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Abstract—Compressed sensing (CS) technique has attracted
a lot of recent research interests in mathematics and signal
processing fields. Literature studies often exploit CS at the
receiver side to sub-sample the receiving signals to reduce the
sampling rate and processing overhead. It would be of great
benefit if it is possible to exploit CS at the transmitter side to
reduce the redundancy of the data before transmission to conserve
precious wireless bandwidth. Different from receiver-side sub-
sampling, the sub-sampled transmitting data may be perturbed by
the dynamics of wireless channels and experience higher overall
noise.

In this paper, we propose a set of mechanisms to enable
compressive wireless data transmissions. Specifically, we investigate
the impacts of imperfect channel equalization on the data recon-
struction, and propose a comprehensive signal recovery algorithm
to cope with the perturbations introduced by wireless channels.
Simulation results demonstrate that our proposed schemes can
effectively reduce the effects of dynamic wireless channels on the
data reconstruction and maintain the performance comparable
to that of traditional communication scheme which does not
apply CS to compress data. This indicates that it is promising
to exploit CS to reduce the communication data thus bandwidth
requirement. Transmission data reduction can complement exist-
ing efforts of improving wireless channel capacity to support the
quick growth of wireless applications.

Index Terms—compressed sensing; imperfect channel estima-
tion; adaptive measurement; robust data transmission; recon-
struction algorithm.

I. INTRODUCTION

Compressed sensing (CS) [1], or compressive sampling [2],
has gained increased interests over the past few years. The
conventional Nyquist sampling theory requires the analog to
digital converter (ADC) to sample the Radio Frequency (RF)
signals with the rate at least twice the signal bandwidth. For
high-frequency applications, this brings great challenge and
cost to the ADC design. The recent CS techniques provide
a promising venue to reduce the need for high speed ADCs.

The essence of CS is to exploit the sparsity within signals
to significantly reduce the sampling rate while still capturing
the information at similar quality. CS theory presents that if
an N -dimensional signal is K-sparse in a certain domain, then

with an overwhelming probability, one can fully recover the
signal by taking measurements at the order of K logN . This
indicates that one can reconstruct the sparse signals with very
few samples (much smaller than what Nyquist rate suggests).

Compressed sensing, a novel paradigm, has been success-
fully applied to various signal processing fields. In imaging
processing, specifically, CS has achieved a level of maturity.
Though not as widely investigated as in signal processing, CS
has also been applied to several realms in communications,
such as signal detection, sparse channel estimation [3] [4],
channel-source coding [5] and data gathering [6].

The vast amount of existing work mainly focus on the
application of CS at the receiver side and studying its impact on
signal detection and recovery. Wireless transmission bandwidth
is well known to be limited and many efforts have been made
in the past several decades to improve the wireless channel
capacity. As a complementary technique, CS can fundamentally
reduce the data rate from the source, thus requiring much lower
bandwidth to transmit the user signals. Although promising,
there are very limited studies to investigate the possibility and
potential problems to apply CS at the source.

Conventionally, to reduce bandwidth need, signals may be
compressed after they are sampled at the cost of higher
computation overhead at the encoder. Signal compressions
are commonly used for reducing multimedia data, especially
for their transmissions over wireless networks. Due to the
complexity of conventional signal compression techniques,
they are not commonly used for many other types of data, and
the quick growth of data have created big pressure for every
field. For example, sensor data are well known to have a lot of
redundancy. Due to the limited computation capability of low
cost sensors, raw data are often transmitted. By reducing data
through simple random sampling at the source and exploiting
advanced decoder to recover the data, CS is a promising
technique to apply to data reduction in sensor networks.
Additionally, CS can be applied to sub-sample/compress wide-
band signals to reduce transmission cost at the transmitter and
ADC speed at the receiver.

As many signals have redundancy, reducing the data through978-1-4799-4657-0/14/$31.00 c© 2014 IEEE
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CS at the source will greatly reduce the transmission rate thus
the burden to the wireless networks. This has the potential to
fundamentally relieve the problem due to the constant increase
of data and the limitation in wireless bandwidth. However, this
also faces many challenges. The transmission of compressed
information will make data bits of the signals more significant.
On the other hand, the wireless channel is well known to be
unstable and could introduce loss and errors to the transmitted
signals.

