
Network Codes-based Multi-Source Transmission
Control Protocol for Content-Centric Networks

Dongiiang Xie2,l, Xin Wangl , Qingtao Wang2

lDepartment of Electrical and Computer Engineering, State University of New York at Stony Brook, USA
2State Key Laboratory of Networking and Switching Technology

Beijing University of Posts and Telecommunications, China
dongiiang.xie@gmail.com, xwang@ece.sunysb.edu, poseidon_ wang@bupt.edu.cn

Abstract-With the rapid shift from end-to-end communi
cations to content-based data retrieval, there are increasing
interests in exploiting Content-centric Networks (CCN) to de
liver data. As the special characteristics of CCN, in-network
caching and naming-based routing make traditional TCP-Iike
transmission control protocol unsuitable. Although there are
some existing efforts on improving the congestion control in
CCN, the big issue of redundant transmissions caused by
multiple sources has received little attention.

To eliminate the redundancy and speed up the transmission,
we propose a complete Network Codes-based Multi-Source
Transmission Control Protocol (MSTCP), which provides an
efficient and controllable multi-source content retrieval service
over CCN. MSTCP takes advantage of random network coding
to make full use of the coded data responded by different sources
to speed up decoding and data receiving at the request side.
Moreover, we design a scheduling algorithm based on a simple
Expected Reception Deadline (ERD) to efficiently control the
number of coded packets to send at each source. This not only
effectively eliminates the redundant transmissions in CCN, but
also helps to significantly speed up the information retrieval.
Extensive simulations show that our mechanism greatly reduces
the redundancy while speeding up the content retrievals by the
network users.

I. INTRODUCTION

Internet usage has shifted from the host-centric end-to
end communication to information-based content retrieval.
In order to adapt to this change, CCN have emerged. CCN
decouples the location from the identity, so that the data
content can be retrieved based on its name.CCN has attracted
a lot of research interests in recent years. With the use of
ubiquitous caching, certain piece of content may be retrieved
from multiple sources. Similar to P2P network, in CCN, a
node can obtain the same content from multiple nodes, and
the sources can be uncertain due to the dynamic joining and
departure of peer nodes. These features make the traditional
TCP no longer suitable.

In light of the problems above, existing efforts mainly
focus on extending the congestion control scheme in TCP
to work in CCN [1][2][3][4][5]. Specifically, ICP identifies
congestion based on out-of-order transmissions and timer
expiration, while ICTP and CCTCP infer congestion only
based on the timer expiration. Additionally, ICTP packets
chunks fragmented for transmission but perform security

and caching operation at the chunk level. Con tug keeps
multiple timeout timers and windows per flow, however, its
assumption on the knowledge of content location of each
chunk before transmission is infeasible in CCN. HoBHIS[6]
and HR-ICP[7] control congestion hop-by-hop and maintain
per-flow state on each CCN router, which would strongly
affect the scalability of CCN and deployment in core Internet.
Most of the above congestion control schemes fail to consider
the uncertainty of sources and the data redundancy. The
redundant transmissions will seriously overload the CCN
network.

The two most significant features of CCN is routing-by
name and universal caching, allow for better delivery effi
ciency and disruption tolerance. but these features can result
in the content responses from multiple sources. Generally,
only the first returned content is used for quick retrieval.
The redundant copies will consume a amount of network
bandwidth, but this issue receives little attention.

As a parallel technique, network coding (NC) [8]has
attracted much attention. The major benefit of network coding
stems from its ability of integrating data across time and flows
to form the coded data. As encoded packets have equal impor
tance,as long as enough uncorrelated packets are received, the
original data can be recovered. A number of solutions using
network coding in current Internet architecture. However,
there is very limited work in applying network coding in
CCN.

To the best of our knowledge, we are the first to propose a
transport protocol based on the network coding to solve the
data redundancy and source uncontrollability of CCN. Our
main contributions can be summarized as follows:

• We propose a novel and complete MSTCP protocol
which exploit the network coding to improve the CCN
controllability and speed up the content retrieval taking
advantage of multi-source.

