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Mobility
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Abstract—Communications in vehicular ad-hoc network (VANET) are subject to performance degradation as results of channel fading
and intermittent network connectivity. The emerging Vehicular Content Centric Network (VCCN) is promising in supporting the needs of
contents and alleviating the communication problems in VANET. Specifically, to improve the cache hit ratio and reduce the access
delay of content retrieval, it helps to choose the appropriate vehicles to cache the frequently accessed data items. In this paper, we
propose a Cooperative Caching scheme based on Social Attributes and Mobility Prediction (CCSAMP) for VCCN. CCSAMP is based
on the observation that vehicles move around and are liable to contact each other according to drivers’ common interests or social
similarities. A caching node sharing more social attributes with the content requester is more likely to be interested in the same
contents and distribute the contents to others with similar interests. Furthermore, a caching node that frequently meets other nodes is a
better candidate to keep cache copies. To increase the network performance, CCSAMP also exploits the regularity of vehicle moving
behaviors to predict the chance for a vehicle to reach hot zones based on Hidden Markov Model (HMM). We evaluate CCSAMP
through the ONE simulator to demonstrate its higher cache hit ratio and lower content access delay compared to other state-of-the-art
schemes.
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1 INTRODUCTION

V EHICULAR Ad-hoc Network (VANET), a special type of
mobile ad hoc network, is formed with a set of moving

vehicles equipped with communication facilities and Road
Side Units (RSUs). VANET is often subject to frequent
communication disruption as results of harsh propagation
environment [1] and the mobility of vehicles thus the dy-
namic network topologies. The difficulty of maintaining
end-to-end connections in VANET causes the performance
degradation of data dissemination. Besides the communi-
cation challenge, the conventional host-oriented Internet
transmission format can not support the application needs
of VANET. Vehicular applications are normally information-
oriented, and the identity of the content provider is not
important. In addition, as the store-and-forward routing
format is often taken by VANET to combat the constant
disruption of communication links in VANET, it would be
more efficient to retrieve contents from the most convenient
providers to reduce the data latency and network traffic.

To better support the application needs, the Vehicular
Content Centric Network (VCCN) is proposed to offer com-
mercial and entertainment services to drivers and passen-
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gers by applying the CCN model to the vehicular environ-
ment [2]. The focus of CCN is on contents but not the actual
carriers of the contents. Rather than taking the tradition-
al address-centric communication format, CCN takes the
content-centric transmission format, where a user retrieves
a given content directly using the ‘name’ without caring
about the identity or IP address of the content provider [3].
More specifically, each mobile user requests the desired
content by sending an Interest packet with the content name
inserted. If the content can be provided by an intermediate
node, it will return the content in a Data packet without
forwarding the Interest further; Otherwise, the Interest will
be forwarded until reaching a source provider or the limit
of communication hop-count. Different from the push-based
communication model often used in conventionally VANET,
the use of pull-based information retrieval in VCCN (Fig. 1)
makes it attractive to exploit in-network caching. Particu-
larly, VCCN can benefit from cooperative caching, taking
advantage of the cooperation among the caching nodes to
achieve a higher cache hit ratio, lower content access latency
and less network traffic.

Depending on where a content chunk is cached, coop-
erative caching mechanisms can be classified into on-path
caching and off-path caching [4]. In the on-path caching, a
content chunk is cached at some nodes along the reverse
path from the requester to the provider. In the off-path
caching, a content chunk is cached at some critical nodes
of the network. No matter which type of caching format
is taken, cooperative techniques proposed for CCN cannot
be directly employed in VCCN, because the topology of
VANET is characterized with dynamics as a result of its
short-lived communication links.
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Fig. 1: VCCN Network Model

Recently, social interactions among vehicles are consid-
ered in VANET to support better vehicular communications
for safety and entertainment applications [5]. People with
more common interests such as a group of enthusiasts in
the same club may go to attend similar events and have a
higher probability of encountering each other. A node with a
higher frequency of encountering other vehicles can provide
more connectivity links for the network, and is considered
as an important component in the network. Since people’s
social relationship generally has long-term characteristics
and is less volatile than their mobility [6], we expect that
the stability of social relationship can be exploited to better
support content dissemination in VANET. As some example
applications, a fan can get a new pop song of Taylor from
other enthusiasts by sending a request, and a driver can
request a detailed map and road conditions of an area
on the path. Our analysis of the vehicular data traces of
cambridge/haggle confirms that the encounter frequency
increases with the growing number of common social fea-
tures in [7]. Therefore, we introduce social relationship of
drivers into the design of a cooperative caching scheme for
VCCN.

The communication in VANET is influenced by mobility
patterns of vehicles, which are impacted by both driver
behaviors and driving paths [8]. Vehicles often have regular
visits of places such as shopping malls over the weekend
and workplaces during a weekday, and thus have regular
contacts during daily activities. Numerical analyses in [8]
have proved that traffic patterns can provide social inter-
actions. As an instance, an area with high vehicle density
(e.g. around the shopping mall) is a popular social place
for drivers to get contents. Consequently, it is very helpful
to consider traffic patterns when determining the caching
nodes. By exploiting the regularity of mobility, we can more
effectively predict the future location of a vehicle based on
its past trace.

