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Abstract—The popularity of smart phones fosters the growth
of Proximity-based Mobile Social Networking (PMSN). Although
some profile matching approaches have been proposed to facilitate
a user to find another user that shares his/her interest in the
proximity, these approaches usually model the matching problem
as a Private Set Intersection problem or a Private Set Intersection
Cardinality problem and require high complexity of computation.
Different from current studies, to facilitate more effective building
of PMSNs, we propose a novel similarity metric to evaluate
the common interests of mobile users by considering the time-
dependent features of their interests. To calculate the metric in
a low cost and privacy-protection way, we propose a novel time-
dependent bloom filter to encode the time-dependent interest and
a novel probabilistic algorithm to estimate the time-dependent
similarity metric based on the bloom filter. We prove the high accu-
racy of the probabilistic algorithm both theoretically and through
simulations. Based on the proposed BF-based profile matching
approach, we further propose InterestMatch, a novel distributed
mobile communication system to facilitate more efficient social
networking among strangers in the physical proximity. We have
done extensive experiments on real-world phones, our experiment
results demonstrate that our approach is promising for facilitating
mobile social interactions in the physical proximity due to its low
complexity and consequently low power consumption.

I. INTRODUCTION

Proximity-based mobile social networking (PMSN) refers to
the interactions between mobile users in the close proximity
through the Bluetooth/WiFi interfaces of their mobile devices.
The popularity of smart phones (such as iphone, ipad) fosters
the growth of PMSN. In contrast to traditional web-based online
social networking, PMSN can enable more tangible face-to-
face social interactions in public places such as cafeterias and
airports. For example, E-SmallTalker [24] is a typical PMSN
application that connects a person with the nearby person before
they start a small-talk based on common interests.

As an important step toward effective PMSN, profile match-
ing is often needed to facilitate a user to find the other users
whose profiles best match his/hers. In many applications, the
user personal profiles may contain sensitive information that
they do not want to make public. Thus, a major challenge for
profile matching is to protect the privacy of personal profiles. To
address the issue, several private profile matching approaches

have been proposed recently [14]–[16], [20], [26]. Relying on a
third party or depending on complex encryption and decryption
algorithms, these approaches are susceptible to the single point
of failure or large computation cost, thus are not suitable to run
by energy-limited wireless devices.

As an important characteristic, in many applications, the
data of user profiles are randomly generated from a large
information space, which are impractical to enumerate. Instead
of using traditional private profile matching approaches, we
propose to apply bloom filter to realize the profile matching
function while at the same time protecting the user privacy.

A bloom filter [1], [23] (BF) is an excellent compact data
structure that can succinctly represent a data set in order to sup-
port membership queries, and filter out effectively any element
that does not belong to the set. With the features of simplicity,
ease of use, hardware support, and excellent performance,
bloom filters have broad applications. Particularly, bloom filters
can work efficiently in a distributed system where information
and data need to be exchanged among different entities. To
insert an element into the bloom filter, a set of functions are
applied to hash this element to set the corresponding bits in
the bloom filter. Since the hash is one-directional, the source
element cannot be discovered from the bloom filter and the
privacy of the element is protected.

Despite their usefulness, bloom filters are generally designed
for testing the set membership, rather than for the similarity
matching. The matching of the similarity generally requires
the calculation of the cardinality of the set intersection. To
complete this function, the bloom filter can be straightforwardly
applied with the following three steps: The profile data are first
encoded in a bloom filter, then the bloom filter is broadcast to
other users, and finally a user can calculate the set intersection
between his own profile and the one encoded in the incoming
bloom filter [19], [24] by checking each element in the profile
to determine if it is contained in the bloom filter.

The straight-forward BF approach, however, cannot work
well in a practical social network. The social networks are often
dynamic, and user interests can change with time. The recent
profile data are thus often more important than those of the past
when evaluating the mobile user interests. However, in almost



all the existing profile matching approaches, the similarity
levels of user interests are determined by treating all the profile
data equally. To facilitate more effective building of proximity-
based mobile social networks, we propose to design a novel
similarity metric to evaluate the common interests of mobile
users by considering the time-dependency of their interests.
Different from the straightforward BF approaches, we propose
a novel bloom filter structure to support not only the time-
dependent encoding of the profile data but also the calculation
of the time-dependent similarity metric.

Developing such a bloom filter, however, is particularly
challenging for the following three reasons. First, the original
bloom filter uses bit arrays to keep track of the membership of
elements. To record the time-dependent profile data rather than
simple membership information, a static bit array is no longer
sufficient. Second, to identify the common profile data with the
traditional bit-array-based bloom filter, a user needs to query all
the other users for their membership to find the set-intersection
first. This introduces unnecessarily high computation cost when
only the cardinality of the intersection is of interest. To reduce
the power consumption, it needs an efficient solution to estimate
the cardinality directly. Third, different from the traditional set-
intersection calculation, an advanced time-dependent similarity
estimation may require calculating the cardinality of both the
set-intersection and the set-union of the time-dependent profile
data, which is very difficult.