• We design an efficient scheduling algorithm which lever
age a reference parameter ERD to reduce the redundant
data transmissions from multiple sources.

The rest of this paper is organized as follows. We discuss
our network coding design for CCN in Section II. We de
scribe our proposed protocol and the scheduling algorithm in

Section III. Finally, we evaluate the performance of MSTCP
in Section IV and conclude the work in Section V.

II. NETWORK CODING FOR CONTENT CENTRIC

N ETWORK

In this section, we first introduce the basic CCN architec
ture to illustrate its transporting process and problem, and the
network coding in CCN.

A. CCN Network Model

Different from the current end-to-end IP network, the
special characteristics of CCN such as in-network caching
and name-based routing help to decouple transmissions from
senders and receivers. To access a piece of content, called
chunk, a user sends an interest to the network. The router then
forwards the interest based on the content name to the sources
indicated in the Forwarding Interest Base (FIB) and records
the interest into the Pending Interest Table (PIT). Because
contents can be cached or stored anywhere, the requested
data chunk may be returned from multiple sources denoted
as a set S=Sl, S2, .. . , Sn. A source segments the chunk into
k packets and send them along the reverse path of the interest
to the users. When multiple chunks returned from different
sources arrive at the router, only the first arriving one will
be accepted, and the remaining ones are all discarded.

In order to effectively control the redundant transmissions
and better adapt to the other characteristics of CCN, we
introduce random network coding into CCN so that randomly
coded packets sent from different sources can be effectively
reduced. We intend the changes of the CCN protocol stack
to incorporate network coding. Figure 1 shows the network
model for network coding in CCN.Then two key problems
need to be addressed: the selection of the coding method and
the determination of the chunk size.

Naming
Routing

User
' 2>

Buffer

~ ~ ... I-l
r.=-- N*k packets --:1

I - _ -:::-. -::: .- - -,
I r.:::::; 1+0 0>0- -;:]

• Encoded packet D Raw packe t I T~a:~::!:~CY

ffi Inte rest fora chunk data L -,
2 Response lorarnte rest _

The encodrng module

Fig. 1: Network model for Network Coding in CCN

B. Coding for CCN

RLNC [9] is a popular coding scheme which is more
robust to the joining and departure of source nodes and
implemented distributedly. For RLNC to work, in order to
reliably transmit kb symbols, it needs to generate a block that
contains (1 + (3)kb coded symbols. A requester can recover
the raw symbols once obtaining any kb linearly independent
encoded symbols.

C. Determination of Chunk Size

Chunk is the basic data unit of caching and security in
CCN. If the chunk is too small, signature and authentication
for each chunk will cause high computation and transmission
overhead. On the other hand, too large a chunk will cause
cache oscillation, if large data blocks need to be frequently
inserted or deleted from a node that has limited caching
space. In addition, only a part of chunk is lost or received in
errors, retransmission of the whole chunk will be triggered.

With the quick reduction of storage cost, the cache size is
generally not a major concern. Thus a more realistic option is
to increase the chunk size. The default chunk size in CCNx
[10] is set to 4 KB. The work in [1] shows the throughput
improves when the chunk size changes from 4k bytes to
32k bytes. Thus increasing the chunk size is the trend of
the future. And the default chunk size will be given in the
simulation section.

III. PROTOCOL DESIGN

In this section, we first introduce the protocol architec
ture of MSTCP, and then propose an effective multi-source
scheduling algorithm.

A. Protocol Architecture of MSTCP

In the protocol architecture of MSTCP shown in Figure
2, application nodes are divided into two sides: interest
requesters and content sources. Different from conventional
TCP end-to-end transmissions, CCN transmissions are pulled
by interest requesters. In MSTCP, there are mainly several
parts on the request side, which can be divided into three
function modules: Scheduling Control, Congestion Control,
and Decoding.

