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Abstract— In order to improve transmission throughput of
a multi-hop wireless network, many efforts have been made in
recent years to reduce traffic and hence transmission collisions
by constructing backbone networks with minimum size. However,
many other important issues need to be considered. Instead of
simply minimizing the number of backbone nodes or supporting
some isolated network features, in this work, we exploit the use
of algebraic connectivity to control backbone network topology
design for concurrent improvement of backbone network robust-
ness, capacity, stability and routing efficiency. In order to capture
other network features, we also provide a general cost function
and introduce a new metric, connectivity efficiency, to tradeoff
algebraic connectivity and cost for backbone construction. We
have designed both centralized and distributed algorithms to
build more robust and efficient backbone infrastructure to
better support the application needs. Our performance studies
demonstrate that, compared to peer work, our algorithms could
achieve much higher throughput and delivery ratio, and much
lower end-to-end delay and routing distances under all test
scenarios.

I. INTRODUCTION

It is extremely challenging to support efficient and reli-
able communications over multi-hop wireless networks, due
to node mobility, device unreliability and unstable wireless
communications medium. The increase of network nodes as a
result of quick growth of wireless devices and communication
need introduces additional challenge to wireless network de-
sign. Different from wired networks where a larger number
of network nodes could potentially lead to the increase of
throughput and reduction of network diameter, due to the shar-
ing of transmission medium, the increase of node competition
in channel access would lead to more transmission collisions
hence higher transmission delay, throughput degradation, and
extra energy consumption. Therefore, backbone design has re-
ceived significant attentions in recent years to improve wireless
network performance. Existing work, however, mainly focuses
on minimizing the total number of backbone nodes [4]–
[6], [16], [18]–[22]. Many other important issues need to be
considered in backbone design, such as backbone network reli-
ability, stability, capacity, load balancing, path length, energy
level and therefore longevity. The limited work considering

backbone transmission reliability normally try to ensure certain
degree connectivity around each node, without considering
network capacity and routing distance. Maintaining a fixed
degree of connectivity for each node tends to be conservative,
which unnecessarily incorporates more backbone nodes and
may reduce backbone throughput.

Based on node capabilities, we divide wireless nodes in
the network into two types. The first type of nodes is called
backbone capable nodes (BCNs), which generally have higher
capacity and can transmit at longer range. The second type
of nodes is called regular nodes (RNs), which normally have
lower capacity and transmit at shorter range. The regular nodes
can be simple sensors, or low power wireless devices, while
the backbone capable nodes can be devices with more energy
such as devices plugged in the outlets of offices or cars, with
more capacity such as laptops and wireless gateways, and/or
transmitting at larger range such as 802.11 nodes (as compared
to 802.15.4-based sensor nodes) and WiMAX nodes.

Instead of simply covering all RNs [26], we intend to
increase backbone robustness in presence of node mobility,
device unreliability and channel instability, while considering
other desired network features. Specifically, we exploit the use
and control of algebraic connectivity [9], an important concept
introduced in spectral graph theory, in backbone network
design to improve backbone robustness, stability, capacity and
routing efficiency. To further capture other network features,
we consider the use of a cost function. We further intro-
duce a new metric, connectivity efficiency, as a function of
algebraic connectivity and total network cost. The purpose
of our backbone design is to maximize network connectivity
efficiency. This metric allows the backbone design to tradeoff
between increasing algebraic connectivity and reducing total
network cost. To the best of our knowledge, this is the first
work that exploit use of algebraic connectivity to capture the
spectral characteristics of the network graph in designing a
wireless backbone network that can simultaneously improve
the network performance from several important perspectives.
In addition, the introduction of a general cost function allows
the incorporation of other network features in backbone de-
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sign. We expect the new performance metric proposed in this
work can be used in other network research to design high
performance network architecture.

We prove that the connectivity efficiency maximization
problem is NP-hard, and propose both centralized and dis-
tributed approximate algorithms to solve the problem. To
demonstrate the benefit of introducing a new and more effec-
tive metric for backbone design and evaluate the performance
of our backbone construction algorithm, we introduce a node
cost model to capture the impact on delay and hence network
capacity due to the node capacity, transmission error, and
node distribution. The total network cost is the summation
of node cost. Our proposed performance metric and backbone
construction algorithms, however, do not constrain the cost
function format so that the proposed backbone formulation al-
gorithms can be applied to meeting application needs. Finally,
we perform extensive simulations to compare the performance
of our algorithms and algorithms proposed in the literature. As
this work focuses on backbone construction, we assume all the
nodes are backbone capable nodes, i.e., BCNs, and we do not
specially identify BCNs in the remaining of the paper.

