traffic
tensor model in [18], [24] is built with a strong assumption that
the network monitoring system adopts a static measurement
strategy with a fixed sampling rate. The proposed methods
may fail to work in a practical network monitoring scenario
where the rate of measurements varies over time.

Moreover, several novel techniques are proposed in the
scheme such as matrix division algorithm for time alignment,
mechanism to reshape and align matrices, and the technique
to solve the matrix completion problem through tensor CP
decomposition.

To address this practical challenge, we propose a novel
Reshape-Align scheme with several novel techniques, includ-
ing matrix division for time alignment, mechanism to reshape
and align matrices, and the technique to solve the matrix
completion problem through tensor CP decomposition.

The simulation results demonstrate that Reshape-Align
scheme can achieve significantly better performance in terms
of two metrics: error ratio and mean absolute error (MAE).

III. PRELIMINARIES

The notation used in this paper is described as follows.
Scalars are denoted by lowercase letters (a, b, · · ·), vectors
are written in boldface lowercase (a,b, · · ·), and matrices
are represented with boldface capitals (A,B, · · ·). Higher-
order tensors are written as calligraphic letters (X ,Y, · · ·). The
elements of a tensor are denoted by the symbolic name of the
tensor with indexes in subscript. For example, the ith entry of
a vector a is denoted by ai, element (i, j) of a matrix A is
denoted by aij , and element (i, j, k) of a third-order tensor X
is denoted by xijk.

Definition 1. A tensor is a multidimensional array, and is
a higher-order generalization of a vector (first-order tensor)
and a matrix (second-order tensor). An N -way or N th-order
tensor (denoted as A ∈ RI1×I2×···×IN ) is an element of the
tensor product of N vector spaces, where N is the order of
A, also called way or mode.

The element of A is denoted by ai1,i2,··· ,iN , in ∈
{1, 2, · · · , In} with 1 ≤ n ≤ N .

Definition 2. Slices are two-dimensional sub-arrays, defined
by fixing all indexes but two.

Fig. 1. Tensor slices

In Fig.1, a 3-way ten-
sor X has horizontal, lateral
and frontal slices, which are
denoted by Xi::, X:j: and
X::k, respectively. In this
paper, we denote the frontal
slice X::k as Xk.

Definition 3. The outer product of two vectors a ◦ b is the
matrix defined by: (a ◦ b)ij = aibj .

Definition 4. The outer product A ◦ B of a tensor A ∈
RI1×I2×···×IN1 and a tensor B ∈ RI1×I2×···×IN2 is the tensor
of the order N1 +N2 defined by

(A ◦ B)i1,i2,··· ,iN1 ,i1,i2,··· ,iN2
= ai1,i2,··· ,iN1

bi1,i2,··· ,iN2
(1)

for all values of the indexes.

Since vectors are first-order tensors, the outer product of
three vectors a ◦ b ◦ c is a tensor given by:

(a ◦ b ◦ c)ijk = aibjck (2)

for all values of the indexes.
Definition 5. A 3-way tensor X is a rank one tensor if

it can be written as the outer product of three vectors, i.e.
X = a ◦ b ◦ c.

Definition 6. The rank of a tensor is the minimal number
of rank one tensors, that generate the tensor as their sum, i.e.
the smallest R, such that X =

∑R
r=1 ar ◦ br ◦ cr.

Definition 7. The idea of CANDECOMP/PARAFAC (CP)
decomposition is to express a tensor as the sum of a finite
number of rank one tensors. A 3-way tensor X ∈ RI×J×K

can be expressed as

X =
∑R

r=1
ar ◦ br ◦ cr, (3)

with an entry calculated as

xijk =
∑R

r=1
airbjrckr (4)

where R > 0, air, bjr, ckr are the i-th, j-th, and k-th entry
of vectors ar ∈ RI , br ∈ RJ , and cr ∈ RK , respectively.

By collecting the vectors in the rank one components, we
have tensor X ’s factor matrices A = [a1, · · · ,aR] ∈ RI×R,
B = [b1, · · · ,bR] ∈ RJ×R, and C = [c1, · · · , cR] ∈ RK×R.
Using the factor matrices, we can rewrite the CP decomposi-
tion as follows.