As a core of MSTCP, scheduling control module consists
of network monitoring unit, source prediction unit, pa
rameter control unit and interest scheduling unit. The main
function of this module is to determine a reference control
parameter, ERD, based on the information from the received
packets. This parameter serves as a reference for each source
to independently determine its number of encoded packets
to transmit. Once receiving a coded packet, the network
monitoring unit extracts the information. These are sent to the
source prediction unit and the parameter control unit. We
could estimate the source information from the feedback of
the first round of transmissions in a fully distributed manner.
With repetitive chunk requests from different users, chunks
may be cached in different parts of the CCN network. And
some continuous chunks for a file may be cached at the same

Source1

Parameter

Control
Interest

Scheduler

Congestion

Control

~ Interests

GGGGG
GGGGD r- ,

T (S) 1 Source • Prediction
'--___ --' ,'£RD(i) Tstart(i)

1 ,die 1 1 .
R Iinfo mfo

1 s 1 1
INC S)I I Source
I I, I - Prediction
.. -. "-.

I 1 Unit

I t
I I
I Sourc<i Info

Scheduling Control Module

REQUEST

Encoded packets~
Tidle(S) R s N(i '. S) ,

Source2

Source3

SOURCE

GGGGG
GGGGD
GGGGG
GGGGD

Fig. 2: MSTCP Architecture

node. Thus we can predict the source of next chunk from the
feedback of a source.In case of the prediction error and data
loss, we make sure the number of coded packets received is
sufficient to recover a chunk.

The main function of Congestion control module is to
adjust the window size according to the congestion level of
the network, so as to make full use of the network bandwidth.
With the use of network coding, the out-of-order transmission
is no longer a problem in MSTCP. This allows us to take
the same congestion control scheme as that of the traditional
TCP, i.e., by using the timeout as the indicator of congestion,
so that MSTCP can work friendly with the traditional TCP.
On the other hand, since the congestion control module is
separate, MSTCP can also be compatible with other CCN
protocols. This Decoding module is responsible for recov
ering the requested chunk from the set of encoded packets
received.

B. Multi-source Scheduling

In CCN, an interest packet will be sent to retrieve a
content chunk, which may be received by multiple sources.
It will consume a lot of bandwidth resources in the CCN
network. In order to alleviate the redundancy, we propose a
scheduling algorithm to facilitate cooperative transmissions
from multiple sources.

1) Scheduling Overview and Design Considerations:
There are many uncertain factors and information limitation
in the CCN network. A source generally has no knowledge
of other sources, which makes it difficult for multiple sources
to coordinate their transmissions, while a router only knows
which interface to forward an interest or an encoded packet.
If an interest is broadcast in CCN, the same interest packet
of a chunk will reach all the corresponding content sources.

In order to ensure better transmission control, our schedul
ing algorithm is designed with the following considerations:

• Reducing the redundancy: In the multi-source scenario,
the use of network coding do not need differentiate
coded packets from different sources. This will alleviate
the problem of transmission redundancy. Taking advan
tage of the network coding, our scheduling algorithm
can control the total transmissions so that the randomly
coded packets from all sources cooperatively contribute
to the decoding of the requested content chunk.

• Source selection with low chunk transmission delay:
The scheduling algorithm should make the right sources
to send appropriate number of encoded packets and
ensure the total number of packets received to be enough
for decoding to reduce the chance of receiving timeout.

Generally, transmissions in CCN are carried between a
content requester and some uncertain sources. In our schedul
ing, we control the total number of encoded packets from
all possible sources through a reference parameter, and we
expect a content requester can receive enough linearly in
dependent packets to successfully decode all packets in the
requested data chunk.

2) Determination of Reference Control Parameter: As
discussed earlier, we propose a receiver-driven mechanism
to control the number of encoded packets sent by individual
sources. The determination of the reference parameter is
critical for the control efficiency.