The rest of the paper is organized as follows: In Section
II, III, and IV, we review the related work in literature, ana-
lyze the features of algebraic connectivity and formulate the
problem. We present our centralized algorithm and distributed
algorithm in Sections V and VI respectively. In Section VII, we
evaluate the performance of our algorithms through extensive
simulations. We summarize the results and discuss future
research directions in Section VIII.

II. RELATED WORK

Cluster organization has been widely studied in literature
work and is generally performed in two steps, selecting cluster
heads among nodes based on some criteria and forming clus-
ters by associating each cluster head with a set of members.
Clusterhead selection criteria fall into three categories: lowest
(or highest) ID among all unassigned nodes [24], maximum
node degree [23], or some generic weight [18]. Ju et al.
[15] introduced heuristic approaches to construct the backbone
network.

Distributed algorithms to construct connected dominating
sets (CDS) in ad hoc networks are studied in [4], [6], [7],
[16], [18]. Alzoubi et al. [6] models the transmission range
as unit disk, and proposes a localized approximate method to
construct minimum CDS within a constant time using a linear
number of messages, while the algorithm in [7] reduces the
size of the CDS. Marathe et al. [27] also models the network
as unit disk graph, and considers methods for constructing
maximum independent set, minimum coloring, and minimum
dominating set. Chen et al. [18] proposes a localized CDS
building algorithm where a node becomes a dominator when
two of its neighbors can not reach each other either directly or
through one or two dominators. The algorithm in [16] marks a
node as a dominator if it has two unconnected neighbors, and
reduces the CDS size by applying two dominant pruning rules.

Dai et al. [4] further improve the algorithms proposed in [16].
A survey and simulation-based performance studies were car-
ried in [25] to compare various backbone construction schemes
proposed in literature. Scheideler et al. [12] further explored
interference model in dominating set problem. Dai et al. and
Wu et al. [11], [17] and Zhang et al. [29] considered robust
wireless backbone which was k-connected, k-dominating and
k-connected, m-dominating respectively. Instead of enforcing
conservative vertex degree constraint, the use of algebraic
connectivity can better describe the reliability of networks
at a large range and the importance of increasing bottleneck
capacity.

Algorithms in [5], [18]–[22] also considered using different
weights as priority criteria to select clusterheads, while the
goal of the majority of the schemes is still to minimize
the number of clusterheads (or the size of the backbone)
instead of the total weight of the clusterheads. The priority
is given to nodes with high stability or low mobility in [20],
and to nodes relatively stable and with high degree in [21].
Basagni gives an algorithm to solve the maximal weighted
independent set problem in [19]. Wang et al [5] develops a
distributed heuristic algorithm for constructing the minimum
weighted dominating set and the minimum weighted connected
dominating set. However, these algorithms do not consider the
overall backbone network reliability.

The idea of constructing hierarchical backbone was recently
considered in [26], [28], [30]. Xu et al. [30] simply selects
the nodes that first claim the leadership in a neighborhood
to be clusterheads, while TBONE proposed in [28] attempts
to minimize the number of backbone nodes, giving priority
to higher weight nodes. Work in [26] attempts to cover all
the regular nodes assuming there are an infinite number of
backbone capable nodes, while minimizing the number of
nodes required in the backbone construction.

III. THEORETICAL FOUNDATION

In this section, we analyze the properties of algebraic
connectivity which are important for network design. Spectral
graph theory studies the properties of a graph G in relationship
to the characteristic polynomial, eigenvalues, and eigenvec-
tors of its adjacency matrix A or Laplacian matrix L. The
Laplacian of G is defined as L(G) = ∆ − A, where the
elements of the diagonal matrix ∆ are the vertex degrees
of G with ∆m as the maximum of them, and L is positive
semidefinite quadratic. Assume L has n eigenvalues ordered
with multiplicity, λ1 ≤ λ2 · · · ≤ λn−1 ≤ λn, in [9], Fiedler
coined algebraic connectivity as a(G) = λ2 which is a non-
negative real number.

For a graph G with n vertices, v(G) and e(G) are vertex and
edge connectivity of G respectively. The diameter diam(G)
equals the maximum distance between all pairs of vertices,
and ρ represents the average distance. To justify that a(G) is
a good measure of graph connectivity, Fiedler and Weyl [2],
[9] provided several properties as follows.
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Lemma 1: If G1 = (V, E1) and G2 = (V, E2), a(G1) +
a(G2) ≤ a(G1 ∪G2).

Theorem 1: For G1 = (V,E1) and G2 = (V, E), if E1 ⊂
E, a(G1) ≤ a(G2).

