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ABSTRACT

Among various sparse array techniques, co-prime array is
found to be more attractive because its higher DoF with a
smaller number of sensing elements. However, because of
its specific physical non-uniform linear structure, it would be
inconvenient and costly to implement in the presence of vary-
ing detection scenarios. In this paper, we propose to exploit
the current ULA to dynamically formulate a co-prime array
structure, which takes advantage of the properties of co-prime
array while reducing the energy consumption and operational
cost. Rather than being constrained with the specific phys-
ical structure, our scheme can be cost effectively applied in
existing systems.

Index Terms— Co-prime array, dynamic array, differ-
ence co-array, DOA estimation.

1. INTRODUCTION

Array signal processing techniques are often applied to esti-
mate the direction-of-arrival (DOA) of sources. Generally, a
uniform linear array (ULA) with N +1 elements can identify
N sources, and has a degree of freedom (DoF) of N . To de-
tect a large number of sources, it requires the number of array
elements N + 1 to be big, which would incur a high system
cost and energy consumption. The estimation accuracy also
reduces when there are a big number of sources.

Recently, sparse array constructions such as minimum
redundancy arrays (MRAs) [1] [2], nested arrays [3] and
co-prime arrays [4] have attracted a lot of attentions. These
sparse arrays use their difference co-arrays to generate a
larger-size virtual array to increase DoF. Because there is
no closed-form expression for the geometry configuration
and no approximate DoF for MRAs, it is hard to design the
MRA system in most cases. Co-prime array becomes more
attractive because of its high efficiency and simplicity. Spa-
tial smoothing technique [5] [6] and sparse reconstruction
technique [7] are usually used with co-prime array for DOA
estimation. Despite the potential of co-prime array, the phys-
ical construction of an array based on co-prime infrastructure
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needs time and will not likely to be seen very soon. In addi-
tion, there is a tradeoff between constructing a large array at
high cost and meeting the changing need of DoF in different
application scenarios with minimum cost.

Rather than depending on physical co-prime array, we
propose to exploit the co-prime method to select array ele-
ments in ULA to form co-prime arrays. This not only helps
to achieve the largest DoF, but also allows for energy conser-
vation from the selective use of array elements while deacti-
vating RF chains corresponding to the remaining elements.

The co-array method that is usually used in co-prime ar-
ray will generate holes in the virtual array, that is, i.e., some
virtual array elements are missing. To solve this problem, Pal
et. al in [8] consider using an extended co-prime construc-
tion, which doubles the number of sensors of one sub-array
to achieve a longer hole-free virtual array. Other works use
proportional frequencies [9], compressive sensing [10] and
temporal signal coherence (TCP) in moving co-prime arrays
[11] to fill holes in the virtual array. These schemes require
different specific non-uniform physical array structures. In
contrast, we apply two methods to address the problem: the
use of complement sub-array along with co-prime sub-array,
and the intelligent adaptive operation that can select fewest
elements in ULA to meet variable detection requirements.

The aim of our work is to find an approach that can dy-
namically activate sensors in the fixed basic ULA configura-
tion to formulate the longest hole-free virtual array and there-
fore obtain the largest achievable DoF for higher implemen-
tation flexibility and performance quality. Specifically, based
on a physical N0-ULA, we can achieve up to N0 DoFs while
keeping only O(

√
N0) sensors active in the detection period.

Our method may be extended to form different co-prime ar-
rays based on the actual detection need while minimizing the
total number of elements activated thus reducing the cost.

The remainder of the paper is organized as follows. In
section 2, we review the concept of traditional co-prime ar-
rays. Section 3 introduces our proposed dynamic array for-
mulation including the basic array configuration, the sensor
selection scheme and the adaptive operation mode. We pro-
vide performance studies with simulation results in Section 4
and conclude the work in Section 5.



2. CO-PRIME ARRAY STRUCTURES

A conventional co-prime array [4] shown in Fig. 1 consists of
two uniform linear sub-arrays with the separationMd andNd
respectively. There areN sensors in the first sub-array andM
sensors in the second sub-array. M and N are co-prime inte-
gers, i.e., gcd(M,N) = 1, and d is the unit of inter-element
spacing. To avoid spatial aliasing, d is typically set to λ/2,
where λ is the wavelength of impinging narrowband signals.
Since the first sensors of the two uniform linear sub-arrays
are co-located, the total number of sensors in conventional
co-prime array is M +N − 1.