Based on above discussions, we consider a node to be
a good candidate for caching contents in VANET if it has
the following features: a higher social similarity with the
requesting node, a bigger bridging centrality and a tendency
of visiting hot zones which possess higher vehicle density.
By sharing social features with the requester, the candidate

caching node is likely to be interested in the same contents.
In addition, cached contents are easier to be accessed by oth-
er vehicles for three reasons: 1) Request flows are likely to
reach the node with a bigger bridging centrality, 2) The node
which has higher social similarity with the content requester
is likely to meet others which share the common interests,
and 3)The candidate node has higher frequency in visiting
hot zones. Although social features have been considered in
facilitating caching in cellular networks and delay tolerant
networks, the social features in VANET are unique and
impacted by all above factors along with vehicle mobility
patterns. It calls for a method to coherently integrate differ-
ent factors into the effective design of cooperative caching
strategy. In this paper, we propose a Cooperative Caching
scheme based on Social Attributes and Mobility Prediction
(CCSAMP) for VCCN. The main contributions of our paper
are listed as follows:

(1) We propose a novel caching strategy with the inte-
grated consideration of social properties of vehicles
as well as the vehicular mobility and traffic patterns.
To the best of our knowledge, we are the first
to incorporate both social attributes and hot-zone
visiting probability into the design of a cooperative
caching scheme for VCCN.

(2) We further propose a cache replacement policy that
evaluates the content popularity by combining the
social similarity and time interval of two consecu-
tive requests.

(3) We evaluate the performance of our schemes with
comprehensive trace-driven simulations. Compared
with other caching schemes, DPC [9], LDCC [10]
and DAC [11], our CCSAMP has a superior perfor-
mance with high successful ratio in finding contents
in cache and low content access delay.

This work focuses on the design of cache management
schemes in vehicular content centric networks. The informa-
tion flows naturally follow the content retrieval paths, which
is different from conventional packet forwarding schemes
where each node needs to make sophisticated forwarding
decision. The potential of performance improvement with
different forwarding strategies is beyond the scope of this
paper.

The remainder of this paper is organized as follows.
In Section 2, we discuss the related work. Network model
and problem statement are given in Section 3. In Section
4, we present the details of our approach. We evaluate the
performance of CCSAMP in Section 5, and conclude the
work in Section 6.

2 RELATED WORK

In this section, we review some literature work related
to our proposed method.

CCN- Based on whether a content chunk is cached
along its delivery path, cooperative caching schemes in the
CCN can be classified into on-path caching and off-path
caching [4]. Off-path caching aims to replicate a content
within a network in order to increase its availability regard-
less of the delivery path taken [12], while on-path caching
aims to reduce the network traffic and the delay in the CCN
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by caching the content along the path from the provider
to the requester. Although off-path caching is easy to be
provided as an overlay by the third party, only a small
number of off-path caching solutions are proposed [13] [14].

As contents can be easily cached along the transmission
path, on-line caching has attracted a lot of research atten-
tions. Targeting for solving the web caching problem, Bread-
crumbs [15] considers that each router in the network has a
local cache to store files passing by. As a content router does
not inform its cached contents to its neighbors, a request
may be forwarded multiple times between two neighboring
routers. To reduce the bandwidth loss and content access
latency, each content router in [16] periodically exchanges its
local cache summaries with its one-hop neighbors. In [17], a
content router advertises its available contents to its k-hop
neighbors. In [18] [19], a central content router is responsible
for maintaining all the cache states in the network. Rather
than advertising the cache states to other content routers,
Psaras et al. proposed a probabilistic caching scheme where
the capability of each router is estimated and only popular
contents are cached [20] [21]. In WAVE [22], the downstream
routers determine which chunk should be cached based
on the content popularity recommended by the upstream
routers. In [23], a cooperative caching strategy is designed
to handle large video streams by combining the tradi-
tional hash-based and directory-based cooperative caching
schemes. In [9], caching decisions are made by each node
independently with the consideration of three factors: users’
demands mined from the collected Interests, relative move-
ment of the receiver and the sender, and the importance
of vehicles based on degree centrality and betweenness
centrality.

VANET, MANET, DTN- To improve the data access
opportunity and reduce the overhead caused by the global
network flooding, VANET caching schemes mainly rely on
the cooperative approach with a group of nodes caching
some contents together [24]. A caching scheme for mobile
ad hoc network (MANET) was first proposed in [25], where
the cross-layer design is exploited to improve the caching
performance with the cooperative caching. To reduce the
hop count and response latency, a resource efficient caching
scheme was proposed to distribute the data items among
nodes according to the data requirements within the net-
work [26]. In [27], a fuzzy hybrid caching scheme for
MANET was proposed to minimize the duplicated caching
of data between neighbors and improve the network per-
formance based on the utility and the access similarity of
data items. In [28], to balance data accessibility and caching
overhead, the nodes located at some key locations are
chosen for caching in the Delay Tolerant Network (DTN).
In [29], CLIR was proposed to improve the retrieval of
information in MANET by maintaining the locations of the
documents and distributing the requests along the network.
Suno et al. [30] proposed a cooperative caching invalidation
scheme along with its enhancement for VANET, in which an
invalidation report on some contents is sent to home agents
by a server and then the report is sent to the gateway agents
by home agents. Instead of blindly broadcasting it to all
vehicles, the gateway agents are responsible for answering
the validity of the requested data to reduce the query delay.
Similarly, the gateways in different regions also cooperate to

maintain the invalidate contents so as to reduce the query
delay for urban vehicles in [31]. In [10], the mobility of
vehicles is considered, and ones with a higher probability
of staying within an area will be selected as caching nodes
in a small time duration. In [32], the Network Central
Location Cooperative Caching (NCLCC) scheme identifies
several network central locations to cache popular contents.
In [33], Khawaga et al. proposed an administrative cluster-
Based cooperative caching scheme. The cluster heads are
in charge of maintaining the cluster cache information. A
backup node is used to enhance the data availability within
the cluster, reduce the delay and improve the bandwidth
utilization. In [11] [34], social attributes such as contact
patterns and relationship are used to choose caching nodes.
In [35], a centralized base station estimates the popularity
based on the requests observed and applies it to control the
caching probability. In [36] [37] [38] [39], authors proposed
to perform proactive caching based on the information ex-
tracted by a base station from users social interactions over
social network overlay leveraging Device-To-Device (D2D)
communications. The use of central control to facilitate
information abstraction and transmission is very different
from VANET communications. User social interactions have
also been exploited in delay-tolerant network [40] with D2D
communications. Data disseminations and social relation-
ship in vehicular networks are impacted by driving paths
and driver behaviors, which are different from other types of
networks. A caching strategy needs to fully exploit vehicle
network features.