To address the challenges above, unlike the standard bloom
filter and its various extensions which usually utilize bit arrays
to keep track of the membership of elements, we propose
a novel time-dependent bloom filter (TDBF) which utilizes
dynamic cell instead of a static bit to store the time related
information. Based on TDBF, we propose a novel probabilistic
algorithm to estimate the cardinality of the set intersection and
set union, which is further applied to the efficient matching of
the time-dependent profiles.

Based on the BF-based profile matching approach, we pro-
pose InterestMatch, a novel distributed mobile communication
system to facilitate more efficient social networking among
strangers in the physical proximity. Users can simply exchange
their TDBFs, and based on the estimated similarity results, a
user can find the one whose interest matches his the most in
the proximity. The nice features of bloom filter allow for light-
weight information exchange among users and quick matching
of user interests to find the best matched peers. The main
contributions can be summarized as follows.

• We propose a novel time-dependent similarity metric to
measure the similarity of profiles from different mobile
users taking into account the time-delaying effect on user
interests.

• To facilitate the low-cost exchange of profile information
among users, we propose a novel time-dependent bloom
filter (TDBF) which can record the weight of the time-
dependent user interest.

• Based on TDBF, we propose a novel probabilistic algo-
rithm, i.e., R-Recent Time-dependent similarity matching

algorithm, to estimate the time-dependent similarity be-
tween mobile users.

Different from other BF-based profile matching approaches
[19], [24] which involve a lot of hash calculations to determine
the common interest, our similarity matching algorithm only
needs the counting function operated over the BF string, which
has a much lower computation cost. We also prove the high
accuracy of the probabilistic algorithm both theoretically and
through simulations.

To evaluate the performance of InterestMatch, we perform
experiments on user cell phones. Our results show that Inter-
estMatch can facilitate building PMSN with very low power
consumption. Moreover, without relying on a trusted third party,
a mobile user can carry out the similarity calculation and select
the best matched user nearby distributively.

The rest of this paper is organized as follows. We introduce
the related work in Section II, and present the system model and
our time-dependent similarity metric in Section III. We propose
the architecture of the time-dependent bloom filter and our
algorithm to estimate the time-dependent similarity in Sections
IV and V, respectively. We evaluate the performance in Section
VI and conclude the work in Section VII.

II. RELATED WORK

In this section, we review related work and identify the
differences between our work and existing work.
A. Profile matching in PMSNs

Profile matching is the most important function to support
effective PMSN. A major challenge for profile matching is to
ensure the privacy of personal profiles which often contain
highly sensitive information. This challenge necessitates the
private matching, in which two users compare their personal
profiles without disclosing the information to each other. Private
matching for PMSN has been recently addressed in [14]–[16],
[20], [26]. Among which, assuming the existence of a semi-
online central authority, Lu et. al. [16] proposed a symptom
matching scheme for mobile health social networks. However,
these approaches either realize private profile matching by
employing a third party or depend on complex encryption
and decryption algorithms. The need of centralized processing
or complex encryption and decryption operations also makes
these schemes prone to the single point of failure or large
computation cost.

To reduce the computation and communication cost, recent-
ly, E-SmallTalker [24] and [19] design the profile matching
approaches based on bloom filter, in which the profile data
is encoded in bloom filter which is exchanged between users.
By testing his profile data against the bloom filter, a mobile
user can identify the common data. However, to find the
common interest, the computation cost on hash calculation for
membership query is still high and should be reduced.

To measure the similarity of mobile users, current profile
matching approaches are constrained to finding the intersection
or intersection cardinality of the user profiles. Thus, current
private profile matching problem is usually modeled as Private



Set Intersection (PSI) [25] or Private Set Intersection Cardinal-
ity (PSI-CA) [7] problem by treating all profile data equally.
As discussed in introduction, the interests of users are often
time-dependent in practical applications, simply treating all user
profile data equally is not suitable. Therefore, it requires a novel
time-dependent similarity metric to measure the user matching
degree, and further a profile matching algorithm to estimate the
time-dependent similarity metric. However, all current profile
matching approaches cannot easily be extended to solve the
time-dependent profile matching problem, which is the focus
of this paper.

Different from the current work, this paper proposes a novel
time-dependent similarity metric and a BF-based probabilistic
algorithm to estimate the similarity. Moreover, the probabilistic
algorithm adopts the counting operations on bloom filter instead
of membership testing to estimate the similarity, which can
reduce the computation cost largely.
B. Bloom filter

A bloom filter (BF) [1], [23] is a space-efficient proba-
bilistic data structure that supports set membership queries.
Several BF variants have been proposed in the literature to
suit various applications [1], [23] including compressed bloom
filter [18], deletable bloom filter [21], hierarchical bloom filter
[22], spectral bloom filter [6], bloomier filter [3], stable bloom
filter [8], space code bloom filter [13], adaptive bloom filter
[17], dynamic bloom filter [11], retouched bloom filter [9], and
distance-sensitive bloom filter [12].

However, to support profile matching in this paper, we need
the bloom filter to record the user interest, which requires
not only the support of membership query but also have the
ability of recording the time-dependent weight of user interest.
Certainly, the bit array adopted in the standard bloom filter and
its various extensions is not suitable for our problem. Although
counting bloom filter [10] and [4] replace bits of a standard
Bloom filter with counters to keep record of the appearance
frequency of an element, it cannot be easily extended to record
user’s time-dependent interest weight.