X =
∑R

r=1
ar ◦ br ◦ cr = [[A,B,C]] , (5)
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xijk
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Fig. 2. CP decomposition of three-way tensor as sum of R outer products
(rank one tensors). CP decomposition can be written as a triplet of factor
matrices A, B, C, i.e, the r-th column of which contains ar , br , and cr ,
respectively. The entry xijk can be calculated as the sum of the product of
the entries of the i-th row of the matrix A, the j-th row of the matrix B, and
the k-th row of the matrix C.

Fig.2 illustrates the CP decomposition. In this paper, we
design traffic data recovery algorithm based on the CP de-
composition.

IV. PROBLEM DESCRIPTION AND SOLUTION OVERVIEW

In this section, we first formulate the traffic data recovery
problem as a matrix factorization problem, and then present the
benefit and methodology of transforming this problem further
to the tensor factorization problem along with the difficulty of
this transformation in a practical network monitoring system.
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A. Traffic recovery problem based on matrix factorization

For a network consisting of N nodes, there are n = N ×N
OD pairs. We define a monitoring data matrix, Xk ∈ Rn×mk ,
to hold the traffic data measured in the kth day for k =
1, 2, · · · ,K. mk is the total number of time slots captured in
the kth day. In the matrix, a row corresponds to an OD pair, a
column corresponds to a time slot, and the (ij)-th entry xk:ij

represents the monitoring data of the OD pair i at the time
slot j.

To reduce the network monitoring overhead, only a subset of
measurements are taken. We apply the matrix factorization to
infer the missing entries of the K matrices corresponding to K
days. Specifically, to recover the missing data, a monitoring
matrix Xk is factored into a production of an n × r factor
matrix Uk for the user domain, an r× r diagonal matrix Σk,
and a mk × r factor matrix Vk for time domain under the
condition of minimizing the loss function as follows:

min
U,Σk,Vk

f (Uk,Σk,Vk)

s.t.f (Uk,Σk,Vk) =
1
2

K∑
k=1

∥∥∥(Xk −UkΣkV
T
k

)
Ωk

∥∥∥
F

2

(6)
where r denotes the matrix rank, f (Uk,Σk,Vk) =

1
2

K∑
k=1

∥∥∥(Xk −UkΣkV
T
k

)
Ωk

∥∥∥
F

2

is the loss function defined

based on the Frobenius norm ∥∥F , Ωk is the index set of the
observed samples of the matrix Xk.

After obtaining the factor matrices Uk, the diagonal matrix
Σk, and the factor matrix Vk, the monitoring matrix can be
recovered as follows:

X̂k = UkΣkV
T
k (7)

where X̂k denotes the recovered traffic matrix.

B. From matrix factorization to tensor factorization

 !

 !

"#$%

!&'

Fig. 3. Tensor based traffic model

As traffic data are ob-
served to possess the fea-
tures of temporal stability,
spatial correlation, and pe-
riodicity features [18], [24],
rather than only recover-
ing the data through the t-
wo dimensional matrix, it is
promising to more accurate-
ly interpolate the missing data with a three-dimensional tensor
taking advantage of the periodicity feature of traffic across
days. Despite the potential, in a practical network monitoring
system, the measurement strategy may often vary according to
the traffic conditions. There exist some challenges to combine
multiple matrices to form a tensor:

• Inconsistent number of columns across the matrices. As
a column represents a sample in a time slot, the variation
of measurement rate in different days would make their
traffic matrices to have different number of columns
(Fig.4(a)). This introduces the challenge to forming the
standard tensor with these matrices.

• Inconsistent length of time slot within the matrix.
Different sampling rate makes columns in a matrix to
correspond to different time-slot lengths (as shown in
Fig.4(b)), which further brings the difficulty of recov-
ering the missing items through the temporal and spatial
correlation among traffic data

Fig. 4. Traffic matrices with inconsistent number of columns

C. Characteristics in multiple data matrices

Although the variation of the sampling rate brings the
challenge of integrating the measurement matrices of different
days to form a regular tensor, these matrices have some
characteristics that can be exploited for more accurate data
recovery.

• Traffic matrices of different days record the measurement
data of the same OD pairs in the network, and the
row indexes of these matrices are the same. Thus these
matrices should have some common OD-domain (i.e.,
user-domain) features, so in (8), we use the same factor
matrix Ug for different traffic matrices.

• Although the number of columns and the time-slot length-
s may be different for matrices of different days, the user
traffic in these matrices vary following a daily schedule
in the temporal domain, as users usually have similar
Internet access behaviors.