Summary- To improve the cache hit ratio and access
delay, the critical challenge is to select appropriate caching
nodes. Though the mobility of nodes has been considered
in some caching schemes, none has taken a full advantage
of trajectory records to predict the future moving paths of
vehicles. Furthermore, the social attributes are not consid-
ered in selecting the appropriate caching nodes in VANET.
Compared with the caching schemes in the literature, we
apply the CCN model into the vehicular environment. Based
on the observation that the frequency of encounters among
mobile users increases with the growing number of common
social features in [7], we consider the impact of social at-
tributes when choosing a cache node. Furthermore, we take
into account the future trajectory of each vehicle. A vehicle
which is likely to go to a hot zone and possess a higher
centrality will be chosen as the caching node. In summary,
our proposed CCSAMP concurrently considers three major
factors in the design of an effective caching strategy for
VCCN: social similarity to exploit the social relationship among
nodes, bridging centrality to select nodes important for informa-
tion dissemination, and probability of hotzone visiting based on
the path predicted with the trajectory records.

3 NETWORK MODEL AND PROBLEM

3.1 Network Model
VCCN has emerged as a future network technology

for VANET. Different from the push-based communication
model in the conventional VANET, VCCN usually takes
the pull-based approach. The conventional TCP/IP layer is
replaced by CCN at the network layer [2] in Fig. 2, and
the communication between vehicles is shifted from the
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host centric to the information centric. Without carrying
the source and destination addresses, Interests are directly
forwarded to their reachable neighbors. Interest packets are
stored, carried and forwarded by vehicles or RSUs until
their time-to-live (TTL) timers expire or they reach a cache
node which possesses the content. As illustrated in Fig. 1,
VCCN consists of RSUs and vehicles, where vehicles can
carry and relay data and RSUs are responsible for collecting
the trajectory data of vehicles and pushing new contents to
vehicles.

APPS

WSMP
TCP/UDP

IP

802.11p

LLC

APPS

WSMP CCN

802.11p

LLC

CS PIT VIT

CCSSMP Data Structure

Fig. 2: Applying CCN in VANET

Each vehicle in our paper maintains three data structures
shown in Table 1, Content Store (CS) to keep a record of
each cached content along with its name, Pending Interest
Table (PIT) to keep track of forwarded Interests, and Vehicle
Information Table (VIT) to store the vehicle’s trajectory data
and social attributes. Each RSU only maintains a content
store.

TABLE 1: Three Data Structures

(a) Content Store

Notation Description

name Content name
content Cached content

(b) Pending Interest Table

Notation Description

name Content name
time Time of the last request

(c) Vehicle Information Table

Notation Description

V ID Vehicle’s ID
SA Social attribute sequence of the vehicle
L Trip sequence of the vehicle

When a vehicle receives an Interest, it will search for
the content name in its CS, and return the corresponding
content if cached. If the content is not in the cache, the
vehicle will add the Interest into its PIT; If the content is
in the cache, it will update the receiving time of the stored
Interest to that of the new request and then discard the
Interest to avoid the duplicate storage. When receiving a
Data chunk, each vehicle will make its own decision on
whether to cache it or not based on a caching scheme
(such as CCSAMP proposed in this work). Thus, a given
content may be provided by multiple nodes, rather than
being cached on a particular one in VCCN. The reply path
and query path are not necessarily the same because of the
dynamic network topology shown in Fig.1.

3.2 Problem and Design Considerations

As contents are queried and delivered by users in vehi-
cles, our algorithm is applied to determine which vehicles
should cache the contents. In VCCN, as vehicles have dif-
ferent moving trajectories, it is important to properly choose
nodes to cache contents. For example, a vehicle which tends
to drive towards an area with sparse vehicle distribution
is not a good option for being a caching node, because
it may encounter fewer nodes. Similarly, a node with less
connectivity with others is not suitable either, because it
may be isolated from remaining vehicles. In VCCN, vehicles
tend to have more contacts if their drivers have some
common interests, while a driver has a lower probability of
sharing the hobby with members in a different community.
Given the challenge in selecting caching nodes in VCCN,
we would like to answer the following questions in this
paper: 1) How to select caching nodes taking advantage of
the regularity of moving patterns of vehicles to improve the
cache hit ratio and reduce the access delay of the requested
contents? 2) How to exploit the social attributes to select the
caching nodes for more efficient cache usage?

Our algorithm is used by a candidate caching node
to determine what types of contents to cache. However,
not every node in the network needs to serve as caching
node. A vehicle can decide whether to act as a caching
node based on different factors, such as its buffer space
and its interest. Some nodes may be configured as caching
nodes by the system, such as some public transportation
vehicles. Without caching contents, a node can still help
forward Interests or Data packets. The providing of policy to
prescribe which nodes can serve as caching nodes is beyond
the focus of this paper.