In order to maintain the quality of information, a reliable and
robust transmission scheme is helpful. Retransmission schemes
have been widely used to improve the delivery rate, however,
simply relying on retransmissions is not efficient. Overhead
such as round trip latency and Automatic Repeat Request
(ARQ) traffic may reduce the throughput significantly. Instead,
the random sampling feature of CS can be exploited to mitigate
loss by simply increasing the sampling rate. In [9], the authors
show that for the Fourier random sampling scheme, over
sampling is much less expensive than competing erasure coding
methods and performs just as well. However, the authors
assume the loss to be random without considering the actual
channel impact.

Besides random loss, the variation of channel quality and
states could lead to channel estimation error, which will in turn
lead to difficulty in signal recovery and consequent the increase
of recovery errors. The CS recovery error grows as the noise of
the sampled signal becomes larger. This motivates many studies
on the impact of noise on sparse recovery. However, existing
work mostly only present the recovery quality as a function of
the noise level without providing a scheme to better reconstruct
the signal. Although this may be enough in the presence of
bounded small noise, the high total noise contributed by the
channel estimation error could significantly compromise the
quality of CS signal recovery. Simply increasing the sampling
rate, e.g. oversampling in [9], may help to alleviate the
problem, but cannot completely eliminate the channel impacts.
The increase of sampling rate will also reduce the efficiency
of compressive data communications. Different from simple
signal recovery in signal processing domain, the delay of the
feedback from the receiver thus the delay for the source to
respond to the recovery quality change. Finally, sampling rate
cannot be adapted too frequently to avoid system oscillation.

The aim of this work is to investigate the possibility
and techniques to support robust compressive transmissions
over dynamic wireless channels. Our proposed scheme has
three important components: adaptive sampling in response
to estimated reconstruction quality, channel equalization to
minimize the side impacts due to channel dynamics, and robust
compressive signal recovery under large noise. The three com-
ponents work interactively to improve the overall transmission
quality. Different from the literature work which mainly target
for theoretical analysis of the benefits and limitation of CS,

we pay special attention to the difficulty resulted from the
practical wireless transmissions. Our schemes are designed to
be efficient to run in the practical system, and our contributions
can be summarized as follows:

1) We propose a framework for robust transmission of com-
pressive data over dynamic wireless channels. We expect
the reduction of source data at the transmitter (rather than
receiver) through simple compressive sampling helps
conserve the expensive spectrum resources.

2) We investigate the possibility and methodologies in im-
proving the signal reconstruction quality in the presence
of large noise as a result of wireless transmissions. This
is important because the sub-sampled data are more
sensitive to wireless channel dynamics.

3) We propose adaptive compressed sampling algorithms to
combat the signal recovery errors due to channel dynam-
ics, channel equalization inaccuracy, and reconstruction
errors.

4) We perform extensive simulations to evaluate the effi-
ciency of our algorithm in supporting robust compressed
wireless communications.

We would like this study to serve as a basis for future
research on enabling compressive wireless network commu-
nications.

The remainder of the paper is organized as follows. Sec-
tion II discusses related work. Section III gives some back-
ground of compressed sensing. We present our system model
in Section IV, and describe our proposed CS-based data
transmission methodology in Section V. Section VI shows the
simulation results and Section VII concludes the work.

II. RELATED WORK

CS theory has been widely applied to signal processing fields
(for applications such as detection and estimation) to reduce the
signal sampling rate directly. However, there are very limited
studies to apply CS to reduce data before transmission.

In [9], Z. Charbiwala et al. observe that the stochastic nature
of wireless link losses and short-term sensor malfunctions
do not disturb the performances of reconstruction schemes
at the decoder, and that random losses are indistinguishable
from an a priori lower measurement rate, and then propose a
oversampling framework to ensure robust data transmission in
sensor networks. Similarly, S. Kadhe et. al in [10] propose to
integrate the CS framework with real expander codes (RECs),
coined as CS-REC, for robust data transmission. Simulations
show that CS-REC can achieve the recovery performance close
to the case where there is no data loss.

However, as we mentioned in Section I, besides random
loss, the channel dynamics and estimation error could signif-
icantly impact the transmission quality. A large increase of
transmission rate will compromise the benefit of transmission
of compressive data in wireless networks.
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In [11], the potential of the compressed sensing (CS)
paradigm for video streaming in Wireless Multimedia Sensor
Networks is investigated. The authors only studied the effect
of key video parameters (i.e., quantization, CS samples per
frame, and channel encoding rate) on the received video quality
when transmitting CS images through a wireless channel, but
didn’t provide concrete schemes to maintain or increase the
transmission quality under severe channel conditions.