Fig. 1: Conventional co-prime array

However, one major problem of the conventional co-
prime geometry is that there exist missing elements which are
often called “holes” in the difference co-array. For example,
the difference co-array of a M = 3, N = 4 form the set
[−9d,+9d] except ±7d. These holes will decrease the length
of the ULA segment in the virtual array and therefore effect
the size of manifold matrix in spatial smoothing. As a result,
a (M,N) conventional co-prime array usually can not obtain
MN freedoms.

To deal with the hole problem, extended co-prime array
was proposed in [8]. As shown in Fig. 2, the number of sen-
sors in the second ULA sub-array is doubled to enlarge the
size of ULA segment in the difference co-array, and thus the
virtual array has a ULA segment with the length of (2MN +
2M − 1). Then after the spatial smoothing [5], the (M,N)
extended co-prime array can still offer MN DoFs.

Fig. 2: Extended co-prime array

3. DYNAMIC ARRAY FORMULATION

In this section, we first provide the motivation why we want
to explore the use of dynamic array (DA). We then introduce
the basic configuration of our proposed dynamic array, the co-
array method and the scheme we apply to select the sensors in
ULA to activate dynamically. Finally we discuss an improved
operation mode that can be implemented under different cir-
cumstances.

3.1. Motivation

Recent studies on co-prime arrays show very promising re-
sults. However, there does not exist physical co-prime array
currently. Also, as different co-prime structures will form ar-
rays with different DoFs and sizes, it would be inconvenient
and costly to build specific physical non-uniform linear ar-
rays in the presence of varying detection scenarios. Depart-
ing from existing studies which assume the existence of non-
uniform linear array and work under a specific co-prime array
structure, we propose to dynamically form co-prime arrays
based on the universal ULA configuration. This allows for
the harvesting of gains from co-prime array techniques to sig-
nificantly improve the performance of the current sensing sys-
tems without additional cost and waiting of new array hard-
ware. Our studies indicate that the maximum possible DoF of
a dynamic array under a given ULA configuration can main-
tain the same as that of ULA. Furthermore, as only a small
part of the sensors and their RF chains in the ULA stay active
during the detection, it can potentially save a lot of energy.
Especially this energy cost would be huge if a large sensing
array is applied for continuous environment monitoring.

3.2. Basic Configuration

Our proposed dynamic array is formed based on the universal
N0−ULA configuration. Sensors in the ULA can be dynam-
ically selected to be activated based on the application need
and detection quality.

The active sensors form two sub-arrays, a (M,N) ex-
tended co-prime sub-array and a complement sub-array. The
extended co-prime sub-array has the same structure as we in-
troduced in the previous section. The complement sub-array
is a short dense ULA located at the end of array. It is applied
to fill all remaining “holes” in the virtual array generated by
the (M,N) extended co-prime sub-array so that the continu-
ous part in the virtual array can be maximized which is from
−(2M − 1)N to (2M − 1)N . It can be proved that the mini-
mum number of required sensors in the complement sub-array
is M − 1. Therefore, the number of selected active sensors
in the universal N0−ULA is 2M + N − 1 from co-prime
sub-array plus M − 1 from complement sub-array which is
3M +N − 2 in total.

Fig. 3: basic dynamic array configuration

Fig. 3 shows an example of dynamic array based on 26-



ULA. It consists of an extended co-prime array with M =
3, N = 5 and a complement array with 2 extra sensors. As a
result of applying the co-array method, its DoF can reach 25
with only 12 sensors active, which conserves more than half
of energy consumption.

3.3. Difference Co-array Method and DOA Estimation

In the sparse array signal processing, to achieve a given num-
ber of DOFs with fewer physical sensors, a virtual array gen-
erated from the difference co-array is usually applied to sub-
stitute for the physical array. The difference co-array can be
achieved from the correlation of the received data.