4 COOPERATIVE CACHING BASED ON SOCIAL AT-
TRIBUTES AND MOBILITY PREDICTION

CCSAMP scheme chooses suitable caching nodes based
on three metrics, social similarity, bridging centrality, and
future trajectory. We first give an overview of CCSAMP,
and then present our algorithm on how to compute these
metrics. The frequently used notations are listed in Table 2.

TABLE 2: Frequent Notations

Notation Description

vi The i-th vehicle
SAi The social attribute sequence of vi
wi The weight of the i-th social attribute.
nei The number of encounters of vi
nli The number of links not through vi
nv The number of vehicles in the network

4.1 Overview

As illustrated in Fig. 3, CCSAMP includes three major
modules to determine social similarity and bridging cen-
trality, and to predict the trajectory. The social similarity is
compared between the forwarding node and the requesting
node, the bridging centrality determines the linkage of a ve-
hicle with other nodes, and the future trajectory of a vehicle
is predicted based on its historical mobility pattern and the
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current link information. To facilitate the finding of social
similarity, each Interest contains the social features of the
requesting node, and each Data packet contains the social
features of the corresponding Interest. In the content based
network, node identity is not included with the packet,
which helps to protect the privacy of each node.

CCSAMP works with the following procedures:

1) Each vehicle uploads its trajectory records to the n-
earest RSU within its communication range periodi-
cally. RSUs synchronize all the records to determine
the hot zones that have a higher vehicle density.

2) A vehicle sends a beacon frame containing its social
attributes periodically to neighbors around or upon
encountering new vehicles. The receiver updates
its social history record to track the number of
encounters that own a specific social attribute and
then discards the message.

3) Upon receiving an Interest packet, a vehicle searches
its CS for a hit. If the requested content is found in-
side its cache, the node will encapsulate the content
into a Data packet to send towards the requesting n-
ode; Otherwise, the vehicle will forward the Interest
to its neighbors and update its PIT.

4) After receiving a Data packet, a vehicle calculates
the social similarity based on the source’s social at-
tributes embedded in the Data packet and bridging
centrality with its social history record, and applies
Hidden Markov Model (HMM) to predict its future
trajectory based on its mobility trace to determine
whether it can arrive at a hot zone.

5) The node will opt to cache the content if it intends to
go to a hot zone and also has higher social similarity
and bridging centrality.

4.2 Caching Node Selection

CCSAMP chooses the caching nodes based on three
factors: social similarity, bridging centrality, and future tra-
jectory. We introduce our method in determining each factor.

4.2.1 Social Similarity
To determine whether a node is suitable for being a

caching node, we consider the social similarity between the
forwarding node and the requesting node. Our CCSAMP
is motivated from several social contact networks, such as
the 2009 cambridge/haggle dataset, where socially-similar
people tend to share the common interests and people with
more common social attributes are liable to meet or come in
contact with each other more frequently [41]. Furthermore,
we have used the dataset from the cambridge/haggle trace
to illustrate that the encounter frequency increases with the
growing number of common features between nodes [7].
With the popularity of social networks, a lot of social at-
tributes are posted online or shared among members of a
social network. The content centric nature of VCCN allows
the sharing of social attributes among vehicles without
associating node IDs with packets.

If a forwarding node shares many social attributes with
the requester, it may be interested in the same content and
also likely to meet other nodes with similar interests, thus
it is a good candidate to cache contents. We thus exploit
social similarity as one component of our caching metric and
determine it based on encounter history. First, we introduce
some basic terminologies:

• Social Attribute (SA) Sequence:

SAi = 〈sai1 , sai2 , · · · , saij , · · · , sair 〉.

Social attributes of the vehicle vi form a sequence,
where saj represents the j-th social attribute and
there are r attributes. For example, the sequence
of social attributes in Table 3 is 〈Country, City, Na-
tionality, Languages, Affiliation, Position, · · · 〉, which
is from the cambridge/haggle traces and often seen
in an online social network such as Linkedln. Each
attribute may have multiple possible values.

• Social History Record: Each vehicle exchanges its
social attributes with neighbors to form the social
history record, and maintains a table to record en-
counters’ social attributes. Taking Table 3 as an ex-
ample, the social attribute Country has 3 values,
China, Japan and America. “China = 3” represents
this vehicle has met 3 neighbors from China. The
social history record is updated based on the received
social profiles from all neighboring nodes.

• Social Similarity: This parameter is used to evaluate
the common social attributes between two nodes.

A requesting node sends an Interest packet with its social
attributes encapsulated. Once a node receives an Interest,
the node will send the requested content in a Data packet
towards the requester if there is a cache hit. To facilitate
other nodes to make the caching decision, this node also at-
taches the social attributes of the requesting node (extracted
from the Interest packet) with the content returned. When a
forwarding node vi receives a Data packet, it first records the
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TABLE 3: An Example of Social History Record

Attribute Value1 Value2 Value3 · · ·
Country China(3) Japan(2) America(3) · · ·
City Beijing(2) Shanghai(3) Tokyo(1) · · ·
Nationality Chinese(3) Japanese(2) American(1) · · ·
Languages Chinese(4) English(5) Japanese(2) · · ·
Affiliation Tsinghua(3) Tencent(2) Citibank(1) · · ·
Position Engineer(2) Professor(2) Manager(3) · · ·
Name Allen (1) Daniel (1) George (2) · · ·

Email
allen@
live.com

daniel@
msn.com

russell@
gmail.com

· · ·

· · · · · · · · · · · · · · ·

social profile of the requesting node vs. Then, vi computes
the social similarity between itself and vs. In this paper, we
adopt the Jaccard similarity coefficient, a statistic value used
for comparing the similarity and diversity of sample sets.
It is defined as the size of the intersection divided by the
size of the union of the sample sets [42]. Different from
the original Jaccard similarity coefficient, each attribute is
assigned with a weight, and we have the social similarity
between vi and vs as

SSi = J(vi, vs) =

∑
j∈SAi∩SAs

wj∑r
j=1 wj

, (1)

where r is the total number of social attributes and wj is the
weight of saj belonging to vs.