Definition 1. Expected Reception Deadline (ERD) is
defined as the expected time instant that the CCN interest
request side receives enough encoded packets to decode a
chunk.

ERD is sent by the content requester to all possible
sources along with the interest broadcast. For a chunk i, a
source should stop sending packets if they couldn't arrive at

the request side before ERD(i). In order to achieve this,
each source calculates the number of encoded packets to
send based on ERD(i) received and its own transmission
parameters, such as RTT, loss rate, sending rate, and its
existing tasks.

In the following, we introduce our method for deriving
ERD(i). We use Tstart (i) to represent the time instant
that the request side sends the interest, and RTTs /2 as the
approximate transmission delay of each source to the request
side. As the paths between different sources and the request
side are different, the interest may arrive at each source S at
a different time instant Treceive (i , S):

Treceive (i , S) = Tstart(i) + RTTs /2. (1)
Intuitively sources will send back the encoded packets

upon receiving the interest. However, some sources may be
occupied by other tasks and can only start transmissions
of packets of the requested chunk after Tidle(S). The time
instant Tsend (i, S) is thus

Tsend(i , S) = max(Tidle(S), Treceive (i, S)). (2)

To avoid unnecessary transmissions, a source S needs to
stop sending packets if they cannot arrive at the requester
before ERD(i). The time instant Tstop(i, S) is estimated as

Tstop(i, s) = ERD(i) - RTTs/2. (3)

For the sake of packets arriving at the requester in time
for decoding, the sending time Tsend(i , S) can not be later
than T stop (i , S). The number of encoded packets to send by
a source S with the sending rate R s can be estimated as:

N(i , S) = max[(Tstop(i , S) - T send(i , S)), 0] x Rs

/ Si zeseg = max[(ERD(i) - RTTs/2 - max ((4)

Tidle(S), (Tstart(i) + RTTs / 2)) , 0] x R s/Si zeseg

where Sizeseg stands for the size of encoded packet.
The total number of packet received for chunk i can be

represented as N(i) = L N(i , S) , and ERD(i) can be
derived based on the total number of packets needed at the
requester side. As the above calculations are based on the
parameters feed backed by different sources, some parameters
may change over time which makes the estimated ERD(i)
deviate from the correct one.

Some encoded packets may get lost, and each path may
have a different loss rate. The total number of encoded
packets received at the request side for chunk i is

N(i) = LN(i, S) x (l - ps) (5)

where Ps represents the lost rate on the path from source
S to the request side. Ps can be calculated by the number of
encoded packets sent by sources and the actual number of
encoded packets received by the request side.

Figure 3 shows parameters of different sources under dif
ferent conditions. We will describe our scheduling algorithm
in the following section.

3) Scheduling Algorithm: Our scheduling algorithm needs
the coordinative actions from both the request side and the
source side.

:'-RTT,/21 I'+- RTT,/2---+:

So'"" =n 1-'1 '1-'-1 'I '1-'-1 'I '1-'-1 '1'1-'-1 '1'1-'-1 'I'I-il i
, T_ Il) T, (r. 1) Tstop(I, I) I

~RTI'/2~ : RTTJ2~
So'"" i : 1111111111111 L :

: T, (I,2)T_ 12I Tstop(i,2)

~ RTTJ2 ---+I
Source, : :

Trecelve (r,3)

X :
, I

Tret eive(i,4)

Fig. 3: Time instants of the scheduling algorithm

, , ,
ER~(i)

a) The request side: To calculate ERD(i) for a chunk
i , the request side needs to collect and estimate the param
eters of sources. When a new encoded packet is received
from source S, the request side obtains the parameters
Tidl e(S), N(i , S), R s , and it can further calculate some other
parameters needed to determine ERD(i). When the request
side wants to send an interest packet for a new content chunk,
based on Tstart(i) and RTTs / 2, the request side estimates
the time instant Treceive (i , S) for the interest to arrive at the
source based on Eq. (1).