AssumingD narrowband sources with powers [σ2
1 · · · σ2

D]
impinge on the array from directions [θ1 θ2 · · · θD], the sig-
nals received at the array elements can be expressed as

x[k] = As[k] + n[k] (1)

where A is the array manifold matrix of the form

A = [a(θ1) a(θ2) · · · a(θD)] (2)

and

a(θi) = [ej
2πd
λ l1sinθi , · · · , ej 2πd

λ l3M+N−2sinθi ]T (3)

where [l1, l2, · · · , l3M+N−2] represents the locations of
3M+N−2 selected active sensors. s[k] = [s1(k) · · · sD(k)]T
denotes the kth snapshot of the source signal vector, and the
noise vector n[k] is assumed to be temporally and spatially
white and uncorrelated from the source.

In array signal processing, the difference co-array is
formed naturally in the computation of the correlation of the
received signal,

Rxx = E[x(k)x(k)H ] = ARssAH + σ2
DI, (4)

where Rss is the source autocorrelation matrix, with

Rss = diag([σ2
1 σ

2
2 · · · σ2

D]. (5)

In practice, the autocorrelation matrix can be computed
by the following sample average

R̂xx =
1

L

L∑
k=1

x(k)x(k)H , (6)

where L is the total number of snapshots. In order to build
the new model using the difference co-array as the new array
manifold matrix, we vectorize the autocorrelation matrix and
get

z = vec(Rxx) = B · p + σ2
nvec(I), (7)

where B = [Bθ1 Bθ2 · · ·BθD ] = A∗�A (Khatri-Rao product
of A∗ and A) and p = [σ2

1 σ
2
2 · · · σ2

D]
T .

We consider the vector z to be the new received data, B to
be the new array manifold matrix and p to be the new source
signal.

As there exist redundant and out-of-order elements in the
vector, we have to drop and reorder some elements to rebuild
z to form a new vector z′ so that its corresponding B′ has the
same expression as the manifold of the ULA segment in the
virtual array. The rebuilt vector z′ can be expressed as

z′ = B′ · p + n′. (8)

Since the new source signals p are no longer incoherent,
we use spatial smoothing technique [5] to build the rank of
a positive semi-definite matrix from this new model. We
divide the new received data vector z′ into multiple vectors
z
′

i so that its corresponding virtual ULA array is divided
into multiple overlapping sub-arrays. Then we compute the
autocorrelation-like matrix of each divided received data
vector z

′

i

Rzi , z′iz
′H
i (9)

Taking the average of the autocorrelation matrices of all
sub-arrays, we can get the final spatial smoothed matrix Rzz
as

Rzz =
1

DOF

DOF∑
i=1

Rzi (10)

where DOF equals the number of sub-arrays and denotes the
maximum number of detectable sources.

Finally, we can accomplish DOA estimation by apply-
ing MUltiple SIgnal Clasification (MUSIC) algorithm [12] on
Rzz .

3.4. Selection of (M,N)

By applying the difference co-array method and spatial
smoothing technique, the length of available virtual array
segment can approach to the length of the physical ULA.
However, to achieve the largest DoF with minimal number of
sensors active in our dynamic array, the selection of appro-
priate co-prime array factors (M,N) is a critical and crucial
challenge. In this section, we provide a scheme to find the
optimal (M,N) from a given N0−ULA structure.

In our proposed dynamic array, since there exist no holes
in the virtual array, the number of DoF equals to the array
aperture. To achieve the largest DoF, we need to select a
pair of co-prime number M and N so that the position of
the last sensor in the extended co-prime array can be as close
to (N0 − 1)d as possible. Meanwhile, to save more energy
consumption, we want the number of selected active sensors
to be as small as possible. The problem can be formulated as



a two-objective optimization problem:

max
M,N∈N∗

A = (2M − 1)N

min
M,N∈N∗

|T | = 3M +N − 2

subject to (2M − 1)N ≤ N0 − 1

gcd(M,N) = 1

(11)

We first do not take the integrality and the coprimality of
(M,N) into consideration, then (11) becomes:

min
M,N∈R+

|T | = 3M +N − 2

subject to (2M − 1)N = N0 − 1
(12)

Equation (12) has optimum solution where

M =

√
N0 − 1

6
+

1

2

N =

√
6(N0 − 1)

2

(13)

and the minimal number of sensors |T |

|T | = 3M +N − 2 =
√
6(N0 − 1)− 1

2
(14)

We can then test the coprimality of the integers around the
optimumM andN in (13) and find the optimal solution to the
original problem (11).