The aims of this paper are to investigate and take advantage
of the common features in the traffic matrices to reshape and
align traffic matrices with inconsistent number of columns and
time-slot lengths to form regular tensors, and design efficient
tensor-based traffic data recovery algorithms for more accurate
data recovery.

D. Solution overview

To fully exploit the common features hidden in monitoring
matrices for more accurate missing data interpolation, we
propose a matrix reshaping and alignment scheme in the
presence of varying network measurement frequency.

Fig. 5(a) shows example traffic matrices to recover. The time
slots in a matrix may have different lengths. To well exploit
the common time-domain features hidden in the traffic data
within a day, the matrices should be divided and aligned in the
physical time domain as explained in Section V. Accordingly,
we propose a matrix division algorithm with the example
shown in Fig.5 (b), where the matrices are divided in temporal

4

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications



domain to satisfy the time alignment requirement. The sub-
matrices formed after the division (in Fig.5 (c)) will be further
utilized to form tensors.

To exploit correlations across days for more accurate data
recovery, we further translate the factor matrices of each sub-
matrix to common ones taking advantage of the user domain
and temporal domain features hidden in the sub-matrices, and
then integrate the reshaped and aligned sub-matrices to form
the tensor in Fig. 5 (d). We apply the tensor completion
algorithm to interpolate the missing data in Fig. 5 (e), and then
take the reverse procedure of reshaping to obtain the recovered
sub-matrices (in Fig. 5 (f)), which will be combined to form
the final recovered large matrices (in Fig. 5 (g)).
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Fig. 5. Overview solution of Reshape-Align scheme

V. MATRIX DIVISION FOR TIME ALIGNMENT

We first present our matrix division algorithm, then refor-
mulate the recovery problem for the sub-matrices by taking
consideration of the common features of matrices in both the
user (OD) domain and the time domain.

A. Matrix division

Although the difference in the traffic measurement rate
may result in different time-slot lengths, we can still observe
that the user traffic patterns often change daily following
the user daily Internet access behaviors. To well exploit the
time-domain features hidden in the traffic data, we divide
daily measurements into multiple time segments each having
a different sampling rate.

Fig. 6 utilizes two examples to illustrate the time alignment
problem, where X1, X2, X3, X4 denote the measurement
traffic matrices of four days. In Fig. 6(a), a fixed measurement
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Fig. 6. Time alignment problem

rate is adopted in X1 for the whole day. For matrices X2, X3,
X4, two different sampling rates are assumed for the first half
day and the next half day, respectively. To align the data in
the time domain, we divide the whole day time into two time
segments, each corresponding to one half day and adopting the
same measurement strategy. Accordingly, the original traffic
matrices are divided into two parts with X1 =

[
X1

1,X
2
1

]
,

X2 =
[
X1

2,X
2
2

]
, X3 =

[
X1

3,X
2
3

]
, X4 =

[
X1

4,X
2
4

]
. Similarly,

in Fig.6(b), the time in the day is divided into three time
segments and thus original traffic matrices are divided into
three parts with X1 =

[
X1

1,X
2
1,X

3
1

]
, X2 =

[
X1

2,X
2
2,X

3
2

]
,

X3 =
[
X1

3,X
2
3,X

3
3

]
, X4 =

[
X1

4,X
2
4,X

3
4

]
.

As shown in Fig.6, obviously, the divided sub-matrices X1
1,

X1
2, X1

3, and X1
4 record the traffic data of the same time

duration in different days, and can be combined for more
accurate traffic data recovery. Our reshaping and alignment
scheme exploits these temporal domain features hidden in the
matrices to more accurately recover the missing data.

B. Problem reformulation with common user and temporal
domain features

After the time alignment, the original matrices are divided
into multiple sub-matrices. We denote sub-matrices that record
the traffic data of the same time segment of different days as
one sub-matrix group. If the duration of a day is partitioned
into G time segments, we have Xk = [X1

k,X
2
k, · · ·XG

k ]
for k = 1, 2, · · · ,K. According to the time division and
alignment requirement, all matrices are divided at the same
timespot to cover the same time segment. Therefore, after the
matrix division, there are G groups of sub-matrices with each
group having K sub-matrices, that is {Xg

1,X
g
2, · · · ,X

g
K} for

g = 1, 2, · · · , G.
According to the partition, the problem in (6) can be

transformed to the problem of minimizing the loss function
on each sub-matrices.