Theorem 2: (Interlacing Theorem) If G′ = G+ e, λi(G) ≤
λi(G′) ≤ λi+1(G), i = 1, . . . , n− 1.

For a network, as the number of connections increases, the
level of connectivity should not decrease. As the algebraic
connectivity a(G) does not drop when the edge set E becomes
larger, it is a good metric to capture network connectivity.
Normally, the addition of an extra connection will not signif-
icantly change the network connectivity level unless a critical
edge is added. The interlacing theorem ensures that λ2(G′)
is bounded between λ2(G) and λ3(G), which indicates that
algebraic connectivity is not too sensitive to a small change
to the network unless it is critical. In [9], Fiedler provided the
following theory.

Theorem 3: The following conditions hold.
(1) a(G) ≤ v(G) ≤ e(G)
(2) a(G) ≥ 2e(G)(1− cosπ

n )
(3) a(G) ≥ 2(cosπ

n − cos 2π
n )e(G)− 2cosπ

n (1− cosπ
n )∆m.

This theorem provides bounds and relates a(G) to the
conventional connectivity measures v(G) and e(G). For a
network to be reliable, it is desirable to have higher edge and/or
vertex connectivity in order to handle link or node failure.
This is particularly important for mobile wireless networks.
The following theorems proposed by Kirchhoff [3], Alon and
Milman [14] correlate the structure of the graph with algebraic
connectivity.

Theorem 4: (Matrix Tree Theorem) The number of span-
ning trees t(G) = 1

nΠn
i=2λi.

Theorem 5: If G = (V, E), A,B ⊂ V , A ∩ B = φ, F
represents the set of edges that do not have both ends in A or
B, then |F | ≥ ρ2λ2

|A||B|
|A|+|B| , where ρ is the minimum distance

between A and B.
Theorem 6: |∂A| ≥ λ2

|A|(n−|A|)
n , where ∂A is the edge cut

induced by A and V −A.
The number of spanning trees represents the number

of ways to connect a pair of vertices in the graph. For
a network to be reliable, it is desirable to have multiple
paths between nodes in order to establish an alternative
path upon route breakage or congestion. Since a(G) is
the smallest multiplier in Theorem 4, it serves as a lower
bound of t(G). Theorems 5 and 6 indicate that more edges
are in the edge cut if a(G) is larger, which implies that a
network with a larger algebraic connectivity is not likely to
be partitioned and may have a higher capacity according to
the max flow theorem. Some recent discoveries by Mohar [8]
indicate that a(G) has close relationship with routing problem.

Theorem 7: diam(G) ≤ 2d
√

λn

λ2

α2−1
4α + 1edlogα

n
2 e, where

α > 1.
Theorem 8: diam(G) ≤ 2d∆+λ2

4λ2
ln(n− 1)e.

Theorem 9: ρ ≤ n
n−1d∆+λ2

4λ2
ln(n− 1)e.

These theorems provide the upper bound for the graph
diameter and average distance, and the upper bound reduces
as the algebraic connectivity increases. This property is very
important for network design as it is highly desirable to bound
the distance or the number of hops between two network
nodes.

In addition to serving as an index for network reliability,
algebraic connectivity can also reflect network stability and
robustness, as the effect of the dynamics of a node is averaged
out rapidly and thus has minor influence on stability for a
network with large algebraic connectivity [13].

In summary, algebraic connectivity is a good metric for
measuring the network performance. Compared to conven-
tional connectivity measures such as vertex connectivity and
edge connectivity, it has continuous value and provides a
fine metric to measure network connectivity level. It not only
captures network connectivity, but also to some extent, reflects
network stability and gives lower bounds on the performance
of the network bottleneck. Additionally, algebraic connectivity
controls the upper bound of network routing distance. Thus
algebraic connectivity can serve as a good design metric
for mobile wireless networks, and the network performance
can be improved by constructing a network with a larger
algebraic connectivity. The effectiveness of using algebraic
connectivity for improving network reliability and reducing
routing distance is demonstrated through our performance
studies in Section VII.

IV. PROBLEM FORMULATION

In light of above discussions, the objective of our work is to
exploit the use of algebraic connectivity in backbone design to
improve backbone network robustness, capacity, and routing
efficiency. Additionally, we incorporate a cost function into the
design metric to capture some other desired network features.
The backbone design will compromise between increasing net-
work algebraic connectivity by including more nodes into the
backbone and reducing total network cost by removing nodes
that incur high cost. As different backbone features would
be needed by different applications, to make our algorithm
general, we will not constrain the format of cost functions
but will use a general cost function C(·) during our algorithm
introduction.

