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ABSTRACT

The aim of this work is to more accurately model the stochastic

process of music-related data, which is essential for many AI

applications in musicology. When music is naturally repre-

sented as a sequence of vectorized frames, existing models

generally cannot well capture the correlation of the elements

inside each frame. We propose an energy-based model called

Chain Graphical Recurrent Neural Network (CGRNN) to ex-

plore the correlation of elements for more accurate model-

ing of the dynamics of music. In CGRNN, a probabilistic

sub-structure named Conditional spike-and-slab Restricted

Boltzmann Machine (C-ssRBM) is defined to better model the

conditional covariance and joint distribution of elements in a

frame. Besides, CGRNN is capable of tracking the evolution

of music and extracting sparse features with an efficient design

of temporal transition. With the estimated stochastic process

of music, we further implement CGRNN to generate melodi-

ous music automatically. Extensive empirical evaluations of

multiple unsupervised learning tasks are conducted on sym-

bolic MIDI and audio sounds to demonstrate the performance

of our model.

Index Terms— Automated Music Generation, Stochastic

Deep Learning Model, Unsupervised Learning

1. INTRODUCTION

Music is an important media to express human emotion and

feeling. In recent years, we have experienced an evolution

in diverse music styles and trends. Music is an art of time,

and music data are sequential in nature. An accurate mod-

eling of the temporal dependency among music data is defi-

nitely crucial to understand the dynamics and regular patterns

of melodies. Besides, an accurate temporal model has been

shown to be essential for many AI applications in music [6].

Therefore, we intend to more accurately model the stochastic

process of music-related data and apply the estimated dynam-

ics for feature extraction and automated music generation.

Music can be recorded as either symbolic MIDI or audio

waveform. Both types of data form the sequence of vectorized

frames with strong correlation. In symbolic MIDI, the music
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information is transformed into a sequence of binary vectors,

where each element of a vector indicates if there exists a spe-

cific pitch [3]. An example of symbolic MIDI is given in Fig.

1. In each time slot, a group of pitches are activated together

to produce a chord or melody. The correlation among pitches

is essential to estimate the statistic property of the symbolic

MIDI. Audio waveform can also be organized as a sequence

of frames, where each frame is formed as a vector containing

a fixed number of samples taken within a time duration [4, 7].

The successive sampling points within a frame are impacted by

physical properties of the instrument and are highly-correlated

as well.

Fig. 1. Matrix representation of a symbolic MIDI file

A few stochastic deep learning models have been proposed

to track the dynamics of sequential data for Natural Language

Processing and Polyphonic Music Generation [3, 4, 7, 2]. How-

ever, the majority of these models assume a mixture model

with a diagonal conditional covariance matrix to estimate the

distribution of data within a frame, which makes them less

practical to model the complicated correlation of music-related

data.

To better estimate the joint distribution of vectorized

frames, we first design a variant of ssRBM [5] named Condi-

tional ssRBM (C-ssRBM) that can more flexibly model the

complicated correlation among elements within each frame.

Furthermore, we propose an efficient transition structure of

Recurrent Neural Network (RNN) to more accurately track the

dynamics of data sequences. As the topology of our model is

equivalent to a Chain Graphical Model that has both directed

and undirected links, we named the whole framework Chain

Graphical Recurrent Neural Network (CGRNN).
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The major contributions of this paper are two-fold:

• We propose CGRNN to accurately capture the stochastic

process of music, and conduct extensive experiments to

demonstrate the performance.

• We further apply CGRNN for automated music generation.

Perceptual evaluation shows that our model is capable of

generating melodious music without human knowledge.

The rest of this paper is organized as follows. In Section

2, we first establish the formulation of stochastic modeling

problem to music. In Section 3, the whole framework of

CGRNN is proposed and the details of C-ssRBM are described

in Section 4. After that, experiments are presented in Section

5 and the final conclusion is given in Section 6.