Moreover, although bloom filters are widely used in various
networking systems, such as Web proxies and caches, database
servers, and routers, these applications only need the bloom
filter to support the quick membership query. Different from
current studies, to the best of our knowledge, this is the
first work that proposes a BF-based probabilistic algorithm to
estimate the similarity at the low cost in social networks.

III. SYSTEM MODEL AND TIME-DEPENDENT SIMILARITY
METRIC

Mobile devices can be equipped with the PMSN applications.
Generally, a PMSN session consists of three phases. First, in
the neighbor-discovery phase, users need to discover each other
nearby. Second, in the matching phase, nearby users compare
their personal profiles. Last, two matching users enter the
interaction phase for real information exchange. Among all the
three phases, profile matching is most critical and challenging
for the wide use of mobile social networks.

To evaluate the similarity degree between two mobile users
ui and uj , we first define our basic similarity metric based on
the popular similarity criterion of Jaccard metric [2] as

ζb(ui, uj) =
|Si ∩ Sj |
|Si ∪ Sj |

(1)

where Si and Sj are the profile data sets of users ui and uj .
The larger the intersection set, the higher the similarity level
between two users. Values close to 1 suggest that two sets are
very similar, whereas, those closer to 0 indicate that the interests
of users ui and uj are almost disjoint.

The similarity metric in (1) treats all user interests equally,
while in reality, user interests are often time-dependent with the
interest weight reducing over time. To quantify and consider the
interest decaying, we define a new time-dependent similarity
metric by extending the metric in (1):

ζ(ui, uj) =
∑
t

(ζb (ui, uj , t) · (MAX · g (t̄− t))). (2)

ζb (ui, uj , t) is the basic similarity metric calculated using the
interest sets at time t as follows

ζb (ui, uj , t) =
|Si (t) ∩ Sj (t)|
|Si (t) ∪ Sj (t)|

, (3)

where Si (t) and Sj (t) denote the interest sets at time t of user
ui and uj .

In (2), the similarity at time t is weighted by
MAX · g (t̄− t), where t̄ is the current time, MAX is
the original weight of an interest item, and g (t̄− t) is a
time-decayed function. We will discuss MAX and g (t̄− t) in
more details in Section IV-B. In the similarity defined in (2),
the recent interest profile has a higher impact on the similarity
evaluation.

To design a profile matching approach based on bloom
filter, we should solve the following two challenging problems:
1) How to design a novel bloom filter to encode the time-
dependent interest of a user? 2) How to further design an
algorithm to calculate the time-dependent similarity based on
TDBF? We will present our key techniques next.

IV. TIME-DEPENDENT BLOOM FILTER

In this section, we first review the standard bloom filter, and
then introduce our new design of the time-dependent bloom
filter to encode user’s time-dependent interest.
A. Review of standard bloom filter

A bloom filter is used to represent a set S = {s1, s2, · · · , sn}
of n elements from a universe U . It can be represented as an
m bit vector with elements BF [0], BF [1], · · · , BF [m− 1],
initially all set to 0. In many applications of bloom filters,
the summary message is captured with m-bit vector BF and
transmitted in the system. The filter uses k independent hash
functions h1, h2, · · · , hk, with each independently mapping
an element in the universe to a random number uniformly
distributed within the range 0, 1, · · · ,m− 1. For each element
x ∈ S, the bits BF [hi(x)] are set to 1 for 1 ≤ i ≤ k. To check
the membership of an item y, we can examine the BF whether



its bits at positions h1(y), h2(y), · · · , hk(y) are set to 1. If not,
then y is definitely not a member of S. If all hi(y) (1 ≤ i ≤ k)
are set to 1, we assume that y is in S, although it can be
wrong with some probability. Fig. 1 shows the operations of
the standard bloom filter.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 0

e1

e2

Insert 

e1,e2

 

k=3, m=16

Query

e1,e3
e1

0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 0

e3
Possible to have a false positive. E.g.,  all k values are 1, but e3 is not in S.

To check if element x is in S, check bloom filter at Hi(x)   1 i k.  All k values must be 1.

Apply the k hash functions to each element x, and set the bloom filter at Hi(x)  1 i k to 1

Start with an array with length of m, filled with 0s.

Fig. 1. Operations of the standard bloom filter.

As a probabilistic data structure, bloom filters are subject to
false positives. That is, a BF can suggest that an element y is
included in S even though it is not (e.g., e3 in Fig. 1). The
false positive rate f is defined by the following formula:

f =
(
1− (1− 1/m)kn

)k

≈
(
1− e−kn/m

)k

(4)

B. Time-dependent bloom filter
1) Problem

The interest profile of a user ui can
be recorded with time stamps, i.e,. Si =
{(ai,1, ti,1) , (ai,2, ti,2) , · · · , (ai,j , ti,j) , · · · , (ai,ni , ti,ni)},
where each (ai,j , ti,j) records the interest item ai,j of user
ui at the time ti,j . Initially, the weight of each interest item
is set to a large value (denoted by MAX). The item may
have different meanings in different application contexts. For
example, in a movie theater, we can utilize the film name as
the item name.