min
Ug,Σ

g
k
,V

g
k

f
(
Ug ,Σg

k,V
g
k

)
s.t. f

(
Ug ,Σg

k,V
g
k

)
= 1

2

G∑
g=1

(
K∑

k=1

∥∥∥∥(Xg
k −UgΣg

k

(
Vg

k

)T)
Ω

g
k

∥∥∥∥
F

2
)
(8)

where Xg
k ∈ Rn×mk:g , Ug ∈ Rn×rg , Vg

k ∈ Rmk:g×rg , Σg
k is

rg × rg diagonal matrix, Ωg
k is the index set of the observed

samples of matrix Xg
k. mk:g is the number of columns of Xg

k.
rg is the matrix rank of Xg

k.
The problem above can be solved by recovering each matrix

independently. However, with the data correlation across days,
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a better recovery can be made if the set of matrices can be
integrated into a tensor to recover together. This is not possible
with each matrix having different number of columns. To
address the issue, we first exploit the common data features
hidden in the user domain and temporal domain to translate
the problem.

As different monitoring matrices record the traffic data of
the same set of n OD pairs of different days, they should share
some common features in the user domain. Taking advantage
of these features for more accurate traffic recovery, we use the
same factor matrix Ug for different sub-matrices of different
days in Eq(8).

Beside the common feature in user domain, as we have
discussed in Section IV-C, traffic data also have common fea-
ture in the time domain, which is not captured in the problem
(8). To reflect the feature, enlightened by Harshman [32], we
impose an invariance constraint on the factor matrices Vg

k in
the time domain: the cross product (Vg

k)
T
Vg

k is constant over
different days, that is, Φg = (Vg

k)
T
Vg

k for k = 1, 2, · · · ,K.
Before we update the problem formulation in (8) to in-

corporate this invariance constraint, the following theorem
reformulates the constraint.

Theorem 1. For the invariance constraint (Vg
k)

T
Vg

k to hold,
it is necessary and sufficient to have Vg

k = Pg
kV

g where Vg ∈
Rrg×rg does not change in different days and Pg

k ∈ Rmk:g×rg

is a column-wise orthonormal matrix with (Pg
k)

T
Pg

k = I.

Due to the limited space, the proof is omitted.
To exploit the common feature in time domain, based on

Theorem 1, replace Vg
k = Pg

kV
g, the problem in (8) can be

further transformed as follows:
min

Ug,Σ
g
k
,Vg,P

g
k

f
(
Ug ,Σg

k,V
g ,Pg

k

)
s.t. f

(
Ug ,Σg

k,V
g ,Pg

k

)
= 1

2

G∑
g=1

(
K∑

k=1

∥∥∥∥(Xg
k −UgΣg

k

(
Pg

kV
g
)T)

Ω
g
k

∥∥∥∥
F

2
)

(9)
That is, the difference of the matrix Xg

k for different days
k = 1, 2, · · · ,K are captured by the matrix Σg

k and Pg
k. In

Section VI-B, we will show that the problem formulation in (9)
provides the possibility of translating the matrix completion
problem to the tensor completion through CP decomposition.

VI. MATRIX RESHAPING AND ALIGNMENT FOR TENSOR
COMPLETION

To solve the problem (9), we propose an alternating least
squares algorithm that alternately solves the following two
sub-problems:

• Sub-problem 1: minimize (9) over Pg
k for a given set of

Ug,Σg
k,V

g

• Sub-problem 2: minimize (9) over Ug,Σg
k,V

g for fixed
Pg

k

A. Sub problem 1
The sub-problem 1 can be written as follows.
min
P

g
k

f
(
Pg

k

)
s.t. f

(
Pg

k

)
= 1

2

G∑
g=1

(
K∑

k=1

∥∥∥∥(Xg
k −UgΣg

k

(
Pg

kV
g
)T)

Ω
g
k

∥∥∥∥
F

2
)

(10)

Let B = UgΣg
k(P

g
kV

g)
T , we have B=UgΣg

k(V
g)

T
(Pg

k)
T

and BT = Pg
kV

gΣg
k(U

g)
T . The loss function on each sub-

matrix (i.e. Xg
k) can be written as∥∥∥Xg

k −UgΣg
k(P

g
kV

g)
T
∥∥∥2
F
= tr

(
(Xg

k −B) (Xg
k −B)

T
)

= tr
(
(Xg

k −B)
(
(Xg

k)
T −BT

))
= tr

(
Xg

k(X
g
k)