Different from the literature work which targets to address
a specific issue, in this work, we systematically investigate the
problems in different phases of wireless communications and
propose a set of schemes to ensure the reliable transmission
of compressive signals in wireless networks. Particularly, to
combat channel equalization inaccuracy and consequently the
increase of symbol errors and noise in compressed samples, we
propose an a novel recovery methodology to more accurately
reconstruct the signal in the presence of large noise and
an adaptive compressive sampling scheme to respond to the
recovery error over a longer time scale.

III. PRELIMINARIES

In this section, we will present some compressed sensing
background. And we will use all the notations consistently
throughout this paper.

In general, one needs N measurements to fully recover an
N -dimensional signal. However, in the recently emerged field
of compressed sensing, the compressed sensing theory states
a rather surprising result: if an N -dimensional signal is sparse
in certain domain, one can fully recover the signal by using
only Ω(logN) linear measurements.

The main idea of compressed sensing is to take advantage
of the sparsity within the signal to significantly reduce the
sampling rate. An N -dimensional signal d is considered to be
K-sparse in a domain (also called a dictionary matrix) Ψ ∈
CN×N if there exists an N -dimensional vector x ∈ RN×1 so
that d = Ψx and x has at most K non-zero entries (K � N ).

If one performs linear measurements of the signal d with
a measurement matrix Φ, then one can consider the obtained
linear measurements y, possibly affected by noise as:

y = ΦΨx + n = Ax + n, (1)

where the measurements are y ∈ RM×1, the sparse vector
x ∈ RN×1, the additive noise n ∈ RM×1, the sensing matrix
A ∈ RM×N , and M < N . A is essentially the product of
the measurement matrix and the dictionary matrix: A = ΦΨ,
where Φ ∈ CM×N , Ψ ∈ CN×N . We notice that different
from the notations above, a small number existing works
call Φ the sensing matrix. In order to avoid inconsistency
and misunderstanding, we will consistently regard Φ as the
measurement matrix, and A = ΦΨ the sensing matrix.

Obviously, the number of measurements is smaller than
the number of variables in Equation 1, and this is an under-
determined equation system. Candès et al. show in [12] that

the under-determined equation system can be solved provided
that:

1) The vector x is sparse, i.e., only few (K) elements in x
are non-zero.

K = |{xi|xi 6= 0, i = 1, . . . , N}| (2)

x can also be approximated sparsely if it is compressible,
meaning that its coefficients sorted by magnitude decay
rapidly to zero.

2) The sensing matrix A obeys the Restricted Isometry
Property (RIP) with isometry constant δK > 0, defined
as follows:

(1− δK) ‖x‖2`2 ≤ ‖Ax‖2`2 ≤ (1 + δK) ‖x‖2`2 , (3)

for any at most K-sparse vector x such that:

δK + δ2K + δ3K < 1. (4)

3) The measurement process captures a sufficient amount
of measurements M :

M ≥ cK log

(
N

K

)
, (5)

where c is a fairly small constant. Further details can be
found in [18].

Given the measurements y, the unknown sparse vector x can
be reconstructed by solving the following convex optimization
problem:

min ‖x‖l1 (6)
s.t. ‖Φd− y‖l2 ≤ ε (7)

d = Ψx (8)

where the parameter ε is the bound of the error caused by noise
n, lp means the lp-norm (p = 1, 2, ...). The solution can also
be expressed as:

x̂ = argmin
u: ‖y−Au‖l2≤ε

‖u‖l1 , (9)

The signal d = Ψx can then be recovered as d̂ = Ψx̂.
The form of the optimization problem in (9) is known as

LASSO [13] or BPDN [14] and also some other variations
such as the Dantzig selector [15]. In addition to the convex
optimization approach to reconstruction in compressed sensing,
there exist several iterative/greedy algorithms such as IHT
[16] and Cosamp [8]. Such convex or greedy approaches are
generally called reconstruction algorithms.
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IV. PROBLEM STATEMENT AND SYSTEM MODEL

We consider integrating CS into data transmission where a
transmitter will send sub-sampled signals to a receiver through
a wireless link. We expect the reduction of data at the source to
help greatly relieve the transmission burden on the bandwidth-
limited wireless networks. Different from conventional work on
applying CS at the receivers, the lossy and dynamic wireless
links have big impact on the information transmitted and the
data recovery. Sepcifically, the inaccurate channel estimation
as a result of channel dynamics could significantly reduce the
signal recovery quality and this is often not considered by the
literature work. The goal of our work is to propose various
strategies to ensure reliable transmission of compressive data.