We first introduce some concepts and terminologies to be
used in the remaining of the paper. For a graph G = (V, E),
define the cost of a node i as ci for ∀vi ∈ V , i = 1, 2, · · · |V |,
and the total cost of the graph G as C(G) =

∑
vi∈V ci. To

improve the robustness, capacity, and efficiency of a graph G
while reducing its total cost, we define a new metric called
connectivity efficiency (CE) as

γ(G) =
a(G)
C(G)

. (1)

A subset D of the vertices in graph G is a dominating set
(DS) if each node in the graph is either an element of D or is
adjacent to some element of D. Dominators are elements in the
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Fig. 1. Example Backbone Construction

set D and dominatees are not in it. A connected dominating set
(CDS) is a dominating set whose elements induce a connected
graph.

The backbone network construction problem considered in
this work is to find a subset of network nodes that can form a
connected dominated set with the objective of maximizing the
connectivity efficiency. We call the problem efficient connected
dominated set building problem, or ECDS. Our backbone
construction problem can be formally presented as follows.

Problem Statement 1: ECDS: For a graph G = (V, E), find
a sub-graph G∗ = (D,E∗) induced by dominating set D that
maximizes γ(G∗).

TABLE I
EXAMPLE NODE COST.

Node 1 2 3 4 5 6 7 8 9 10
Cost 2 2 4 2 4 2 3 3 7 2

Before presenting the details of the problem, we will
show the significance of our problem through an example.
A backbone needs to be constructed for the example network
in Fig.1A, with the cost of each node shown in table IV. A
backbone is considered functional if it covers all the nodes
in the network and is connected, and not fully functional if
it does not meet either of the requirements. If a backbone
network does not meet the second requirement, it is considered
disconnected.

For backbone construction, the low-cost algorithm (e.g. [5])
will, for example, select {2, 6, 7, 8} as backbone nodes
(marked dark in figure) with minimum cost of 10. If any of
the four nodes is down, the network will not be completely
covered. If node 7 or 8 is down, the backbone will be
disconnected. Therefore, the backbone constructed by only
minimizing the cost is vulnerable to failure.

In ECDS, reliability is one of the important consideration
factors and the backbone set selected (Fig. 1C) is {2, 3, 4, 6, 7,
8} with the highest connectivity efficiency of 0.0625. A failure
of any of the six nodes will not impact the functionality of the
backbone. With the probability of 0.27 and 0.4, simultaneous
failures from two nodes will not impact the function and
connection of the backbone.

From Fig. 1B, we also observe that the worst routing path
between two nodes has 5 hops while the shortest path between
these two nodes has only 3 hops. The average routing distance
between all pairs of vertices is 2.38 hops, with a 0.31 hop

increase from that of the original topology. While in ECDS
case, the longest routing distance is 4 hops. The average
routing distances is 2.07 which is the same as that of the
original one. The low cost algorithm also has several critical
edges and nodes. In ECDS case, the minimum cut has two
edges or two nodes. This example demonstrates that it is
important to construct a more reliable backbone network with
higher bottleneck capacity and routing efficiency. ECDS is
designed to facilitate the construction of a backbone network
with the desired features.

The objective of ECDS is to find a connected dominating
set of a network graph that has the maximum connectivity
efficiency. The search of the optimal solution only involves
the selection of a vertex (i.e., a node), not any edge. ECDS
problem is NP-hard, as the NP-hard maximum clique (MC)
problem can be polynomially reduced to ECDS.

As mentioned earlier, our backbone construction algorithm
is not constrained by a specific cost function. For evaluating
the efficiency of our backbone construction algorithm, in this
work, we choose node delay as cost and consider a node
cost model that incorporates the following factors in order to
balance network traffic and reduce transmission delay.

Node Capacity. We define a Transmission Delay Factor of
a node i, (f i

t ) as f i
t = 1

W i = 1∑
ij∈E Wij

, with Wij being the
link transmission rate between node i and its neighbor node
j. The higher the transmission rate on a node, the lower the
delay.

Retransmission. Retransmission due to packet loss and error
increases the delay of a packet. The packet loss is impacted
by network load. With the loss and error rate pi

e of a link mea-
sured, the expected number of transmissions can be calculated
as 1

1−pi
e

, and used as the retransmission delay factor f i
r.