Algorithm 1 Actions at Requester for Requested Chunk i

1: INPUT: Tidl e(S) , Ps, Rs , T start(i), RTTs / 2;
2: for S = 1 to n do
3: if Sources E Sources which hold the content then
4: Treceive (i , S) +- Tstart(i) + RTTs/2
5: estimate Tsend(i, S) using Eq.(2)
6: end if
7: end for
8: calculate ERD(i) using Eq.(3) and Eq.(4)

The request side can further estimate T send(i, S) using
Eq.(2). Based on these information, a content requester
further estimates the total number of encoded packets to
be sent by all sources, N(i). Then the request side inserts
ERD(i) and Tstart(i) into the interest packet of chunk i
before sending it to the CCN network.

Algorithm 2 Actions at Source S for Requested Chunk i

1: Abstract Tstart(i), ERD(i) from the interest packet;
2: Calculate Tstop(i, S) using Eq.(3);
3: Calculate Tsend(i , S) using Eq.(2)
4: if Tsend(i, S) > Tstop(i , S) then
5: Drop the interest;
6: else
7: Calculate N(i, S) using Eq.(4)
8: end if
9: Send N(i, S) encoded packets to the request side;

b) The source side: A source first determines the
number N (i, S) of the encoded packets to send for chunk i
based on ERD(i). It then sends the packets along with its
local parameters that are needed for the requester to estimate
ERD(i), T start(i) and the sequence number of the coded
packet.

To make sure that packets transmitted in the CCN network
are useful for the request side to decode, not all the sources
holding the requested data should send back the encoded
packets. In our scheme, a source makes the decision in four
different cases, as shown in Figure 3.

Case 1: The sources are idle and close enough to the re
quest side. Sourcel first calculates Tstop(i, S) using Eq.(3)
when the interest arrives with the information ERD(i). If
Treceive (i , S) is later than Tidle (S), Sourcel will start to
send encoded packets at Treceive (i, S) . Then we can calculate
N(i, S) using Eq.(4).

The source encodes the data of chunk i, and sends N (i, S)
encoded packets to the request side along with the parameters
Tidle(S) , N(i , S), and Rs. Then source sends the encoded
packets to the queue to be waited to send.

Case 2: Like Source2, the source is occupied but is close
enough to the request side. In this case, Tidle (S) is later than
Treceive (i , S), so the source can only start to send its encoded
packets at Tid1e (S) .

Case 3: Like Source3, the source is occupied by too many
previous tasks. When a source ends its former tasks, it would
be too late to send the encoded packets for chunk i .

Case 4: Like Source4, the source is too far away from
the request side. In this case, it is also impossible to send
encoded packets.

By using this Scheduling Algorithm, source selection can
be performed indirectly and determined by the source itself.
With our algorithm, the total number of encoded packets only
a little bit higher than needed to ensure timely decoding
of the chunk by the request side. Therefore, MSTCP can
minimize the redundant transmissions while speeding up the
information retrieval.

IV. SIMULATION

We evaluate the performance of MSTCP using ndnSIM
over NS-3 network simulator[ll]. We setup with one ap
plication user and two content sources as in Figure 4.
More sophisticated network setting will be studied for the
impact of various factors on our scheduling algorithm. All
communication links are set to 50 Mbps with 10 ms delay
while the maximum sending rate of each source is 5Mbps and
the size of the transfer file is set to 10MB. The simulations
are carried out in two parts. First, the chunk size discussed in
Section II is evaluated. Second, we compare the performance
of our proposed MSTCP with ICTP.

A. Impact of Different Chunk Sizes

As shown in Figure 5(a), the goodput increases until the
encoded chunk size reaches 32k. As the chunk size grows,
the overhead due to the signature and authentication becomes
smaller, and the number of interests for retrieving the content
reduces considerably. However when the chunk size grows
to a certain level, the benefits reduce while the delay of
encoding and decoding increases significantly. As a result, the
goodput decrease dramatically when the chunk size increases
beyond 64k.