2. PROBLEM FORMULATION

The sequence of data in music is represented as V1:N =
[V1, · · · , VN ]. For the symbolic MIDI, a Vn ∈ {0, 1}128 is a
binary vector where each element represents a specific note.
For the audio waveform, Vn ∈ R

L is a real-value vector that
contains L consecutive points of the signal [4]. To model the
dynamics of music, we need to estimate the stochastic pro-
cess of the sequential representation of symbolic MIDI and

audio sounds. Given a set of music data {V (i)
1:N}, we look for

a stochastic model ̂P (V1:N ) with system parameters θ such

that the distance between ̂P (V1:N ) and the distribution of the
observed data is minimized. This is equivalent to training a
model by maximizing the log-likelihood as follows:

maximize
∑
i

log P̂ (V
(i)
1:N ), w.r.t P̂ (V1:N ), θ. (1)

In a music sequence, the nth point Vn is a high-dimensional

vector, and there exists strong correlation among its elements.

Furthermore, the distribution of Vn is influenced by previ-

ous frames. Despite that these properties are important for

the accurate modeling of music data, they are often not well

considered in the literature work. The goal of our work is

to propose a flexible model that can effectively capture the

inter-dependency among data elements within each vector Vn

and an efficient transition structure to catch the dependency

between Vn and V1:n−1.

3. CHAIN GRAPHICAL RECURRENT NEURAL
NETWORK (CGRNN)

To well represent the stochastic process of the music, we pro-

pose a deep-learning probablistic model named Chain Graph-

ical Recurrent Neural Network (CGRNN). Built as a deep

stochastic generative model whose topology is equivalent to a

chain graphical model [1], CGRNN can explore the correlation

of multi-dimensional data as well as track the temporal evolu-

tion of time series to improve the performance of stochastic

modeling.

Fig. 2. Model Structure of CGRNN

The temporal unfolding of CGRNN in time slot n is shown

in Fig. 2. Quadrangle nodes denote the computational function

of transition and circle nodes represent random vectors. In each

time slot n, there are three types of random vectors to model

the specific distribution of data taken during the nth time slot.

Vn denotes the input frame, which is generally formed as a

vector. Hn is a binary random vector applied to represent

the discrete latent state of the stochastic process, while the

continuous latent state vector Sn is introduced to model the

covariance matrix of the input vector. Hn, Sn and Vn are

connected by undirected links that indicate their probabilistic

dependency. The joint distribution of the three random vectors

is given by a subgraph C-ssRBM, which will be proposed

later. Two types of temporal transitions are considered. One is

driven by Vn, which is deterministic with a given input. The

other is the probabilistic transitions Hn and Sn which are the

latent states sampled from C-ssRBM. un denotes the nonlinear

transition.
CGRNN is operated as a recurrent model. For the nth

frame input, transition un−1 from the previous time slot is
included to modulate the distributions of Hn and Vn. After
that, CGRNN generates a new non-linear feedback un from
Hn, Sn, Vnand un−1. In our application, we parameterize un

as the hidden output of a Recurrent Neural Network (RNN):

un = RNN(Relu(Vn), Hn � Sn, un−1),

where Relu() denotes multiple layers of Relu units and � is

element-wise multiplication. As Relu unit is capable of gener-

ating sparse representation of input, it is essential for construct-

ing a deep neural network. In addition, Hn in Hn � Sn serves
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as a binary mask to control the effort of Sn in the temporal

transition. Thus Hn � Sn forms a sparse representation of the

latent state activity and is appealing to use in deep learning

models for the advantages such as information disentangling

and efficient variable-size representation [8]. Therefore, we

take the concatenation of Relu(Vn) and Hn � Sn as the input

of RNN to improve the performance.
The overall structure of CGRNN provides an estimation

of ̂P (V1:N ) for a given time series. The log likelihood of the
input sequence is given by:

L(V1:N ) = log P̂ (V1:N )

= log
{ ∑

H∗,S∗

P̂ (V1:N |H0:N−1, S0:N−1)P̂ (H0:N−1, S0:N−1)
}

≥E
̂P (H0:N−1,S0:N−1)