Node Distribution. When nodes share the transmission
medium, the competition among nodes leads to extra delay.
Assuming in a neighborhood there are Nc active nodes which
have packets to send and share the same channel, if each node
i is given a transmission weight wi for a relatively long period,
the transmission opportunity for node i can be represented as:
pi

c = wi∑Nc
k=1 wk

. If CSMA based scheme is used, the delay
factor (fc) due to node distribution and competition can be
estimated as fc = 1

pi
c
, which can be estimated based on the

network topology and traffic.
By combining all major delay factors mentioned above, the

cost of a node is defined as

Wi = f i
t · f i

r · f i
c =

1
W i

· 1
1− pi

e

· 1
pi

c

(2)

Generally, reducing the transmission delay would help improve
network throughput. In a wireless network, a higher number
of nodes in a neighborhood could potentially increase the
collision, and reduce the network throughput. On the other
hand, increasing algebraic connectivity helps improve bottle-
neck throughput and reduce the path length, which will help
improve network throughput. With the use of both algebraic
connectivity and the above cost model in the backbone metric,
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our backbone construction algorithm intends to build a more
reliable backbone network and to achieve a higher network
throughput.

V. CENTRALIZED ALGORITHM

To obtain an approximate solution for the ECDS problem
and construct a reliable and cost effective backbone network,
we first consider a centralized reverse greedy (CRG) algorithm
as a possible solution to find a CDS of the network graph that
has heuristically large connectivity efficiency (CE) γ.

Algorithm 1 CRG

1: BN ← V
2: for do
3: if ¬∃ removable v that γ(BN−v) > γ(BN) then
4: return BN
5: else
6: find removable v to max γ(BN−v)
7: BN ← BN −v
8: end if
9: end for

In Algorithm 1, CRG forms the backbone network by
removing unnecessary nodes from the candidate backbone set,
and in each round a node whose removal leads to the maximum
increase of CE is removed. The node removing process is
repeated until no removal of node could lead to the increase
of CE.

Although CRG always removes the node that could lead to
the maximum increase of CE in each round, as other greedy
algorithms, it may not lead to a globally optimal performance.
CRG tends to terminate early at a local optimal point. We
further develop a randomized centralized reverse greedy al-
gorithm (RCRG) based on the rules in generic probabilistic
meta-algorithm [31]–[33]. The performance shown in Fig. 2
demonstrates the effectiveness of using RCRG. The throughput
of RCRG doubles or triples that of CRG at the highest node
density and moving speed studied.

In RCRG algorithm shown in Algorithm 2, we introduce a
pseudo connectivity efficiency ζ(D) = aβ(D)

c(D) to enhance the
performance of γ(BN) globally. The parameter β is used to
control the tradeoff between algebraic connectivity and cost.
Generally, we set β ≥ 1 to provide a higher weight to algebraic
connectivity. The selection of β also depends on the value
ranges of cost c(D) and algebraic connectivity α(D).

The algorithm first looks for a candidate set, where a
candidate node is the one whose removal from or addition to
the current backbone set does not change the connected and
dominating property of the backbone set. Let Di be a graph
generated by removing/adding a candidate node i along with
the edges incident to it from/into the current graph D. To help
better select the backbone nodes, we introduce a facilitating
function, θi = e

1− ζ(D)
ζ(Di) .
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Fig. 2. Simulation comparison between CRG and RCRG: (a) network
throughput versus node density; (b) network throughput versus node move-
ment speed.

The index m indicates the test round and the algorithm
begins when the backbone network consists of all the network
nodes. In a round, instead of directly removing or adding a
node i whose removal or addition leads to the maximum in-
crease in ζ(D), the backbone node set change has a probability
P (i, T ) = max{min{(θ

1
T
i − 1

2 ), 1}, 0} of being made, with
T = 1√

m
. This probability is designed to increase with the

facilitating function θi and decrease with the time function
T . The node i whose removal or addition leading to a larger
pseudo connectivity efficiency ζ(Di) would result in a larger
θi, and therefore has a higher probability of being removed or
added. For more stable performance, we constrain that only
one backbone node set change can be made in one round. The
reason of removing or adding a ’worse’ node i (not leading to
the maximum ζ(Di)) with a probability is to allow the system
to move to a new state to prevent the method from being stuck
in a local optimum. Based on our definition of P (i, T ), the
probability of removing or adding in a less optimal node in a
round reduces and tends to reach zero when the round index m
becomes large. Therefore, RCRG algorithm will converge and
become a greedy algorithm (CRG) after a sufficient number
of rounds.

VI. DISTRIBUTED ALGORITHM

With complete network information, a centralized algorithm
could provide a better performance. However, a distributed
algorithm would be more efficient when the network size is
big or the network is more dynamic. In this work, we introduce
a distributed algorithm for ECDS problem by leveraging our
RCRG algorithm in a distributed environment to form more
reliable and cost effective backbone network. The algorithm
can be decomposed into two steps.