As user interest often reduces as time goes by, we use a
time decay function, a special non-increasing and non-negative
function g (t̄− t), to represent the relative interest weight over
the time. For an item ai,j with the weight f (ai,j , t) at time t,
the decayed weight of the interest item ai,j at the current time
F (ai,j) can be calculated as F (ai,j) = f (ai,j , t) g (t̄− t).

Given the interest profile and the time decaying function,
our goal is to design a time-dependent bloom filter structure
to encode the time-dependent interest profile such that for a
given interest item ai,j , its time-decayed weight F (ai,j) can
be found.
2) Design

Different from the standard bloom filter and its various
extensions which usually utilize bit arrays to keep track of the
membership of elements, to record the time-dependent interest

weight of an interest item, TDBF uses the counter cell instead
of a bit with the cell value decaying over time.

Algorithm 1 describes the basic operations of our TDBF.
Initially, all counters are set to 0 as shown on lines 1-3. To
insert an item ai,j into TDBF, k hash functions are applied
to this item and set each of the counters TDBF [h1(ai,j)],
TDBF [h2(ai,j)], · · · , TDBF [hk(ai,j)] to MAX (i.e., the
initial interest weight), as shown on lines 4-6.

In [5], there is a variety of decaying functions, e.g., expo-
nential decay, sliding window decay, polynomial decay, poly-
exponential decay, and chordal and polygonal decay. Among
which the exponentially time-decaying function is widely used
in practice. Therefore, we design our time-decaying function
as

g (t̄− t) = λ⌈
t̄
T ⌉−⌈ t

T ⌉, (5)

where T and λ are parameters that control the decaying speed
of the weight. A time period of T time units is referred to as an
epoch of the decaying function, which controls the granularity
of time-dependence. The parameter λ ∈ [0, 1] is the exponential
decaying factor to control the speed of decaying, ⌈∗⌉ is a ceiling
function and ⌈x⌉ is the smallest integer not less than x.

On lines 7-9, to record the time-dependent interest weight,
when a new epoch starts, all counter values in the bloom filter
are decayed by applying TDBF [i] = λ× TDBF [i], where λ
is the exponentially decaying factor in the function (5).

When querying the interest weight of item q, we can apply
the k hash functions to the item. Among the k counters
TDBF [h1(q)], TDBF [h2(q)], · · · , TDBF [hk(q)], the min-
imum value is returned as the interest weight, as shown on
line 10. As a cell may be set to the MAX value by a latter
arriving item which is mapped to the same position, so we use
the minimum value as the query response to avoid this impact.

Algorithm 1 Basic Operations of Time-dependent Bloom Filter
Input: Interest profile Si = {(ai,1, ti,1) , (ai,2, ti,2) , · · · ,

(ai,j , ti,j) , · · · , (ai,ni , ti,ni)}.
Output: A TDBF to encode the interest profile.

Initialization Operation
1: for 0 ≤ p ≤ m− 1 do
2: TDBF [p] = 0
3: end for

Set Operation (on arrival of a new item ai,j)
4: for 1 ≤ p ≤ k do
5: TDBF [hp (ai,j)] = MAX
6: end for

Decay Operation (on start of a new epoch)
7: for 0 ≤ p ≤ m− 1 do
8: TDBF [p] = λ× TDBF [p]
9: end for

Query Operation (query q’s time-dependent weight)
10: return Min{TDBF [h1 (q)], TDBF [h2 (q)], · · · , TDBF [hk (q)]}

Although TDBF is designed based on an exponentially time-
decaying function, it can be easily extended to support other
types of time-decaying functions. In our simulation part, we
evaluate the performance of our proposed TDBF by utilizing
both exponentially time-decaying function and linearly time-
decaying function.



Fig. 2 shows an example to encode the interest profile of
a mobile user {{e1, 1}{e2, 2}, {e3, 4}, {e4, 5}, {e5, 7}} using
a TDBF (k = 3, MAX = 5, λ = 0.8, m = 16, T = 3).
Obviously, interest items {e1, 1} , {e2, 2} arrive in the first time
epoch, items {e3, 4} , {e4, 5} arrive in the second time epoch,
and the item {e5, 7} arrives in the third time epoch. At the start
of the second and third time epoches, all the counters in the
filter decay. When we query the decayed-weight of item e1 at
time = 8 against the bloom filter, we can obtain the value 3.2,

which is equal to λ⌈
t̄
T ⌉−

⌈
te1
T

⌉
×MAX = 0.8⌈

8
3⌉−⌈ 1

3⌉ × 5 =
3.2. This result demonstrates that our TDBF can effectively
track the time-dependent interest weight.
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Fig. 2. Operations of TDBF with k = 3, MAX = 5, λ = 0.8, m = 16,
and T = 3.

C. Property analysis
In this subsection, we present some properties of our pro-

posed TDBF, which will be applied in our similarity matching
algorithm in the next section.

Theorem 1: The TDBF has a low time complexity O(1) for
inserting an interest item to the TDBF, and responding to a
query for the decayed interest weight of an item.

Proof: To insert an interest item q to the TDBF, k hash
functions are applied to the item q and the corresponding k
locations in the bloom filter string TDBF [hp(q)] for 1 ≤ p ≤ k
are set to MAX. The time complexity is O(k) = O(1). To query
the time-decaying weight of the item q, we should check the
k counters of TDBF [hp(q)] for 1 ≤ p ≤ k and return the

minimum value of these counters. The time complexity is also
O(k) = O(1).