Social attributes are commonly used in the analysis of
social networks, such as link prediction and community
detection [43]. User attributes could be static (e.g., school,
major, employer and city) and derived from user profiles,
or dynamic (e.g., online interest and community groups).
Dozens of demographic attributes have appeared in the
mobile social network and Twitter network [44]. To illustrate
the computation of SSi, we take the six attributes, 〈Country,
City, Nationality, Languages, Affiliation, Position〉 from Table 3
as an example. Other types of social attributes can be also
used. For example, a sequence of 〈Location, Destination,
Moving Direction, Community〉 is used to compute the social
similarity in [45]. Without the need of carrying node identity
in VCCN, it helps to protect the privacy of nodes. A node
could also choose to hide some sensitive attributes.

When vs has the following attribute sequence,
〈“China”, “Shanghai”, “Chinese”, “Chinese”, “Tsinghua”,
“Professor”〉 and vi has the attribute sequence 〈“China”,
“Beijing”, “Chinese”, “Chinese”, “Dalian University”,
“Professor”〉, the intersection attribute SAi ∩ SAs
is 〈“China”, “Null”, “Chinese”, “Chinese”, “Null”,
“Professor”〉, where “Null” means vs and vi have differ-
ent values corresponding to that attribute. To find SSi
in Equation (1), we first need to determine wj , which
depends on the ratio rj between the number of vehicles
with a certain value of the attribute saj and all the en-
countered vehicles. We define rj =

njk∑lj
k=1 njk

, where lj

is the number of value types for the attribute saj . Each
specific value is owned by njk vehicles encountered, with
k = 1, 2, · · · , lj . For sa1 Country, it has 3 different values
in Table 3, and the corresponding numbers of encoun-

ters are 3, 2, and 3. For the value “China”, we can get
r1 = 3

3+2+3 = 3
8 . For vs’s attribute sequence, the ratio

sequence is 〈r1, r2, r3, r4, r5, r6〉 = 〈 38 ,
1
2 ,

1
3 ,

4
11 ,

1
2 ,

2
7 〉. For

the four attributes of SAi ∩ SAs, the ratio sequence is
〈r1, r3, r4, r6〉 = 〈 38 ,

1
3 ,

4
11 ,

2
7 〉. We define wj = r−1

j . A bigger
rj represents that more nodes share the same attribute with
vs and vs should have a higher probability of serving as a
caching node. Finally, we can get

SSi =
8
3 + 3 + 11

4 + 7
2

8
3 + 2 + 3 + 11

4 + 2 + 7
2

=
143

191
≈ 0.749.

If they share the same attribute values, SSi will be 1.

4.2.2 Bridging Centrality
In social network analysis, the centrality metric is of-

ten used to identify the most influential node(s) or key
infrastructure node(s) in a social network, where the social
relationship of nodes or ties is often applied to identify
the importance of nodes. As VCCN is dynamic and the
network topology constantly changes with the node mo-
bility, a node which has a higher encounter frequency can
provide more connectivity links for the network. To identify
how important a vehicle is, we use bridging centrality as
the metric, which is calculated based on degree centrality
and betweenness centrality. Before showing the method of
determining bridging centrality, we first introduce how to
calculate degree centrality and betweenness centrality based
on the encounter records from neighbors.

• Degree Centrality: It is defined as the number of links
between the vehicle and its neighbors. A vehicle has
a higher degree centrality if it encounters other nodes
more frequently. The degree centrality of vi is defined
as:

DCi =
nei

nv − 1
. (2)

where nei and nv represent the number of vehicles
that vi has encountered and the total number of
vehicles that it has counted based on the encounter
records from neighbors.

• Betweenness Centrality: It is a measure of the extent
to which a node has a control over the information
flowing among others [9]. In CCSAMP, we apply be-
tweenness centrality to examine the extent to which
a vehicle stands in the path between two vehicles
which are not directly connected. A higher value of
betweenness centrality indicates that vi plays a key
role in facilitating the connection of other vehicles.

BCi = 1− nli
(nei − 1)nei

, (3)

where nli represents the number of links that do not
pass vi. For example, vi has two neighbors, vm and
vm+1. Both vm and vm+1 exchange their encounter
records with vi. If vm exists in the record of vm+1, it
means that these two nodes can communicate with
each other even without the help of vi. Bigger nli
represents that more nodes can communicate with
each other directly. Higher BCi means vi plays a
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larger role in providing a connection between two
nodes.

• Bridging Centrality: This metric is used to identify
how important role a vehicle plays in the network
to form the connection between nodes. We apply
betweenness centrality and degree centrality to mea-
sure bridging centrality [5]:

BRCi = DCi ×BCi

=
(nei − 1)nei − nli
(nv − 1)(nei − 1)

.
(4)

By taking into account bridging centrality in our caching
decision, we would like to ensure that the caching node has
a higher chance of staying on the path between a content
requester and a content provider.