{ N∑
n=1

log P̂ (Vn|V0:n−1, H0:N−1, S0:N−1)
}

≈E
̂P (H1:N−1,S1:N−1)

{ N∑
n=1

log P̂ (Vn|un−1)
}
, (2)

where the undirected subgraph C-ssRBM is incorporated

to define ̂P (Vn|un−1). We have applied the approximation
̂P (Vn|V0:n−1, H0:N−1, S0:N−1) ≈ ̂P (Vn|un−1) and omit-

ted the dependency between Vn and future latent states

{Hn+1:N−1, Sn+1:N−1} for two reasons. First, the informa-

tion in the future is generally intractable for online applica-

tions. Second, music data are generally represented as a long

sequence, thus it is time consuming to consider the dependency

on the latent states in the future. Therefore, the approximation

given by ̂P (Vn|un−1) is an simple way to make CGRNN an

online algorithm.

CGRNN is trained by substituting Eq. (2) into the

maximizing log-likelihood problem (1). The training pro-

cess is divided into two steps. In the first step, samples

{H1:N−1, S1:N−1} are generated according to the expected

distribution ̂P (H1:N−1, S1:N−1). This step is simplified with

our proposed C-ssRBM. As an energy-based undirected graph-

ical model, it provides the joint distribution of {Vn, Hn, Sn}
and the exact conditional distributions. Combining the condi-

tional distributions with Gibbs sampling, CGRNN is able to

generate the latent states that follow ̂P (H1:N−1, S1:N−1) in-

duced by the model description. In the second step of training,

a temporal stack of C-ssRBMs is optimized by maximizing

the likelihood function log ̂P (Vn|un−1) through Contrastive

Divergence [9].

4. CONDITIONAL UNDIRECTED SUBGRAPH

To effectively model the distribution of the data frame in

CGRNN, we propose an undirected graphical model named

conditional spike-and-slab RBM (C-ssRBM), which takes the

feedback un−1 from previous time slots as the condition and

applies it to modulate the mean and covariance parameters

of conventional ssRBM [5]. We first describe how C-ssRBM

works when inputs are continuous, and then extend it to model

data with binary inputs. We further introduce our methods in

efficiently evaluating CGRNN in the presence of C-ssRBM at

the end of this section.

4.1. C-ssRBM for Continous Inputs

C-ssRBM is an energy-based graphical model and applied
to estimate the distribution of data at the time slot n. It has
undirected links among the continuous visible layer Vn, the
binary latent state Hn and the continuous latent state Sn. Hn

is generally called “spike” state and Sn is called “slab” state.
The joint distribution of {Vn, Hn, Sn} on the condition of the
feedback un−1 is given by Boltzmann distribution with the
corresponding energy function defined as

P̂ (Vn, Hn, Sn|un−1) =
exp(E(Vn, Hn, Sn|un−1))

Zn(un−1)
, (3)

E(Vn, Hn, Sn|un−1) =
1

2
ST
n diag(α)Sn − V T

n W (Sn �Hn)

+
1

2
V T
n

( ∑
Hni∈H

ΦiHni + Λ+ diag
(
U1un−1

))
Vn

− (bh + U2un−1)
THn − (bv + U3un−1)

TVn

+ αT
diag(μ2)Hn − ST

n diag(α� μ)Hn, (4)

where Zn(un−1) is called partition function. The symbols

�, (·)2 and diag(·) denote respectively the element-wise mul-

tiplication, the element-wise square, and a diagonal matrix

with the argument vector on its diagonal. {U∗,W, bv, bh} are

weight and bias parameters. {Φ∗} and Λ are diagonal positive

matrices to insert the positive definite constraints of the con-

ditional covariance matrices of visible layer. α and μ are the

variance and mean parameters of Sn.