14

12
'[10
.0

~ 8
:; 6
"-g 4
<!J 2

AI)I)licltlion
Usert

Fig. 4: Network topology

~ 6 g 4
<!J 2

data
intcrest

O~~~ __ ~~~~~ O~~~ __ ~~~~~
0.01 0.1 1 10 20

LossRate (%j

(a) Goodput with different
chunk size

0.01 0.1 1 10 20
LossRate (%j

(b) Goodput with network coding on
and off

Fig. 5: Total goodput of MSTCP with various chunk size
In Figure 5(b), the goodput performs better when the

network coding is used. Without differentiating between
coded data packets from different sources, upon packet loss,
MSTCP only requires sources to retransmit additional num
ber of coded packets instead of the whole chunk. The data
can be decoded successfully as soon as the receiver retrieves
enough coded packets from different sources. Thus, MSTCP
takes advantage of multi-source transmission to improve
the transmission reliability while mitigating the transmission
overhead.

B. Transmission Efficiency

We further compare the performance between MSTCP
and ICTP on the transmission redundancy and goodput
in different scenarios. We set the loss rate in TABLE I.
The redundancy is reflected from the total amount of data
transmitted.

TABLE I: Cases of simulation

Test Case 1 2 3 4 5 6 7 S 9 10
Loss Rate

0.1 1 10 20 1 1 1 1 1 1
(%)

Delay (ms) 10 10 10 10 5 10 15 20 25 30

Figure 6(a) shows the total amount of data transmitted by
MSTCP and ICTP respectively, both of which are composed
of the effective data and the redundant data. MSTCP is shown
to have significant lower redundant transmission compared
to that of ICTP in all cases. The redundant transmissions
from ICTP can be five times that of MSTCP. In ICTP,

better use of packets received from all sources regardless of

25
.!!l

_ MSTCPSourcel _ MSTcpsource2 j their order. In the worst delay case, the goodput of MSTCP
ro 14 Iii ICTP Sourcel o ICTPSource2 is almost 5 times that of ICTP.
8 12 8 20

-g
~ 15

~ 10 .=

o 1 2 3 4 5 6 7 8 9 10
Case

(a) Total redundancy with
various link quality

2 10

E 8

~ 4 ~ 6 I
=re 2
15
f- 0 U,5~.6fJ.J...a.r7 1.J..J1'"±8.LJ...JL!9LJ..JL1~0

Case

(b) Redundancy of each source with
various link quality

Fig. 6: Redundancy of MSTCP and ICTP

each data source receiving the interest will send a response,
which causes a large number of redundant transmissions in
the CCN network. Taking advantage of network coding, our
proposed scheduling algorithm facilitate the the coordinative
transmissions from all available sources to reach efficiently
response the request. To better analyze the redundancy of
MSTCP and ICTP, Figure 6(b) shows the amount of data sent
by each source. Compared with ICTP, the data transmitted by
the two sources in MSTCP vary in different cases which have
different link conditions. The transmissions from source2
reduce as its delay increases. When the delay surges to 30ms,
the source2 is prevented from sending packets completely.
This indicates that our scheduling algorithm can adaptively
select the better source to transmit packets according to the
network condition.

12

~10
.c
::;;
':::: 8
:J

0..