Step I. Find Dominating Set.
Our algorithm constructs a dominating set through the

finding of maximal independent set (MIS) with use of cost
factor to select the nodes, as shown in Algorithm 3. WHITE
nodes are the ones that do not belong to any set. In lines 2 to 5,
a node with the lowest cost among WHITE neighbors selects
itself as a Dominator and announces its status to its one-hop
neighbors. In lines 6 to 12, a node receiving the dominator
announcement becomes the Dominatee and broadcasts the
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Algorithm 2 RCRG

1: D ← V , D′ ← V
2: for m ← 1:mmax do
3: if ¬∃i as a candidate then
4: return D′

5: else
6: pick i from candidates
7: calculate ζ(Di)
8: if ζ(Di) > ζ(D′) then
9: D′ ← Di

10: end if
11: calculate P (i, T )
12: if P (i, T ) > uniform() then
13: D ← Di

14: end if
15: end if
16: end for
17: return D′

Dominatee status to its one-hop neighbors, which update the
list of WHITE neighbors. A random delay is introduced before
each node sends a message to reduce collisions.

Algorithm 3 MIS

1: V ← WHITE
2: if c(u) is min in WHITE neighbors or multiple WHITE

nodes have the same cost c(u) but u has the largest ID
then

3: u send MsgDominator up to 1-hop
4: u.status ← Dominator
5: end if
6: if v receives MsgDominator then
7: v.status ← Dominatee
8: v send MsgDominatee up to 1-hop
9: end if

10: if w receives MsgDominatee from v then
11: w.neighbor(v).status ← not WHITE
12: end if

Step II. Find Relays.
In order to form a CDS of the graph, we need to find

some relay nodes to connect the independent set obtained
from the first step. Based on [6], if the original graph is
connected, a graph V irtG that connects all pairs of elements
of a dominating set is a connected graph if there is a path of at
most 3 hops in the original graph. Therefore, we connect each
pair in the independent set that is within 3-hop distance to
form the backbone network by using RCRG algorithm. For
convenience, denote the maximal independent set found in
Step I as D.

In lines 1 to 3, each node v in D runs RCRG over the
nodes in its 2-hop neighborhood and selects some of the

Algorithm 4 RELAY

1: if v ∈ D then
2: v runs RCRG over two-hop nodes and sends RLA

(BNs, BCNs) up to 2 hops
3: end if
4: if u receives RLA then
5: u.status ← BN/BCN based on the assignment in RLA
6: u.neighbor(v).status ← assigned
7: end if
8: if w 6∈ D and ∀ Dominator in 2 hop assigned then
9: if there are non-connected Dominators then

10: w.status ← BN
11: end if
12: end if
13: if x is BN and y is in x’s 2 hop then
14: if neighbor(x) ⊂ neighbor(y) then
15: x.status ← BCN
16: end if
17: end if
18: if x is BCN and ¬∃x’s 1 hop BN neighbor then
19: if ∃x’s 2 hop BN neighbor then
20: x runs RCRG and sends RLA
21: end if
22: end if

nodes as backbone nodes (BNs), while the remaining nodes
are backbone capable nodes (BCNs). A node v announces
the results through an RLA message up to two hops, and a
node receiving the message changes its status according to the
assignment. In lines 8 to 10, a node w in ¬D first checks if all
the Dominators within two-hop distance have completed the
RCRG calculations. If this process is completed, w checks
if two Dominators within 3-hop distance are not connected
by backbone nodes, and will change its status to backbone
node if there are no-connected Dominators. In lines 13 to 17,
unnecessary nodes are removed from the backbone to improve
the connectivity efficiency. A higher algebraic connectivity
generally helps improve network stability upon dynamics. In
addition, in lines 18 to 22, if a BCN node x finds it loses
connection with all backbone nodes but there is a backbone
node two-hops away, it will run RCRG and send other nodes
the results through an RLA message. The steps in lines 8 to
12 will also be run by a BCN node to maintain the backbone
network connectivity. If there is a significant topology change
in a neighborhood, the algorithm may be re-run by resetting
all the relevant nodes to white.