By marginalizing Eq. (3) with respect to the spike and slab
variables, the distribution of input is given by

P̂ (Vn|un−1) =
exp

(
−Fn(Vn|un−1)

)
Zn(un−1)

, (5)

where the free-energy Fn(Vn|un−1) is described as

Fn(Vn|un−1) =
1

2
V T
n Λ̃nVn − b̃Tv Vn − 1

2

∑
αi∈α

log(2πα−1
i )

−
∑

softplus
(1

2
diag(α)−1(WTVn)

2 − 1

2
V T
n {Φi}Vn

+WTVn � μ+ b̃h
)
.

Comparing Eq. (4) with the energy function of ssRBM

[5], there are three additional terms. The first two terms

(U2un−1)
THn and (bv+U3un−1)

TVn introduce time-variant

biases for the conditional distributions of Hn and Vn. The

third item 1
2V

T
n ·diag(U1un−1) ·Vn is applied to modulate the

covariance matrix with the feedback.
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By applying the Bayes law, we further obtain the condi-
tional distributions of the visible units as

P̂ (Vn|Sn, Hn, un−1) = N
(
Cv|s,h

n

[
W (Sn �Hn) + b̃v

]
,

Cv|s,h
n

)
,

P̂ (Vn|Hn, un−1) = N
(
Cv|h

n

[
W (μ�H) + b̃v

]
, Cv|h

n

)
,

The time-varying biases for input are given by ˜bv =
bv + U3un−1. The covariance matrices corresponding to
̂P (Vn|Sn, Hn, un−1) as well as ̂P (Vn|Hn, un−1) are given
as

Cv|s,h
n =

[ ∑
Hni∈H

ΦiHni + Λ̃n

]−1

,

Cv|h
n =

[
(Cv|s,h

n )−1 −Wdiag(Hn/α)W
T
]−1

.

where ˜Λn = diag(U1un−1)+Λ. Through˜bv and ˜Λn, the feed-

back un−1 can modulate both the mean value and covariance

in the conditional distributions of input. Therefore, C-ssRBM

is capable of estimating the essential statistics of Vn based on

the history transition. Recall that Hn is a binary random vector

and C
v|s,h
n should be positive definite. The activation of Hn

trims the covariance, which results in a non-diagonal matrix

C
v|h
n . Hence, P (Vn|Hn, un−1) can model high-order partial

correlation between elements of the input vector Vn.

4.2. C-ssRBM for Binary Inputs

The spike and slab structure also provides an efficient mech-
anism to utilize the conditional correlations among binary
inputs [5]. Therefore, we define a binary C-ssRBM to capture
the conditional dependency between different elements of the
binary frame vector Vn at time n for the symbolic MIDI. The
corresponding free-energy function of the binary C-ssRBM is
given by

Fn(Vn|un−1) = −b̃Tv Vn − 1

2

∑
αi∈α

log(2πα−1
i )

−
∑

softplus
(
WTVn � μ+

1

2
diag(α)−1(WTVn)

2 + b̃h
)
.

4.3. Evaluation of CGRNN

C-ssRBMs for the continuous and binary observations pro-

vides CGRNN with an integrated structure to capture the

conditional covariance of the input vector in each time slot,

which is less considered in existing stochastic neural models

[3, 4, 7, 2]. However, C-ssRBM also induces the challenge

of approximating the intractable partition functions Zn(un−1)
when evaluating the model performance. In this paper, we

consider two methods for the approximation.
In the first method, we apply the anneal importance sam-

pling (AIS) [13], a standard approximation algorithm to find

the partition functions for the family of Restricted Boltz-
mann Machines. The second method takes the corresponding
lower bound of Neural Variational Inference and Learning
(NVIL) [10], which is given as

logP̂ (Vn|un−1) ≥ −Fn(Vn|un−1)

− 1

2
log Eqn(Vn)

(qn(Zn|Vn) exp(−Fn)

qn(Zn)qn(Vn|Zn)

)
,

where qn(Zn|Vn), qn(Vn|Zn) and qn(Zn) are defined by a

variational autoencoder.