4.2.3 Trajectory Prediction

A vehicle’s near future path can be predicted accord-
ing to its past mobility trace with Hidden Markov Model
(HMM) [46]. By applying a Forward-Backward Algorithm
to train HMM, we can make full use of the past mobility
patterns to find the maximum probability that a vehicle
arrives at a destination. Before explaining our scheme, we
first introduce the following terminologies:

• Trip Sequence: A trip sequence consists of a set of link
points, L = 〈`1, `2, · · · , `i, · · · 〉. It is the collection of
movement records of a vehicle. Each trajectory point
`i is composed by a triple (xi, yi, ti), representing
that the vehicle is located at (xi, yi) at time ti. In our
work, each vehicle records its trajectory point at each
sample time.

• Hot Zone: A hot zone is an area with higher vehicle
density. Each RSU counts the number of vehicles
within its range and broadcasts its hot-zone list to
other RSUs and vehicles around periodically. Once
receiving the message, each updates its own list of
hot zones Z = 〈z1, z2, · · · , zj , · · · 〉.

We adopt HMM to predict the future locations by
exploiting the trip sequences. HMM can be denoted by
ϕ = (π,A,B), where:

π = {πi} is the set of initial hidden state probabilities,
with πi = P (Si).

A = {aij} is the set of transition probabilities between
the hidden states Si and Sj , with aij = P (Sj |Si);

B = {bj(k)} is the set of probabilities of the observable
states Ok in the hidden state Sj , with bj(k) = P (Ok|Sj);

ζt(i, j)=P (Si, Sj |O1O2...OT , ϕ) is the probability of
transiting from the hidden state Si at the time t to the
hidden state Sj at the time t + 1, given the model ϕ and
the observation sequence.

ηt(i)=P (Si|O1O2...OT , ϕ) is the probability of the hid-
den state Si at the time t, given the model ϕ and the
observation sequence.

We can obtain the accurate model by calculating the
corresponding variables in Equation (5),

πi = ηt(i),

aij =

∑T
t=1 ζt(i, j)∑T
t=1 ηt(i)

,

bj(k) =

∑T
t=1,Ok

ηt(j)∑T
t=1 ηt(j)

.

(5)

where πi represents the probability that the vehicle stays
at the hidden state Si at t, aij represents the probability of
transition from Si to Sj , and bj(k) represents the probability
of observing the state Ok when the hidden state is Sj .

In our scheme, `k represents the observed state Ok in
the k-th time slot and the hidden state Sk+1 represents the
predicted location in (k + 1)-th time slot. Combining three
equations in Equation (5), each vehicle can determine the
probability that it will reach the hot zones with the following
matrix: [

pi→1 pi→2 · · · pi→j · · · pi→n
]
,

where pi→j represents the probability of vi entering zj and
n represents the number of hot zones. The probability that
vi entering hot zones can be represented as

∑
j∈Z pi→j .

4.2.4 Caching decision
According to the importance of the social similarity,

bridging centrality and future path, the probability P to
cache a data packet in vi is:

P = α · SSi + β ·BRCi + γ ·
∑
j∈Z

pi→j , (6)

where the impact of these three factors on the choice of a
caching node is considered. In Equation (6), α is the weight
of social similarity, β is the weight of bridging centrality, γ
is the weight of the probability of entering some hot zones,
α + β + γ = 1 holds and P belongs to [0, 1]. Higher SSi
means that vi has more common social attributes with the
requesting node, which indicates that they have a higher
chance of sharing the interest in the same content. If a
vehicle has a higher probability of entering some hot zones,
it will meet more vehicles and have a higher chance of
sharing its contents with others, while bridging centrality
shows how likely that a node stays in-between requesters
and providers and sends contents it caches to the requester.
Besides, it has been proved [7] that a node sharing more
social features with the destination is more likely to travel
close to the latter in the near future and should be chosen
as the next-hop forwarder. Compared with the metrics of
bridging centrality and future trajectory, social similarity
should possess a higher weight. We will verify this conclu-
sion in our performance studies.

4.3 Cache Replacement
In our CCSAMP, we design the cache replacement policy

based on the content popularity. If the storage is full, only
contents with higher popularity are cached. For each Interest
received, a node records the sequence of social attributes of
the requester into VIT, and inserts the content ID and the
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request time into PIT. Periodically, the content popularity
ρci is updated for each named content as follows:

ρci ⇐ ρci · e−λ∆t/(SS+1) + θ, (7)

where ∆t represents the time interval between the current
time and the last time of receiving the same request on ci,
SS is the social similarity between the caching node and
the source requester, λ is an exponential decay constant and
θ is the popularity increase constant. If the corresponding
Interest cannot be received in a time slot, ∆t is set to be the
time interval between the ending time of the current slot and
the last time of receiving the request. If an Interest for the
new content is received for the first time, the popularity ρci
will be set to θ. Our popularity calculation captures both the
request frequency and the freshness of the requests. We also
consider the social position of the caching node. A higher
SS allows the caching node to better provide ci for other
members which share social attributes, and we preferably
let the node to keep the content.

Since RSUs do not have social attribute sequences, they
will use the popularity increase constant θ without consid-
ering SS. The popularity is calculated as follows:

ρci ⇐ ρci · e−λ∆t + θ, (8)

In Equation (7) and Equation (8), ρci will be updated
upon receiving a new Interest. If no Interest for ci is received
upon the arrival of a new content to cache while the cache
space runs out, ∆t will be set as the difference between
the current time and the time of the last request to update
the popularity. If no request for a content is received in
several consecutive time slots, the corresponding content
may be replaced by popular contents in the cache upon
space constraint.