VII. PERFORMANCE EVALUATION

In this section, we study the backbone performance by com-
paring our centralized backbone construction algorithm RCRG
and distributed backbone construction algorithm DCRG with
two other backbone construction algorithms, (MR-)TSA [15]
and k-Coverage [17]. (MR-)TSA is a backbone topology
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synthesis algorithm based on abstract weight to construct and
maintain wireless backbone while k-Coverage is an algorithm
to construct a wireless backbone which is k-connected and
k-dominating. The algorithms are implemented using the net-
work simulator NS2 [10], and the node movement follows the
improved random way point model [34]. IEEE 802.11 MAC
layer and physical layer models are used, and the transmission
range is set at 250 meter. AODV [1] is used as the routing pro-
tocol, with the path searching messages RREQ forwarded only
by backbone nodes. Each simulation lasts for 180 seconds, and
the results are obtained by averaging over five runs. Unless
when studying the impact of different parameters, 120 nodes
are used in a 1500m x 1500m network area, with the average
node moving speed set at 5 m/s. Sixty CBR flows are generated
between random sources and destinations, each transmitting at
200 bps. Four main performance metrics, namely throughput,
delivery ratio, average end-to-end delay and routing distance,
are examined in this study. Throughput is obtained by dividing
the total number of packets received at end users by the
simulation time, and delivery ratio is calculated by dividing
the number of packets received at end users by the total
number of packets sent out. Average end-to-end delay is the
average duration between the time a packet is sent out and the
time the packet is received at the destination, while routing
distance is the average number of hops that a packet traverses
before it reaches its destination. In implementing (MR-)TSA,
BN Neighbor Limit is set to 12, h is set to 1. Short Timer and
Long Timer are 1 and 3 seconds respectively. In k-Coverage
algorithm, k is set to be 2 to ensure robustness without having
excessive number of backbone nodes. We study the impact
on performance due to network size, node density, network
load, and node moving speed. Specific parameter setting will
be described in each simulation. In these simulations, as the
reference algorithms do not have clear cost models, the cost
of each node is randomly generated for both our algorithms
and the reference algorithms. We have performed additional
simulations to show the benefit of including the cost into
backbone control metric using the cost model described in
Section IV.

A. Impact of Metric

A good metric is important for backbone construction
and quality. The objective of our backbone algorithm is to
optimize the connectivity efficiency, which is a function of
algebraic connectivity and cost. We introduce a cost model in
Section IV, to help improve network performance by selecting
backbone nodes based on node distribution, traffic load and
hence errors, and node capacity. Due to page limit, we only
show the impacts due to node distribution and load, with the
unbalance level of each controlled through standard deviation
from 0 to 4. The results in Fig. 3 (a) and (b) show the per-
formance of using the metric with algebraic connectivity and
a random cost (RCRG, DCRG), and the metric with algebraic
connectivity and the cost model introduced (RCRG-C, DCRG-
C). Our results show that using an effective cost model could

0 2 4

30

40

50

60

standard deviation of nodes

th
ro

ug
hp

ut
 (

pa
ck

et
/s

ec
)

 

 

RCRG−C
DCRG−C
RCRG
DCRG
TSA
k−Coverage

(a)

0 2 4

30

40

50

60

standard deviation of flows

th
ro

ug
hp

ut
 (

pa
ck

et
/s

ec
)

 

 

RCRG−C
DCRG−C
RCRG
DCRG
TSA
k−Coverage

(b)

60 80 100 120 140 160 180

20

30

40

50

number of nodes

th
ro

ug
hp

ut
 (

pa
ck

et
/s

ec
)

 

 

RCRG−C
DCRG−C
RCRG
DCRG
TSA
k−Coverage

(c)

5 10 15 20

20

30

40

50

node speed (m/sec)

th
ro

ug
hp

ut
 (

pa
ck

et
/s

ec
)

 

 

RCRG−C
DCRG−C
RCRG
DCRG
TSA
k−Coverage

(d)

Fig. 3. Impact of Metric: (a) network throughput versus standard deviation of
node distribution; (b) network throughput versus standard deviation of load
distribution; (c) network throughput versus node density; and, (d) network
throughput versus node movement speed.

lead to increased throughput, about 20% in this simulation.
The performance improvement is higher when the network
is moderately unbalanced, while the improvement reduces if
the unbalanced level is too big, as the later dominates the
network performance. Improvements are also observed when
varying node density and speed in Fig. 3 (c) and (d). In the next
several sections, we are going to show the performance using
a relatively balanced topology and random cost, to mainly
evaluate the performance impact due to algebraic connectivity.

B. Impact of network size

We vary the network size from 1000m x 1000m to 2000m
x 2000m, while fixing the network density at 53 nodes / km2.
In Fig.4 (a) and (b), both network throughput and delivery
ratio decrease with network size for all the algorithms, as
the increase of average path length (Fig.4 (d)) results in a
higher probability of packet collision and therefore loss. Both
RCRG and DCRG are seen to perform much better than TSA
and k-Coverage at all network sizes. Compared to k-Coverage,
RCRG has up to 100% higher throughput and delivery ratio,
while DCRG has up to 60% performance improvement. TSA
has the lowest throughput and delivery ratio as a result of
backbone bottlenecks. In Fig.4 (c) and (d), both average end-
to-end delay and average routing distance are observed to
increase with network size. RCRG and DCRG have lower
end-to-end delay with the use of more efficient routing paths.
DCRA has up to 60% lower delay as compared to k-Coverage,
and up to 70% lower delay as compared to TSA.