A. Compressed Sensing Elements

We first introduce the CS elements used in our framework.
1) Sparse Dictionary: Ψ
Wavelet Transform and Fourier Transform are commonly

used as dictionary matrix in the literature work of compressive
sensing. As many natural signals of interest are sparse in
frequency domain (Fourier Domain), throughout this work, we
adopt inverse Fourier Transform as the sparse dictionary Ψ.
Another benefit of choosing Fourier Transform is that we can
take advantage of the symmetry of non-zero elements in x
due to Fourier Transform characteristics to improve the signal
recovery quality, which will be explained further in Section V.

2) Measurement Matrix: Φ
In traditional CS applications where a sparse vector x is

measured/sampled, instead of d, the design of sensing matrix
A is an important theoretical problem because A needs to
meet the requirements describe in Section III in order to enable
successful recovery.

Similarly, in the circumstances that the signal is not sam-
pled/measured in its sparse domain, we will need to design
carefully the measurement matrix Φ (recall that A = ΦΨ).
In this case, one generally needs to design the measurement
matrix Φ from A and Ψ.

It is shown in [9] that if the signal’s spectrum vector
x = Ψ−1d is sparse (Ψ−1 is the Discrete Fourier Transform),
then Φ = AΨ is essentially an M × N random sampling
matrix constructed by selecting M rows independently and
uniformly from an N×N identity matrix I. This measurement
matrix Φ can be trivially implemented by pseudo-randomly
sub-sampling the original signal d. As we can adopt inverse
DFT matrix as the sparse dictionary Ψ, in our framework, the
measurement matrix will be reflected by sub-Nyquist sampling.
For time domain signals with length N , this measurement
process corresponds smaller sampling numbers M < N , thus
compressed sensing enables the source node to transmit sub-
sampled/compressed data. As pointed out in Section I, in
practical applications sub-sampling (compression) may be very
useful for supporting wide-band signals which incurs high cost

to transmit the data at the transmitter and has a high cost for
ADC at the receiver.

B. Compressed-Sensing-Based Data Transmission

We will now introduce our CS-based data transmission
framework.

Suppose the transmitter has a N×1 data array d to transmit
(typically time-domain signal), where d is K-sparse in a
dictionary Ψ (d = Ψx). In order to perform compressive
signal transmissions, instead of transmitting d (N × 1), the
transmitter will send compressed data Φd (M × 1, M < N ).

The measurement matrix Φ and signal dictionary matrix Ψ
can be known to both the sender and receiver. One way is
to attach the matrix information with the header of the data
packets. Another way is that the transmitter side and receiver
side can have some common pseudo-random matrix generating
mechanisms, and the transmitter may only need to transmit a
pseudo-random seed.

In wireless communications, to recover the transmitted sym-
bols, channel information needs to be estimated at the receiver
to enable channel equalization [17] and reduce Inter Symbol
Interference (ISI). There are various kinds of equalizers in
digital communications, among them Linear Equalizers such
as Minimum Mean Square Error (MMSE) equalizer and Zero
Forcing Equalizer are commonly used. The performance of
channel equalization is typically characterized by Symbol Error
Rate (SER).

In the circumstances of low SNR and fast-varying channel,
the channel equalization performance may be affected. When
channel is not equalized well, inaccuracies will impact the data
reconstruction. Due to space limitations we will not talk about
how to improve channel equalization but we will investigate
how it will affect the data reconstruction at the receiver.

Suppose channel estimation indicates the Channel State
Information (CSI) is H̃, then after channel equalization and
demodulation, what is received at the receiver will be

y = HΦd + n = H̃−1HAx + n = IeAx + n, (10)

where the M ×M matrix H is the channel matrix (Channel
State Information, CSI), M × 1 vector n is an additive noise
brought by the channel, Ie is the identity matrix plus possible
error in every entry. In the perfect channel equalization case,
Ie = I.

The actual received y is subject to noise and channel
equalization error. If we simply recover the original data array
by solving Equation (9) without considering the effects of
channel information inaccuracy, significant errors might occur.
This will inevitably harm the quality of data transmission.

C. Channel Effects on Compressed-Sensing-Based Data Trans-
mission

In our framework, the quality of data transmission can be
characterized by an error, which is the difference between the
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original signal vector d (recall d = Ψx) at the transmitter and
the reconstructed signal vector Ψx̂ at the receiver. We call this
the Data Transmission Error throughout the paper. The Data
Transmission Error is impacted by at least two factors:

1) Symbol Error Rate: SER
Before data are sent to the channel, they are modulated and

need to be demodulated at the receiver, i.e., the receiver will
demodulate the received symbols. If the channel equalization
is not well performed, it will cause Inter Symbol Interference
and consequently the symbol errors at the receiver.