5 PERFORMANCE EVALUATION

In order to evaluate the performance of our caching
scheme, we conducted our simulations over the Oppor-
tunistic Network Environment (ONE) simulator [47]. ONE
includes several mobility models, from simple Random
Waypoint to more realistic Map-Based Movement. We use
the 2009 cambridge/haggle dataset in our simulation, in-
cluding the social attributes of 85 people. In our design,
there are 335 nodes, including 30 RSUs and 305 user-
s (85 pedestrians, 100 buses, and 120 taxis), distributed
in the map. All nodes move following the Working-Day-
Movement Model in ONE with a daily routine, which main-
ly consists of staying at home, working in the office, going
to the gymnasium and so on. Instead of using all social
features in the dataset, we adopt 6 informative features
based on their entropies [41]: 〈Country, City, Nationality, Lan-
guages, Affiliation, Position〉, which forms the social attribute
sequence to record in its VIT. Each vehicle exchanges its
social sequence with its neighbors to form and maintain a
social history record, which tracks the number of encounters
associated with a specific social attribute. A person drives a
car with a chance of pv , or s/he must take the bus or taxi to
reach different destinations. Buses follow the Route-Based
Movement model in ONE and interact with passengers
through a bus control system. Taxis run by the Random

Waypoint Model in ONE. All nodes have the same range
of moving speeds, transmission range and data rate. At the
beginning, we collected the social history records and trip
sequences of vehicles in 5 working weeks for the training
purpose and applied them to different caching schemes.
In the actual evaluation stage, every person periodically
generated content requests following the Zipf’s law dis-
tribution [48], f(k; s,N) = 1/ks∑N

n=1(1/ns)
, where N is the

number of elements (number of contents in our paper), k is
the rank of contents, and s is the exponent characterizing the
distribution. Each vehicle records its trajectory points every
10 seconds and insert them as a sequence into its VIT. It only
keeps trajectory points taken within the past 50 seconds,
which are used to predict the probability of reaching a hot
zone. We list important simulation parameters in Table 4.

TABLE 4: Simulation Parameters

Parameter Description Value

Caching Buffer of each pedestrian 1600MB
Caching Buffer of each taxi 3200MB
Caching Buffer of each bus 6400MB
Request Interval [50minutes, 100minutes]
Message TTL 10minutes
Network Area 10km×7.5km
Simulation Time 15weeks
RSU Number 30
RSU Transmission Range 500m
RSU Transmission Speed 10Mbps
Vehicle Speed [7m/s, 10m/s]
Vehicle Transmission Range 50m
Vehicle Transmission Speed 2Mbps
Exponent s 0.8
Each content size 25MB
Number of contents 2000
Popularity Increment θ 0.1
pv 0.3

5.1 Performance Metrics

Our main comparisons are made between the proposed
CCSAMP scheme, and reference schemes DPC [9], LDC-
C [10] and DAC [11]. In CCSAMP scheme, we calculate
the social similarity between the forwarding node and the
requester and the bridging centrality of the forwarding
node to analyze the importance of each vehicle, and predict
the vehicle’s future locations using HMM to obtain the
probabilities of arriving at the hot zones. Thus, we choose
the probabilistic caching scheme DPC and LDCC as the
references. In DPC, each node makes its own caching deci-
sion based on users’ demand and its importance including
degree centrality and betweenness centrality. In LDCC, a
node with the highest probability staying in a valid scope is
chosen as the caching node. DAC also considers the social
attribute such as contact pattern and relationship to choose
the caching node. The following metrics are used to compare
these schemes:

• Cache Hit Ratio: The probability of obtaining a cache
hit from a caching node, which is defined as the ratio
of the number of cache hits to the total number of
receiving Interests.

• Average Access Delay: The average delay of obtain-
ing responses in successful queries.
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• Average Hop Count: The average hop count between
the requester and provider in successful queries.

• Standard Deviation of Storage Usage σ: The stan-
dard deviation of storage usage among all nodes in
the network.

• Average Storage Usage, ΓB , ΓT , ΓC : The average
storage usage of different nodes: Buses, Taxis, and
private Cars, respectively, in the network.

In the remaining sections, we provide a number of stud-
ies to evaluate the performance of our proposed scheme.

5.2 Effect of three factors

Equation (6) shows that the probability for a vehicle to
be the caching node is decided by a combination of the
following three factors, social similarity, bridging centrality
and future trajectory. We first evaluate the impact of each
factor separately. Table 5 shows that any factor can improve
the cache hit ratio compared with no factor adopted, and
the social similarity plays the most important role. Table 5
also shows that the improvement of cache hit ratio is very
close when either bridging centrality or future trajectory is
adopted. Thus, we set β=γ= 1−α

2 in our later simulations.

TABLE 5: Effect of each factor

Factor Cache Hit Ratio

Social Similarity 0.392
Bridging Centrality 0.354

Future Trajectory 0.348
Three Factors 0.416

No Factor 0.312

Besides, we evaluate the effect of α on the cache hit ratio
in Fig. 4. At α=0, only two factors, the bridging centrality
and future trajectory, are considered. At α=1, only the social
similarity is considered. When α is between 0 and 0.5, the
bridging centrality and probability of entering the hotzone
play a more important role in deciding what contents to
cache. When α is between 0.5 and 1, social similarity plays
a more important role. The cache hit ratio keeps increasing
with α until α reaches 0.6, which indicates that the social
similarity plays the most critical role. In our later simula-
tions, α is set to 0.6.
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Fig. 4: Effect of α on CCSAMP