It is preferable to use AIS than the NVIL lower bound in

evaluating the partition function, as the bound could be very

loose if the proposal distribution qn(Vn) given by the varia-

tional autoencoder is far different from the distribution of our

model [10]. However, the performance of AIS for continuous

input is unstable. As sampling is done in the whole real-valued

space, there is no upper bound of the generated samples if the

difference between the proposal distribution of the algorithm

and ̂P (Vn|un−1) given by CGRNN is large. Therefore, we

approximate Zn(un−1) inside the log-likelihood by AIS for

binary input but by NVIL lower bound for continuous input.

5. EXPERIMENTS ON MUSIC AND SOUNDS

In this section, we evaluate the performance of CGRNN

through experiments over two music datasets, the Lakh Midi

dataset [12] with over 19000 clean MIDI files and the IDMT-

SMT-Audio-Effects dataset [14] consisting of 55044 WAV

files of single bass and guitar notes with different audio effects.

We first perform quantitative evaluations with unsupervised

learning metrics, and then analyze the qualitative properties of

CGRNN visually. We further apply our model to the automated

music generation and discuss the advantages of our model. The

implementation of the experiments can be accessed in https:
//github.com/liu2231665/Project-dl4s.

5.1. Data Preprocessing

In both datasets, the ratio of train, valid and test sets is

0.9/0.05/0.05. We only perform some simple format transfor-

mations for the raw data as follows:

∗ Lakh: Each midi file is segmented by one minute. Short

files with lengths less than one minute are removed. A segment

is transferred into piano-rolls and forms a sequence of data

frames. Each data frame is a 128-dimensional binary vector
that indicates the activated pitches in the interval of 0.25 sec-

onds.

∗ Audio Effect: The audio file is sampled at the fre-

quency of 11.025 kHz and reshaped as a 147-by-150 matrix

with continuous values. Each row of the matrix is a 150-

dimensional vector that represents 150 successive sampling

points. The 147 rows of the whole matrix record a sequence

of data frames. We also normalize the data using the global

mean and standard deviation computed from the training set.
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All models are evaluated in time domain without extracting

spectrograms.

5.2. Stochastic Modeling

To verify the performance of CGRNN on modeling the stochas-

tic process of music data, we compare our model with the

baseline and state-of-art models on stochastic modeling: RNN

[4], VRNN [4], STORN [2], SRNN [7] and RNN-RBM [3].

STORN, VRNN and SRNN are sequential variational autoen-

coders (VAE), which are trained by evidence lower bound

(ELBO). RNN-RBM is an energy-based TRBM model, which

is trained by Contrastive Divergence (CD).

We use log-likelihood and recursive prediction error as

performance metrics. The log-likelihood (LL) is frequently

used in unsupervised learning tasks, but exact LL is intractable

except for RNN, and therefore either the approximation or

the lower bound is often applied. As the comparison using

only the log-likelihood is rough, we also evaluate the error of

recursive prediction in these datasets. For Lakh dataset, we use

the average accuracy (ACC%) of frame-wise pitch prediction

[11] as the metric. For Audio Effect dataset, we use the frame-

wise rooted mean square error (RMSE) between the predicted

signal and the ground-true one. The results are listed in Table

1.

Table 1. Modeling and reconstruction performance of various

models
Lakh Midi Audio Effects

LL ACC% LL RMSE

RNN-I −6.82 40.43 308.72 5.14
RNN-II −14.12 8.98 298.85 4.85

STORN ≥ −7.06 39.58 ≥ 253.24 5.61
VRNN ≥ −3.53 81.83 ≥ 456.18 1.80
SRNN-s ≥ −3.41 79.01 ≥ 323.10 4.16
SRNN-s+res ≥ −4.72 63.85 ≥ 398.56 4.08
SRNN-f ≥ −3.29 81.37 ≥ 411.44 2.29

RNN-RBM ≈ −6.09 60.83 ≈ −141.8 3.27
RNN-ssRBM ≈ −5.76 86.28 ≥ 310.42 1.71

CGRNN ≥ −2.70 87.88 ≥ 503.80 0.50

Our model has the best unsupervised learning perfor-

mances in both the datasets. Compared with the second best

model, CGRNN increases LL by 18% and accuracy by 2% in

the midi data. For the audio data, the improvement is signifi-

cant. RMSE is reduced from 1.71 to 0.50. The approximated

lower bound of LL is increased by 10%.