Therefore, our TDBF can support the time-dependent interest
representation and query. The time-decaying weight F (q) for
the interest item q can be answered in time O(1), and the query
cost is independent of the length of the interest profile |Si|.

Let ai,j be the interest item of a mobile user ui at time
ti,j , F̂ (ai,j) be the estimated interest weight of this item by

querying against the bloom filter. If F̂ (ai,j) < λ⌈
t̄
T ⌉−

⌈
ti,j
T

⌉
·

MAX , where t̄ is the current time, then there exists an under-
estimate error.

Theorem 2: The TDBF has zero under-estimate error.
Proof: When inserting an interest item ai,j to the

bloom filter at time ti,j , all counters of TDBF [h1 (ai,j)],
TDBF [h2 (ai,j)], · · · , TDBF [hk (ai,j)] are set to MAX. At
the start of the next time epoch after ti,j , all counters decay
with their values updated with TDBF [hp (ai,j)] = MAX ×λ
for 1 ≤ p ≤ k. However, some of the corresponding counters
TDBF [hp (ai,j)] for 1 ≤ p ≤ k may be set to MAX by
other items in the next time epoch after ti,j . Therefore, after
one time epoch decaying, item ai,j

′s corresponding counters
TDBF [hp (ai,j)] (for 1 ≤ p ≤ k) have their value range
{MAX × λ,MAX}.

Similarly, at the current time, the corresponding counters
TDBF [hp (ai,j)] (for 1 ≤ p ≤ k) have their values within the

set {λ⌈
t̄
T ⌉−

⌈
ti,j
T

⌉
·MAX,λ⌈

t̄
T ⌉−

⌈
ti,j
T

⌉
−1 ·MAX, · · · ,MAX}.

Therefore, all counters of TDBF [hp (ai,j)] ≥ λ⌈
t̄
T ⌉−

⌈
ti,j
T

⌉
·

MAX for 1 ≤ p ≤ k, and we have F̂ (ai,j) ≥ λ⌈
t̄
T ⌉−

⌈
ti,j
T

⌉
·

MAX according to the operations of the bloom filter. The proof
completes.

Theorem 3: Although an arbitrary number of the same in-
terest items are allowed to be put in the user interest profile,
the estimated decaying weight of an item reflects the latest
operation of the item.

Proof: Assume the interest profile of a user is S =
{(e1, t1) , (e2, t2) , (e3, t3) , · · · , (en, tn)} in which the item
ei appears p times with their time stamps being ti1, ti2, · · · ,
tip, respectively. According to the operations of time-dependent
bloom filter, all counters at the locations of TDBF [h1(ei)],
TDBF [h2(ei)], · · · , TDBF [hk(ei)] are set to MAX at time
ti1, ti2, · · · , tip. These counters can be set to MAX multiple
times due to the multiple arrivals of the same interest item,
but only the last operation of the item takes effect. The proof
completes.

Theorem 2 and Theorem 3 are two important and interesting
properties of our TDBF. Theorem 2 allows us to estimate the
time-dependent similarity iteratively. Theorem 3 guarantees that
our similarity matching algorithm based on TDBF does not
over-estimate the similarity resulted from multiple arrivals of
the same interest item.

V. TIME-DEPENDENT SIMILARITY MATCHING

In this section, we present our probabilistic algorithm to
estimate the time-dependent similarity metric defined in Eq(2).



To estimate the similarity (defined in Eq(2)) of a pair of
mobile users, we should first estimate the basic similarity value
of these users in each time epoch t according to Eq(3), that
is, ζb (ui, uj , t) =

|Si(t)∩Sj(t)|
|Si(t)∪Sj(t)| , and then sum up the weighted

basic similarity values of different time epochs using Eq(2).
To estimate the basic similarity value, furthermore, the

cardinality of both the set intersection |Si (t) ∩ Sj (t)| and the
set union |Si (t) ∪ Sj (t)| should be first calculated. Different
from the traditional method which calculates the common
interest though the computation-intensive membership testing
[19], [24], we propose a probabilistic algorithm to estimate the
cardinality of both the set intersection and the set union, and
further the time-dependent similarity.

From Algorithm 1, TDBF represents the interest items in-
voked by utilizing k hash functions to set the corresponding
counters to MAX. Even though some interest items may share
the counters, the number of counters set to MAX in the bloom
filter increases as the number of interest items encoded in the
bloom filter becomes larger. Even though the time-decaying
function is applied to the TDBF, there still exists a strong
relationship between the number of items and the counter’s
values. In Theorem 4, we will utilize this relationship to
estimate the number of items probabilistically.