We also evaluate the effect of the number of common
social attributes on the cache hit ratio in Fig. 5. The cache hit
ratio increases as nodes share more social attributes, which
also shows that the social similarity gradually plays a more
important role.
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Fig. 5: Effect of social attribute number on CCSAMP

5.3 Effect of pv
pv is the probability that a person drives a car. Alterna-

tively, the person can take the bus or taxi to reach different
destinations. We evaluate the impact of pv on the cache hit
ratio of CCSAMP in Fig. 6. As pv increases, more people
choose to drive cars, making the mobility patterns less
predictable. Consequently, the cache hit ratio decreases with
pv .
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Fig. 6: Effect of pv on CCSAMP

5.4 Effect of Hot Zone Ratio
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Fig. 7: Effect of Hot Zone Ratio on CCSAMP

As discussed before, a vehicle tending to go to a hot
zone is liable to become a caching node. In Fig. 7, we
evaluate the effect of hot zone ratio on the performance of
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CCSAMP. Fig. 7(a) shows that the cache hit ratio can achieve
about 34.04%-46.98% gain as the hot zone ratio increases.
This indicates that it is important to consider the impact
of hotzone when designing a caching strategy for VANET.
This is because more vehicles are likely to enter hot regions,
and be chosen as caching nodes. Accordingly, the access
delay decreases with the hot zone ratio. When it exceeds
0.5, the cache hit ratio keeps relatively stable. In our later
simulations, we set the hot zone ratio to be 0.5

5.5 Effect of Content Size
We vary the content size from 25MB to 125MB and

compare cache hit ratio, average access delay and average
storage usage of different schemes.

As the content size increases, each node caches fewer
contents, causing lower cache hit ratio and higher access
delay in Fig. 8(a) and Fig. 8(b). Our CCSAMP has the
best performance with the highest cache hit ratio (up to
29.66% gain) and lowest access delay (up to 26.74% drop),
because CCSAMP has taken into account social relationship
and node mobility. Among the four schemes, DAC only
considers the social attribute without predicting the future
location of each vehicle, making it possess the biggest delay
in Fig. 8(b). LDCC has the least cache hit ratio when the
content size is larger than 90MB in Fig. 8(a) because the
valid dwelling time in the future location is also considered
to design the cache replacement policy, making the cache
update slow. As the content size increases, fewer contents
and slower update time cause the smallest cache hit ratio.

In Fig. 8(c) and Fig. 8(d), CCSAMP needs slightly more
storage space compared to others, because it needs to store
both location and social data to facilitate the selection of
caching node. In DAC, only the social attributes are nec-
essary, bringing the least storage. Though DPC and LDCC
predict the future location, LDCC integrates other factors
like cache size, access frequency, energy consumption, etc.
to design the replacement policy, causing more storage than
DPC.

5.6 Effect of Caching Node Ratio
In our scheme, each caching node decides whether to

cache some contents by considering the above three factors.
However, not all nodes may be configured as cache nodes.
Which nodes will serve for caching can be determined
by network requirements or nodes’ interests. We evaluate
the effect of the ratio of cache nodes on the CCSAMP
performance. In Fig. 9(a), as expected, the cache hit ratio
improves with the caching node ratio. DAC does not adopt
any prediction on the future location, so it has the lowest
cache hit ratio. CCSAMP has the highest cache hit ratio by
combing the prediction and social attributes. Meanwhile,
Fig. 9(b) and Fig. 9(c) show that the average access delay
and average hop count decrease with the increase of caching
nodes and CCSAMP outperforms other three schemes con-
sistently. Though each node decides whether to cache the
contents based on its future location in DPC and LDCC,
DPC does not consider the dwelling time in one region. DPC
shows its advantage and achieves a better performance than
LDCC as more nodes are chosen as the caching nodes in
Fig. 9(d). The interesting convex shape of standard deviation

in Fig. 9(d) might have suggested an “optimum” caching
node ratio, in which cache hit ratio is close to the best
and a collection of “core” nodes are used to cache popular
contents.

5.7 Effect of Content Number
In Table 6, we show the cache hit ratio with different

content numbers. It can be seen that the cache hit ratio
decreases as the number of contents increases, because a
larger number of content types increase the difficulty of
cache hit. Fig. 10 shows that our CCSAMP scheme always
achieves the best performance among the four schemes in
terms of the cache hit ratio and the average access delay
though the number of contents increases by a 100-fold.

TABLE 6: Effect of Content Number

Content Number Cache Hit Ratio

100 0.552
1, 000 0.416
10, 000 0.322
100, 000 0.258
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Fig. 10: Effect of Content Number on Different Schemes

6 CONCLUSION

Vehicular Content Centric Network (VCCN) is expected
to play an essential role in entertainment, advertisement,
and other popular content delivery. In this paper, we pro-
pose a novel scheme, termed CCSAMP, to support such
content caching, request and delivery. Utilizing the social
attributes and trajectory history records of vehicles, CC-
SAMP calculates social similarities and bridging centralities
of vehicles and adopts HMM to predict the probabilities of
their next visits to hot zones in the area. Based on the above
three factors, caching nodes will be chosen. In addition, we
have performed extensive simulations to compare CCSAM-
P with several other state-of-the-art schemes in cache hit
ratio, average access delay, average hop counts and average
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Fig. 9: Effect of Caching Node Ratio on Different Schemes

storage usage. It has been shown that CCSAMP possesses a
better performance in all cases studied.

In our future work, we plan to optimize our algorithm
to minimize the energy consumption of the system. Besides,
we will design some incentive policy to encourage each
vehicle to actively serve others by caching contents.
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