5.3. Qualitative Evaluations
We further study other features of CGRNN, including the pat-

terns of hidden activations, the learned conditional covariances

and the quality of input reconstruction from hidden activations.

These properties are hard to evaluate quantitatively. Therefore,

we provide the visualization of some representative samples.

As the performances of RNN, RNN-RBM and STORN are

relatively worse, we focus the comparison on VRNN, SRNN-s,

RNN-ssRBM and CGRNN.

Fig. 3. The hidden activations of various models. The horizon

is time axis and the vertical axis is the latent state vector.

Hidden activations: The hidden activation can reflect

how well the stochastic model captures the temporal evolution

of data sequence. It can also be applied as a feature input

for other deep learning models. For VRNN and SRNN-s

which have merely continuous latent states, we define the

hidden activation as the conditional mean of the latent states

with given inputs. For CGRNN and RNN-ssRBM, Hn � Sn

could produce a sparse representation. Therefore, we use

E(Hn � Sn|Vn, un−1) as the hidden activation. According

to Fig. 3, the hidden activation of SRNN-s is chaotic and

CGRNN has the most sparse activations. E(Zn|Vn, un−1)
of VRNN for the audio wave has a noisy fluctuation at the

beginning, when the corresponding part of the audio wave is

blank.

Conditional Precisions: The covariance matrix C
v|h
n and

its inverse precision matrix (C
v|h
n )−1 of CGRNN provide a

method to model the high-order partial correlation among

data. The precision matrices at different time slot n of the

CGRNN and RNN-ssRBM are displayed in Fig. 4. Without

the efficient transition structure, the precision matrix of RNN-

ssRBM consistently degenerates into simple diagonal matrices.

In contrast, CGRNN effectively captures the evolution of the

correlation over time. At the time slot 0, the matrix is diagonal.

At the later time slots, the wider diagonal lines reflect the

correlation between adjacent elements within each frame.
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Fig. 4. (a) The conditional precision matrices of CGRNN. (b)

The conditional precision matrices of RNN-ssRBM.

Reconstruction of samples: The reconstruction quality

from the hidden activation to data input is essential for a deep

generative model. All the four models are able to reconstruct

the main melodies of a given piano-rolls from the hidden

activations, with some noise in the jumpy pitches. For recon-

structing the audio waves of the guitar and bass sound, only

CGRNN is able to generate an accurate sound with an accept-

able level of noise. The reconstructions of VRNN, SRNN and

RNN-ssRBM are submerged into noises.

5.4. Music and Sound Generation

CGRNN can benefit a broad range of applications in multime-

dia. As another example, we implement CGRNN and train the

model with the Lakh dataset for automated music generation.

This is one of the applications of AI in the musicology.

Perceptually, CGRNN is capable of generating melodious

polyphonic music without human knowledge. The generated

music consists of abundant chords and rhythms, which is not

observed from existing methods [6, 3]. Unlike the recent work

[6] that seeks to generate multi-instrument music, we focus

on the generation of single-track music with higher quality

and large variation of rhythm. Nevertheless, CGRNN can also

provide a more accurate temporal model for existing methods

to generate better multi-track songs.

6. CONCLUSION

In this paper, we propose a deep learning model called

CGRNN for more accurate stochastic modeling of music. The

experiments using two challenging datasets demonstrate that

CGRNN can achieve a significant improvement on music mod-

eling over multiple state-of-art stochastic models. By learning

the stochastic process of music represented as symbolic MIDI

and audio signal, CGRNN can be applied to a broad range of

real-world applications on music information retrieval. We

will investigate these in our future study.
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