If we can estimate |Si (t)|, |Sj (t)|, and |Si (t) ∪ Sj (t)|
from TDBFi and TDBFj , the |Si (t) ∩ Sj (t)| can be further
calculated through |Si (t) ∩ Sj (t)| = |Si (t)| + |Sj (t)| −
|Si (t) ∪ Sj (t)|. In this section, we first present our scheme for
estimating the number of interest items in a given time epoch
by a user ui, e.g.,|Si (t)| and the number of items of interest
to either user ui or uj , e.g., |Si (t) ∪ Sj (t)|, and then present
our proposed similarity matching algorithm.
A. Estimation of |Si (t)|

Estimating the number of items in a given time epoch directly
is difficult because the items arriving after this time epoch may
reset the corresponding counters to MAX. Instead, in Theorem
4, we propose a probabilistic algorithm to estimate the number
of items arriving in the last p time epochs by utilizing the
counter information of the bloom filter, based on which we
will present our solution to estimating the number of items in
a given time epoch.

Theorem 4: Suppose a TDBF (m, k, T, λ) represent an in-
terest profile of a mobile user. The number of counters not
smaller than λp−1MAX in the TDBF is s. Then the number
of items of interest to the mobile user which are inserted into
the filter in the last p time epochs with the interest weight not
smaller than λp−1MAX is:

n = log
(
1− s

m

)
/

(
k × log

(
1− 1

m

))
(6)

Proof: We assume until the current time, totally M time
epochs have passed. The number of items in the last time epoch
is nM , in the previous one time epoch is nM−1, and so on.
There are n = nM + nM−1 + · · ·+ nM−p+1 interest items in
the last p time epochs. After all items in an interest profile are
hashed into TDBF and the time decay function is applied to
TDBF, the probability that a specific counter is smaller than

λp−1 ·MAX can be expressed as:

p(n) =

(
1− 1

m

)kn

≈ e−kn/m. (7)

The probability that a specific counter is not smaller than
λp−1 · MAX can be expressed as 1 − p(n). Therefore, the
total expected number of counters that are not smaller than
λp−1 ·MAX , Ŝ (n), can be expressed as

Ŝ (n) = (1− p)×m =
(
1− (1− 1/m)kn

)
×m (8)

We thus have

n = log
(
1− Ŝ (n) /m

)
/ (k log ((1− 1/m))) (9)

Let Ŝ (n) = s, the proof completes.
Furthermore, as proved in Theorem 2, our TDBF has a good

property of zero under-estimate error. Therefore, to estimate the
number of items in the pth time epoch from the last, we propose
a novel inverse estimation principle. We can first count the
number of items in the last p time epoches based on Theorem
4, denoted as Dp, and then count the number of items in the
last p−1 time epoches, denoted as Dp−1. The number of items
in the pth time epoch from the last can be calculated as Dp −
Dp−1. Therefore, the number of items in a given time epoch
can be estimated.

Following the example in Fig. 2 (in Fig. 2, time 8 is in
the third time epoch, the second time epoch is from time 4 to
6), when the current time is 8, we can estimate based on this
proposed principle the number of items in the previous one time
epoch (from time 4 to 6) in TDBF. This is shown as Steps 1
to 3 in Fig. 3.
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Fig. 3. Example of inverse estimation principle.

B. Estimation of |Si (t) ∪ Sj (t)|
Theorem 5 provides a way to estimate the number of items

of interest to either user ui or uj in the last p time epochs.
Theorem 5: Suppose TDBFi(m, k, T, λ) and

TDBFj(m, k, T, λ) represent the interest profiles of users
ui and uj . The total number of counter locations at either
TDBFi or TDBFj with the counter value not smaller than
λp−1MAX is sij . Then in the last p time epochs the number
of items of interest to either user ui or uj is:

nij = log
(
1− sij

m

)
/

(
k × log

(
1− 1

m

))
(10)



Proof: The standard bloom filter has an important union
property, that is BF (Si ∪ Sj) = BF (Si)∪BF (Sj). To prove
the theorem, we can create two standard bloom filters, BFi for
TDBFi and BFj for TDBFj , respectively, following the rule
expressed as

BFk[q] =

{
1 TDBFk[q] ≥ λp−1MAX
0 otherwise

(11)

where k = i, j and 0 ≤ q ≤ m − 1. By using the Theorem
4 and the union property of the standard bloom filter, we can
easily prove this theorem.

Based on Theorem 5, the inverse estimation principle in
Section V-A can be also applied to estimate the number of
items of interest to either user ui or uj at a given time epoch.
C. R-Recent time-dependent similarity matching algorithm

To calculate the similarity between mobile users, too old
an interest profile is not useful. Therefore, we propose our R-
Recent time-dependent similarity matching algorithm, in which
only the items in the last R time epochs are considered in the
similarity calculation. As shown in Algorithm 2, to calculate
R-Recent time-dependent Similarity between mobile users, the
algorithm should run R iterations.

On lines 4-6, the number of counters in TDBFi and TDBFj

whose values not smaller than λp−1MAX can be counted and
denoted as C1(p) and C2(p), respectively. The total number of
counters at either TDBFi or TDBFj whose values not smaller
than λp−1MAX can be denoted as Cij(p).

On lines 7-8, with Theorem 4, the number of items of
interest to user ui and user uj in the last p time epochs
are ni(p) = log

(
1− Ci(p)

m

)
/
(
k log

(
1− 1

m

))
and nj(p) =

log
(
1− Cj(p)

m

)
/
(
k log

(
1− 1

m

))
, respectively. Moreover, on

line 9, with Theorem 5, the number of items of interest to
either user ui or uj in the last p time epochs is nij(p) =

log
(
1− Cij(p)

m

)
/
(
k log

(
1− 1

m

))
.