The performance of channel equalization is typically char-
acterized by Symbol Error Rate (SER), which will impact the
accuracy of received samples at the receiver. Since the receiver
reconstructs the signal from the received signal samples, it
is easy to see that the overall error between the transmitter
signal and reconstructed receiving signal at may grow with
SER. Our simulation tests in Figure 1 indicate how channel
situation influences SER and thus imposes a significant impact
on data transmission quality.

In order to reduce the SER effect, we will later develop
adaptive compressive sampling schemes that can adapt the
sample rate to compbat the channel compensation inaccuracy.

2) CS Reconstruction Error: CSRE
Error can be resulted after the channel equalization and

during the process of the signal recovery from the sub-
sampled data, and we call it CS Reconstruction Error. CS
Reconstruction Error is generally impacted by the effectiveness
of compressive sensing reconstruction algorithm mentioned in
Section III. It is intuitive that even with perfect channel equal-
ization, the overall error between the original signal without
sub-sampling and the reconstructed signal at the receiver will
grow with CS reconstruction error.

The inaccuracy of channel equalization as a result of the
channel dynamics could lead to large noise added to the sub-
samples. As CSRE is impacted mostly by the noise in the
received samples, in order to reduce CS reconstruction error
in the presence of possibly large noise, we will develop an
efficient reconstruction schemes that can help reduce the noise
effect and achieve better reconstruction quality.

V. ROBUST CS-BASED DATA TRANSMISSION

As discussed in previous sections, CS-based data transmis-
sion can be perturbed by the dynamics of wireless channels
and is more sensitive to the noise. This can be seen more
clearly from our simulation results shown in Figure 5 in
Section VI, where under the same SNR condition, CS-based
schemes (e.g. L1-magic, Cosamp) don’t perform as well as
the traditional non-CS data transmission. This motivates us to
propose error resilient and adaptive schemes to make CS-based
data transmission more robust.

We will present our CS-Based Data Transmission method-
ology in this section. We first discuss how to improve the CS
reconstruction performance under large noise, and then how
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Fig. 1. Non-CS case: Data Transmission Error and Symbol Error Rate under
different SNRs.

to combat channel impacts. We first introduce our strategies
for improving the CS reconstruction performance under large
noise, and then our schemes applied to combat channel impacts
and various errors.

A. Error Resilient CS Reconstruction

CS reconstruction error is impacted mostly by the noise in
the received samples. Due to the channel equalization error, this
noise will increase. In order to reduce the CS reconstruction
error, our reconstruction scheme applies various strategies to
reduce the noise effect for better reconstruction quality.

1) Exploiting Support Feature to Improve Recovery Qual-
ity: The support of a sparse vector x is defined to be the
set of locations where the elements are non-zero. In CS
reconstruction algorithms, finding the correct support is very
important for signal recovery and ensuring the reconstruction
performance. There are many existing works to address the
issue of support recovery [20].

Since we take Fourier Transform as the sparse dictionary Ψ,
we find that for a time-domain signal with a certain frequency,
there are two non-zero elements with symmetric frequency
locations in the Fourier domain sparse vector. Generally, for
a length-N signal with frequencies, after Fourier Transform,
a length-N sparse vector will be obtained. One frequency in
the original signal will contribute to two non-zero elements
in the sparse vector, and the locations of the two elements
in the vector is symmetric, i.e., the sum of the two indices
are N + 1. Other types of applications may also have special
features in their support besides symmetry. These features can
be exploited to improve the signal reconstruction performance
in the presence of noise.

This can be tested through some simple simulations. In
Figure 2, for a signal that contains 3 frequency components,
we observe six non-zero elements in the Fourier Basis. In order
to improve the CS reconstruction performance, we propose
to take advantage of this support information. For other CS
applications, it will also help greatly if one can discover the
underlying informative characteristics of the supports.

We can easily integrate this feature-based recovery into
many CS reconstruction algorithms that involve iterations in
the recovery process. In this work, we study the benefit of
exploiting support feature in recovery by taking Cosamp [8]
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as an example, as it has inherent iteration feature, and we
call our algorithm Symmetry-Cosamp. The main idea is briefly
described as follows: 1) At the end of every iteration in
Symmetry-Cosamp, if there are non-zero elements in symmet-
ric locations in the estimated sparse vector x̂, keep them in the
candidate support list; otherwise throw the non-zero elements
out. 2) Calculate the residual signal to use in the next iteration.