TSA intends to have a backbone network with a smaller
number of nodes and lower cost to reduce transmission col-
lisions and increase network throughput, however, this can
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Fig. 4. Impact of Network Size: (a) network throughput; (b) delivery ratio;
(c) average end-to-end delay; and, (d) average routing distance.

create bottlenecks in the backbone network. As the network
size increases, this probability also increases, and the perfor-
mance is greatly impacted by these bottlenecks. On the other
hand, targeted for higher reliability, k-Coverage is too con-
servative by ensuring 2-connectivity for each backbone node,
which leads to a larger number of backbone nodes and hence
more collisions in transmissions. Both RCRG and DCRG use
algebraic connectivity as part of the design metric to ensure the
backbone network to be more robust and to increase bottleneck
capacity, and the routing path to be more efficient. As a result,
these two algorithms have shorter transmission distance, lower
transmission delay, higher delivery ratio and throughput.

C. Impact of Node Mobility

One of the major goals of our algorithms is to improve
network reliability. In this simulation, we study the impact
on performance due to mobility and the resulting topology
change. We vary the average node moving speed from 2.5
m/s to 20 m/s. Fig.5 shows that TSA and k-Coverage have
similar throughput and delivery ratio, which reduce quickly
as the nodes move faster. RCRG and DCRG have much more
stable performance. The difference between the throughput and
delivery ratio of RCRG/DCRG and TSA/k-Coverage increases
as the node mobility increases. At the maximum speed tested,
DCRG has about 60% higher throughput and delivery ratio
than that of TSA and k-Coverage. TSA attempts to maintain
the backbone network when the network topology changes,
and k-Coverage is designed to support higher backbone reli-
ability. The significant performance improvements of RCRG
and DCRG demonstrate the effectiveness of using algebraic
connectivity to support more robust network design. With the
increase of mobility, the end-to-end delay of TSA and k-
Coverage increase much faster than that of RCRG ad DCRG
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Fig. 5. Impact of Node Mobility: (a) network throughput; (b) delivery ratio;
(c) average end-to-end delay; and, (d) average routing distance.

due to the increase of link breakages, retransmissions, and
routing path re-establishments. The routing distances of TSA,
k-Coverage and DCRG all reduce, as a long path transmission
has a much higher probability of failure than a short path
transmission. RCRG and DCRG both have relatively lower
delay and shorter routing distance.

VIII. CONCLUSIONS

With the increasing demand of wireless network applica-
tions, it is critical to develop more effective communications
paradigm to enable new and powerful pervasive applications.
To cope with the increase in the number of communication
devices, many efforts have been made in recent years to
improve network throughput by constructing a minimum-size
backbone network to reduce total network transmissions and
hence collisions. However, wireless network throughput is also
impacted by bottleneck network flow rate, and transmission
distance. It is also important to consider backbone reliability,
stability, and load balancing.

In this work, we exploit the use of algebraic connectivity to
capture the spectral characteristics of the network graph in our
backbone design to simultaneously improve backbone network
robustness, capacity, stability, and routing efficiency. In order
to meet different application needs, we also introduce a general
cost function to incorporate other desired network features.
We define a new metric, connectivity efficiency, to tradeoff
algebraic connectivity and cost during backbone formulation.
As a design example, we provide a cost function to capture
the impact of node bandwidth and transmission errors, and
to balance the network load based on node distributions.
However, our performance metric and our algorithm design
are not constrained by a specific cost function. This is the
first work that exploits use of algebraic connectivity and
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comprehensively considers all the desired network features in
constructing the backbone.

The objective of our backbone design is to maximize
network connectivity efficiency. We propose a centralized and
a distributed approximation algorithms to solve the problem.
Finally, we perform simulations to compare the performance
of our algorithms and algorithms proposed in the literature.
Our performance studies show that the backbone networks
constructed using our algorithms are much more robust and
efficient than those constructed using literature algorithms.
Compared to peer algorithms, our algorithms have much
higher throughput and delivery ratio, and much lower end-
to-end delay and routing distances under all test scenarios,
including the network size, node density, network load, and
node mobility. The performance studies demonstrate the ef-
fectiveness of using algebraic connectivity in network design.
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