"8 6
0
l'J

4

___ MSTCP 10ms

~ ..
~

0.1 1 10
LossRate (%)

20

12

~10
.c
~8
"5
% 6
0

8 4

2

-+- ICTP 1 %Ir

~

10.012.515.017.520.022.525.0
Delay (ms)

(a) Goodput with different
LossRate

(b) Goodput with different Delay

Fig. 7: Goodput of MSTCP and ICTP

In Figure 7(a), the goodput of MSTCP outperforms that of
ICTP in all the loss rates studied, and the gain increases as the
loss rate becomes larger. When the loss rate reaches 20%, the
goodput of MSTCP is more than triple that of ICTP. With the
incorporation of random network coding, MSTCP effectively
alleviates the impact of packet loss while making full use
of coded packets received. Figure 7(b) shows that MSTCP
also has better performance on goodput while varying the
delay. When the delay of source2 increases, the out-of-order
receiving in ICTP becomes serious and only the better source
can send back the requested data in time. However, with the
introduction of random network coding, MSTCP can make

V. CONCLUSION

In this paper, we propose MSTCP, a novel complete trans
mission control protocol based on random network coding to
effectively address the problem of redundant transmission in
CCN caused by name-based routing and in-network caching.
We employ RLNC to encode the chunks of contents in CCN,
while MSTCP can work with other types of random network
coding scheme. We propose an efficient scheduling algorithm
which provides a simple reference control parameter from
the request side to faci litate distributed determination of
the number of packets to transmit by each resource node.
Our proposed MSTCP not only effectively eliminate the
transmission redundancy from multiple sources but also take
advantage of network coding to fully utilize the coded packets
from all responding sources to significantly speed up the
information retrieval.

VI. ACKNOWLEDGEMENT

This work was supported in part by National Science Foun
dation (NSF) under grant CNS- 1218597, CNS-1526425,
and CNS-1421578China 863 Program 2015AAOIA705, and
NSFC of China 61271185.

REFERENCES

[I] Stefano Salsano, Andrea Detti , Matteo Cancellieri , Matteo Pomposini,
and Nicola Blefari-Melazzi. Transport-layer issues in information
centric networks. In Proceedings of the second edition of the ICN
workshop on Information-centric networking, pages 19- 24. ACM,
2012.

[2]

[3]

[4]

Giovanna Carofiglio, Massimo Gallo, and Luca Muscariello. 1cp:
Design and evaluation of an interest control protocol for content-centric
networking. In Computer Communications Workshops (INFO COM
WKSHPS), 2012 IEEE Conference on, pages 304-309. IEEE, 2012 .
So maya Arianfar, L Eggert, P Nikander, Jorg Ott, and Walter Wong.
Contug: A receiver-driven transport protocol for content-centric net
works. Under submission, 2010.
Lorenzo Saino, Cosmin Cocora, and George Pavlou. Cctcp: A scalable
receiver-driven congestion control protocol for content centric network-
ing. In Communications (ICC), 2013 IEEE International Conference
on, pages 3775- 3780. IEEE, 2013.

[5] Giovanna Carofiglio, Massimo Gallo, Luca Muscariello, Michele Pa
palini, and Sen Wang. Optimal multipath congestion control and
request forwarding in information-centric networks. In ICNP, pages
1- 10, 2013.

[6] Natalya Rozhnova and Serge Fdida. An effective hop-by-hop interest
shaping mechanism for ccn communications. In Computer Communi
cations Workshops (INFO COM WKSHPS), 2012 IEEE Conference on,
pages 322-327. IEEE, 2012.

[7] Giovanna Carofiglio, Massimo Gallo, and Luca Muscariello. Joint hop
by-hop and receiver-driven interest control protocol for content-centric
networks. In Proceedings of the second edition of the ICN workshop
on Information-centric networking, pages 37-42. ACM, 2012.

[8] Tracey Ho, RalfKoetter, Muriel Medard, David R Karger, and Michelle
Effros. The benefits of coding over routing in a randomized setting.
2003.

[9] S-YR Li, Raymond W Yeung, and Ning Cai. Linear network coding.
Information Theory, IEEE Transactions on, 49(2):371- 381 , 2003.

[l0] Ccnx project. http://www.ccnx.org.
[11] Alexander Afanasyev, lIya Moiseenko, Lixia Zhang, et al. ndnsim: Ndn

simulator for ns-3. Named Data Networking (NDN) Project, Tech. Rep.
NDN-0005, Rev, 2, 2012.