In order to better illustrate our idea, we present the symmetry
Cosamp reconstruction in Algorithm 1. During each iteration,
Symmetric-Cosamp performs six major steps:

1) Identificiation. The algorithm forms a proxy of the resid-
ual from the current samples and locates the largest 2K
components of the proxy, denoted as Ω.

2) Support Merger. The set of newly identified components
Ω is united with the set of those appear in the current
approximation. Denote the union set as T .

3) Estimation. Solve a least-square problem to approximate
the target signal on the merged set of components T .
Denote the estimation as b|T .

4) Symmetry Check. Check symmetry of components and
keep only the symmetric components in the least-squares
estimation b|T .

5) Pruning. Produce a new approximation by retaining only
the largest K entries in the updated estimation from last
step.

6) Sample Update. Update current samples that reflect the
residual signal, the part of signals that are not approxi-
mated yet. Go on to the next iteration.

At each iteration, the current approximation introduces a
residual, the part of the target signal that has not be approxi-
mated yet. As the algorithm continues, samples are updated
to reflect the residual signal used to construct a proxy for
the residual in order to identify the large components in the
residual. This step provides a tentative support for the next
approximation. Through iterations in the algorithm, the support
information and recovery get more and more accurate.

2) Estimation of Sparsity : Existing iterative greedy algo-
rithms for CS reconstruction such as [8] generally require the
knowledge of the sparsity level K in the signal. However, in
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practical applications, the sparsity level may not always be
precisely known because the uncertainty of signals. In data
transmission scenarios, the sparsity within the signals at the
transmitter is even more difficult for the receiver to know. For
CS signal recovery, the sparsity level K that is input to run the
algorithm will significantly impact the reconstruction result. So
the problem is, with unknown or inaccurate K, how to ensure
the reconstruction performance?

Through studies in Figure 3 based on Cosamp, we find that if
the estimated K ′ input is smaller than the actual K, the residual
signal which is regarded as noise at the end of the algorithm
(for further details of Cosamp please see [8]) will be relatively
large and change rapidly with the variation of K ′; whereas if
the estimated K ′ input to Cosamp is larger than actual K, the
residual signal is relatively small and changes slowly with the
change of K ′. From this observation, we propose an algorithm
to adjust the K ′ based on the recovery result to further improve
the reconstruction quality.

The main idea is briefly described as follows:
1) Input the estimated parameter K ′ to Symmetry-Cosamp,

run Symmetry-Cosamp and obtain residual signal v′K
2) Input the estimated parameter K ′ + 1 to Symmetry-

Cosamp, run Symmetry-Cosamp and obtain residual sig-
nal vK′+1.

3) If ‖vK′‖l2 − ‖vK′+1‖l2 > Tv , where Tv is a positive
small threshold, update K ′ ← K ′ + 1.
Else stop, claim reconstruction completed.

This algorithm is conservative, to make sure K ′ is large
enough for better recovery. Some other variations of this idea
may be adjusting K ′ at a different rate. The adaptation of K
will help the algorithm to gradually find a proper estimated K ′

and thus improve the reconstruction performance.

B. Adaptive Measurements

We mentioned that in wireless communications, the data
transmission quality will be impacted by both CS recon-
struction and channel compensation error. We have previously
presented how to improve CS reconstruction performance.
Although it helps to combat channel compensation error, it
may not be enough to combat big channel estimation error
due to channel perturbations.
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Algorithm 1 Symmetric-Cosamp
Initialization:

sparsity level K, measurement matrix Φ, noisy received
vector u, residual signal v
j ← 0
v← u
a0 ← 0

Iteration:
j ← j + 1
y← Φ ∗ v (Form signal proxy)
Ω← supp(y2K) (Identify large compenents)
T ← Ω

⋃
supp(aj−1) (Merge supprts)

b|T ← Φ†Tu (Signal estimation)
1: Repeat in T

If an element in T does not satisfy symmetry, remove it
from T .
Else if an element in T does satisfy symmetry with another
element, keep both elements in T .

2: Continue
b|T c ← 0
aj ← bK (Prune to next approximation)
v← Φaj (Update current samples)

Algorithm 2 Dynamic Cosamp (D-Cosamp)
Initialization:

estimated sparsity level K ′, measurement matrix Φ, noisy
received vector u, residual signal vK′ , Tv a positive small
threshold

Iteration:
Input sparsity K ′ + 1 to Symmetry-Cosamp, run
Symmetry-Cosamp and obtain residual signal vK′+1.