The similarity is updated in each iterative step, as shown
on the line 10. Applying the inverse estimation principle, the
number of items of interest to the user ui and the user uj in
the pth time epoch from the last are ni(p)−Ti and nj(p)−Tj ,
respectively, while the number of items of interest to either user
ui or uj in this time epoch is nij(p)− Tij .

With the design based on simple counting operations on the
bloom filters, our proposed probabilistic similarity matching
algorithm has a low computation cost. We will evaluate its
contribution to energy saving through experiments on cell
phones in Section VI.

VI. PERFORMANCE EVALUATIONS

In this section, we first investigate the accuracy of our R-
Recent Time-dependent Similarity Matching algorithm through
simulations, and then perform experiments on real-world
phones to evaluate the performance of InterestMatch.
A. Accuracy of the similarity matching algorithm

In the simulations, we randomly generate two profiles corre-
sponding to two mobile users, each having 1200 interest items

Algorithm 2 R-Recent Time-dependent Similarity Matching
Input: TDBFi and TDBFj from two users ui and uj

Output: Similarity degree of these two users
1: Initialize Sim = 0.
2: Initialize Ti = 0, Tj = 0, Tij = 0.
3: for p = 1; p ≤ R; p++ do
4: Ci (p) = count

(
l
∣∣TDBFi[l] ≥ λp−1MAX, 0 ≤ l ≤ m− 1

)
.

5: Cj (p) = count
(
l
∣∣TDBFi[l] ≥ λp−1MAX, 0 ≤ l ≤ m− 1

)
.

6: Cij(p) = count

l

∣∣∣∣∣∣
TDBFi[l] ≥ λp−1MAX
or TDBFj [l] ≥ λp−1MAX,
0 ≤ l ≤ m− 1


7: ni(p) = log

(
1− Ci(p)

m

)
/
(
k log

(
1− 1

m

))
8: nj(p) = log

(
1− Cj(p)

m

)
/
(
k log

(
1− 1

m

))
9: nij(p) = log

(
1− Cij(p)

m

)
/
(
k log

(
1− 1

m

))
10: Sim = Sim+

(ni(p)−Ti)+(nj(p)−Tj)−(nij(p)−Tij)
(nij(p)−Tij)

λp−1MAX .

11: Ti = ni(p), Tj = nj(p), Tij = nij(p).
12: end for
13: Return Sim
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Fig. 4. Exponential decay function

covering 12 months. Each user encodes his profile data into a
TDBF according to the set operation and decaying operation
in Algorithm 1. After exchanging the TDBFs between the two
mobile users, each mobile user estimates the similarity of his
profile with the other user following Algorithm 2, denoted
as Estimation. For performance comparison, we also directly
compute the R-Recent Time-dependent similarity using Eq(2),
denoted as Real. In the simulation, the TDBF’s parameters are
set as follows: length m = 6000, the number of hash functions
k = 3, the time epoch T = 1 month, and the initial interest
weight MAX = 128. We evaluate the performance of the
proposed algorithm by utilizing both exponential decay function
and linear decay function.

According to Algorithm 2, under the exponential decay
function, the parameters R, T and the delaying factor λ directly
impact the similarity value. Fig. 4(a) shows how R and λ impact
the similarity value by fixing T = 1. Obviously, the similarity
value increases when R increases, while the increasing speeds
under different delaying factors (λ) are different. When the
delaying factor λ is a small value, the item’s interest weight
decays fast with time, which results in smaller similarity value.
Fig. 4(b) shows how the time epoch (T ) impacts the similarity
value using the total 12 month profile data by fixing λ = 0.8.
We observe that when T becomes larger, the similarity value
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Fig. 5. Linear decay function

decreases as the weights of more interest items decay in each
epoch. In all scenarios, our TDBF-based similarity matching
algorithm can achieve a very high accuracy.

To implement the linear decay function, we change the decay
operation in Algorithm 1 to TDBF [p] = TDBF [p] − α (for
all 0 ≤ p ≤ m − 1 ). To investigate how α and R impact the
performance, we vary α and R by fixing T = 1. In Fig. 5(a),
the similarity value decreases with the increase of α. We also
investigate how T impacts the similarity value under the linear
decay function by fixing α = 1, as shown in Fig. 5(b). Similar
to Fig. 4(b), the similarity value decreases with the increase of
T . Both Fig. 5(a) and Fig. 5(b) demonstrate that our TDBF-
based similarity matching algorithm can achieve a very high
accuracy in all scenarios under linear decay function.

Although we utilize an exponential decay function to illus-
trate our TDBF design, our similarity matching algorithm is
a general time-dependent similarity matching algorithm which
does not depend on the decay function adopted.
B. Evaluation of InterestMatch

We implement the proposed system InterestMatch using
Android Studio with WiFi protocol without modifying the
protocol stack on mobile phones, which is supported on a wide
variety of mobile phones.

After a user installs our InterestMatch software, when the
user wants to find nearby people with common interests to
talk, the user will broadcast a request message. Upon receiving
the request, a user may decide whether to send back its own
bloom filter based on his own decision. After the requester
receives the reply, it will estimate the similarity value according
to Algorithm 2.