T
)
− 2tr

(
Xg

kB
T
)
+ tr

(
BBT

)
(11)

As tr
(
Xg

k(X
g
k)

T
)

and tr(BBT ) =

tr(UgΣg
k(V

g)
T
VgΣg

k(U
g)

T
) do not depend on Pg

k,
minimizing (9) is equal to solving the following problem:

max
Pg

k

tr
(
Xg

kB
T
)

s.t. (Pg
k)

T
Pg

k = I

B = UgΣg
k(P

g
kV

g)
T

(12)

As tr
(
Xg

kB
T
)

= tr
(
Xg

kP
g
kV

gΣg
k(U

g)
T
)

=

tr
(
VgΣg

k(U
g)

T
Xg

kP
g
k

)
, the problem in (12) can be

further transformed to

max
Pg

k

tr
(
VgΣg

k(U
g)

T
Xg

kP
g
k

)
s.t. (Pg

k)
T
Pg

k = I
(13)

Let VgΣg
k(U

g)
T
Xg

k = Mg
k∆

g
k(N

g
k)

T be singular value
decomposition (SVD). According to [33], we have that Pg

k =

Ng
k(M

g
k)

T is the column wise orthonormal solution for the
problem (13).

B. Sub-problem 2

The sub-problem 2 of minimizing (9) over Ug,Σg
k,V

g for
fixed Pg

k reduces to the following problem.

min
Ug,Σ

g
k
,Vg

f
(
Ug ,Σg

k,V
g
)

s.t. f
(
Ug ,Σg

k,V
g
)
= 1

2

G∑
g=1

(
K∑

k=1

∥∥∥∥(Xg
kP

g
k −UgΣg

k(V
g)T

)
Ω

g
k

∥∥∥∥
F

2
)

(14)
Let Yg

k = Xg
kP

g
k, problem in (14) can be further written as

follows.
min

Ug,Σ
g
k
,Vg

f
(
Ug ,Σg

k,V
g
)

s.t. f
(
Ug ,Σg

k,V
g
)
= 1

2

G∑
g=1

(
K∑

k=1

∥∥∥∥(Yg
k −UgΣg

k(V
g)T

)
Ω

g
k

∥∥∥∥
F

2
)
(15)

As Xg
k ∈ Rn×mk:g and Pg

k ∈ Rmk:g×rg , obviously, Yg
k ∈

Rn×rg . It is easy to see Eq.(15) corresponds to G 3-way
tensors as illustrated in Fig.7(b), where each slice Yg

k has
the identical size of n× rg.

Fig.7 shows that multiple sub-matrices can be reshaped and
aligned to the tensor-style. However, the problem in (15) is
still a matrix completion problem. We would like to solve the
problem through the tensor completion taking advantage of
correlation across days for more accurate data recovery.

Before introducing our solution, we first investigate the
relationship between tensor CP decomposition and frontal
slice decomposition. As shown in Fig.8, given a 3-way tensor
X ∈ RI×J×K , matrices A ∈ RI×R, B ∈ RJ×R, C ∈ RK×R
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Fig. 7. Transform G groups of sub-matrices to G tensors.

are the factor matrices in CP decomposition in Fig.8(a). The
frontal slice can be decomposed as Xk = AΣkB

T where
Σk = diag (Ck:) and Ck: is the k-th row of the factor matrix
C, as shown in Fig.8(b). This relationship provides the way
to recover the group of matrices through tensor completion.
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Fig. 8. The relationship between tensor CP decomposition and frontal slice
decomposition.

The problem in (15) aims to find the matrix decomposition
for matrix completion. The problem can be solved with higher
accuracy if all the matrices can be integrated into a tensor.
Fortunately, to reflect the common user domain and time
domain features, we have introduced the same user factor
matrix Ug and time factor matrix Vg across different days.
This translation makes the formulation in (15) satisfy the
relationship between tensor CP decomposition and frontal slice
decomposition.

Therefore, utilizing the above relationship, the problem can

be transformed to the following tensor completion problem:

min
Ug,Vg,Cg

f (Ug,Vg,Cg)

s.t. f (Ug,Vg,Cg) = 1
2

G∑
g=1

(∥∥(Yg − [[Ug,Vg,Cg]])Ωg

∥∥2

F

)
(16)

where Yg is the tensor with its frontal slices being sub-
matrices Yg

k for k = 1, 2, · · · ,K, Ug ,Vg ,Cg are the factor
matrices of Yg , Ωg is the index set of the observed samples of
tensor Yg . As this paper dose not focus on CP decomposition,
we utilize the solution in [34] to solve the tensor completion to
obtain the optimal factor matrices Ug,Vg,Cg by minimizing
the loss function in (16).