Finally, our dynamic array can be formulated as the union
of the optimal (M,N) co-prime sub-array and the comple-
ment sub-array. To complete the DOA estimation using MU-
SIC algorithm, we just need to activate the selected sensors in
the universal N0−ULA during the detection period.

3.5. Adaptive Operation Mode

Our scheme above can maximize the DoF of the virtual array
with a given ULA. Rather than being restricted by the phys-
ical array structure, a benefit of dynamic array formulation
is that we can select sensors and generate different sizes of
virtual arrays based on the application need.

We can adjust the number of active sensors dynamically
according to the actual application needs and detection qual-
ity. In a long-term monitoring scenario, once suspecting with
targets, we can use our sensor selection scheme to get an ar-
ray with the largest DoF at the beginning. If we find that the
number of targets is far smaller than our current DoF, we re-
duce the number of sensors to activate in the tracking mode.
This could be realized by reducing N0 in (11). This process
can continue until the detection performance approaches the
predetermined threshold. Later when the number of targets
increases or a higher quality detection is required, we can in-
crease the number of active sensors. The flexibility of dy-
namic array formation allows for appropriate detection per-
formance while minimizing the cost.

4. PERFORMANCE EVALUATION

We evaluate the performance of our proposed dynamic array
through simulations over matlab. We apply MUSIC algo-
rithm to detect the DOAs of a group of uniformly distributed
sources. We compare the performance of dynamic array (DA)
with some other reference methods, including the extended
co-prime array (ECPA) and uniform linear array (ULA).

In our study, we consider a universal ULA structure with
26 physical sensors. By utilizing the selection scheme, we
can get (M,N) = (3, 5) and {C} = {23, 24}. The optimal
dynamic array configuration is as the previous example shown
in Fig. 3. Although the total number of physical sensors is 26
which forms an ULA, the number of active sensors can be
decreased to 12, which can save more than half of the energy
and operational cost. To make the results comparable, all the
reference methods are also applied to select sensors from the
same 26-ULA physical structure. Specifically, ECPA uses the
same co-prime factor (3, 5) but without the complement sub-
array.

Fig. 4 shows the MUSIC spectrum in different cases.
The target sources are uniformly distributed within the range
−60◦ to 60◦. The covariance matrix is estimated by using
2000 snapshots. SNR is set to 0dB. We can see that our pro-
posed DA has much clearer spectrum compared with ECPA
and the root mean squared error (RMSE) can decrease by
90%. When compared with the ULA with all 26 sensors
active, our proposed DA with only 12 sensors active doesn’t
sacrifice detection quality too much. It can still successfully
identify all targets. This demonstrates the feasibility and ef-
fectiveness of our proposed method in forming the dynamic
array within an ULA configuration.
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(a) (3,5)ECPA r=0.9023
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(b) DA r=0.0963
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(c) 26-ULA r=0.1247
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Fig. 4: MUSIC Spectrum

We then compare the root mean squared error (RMSE) of
the DOA estimation between different methods, with 10 tar-



get sources. Fig. 5 shows the impact of SNR. Compared to
ECPA, our proposed DA method reduces RMSE over 50%.
Compared to the universal 26-ULA, it has similar detection
quality with only 12 sensors active. Fig. 6 shows the impact of
the number of snapshots instead of SNR. We can see that our
method reduces RMSE over 50% compared to ECPA. In other
word, if we want to achieve the same RMSE, our method can
save over 75% snapshots, thus can perform much faster es-
timation. Further more, the reduction of scanning time also
reduces the cost.
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Fig. 5: RMSE versus SNR
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5. CONCLUSION

Rather than being constrained with the lack of physical co-
prime array building and the inflexibility of specific co-prime
array structure, we propose to exploit the current basic phys-
ical ULA configuration to flexibly formulate dynamic co-
pirme linear arrays based on the detection need to keep the
same DoF while reducing the cost. Our performance results
demonstrate that, given a fixed physical ULA configuration,
our scheme can keep comparable detection quality compared
with the original ULA. More significantly, it conserves a large
amount of energy since most of the sensors and RF chains
can stay inactive during the scanning periods. In addition, the
adaptive dynamic array allows high flexibility and efficiency
in different detection scenarios.
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