1: If ‖vK′‖l2 − ‖vK′+1‖l2 > Tv
K ′ ← K ′ + 1

2: Else
Stop program. Claim reconstruction completed.

We know from CS theory that adapting the number of
measurement M may help improve the CS recovery quality.
The problem is how to determine the number of samples that
needs to adapt to. On one hand, we want to adjust M to
a sufficient large value so that the signal can be recovered
well; on the other hand, too large an M will introduce high
communication cost and compromise the benefit of using CS
to conserve bandwidth.

An intuitive guide for adapting M is the Data Transmission
Error. For a certain M , if the quality of data transmission
error is far worse than satisfactory, then M needs to be
increased according to how bad the reconstruction is. However,
in practical scenarios, since the receiver doesn’t know the
original data at the transmitter, it is often impossible for them to
know the actual Data Transmission Error. Therefore, we need

to consider other schemes that do not rely on information from
the transmitter.

In this paper, we propose to adapt measurement number M
according to the difference between recovered results. Once the
receiver acquires M measurements and recovers x̂M , it first
compares x̂M with its last normally recovered result and check
if the difference D is within a threshold TD. This is reasonable
because many natural signals will not change dramatically in
a short time period. A typical example is temperature. Another
example is that the sparsity level within a time-varying signal
may also not change rapidly. One approach is: consider x̂M
a successful recovery if the absolute value of D is within TD
and keep M the same; if the absolute value of D is beyond
threshold TD, increase M at a ”proper” rate. It remains a
problem how to design a ”proper” rate.

In order to ensure stable performances, we propose a control-
based M adaptation scheme, whose main idea can be summa-
rized as follows:

1) The receiver acquires M measurements and recovers
x̂M , then it compares x̂M with its last normally recov-
ered result.

2) If the absolute value of D is beyond threshold TD, update
M as :M ←M + δD−DT

DT
for a predefined target small

difference DT and step factor δ.
Otherwise make no change to M .

The adaptive idea can be implemented on top of any CS
reconstruction algorithm in order to facilitate an comprehensive
CS framework. The algorithms using the adaptive measure-
ments with Cosamp and D-Cosamp are shown in Algorithm
3 and Algorithm 4, respectively. The only difference between
the two is the reconstruction algorithm.

Algorithm 3 Cosamp with Adaptive Measurements (A-
Cosamp)
Initialization:

M , D, DT , δ, x̂Mprev

Iteration:
Recover x̂M by Cosamp.
Calculate difference between current reading and last nor-
mal recovery result D = ‖x̂M − x̂Mprev‖l1 .

1: If ‖D‖l1 > DT

M ←M + δD−DT

DT

x̂Mprev ← x̂M
2: Else

Make no change to M
x̂Mprev ← x̂M

VI. SIMULATIONS AND RESULTS

In this section we will present our simulations in MATLAB
and show that our scheme is robust in wireless data transmis-
sion.
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Algorithm 4 Dynamic Cosamp with Adaptive Measurments
(AD-Cosamp)
Initialization:

M , D, DT , δ, x̂Mprev

Iteration:
Recover x̂M by D-Cosamp.
Calculate difference between current reading and last nor-
mal recovery result D = ‖x̂M − x̂Mprev‖l1 .

1: If ‖D‖l1 > DT

M ←M + δD−DT

DT

x̂Mprev ← x̂M
2: Else

Make no change to M
x̂Mprev ← x̂M

A. Simulation Settings

We will compare the performances of different schemes,
which are listed as follows:

1) L1-magic: A convex programming reconstruction algo-
rithm in [7].

2) Cosamp: A greedy Matching Pursuit algorithm proposed
in [8].

3) D-Cosamp: Dynamic Cosamp proposed in Section V
Algorithm 2.

4) A-Cosamp: Cosamp with Adaptive Measurements pro-
posed in Section V Algorithm 3.

5) AD-Cosamp: Dynamic Cosamp with Adaptive Measure-
ments proposed in Section V Algorithm 4.

6) Non-CS: Traditional approach that allows the transmitter
transmit all the data without compression measurements.

In our simulations, the original signal is simulated to be sam-
pled from aggregated sine-waves with different frequencies.