After obtaining Ug ,Vg ,Cg , the reshaped slice can be re-
covered through following calculation Ŷg

k = UgΣg
k(V

g)
T

where Σg
k = diag (Cg

k:) and Cg
k: is the k-th row of the

factor matrix Cg. Then through the reverse procedure of
reshaping, we can obtain the recovered sub traffic matrix
X̂g

k = Yg
k(P

g
k)

T
= UgΣg

k(V
g)

T
(Pg

k)
T .

VII. COMPLETE SOLUTION

The complete data recovery based on reshaping and align-
ment is shown in Algorithm 1. The sub-problems 1 and 2 are
iteratively solved and 3-9 Steps are repeated until it converges.

Specially, given traffic matrices of K days, if there are
G − 1 timespots besides the timespots at 0:00 and 24:00 in
the time rule involved in these K days, in Step 1, the large
matrix of each day is divided into G sub-matrices according
to the time alignment requirement. As there are K days,
after such a division, there are G groups of sub-matrices with
each group having K sub-matrices. The Step 2 initializes the
factor matrices needed in the algorithm. Step 4 solves the sub
problem 1 of minimizing (10) over Pg

k for fix Ug,Σg
k,V

g.
Step 5 builds the tensor with the shaped sub-matrices. Step 6
solves the sub problem 2 and updates Ug , Vg , Cg by solving
the tensor completion problem min

Ug,Vg,Cg
f (Ug,Vg,Cg) =

1
2 ∥(Y

g − [[Ug,Vg,Cg]])Ωg∥2F . Step 7 builds the diagonal
matrix needed in the matrix decomposition Σg

k ← dig (Cg
k:)

where Cg
k: is the k-th row of factor matrix Cg obtained in Step

6. After obtaining Ug, Vg, Σg
k, and Pg

k, Step 8 calculates the
recovered sub matrices in the iterative step.

In Step 8, Mg
k is an indicator matrix whose entry (i, j)

is one if the entry (i, j) in Xg
k is sampled (i.e., measured)

and zero otherwise. 1 is an all ones matrix that has the same
size as Mg

k. ⊙ in Step 8 represents a scalar product (or dot
product) of two matrices. For example, given that A, B have
the same size and C = A ⊙B, we have cij = aijbij . Xg

k =

Mg
k⊙X

g
k+(1−Mg

k)⊙UgΣg
k(V

g)
T
(Pg

k)
T guarantees that the

sample entry already measured remains unchanged and only
the missing data are updated during the iterative procedure.

VIII. PERFORMANCE EVALUATIONS

We use the public traffic trace data Abilene [35] to evaluate
the performance of our proposed Reshape-Align scheme.
Two different metrics are considered: Error Ratio and Mean
Absolute Error (MAE), which are defined as Table I.
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Algorithm 1 Complete reshape and align traffic recovery
algorithm

1: According to the time alignment requirement, large matrices are divided
into G groups of sub-matrices with each group having K sub matrices

2: Initialize Ug principal eigenvectors
∑K

k=1 X
g
k

(
Xg

k

)T by SVD, Vg ←
I, Σg

k ← I
3: while not converge do
4: Sub problem 1: Compute the SVD VgΣg

k(U
g)TXg

k =

Mg
k∆

g
k

(
Ng

k

)T and update Pg
k = Ng

k

(
Mg

k

)T
5: Generate tensor Yg whose slices are Yg

k = Xg
kP

g
k

6: Sub problem 2: Update Ug , Vg , Cg by solving
min

Ug,Vg,Cg
f (Ug ,Vg ,Cg) = 1

2

∥∥(Yg − [[Ug ,Vg ,Cg ]])Ωg

∥∥2
F

for all the g = 1, 2, · · · , G tensors through CP decomposition
7: Σg

k ← dig
(
Cg

k:

)
8: Update Xg

k = Mg
k ⊙Xg

k +
(
1−Mg

k

)
⊙UgΣg

k(V
g)T

(
Pg

k

)T
9: end while

10: Combine the recovered sub-matrices and obtain the recovered large
matrices.