Fig. 6. System running GUI.

We set up a small network
testbed with 7 mobile users each
holding a smart phone, and the sys-
tem running GUI at mobile user
”Sam” can be shown in Fig. 6.
Obviously, because Tom’s profile
has the highest similarity with that
of Sam, Sam can select Tom to
begin a short interaction. Because
InterestMatch is designed based on
TDBF to effectively track the time-
dependent interest weight, our In-
terestMatch can further recommend
the topic (of the most interest by

(a) Impact of hash number (b) Impact of R

Fig. 7. Power consumption

both users recently) to begin with
by exploiting TDBF’s query operations.

To evaluate the energy consumption and demonstrate the
effectiveness of our InterestMatch, we implement an adapted
E-SmallTalker [24] for performance comparison. As existing
profile matching algorithms usually try to find the Set In-
tersection (PSI) or Private Set Intersection Cardinality (PSI-
CA) without considering the decaying weight of user interest,
for fair comparison, 1) we implement E-SmallTalker by using
multiple bloom filters with each encoding user interest items
in one time epoch, then calculate the time-dependent similarity
by testing each time-epoch bloom filter, 2) as E-SmallTalker
cannot calculate the cardinality of the set union (which is
required in basic Jaccard metric and thus our proposed metric)
through the membership query, we simplify our Algorithm 2 to
calculate only the time-dependent set intersection. To evaluate
the power consumption, we first fully charge the Smartphone.
As the key part of PMSN application is the profile matching
module, we run the module 1000000 rounds after receiving the
bloom filter from other users. After that, we read the battery to
calculate the average power consumption for one round.

1) Power comparison
The average power consumption of one round is shown in

Fig7. The power consumption in our algorithm is not sensitive
to the hash function number. Therefore, the power consump-
tion under our algorithm is parallel to x-axis. E-SmallTalker
calculates the similarity value through the membership testing
based on hash calculations, thus the power consumption in-
creases with the increase of the number of hash functions, as
shown in Fig. 7(a). Fig. 7(b) shows the power consumption
under different R. As expected, the consumption increases
with the increase of R. Since our profile matching approach
estimates the similarity through the counting operations, while
the matching approach in E-SmallTalker depends on the hash
function calculations, the computation complexity thus the
power consumption under our approach is much lower than
that in E-SmallTalker in all the scenarios

2) Space consumption
To encode the time-dependent user profile following E-

SmallTalker, multiple standard bloom filters are needed with
each corresponding to one time epoch. TDBF only utilizes a
single filter vector which consists of cells instead of bits to
store the time related information of the profile, thus the space



of TDBF is determined by the size of the cell. The size of
the cell is corresponding to the number of weight values of
the time-dependent profile. For a cell with 8 bit, the cell can
represent up to 28 = 128 different values. In practice, we can
map the values stored in cells to the weight values needed in
the system, and set the size of cell according to the number of
weight values.

Taking our experiment as an example, to encode user profile
with 12 time epochs (thus 12 different weight values), 4 bit
cell is enough as 24 > 12. Therefore, the total space needed
for TDBF is 4m, where m is the length of the filter. However,
to encode the time-dependent profile following E-SmallTalker,
12 time epochs need 12 standard bloom filters, thus the space
is 12m. Obviously, the space occupation in our method is only
33% of that in E-SmallTalker.

Therefore, compared to E-SmallTalker, our TDBF can fa-
cilitate the building of an effective PMSN at lower power
consumption and communication cost.

VII. CONCLUSIONS

This paper proposes a novel time-dependent profile matching
algorithm based on bloom filter, based on which the mobile
users close by can build a PMSN based on their common
interests. By considering a mobile user’s time-dependent in-
terest, we propose a novel time-dependent similarity metric.
Furthermore, to calculate the metric in a low cost and privacy-
protection way, we propose a novel time-dependent bloom filter
to encode the time-dependent interest and a novel probabilistic
algorithm to estimate the time-dependent similarity metric
based on the bloom filter. To evaluate the performance of the
proposed probabilistic similarity matching algorithm, we have
done extensive simulations, and the results demonstrate that our
proposed probabilistic similarity matching algorithm has a high
accuracy. Based on the proposed profile matching approach, we
implement InterestMatch and evaluate its performance on real-
world phones. Our experimental results demonstrate that our
approach is promising for facilitating social interactions and
building mobile social networks in a physical proximity due to
its low power consumption.

ACKNOWLEDGMENT

The work is supported by the National Natural Sci-
ence Foundation of China under Grant Nos.61572184,
61472131, the Prospective Research Project on Future Net-
works (Jiangsu Future Networks Innovation Institute) under
Grant No.BY2013095-4-06, the National High Technology
Research and Development Program of China (863 Program)
under Grant No.2015AA010201 and 2015AA016101, the Na-
tional Basic Research Program (973 Program) under Grant
No.2012CB315805, Beijing Natural Science Foundation under
Grant No.4162057, U.S. National Science Foundation under
Grant Nos. ECCS-1231800 and CNS 1247924.

REFERENCES

[1] M Mitzenmacher. A Broder. Network applications of bloom filters: A
survey. Internet Mathematics, 1(4):485–509, 2004.
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