We fixed the number of original data samples to be M =
1000. We simulate 100 time frames, each consisting of 100 pe-
riods. The signal sparsity level K is set to range uniformly from
10 to 50. In each period, one CS reconstruction is performed.
For each time frame, we keep the sparsity level K the same,
and a random value within a small range of ∆K from the pre-
vious frame K = Kprev , i.e., K ∈ [Kprev−∆K,Kprev+∆K].
In our settings, we set ∆K to 5. In this way, we can make the
time-varying signal change at a proper speed and also average
the performances.

In order to observe the effectiveness of our techniques, we
first test adaptive schemes and find a common average M
value and then use this value for all the other non-adaptive
schemes. In this way we can make the average compression
rate M

N the same for each scheme. And then we will see
how the Data Transmission Error changes for each scheme
under different SNRs. In adaptive schemes, we initialize the
number of measurements M as M = cK log

(
N
K

)
, where c is

a fairly small constant and K is an estimate of the sparsity level

(typically can be the average value of sparsity level calculated
from its range). In our simulation we set c = 2, an empirical
value from many other references.

The channel is simulated to be multi-path fading. And we
use an Minimum Mean Square Error (MMSE) equalizer to
perform channel equalization.

We will adopt average Data Transmission Error (DTE) as
the metric to evaluate the performances of data transmission.
DTE in one data transmission is defined as the normalized
difference between the original signal at the transmitter and
recovered signal at the receiver, which can be expressed as:

DTE =

∥∥∥d̂ − d
∥∥∥
l2

‖d‖l2
(11)

where d̂ is the recovered data and d is the original data.
We will first show some results of preliminary simulations

and then show the performance of our proposed scheme with
comparisons with other schemes.

B. Robust CS-Based Data Transmission

1) Comparisons of the proposed schemes: D-Cosamp, A-
Cosamp and AD-Cosamp

In Figure 4, we can see that for all schemes, Data Trans-
mission Error decreases with the growth of channel SNR.
We can also observe that A-Cosamp usually works better
than D-Cosamp, which is reasonable to understand because
D-cosamp is usually limited by its capability of handling
large noise, whereas increasing the number of measurements
can significantly increase the effectiveness of CS. Since AD-
Cosamp takes advantage of the two, it outperforms the two, as
we can see in the Figure.

In our simulations we find that AD-Cosamp is very effective
in combatting noise and channel dynamics. Even when the
SNR is low, it can approach the performance of the traditional
non-CS case where the transmitters send out all the data. The
effectiveness of AD-Cosamp is due to its capability of handling
large noise in CS reconstruction and adapting measurements
according to the environment. When SNR is low, more mea-
surements may be needed, also with the help of efficient
CS reconstruction algorithm, AD-Cosamp can approximate the
non-CS case while still maintaining certain compression gain.

CS-based scheme can compress the data to be transmitted
over the channel and to be processed by the receiver, and
AD-Cosamp is shown to achieve compression gain while
maintaining a comparable performance to non-CS schemes.
This indicates that CS-based data transmission scheme is a
promising candidate to ensure low-overhead transmission.

2) Comparisons with other schemes: L1-magic, Cosamp
and AD-Cosamp

In Figure 5, we compare our proposed schemes with other
CS techniques to see the effectiveness of our schemes. We can
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Fig. 5. Comparisons with other schemes.

see from the Figure that among all CS-based schemes, AD-
Cosamp works the best, because it takes advantage of both
A-Cosamp and D-Cosamp.

Compared with L1-magic and Cosamp, we improve from
two aspects: one is to handle larger noise in CS reconstruction
by exploiting information from sparse basis and estimating
sparsity level more accurately; another is to adapt the number
of measurements according to the impacts of the environment
to combat the channel errors.

VII. CONCLUSIONS

In this paper we investigate the possibility and methodolo-
gies to enable robust transmission of compressive wireless
data in the presence of channel dynamics and large noise.
Different from literature work which normally apply CS at
the receiver, the transmitter exploits CS to sub-sample the
data to reduce the information redundancy thus transmission
load and bandwidth consumption before sending the data over
the communication channel, and the receiver will reconstruct
the signals from the received data. With less information
redundancy, CS-based data transmission is more sensitive to
the environment dynamics. We observe the significant impacts
brought by channel perturbations in wireless communications.
We propose various strategies to ensure higher quality signal
reconstruction under large noise which is partly contributed

by the channel equalization error, and adaptive compressed
sampling techniques to combat the accumulative signal re-
covery errors due to channel dynamics, channel equalization
inaccuracy, and reconstruction errors. Our performance study
demonstrate the efficiency of our design in supporting robust
compressive data transmission. We hope our work can serve
as a base for future research in enabling practical compressive
wireless network communications.
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