TABLE I
PERFORMANCE METRIC

Error Ratio

√∑K
k=1

(∑
(i,j)∈Ω̄k

(
xk:ij−x̂k:ij

)2)
√∑K

k=1

(∑
(i,j)∈Ω̄k

(
xk:ij

)2)
MAE 1∑K

k=1
n×mk

∑K
k=1

(∑
i,j |xk:ij − x̂k:ij |

)

In the table, xk:ij and x̂k:ij denote the raw data and the
recovered data at (i, j)-th element of the matrix Xk where
1 ≤ i ≤ n, 1 ≤ j ≤ mk, and 1 ≤ k ≤ K. Only entries not
observed (i, j) ∈ Ω̄k are counted in the Error Ratio. Different
from Error Ratio, the total data entries (i.e., T ) are counted in
the MAE. MAE is an average of the absolute errors after the
interpolation.

Although some limited very recent studies consider the
traffic data recovery through tensor completion, they cannot be
applied in the practical network with dynamic measurement
rate. Therefore, we implement four matrix completion algo-
rithms for the performance comparison:NMF [36], SRMF
[11], SV T [37], LMaFit [38].

To align measurement data under different measurement
rate for data recovery, in all the above matrix completion
algorithms, our temporal division scheme is taken to form
the sub-matrices of each day. Then we combine the recovery
results of different days to evaluate the performance.

According the time alignment requirement in Section V,
different measurement rates will result in different partitions.
We take 3 measurement scenarios as examples to show the
performance: 1) The measurement rates are different in dif-
ferent days while the measurement rate of the same day is
the same. 2) The measurement rates are different in different
days while the measurement rate changes at the noon every
day. 3) The measurement rates are different in different days
while the measurement rate changes at 8:00, and 16:00 every
day. Obviously, for time alignment, matrices in Scenario 1
form one group. In Scenarios 2 and 3, the traffic matrices are
partitioned into two groups and three groups, respectively.

Fig.9 shows the performance in terms of error ratio and
MAE with different sampling ratios. Note that, sampling
ratio is the fraction of the total sampling entries to the total
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Fig. 9. Recovery performance under Scenario 1.
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Fig. 10. Recovery performance under Scenario 2.
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Fig. 11. Recovery performance under Scenario 3.

number of matrix entries given a measurement(sampling) rate.
As expected, with the increase of the sampling ratio thus
sample data, the error ratio and MAE decrease and thus better
recovery performance is obtained. Our Reshape-Align scheme
can transform the data recovery through the traffic matrix to
the tensor completion to well exploit the multi-dimensional
correlations hidden in the traffic data. Therefore, compared
with other four matrix completion algorithm, our Reshape-
Align scheme achieves the best recovery performance with
the lowest error ratio and MAE in all the figures. Among all
the matrix completion algorithms, SRMF achieves the best
performance. Besides using low rank matrix to approximate
the traffic matrix, SRMF also utilizes spatial and temporal
constraint matrices in the problem formulation to express the
knowledge about the spatio-temporal structure of the traffic
matrix.

Among all the 3 scenarios, the Scenario 1 achieves the best
recovery performance while Scenario 3 achieves the worst
performance. This is because their matrix sizes are different.
The matrices in the Scenario 1 cover the time segment of the
whole day, while the sub-matrices for Scenario 2 correspond
to half a day, and the sub-matrices operated in Scenario 3
cover one third of a day. A longer time period makes more
data available to abstract the temporal feature for missing data
recovery, and thus the best performance is achieved in Scenario
1. In Scenario 3, the performance gap between our Reshape-
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Align scheme and other matrix completion algorithms be-
comes large which demonstrates that Reshape-Align scheme
can well exploit multi-dimensional correlations hidden in the
traffic data to accurately recover the missing data even with a
short time period.

IX. CONCLUSION

Accurate inference of the traffic matrix in the presence of
changing measurement frequency is of practical importance.
In this paper, we propose a Reshape-Align scheme which can
reshape the inconsistent traffic matrices observed in different
days into consistent ones, align and integrate these matrices
to form tensor, and take advantage of the user-domain and
temporal domain features hidden in the traffic data to trans-
late the matrix completion problem to the tensor completion
problem with CP decomposition for more accurate missing
data recovery. The performance studies demonstrate that our
scheme achieves significantly better performance compared
with the state of art matrix-completion algorithms to handle
the missing data.
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