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Abstract—We consider a sensor network where the state es-
timates are sent over long-haul connections from sensors to a
fusion center to be correlated and fused to generate a global
state estimate. The network loss and latency determine the state
estimates received within a time-window at the fusion center,
which in turn determine the quality QCC(τ) of the global state
estimate computed within the allocated time τ . We derive a
probabilistic performance bound on QCC(τ) as a function of
the distribution of state estimates as well as the computation
and network parameters, which shows a separation between
the contributions of communications and computing parts. We
then show that measurements based on field tests can be used
to derive confidence bounds for QCC(τ). We complement the
analytical results with component simulations and a system-level
simulation of tracking a ballistic object to illustrate the qualitative
effects of computing, including allocated computation time, and
communications, including loss rates and transport protocols.

Index Terms—Long-haul sensor networks, state fusion, commu-
nication protocols, intractable computation.

I. INTRODUCTION

Sensor networks have been deployed in a variety of applica-
tions including environmental monitoring, target tracking, and
health care [1], [2]. In particular, information fusion methods
have been utilized to combine data from networked sensors
to support detection and tracking tasks [3], [4]. Several of
these works consider a “small” communications network so
that the effects of losses and latency can be mitigated by an
appropriate choice of data processing algorithms [5], [6]. In
sharp contrast, sensors in long-haul sensor networks may be
distributed across the globe and/or in space, in applications
such as monitoring greenhouse gas emissions using airborne and
ground sensors [7], processing global cyber events using cyber
sensors distributed over the Internet [8], space exploration using
a network of telescopes [9], and target detection and tracking for
air and missile defense [10]. The response time requirements of
of such long-haul sensor networks could be quite varied, from a
few seconds in detecting cyber attacks on critical infrastructures
to years in detecting global trends in greenhouse gas emissions.
We focus on a particular class of long-haul sensor networks
that are tasked to detect and track events and/or targets within
a timescale of seconds.

We consider long-haul sensor networks, wherein the state
estimates are sent to a fusion center over long-haul connections,
such as submarine and terrestrial fiber connections or satellite
links that could be tens of thousands of miles long. The
sensor data received at the fusion center within a time-window

(of few seconds) are correlated and fused to generate global
state estimates of targets within the “field of view” of one or
more sensors. The correlation algorithm determines the groups
of state estimates, such that each group is hypothesized to
correspond to a single target. The fusion algorithm combines
the state estimates of each group into a single global estimate
corresponding to the underlying target. These algorithms, typi-
cally nonlinear, are used to solve computationally intractable
problems [11], [12], and hence the quality of their output
for a fixed time allocation τ could vary significantly. Their
execution time depends not only on the number of the input state
estimates but also on their inter-relationships; for example, well-
clustered state estimates are easier to correlate than uniformly
dispersed ones. Furthermore, the communication round-trip
time (RTT) is of the same order as the algorithm time-window,
and random communication losses and latency variations will
be reflected in the different sensor estimates arriving within
the time-window at the fusion center. As a result, both the
computing and communications parameters contribute to the
quality of the fused state estimates. The performance measure
of the global state estimate generated by the network is given
by QCC(X̂1, . . . , X̂N , τ) ∈ [0, 1], which typically represents
the normalized state estimation error. The goal is to keep this
performance measure as small as possible, and in particular to
keep it lower than a specified value δ with a certain level of
confidence.

A complete and precise evaluation of the performance mea-
sure of the global state estimate would require an in-depth
knowledge of the underlying distributions of state estimate
errors, correlation and fusion algorithms, network communica-
tions parameters, and their mutual dependencies. Such detailed
knowledge is often not available; nevertheless, the network is
deployed in such a way that field system tests can be conducted
using targets of known states. Although significant expense and
time are often entailed for such field tests that could limit the
total number of runs, the correlation and fusion algorithms
can be executed off-line using the field measurements and
different time allocations at significantly lower costs. We limit
our treatment to estimating approximations to the performance
bounds of the global state estimate based on a limited number
of such tests.

Our focus in this work includes: (a) analytical methods
to assess the quality of fused state estimates with different
communication and computation scenarios and (b) estimation



2

Network: 
loss, 
delay 

X̂1, X̂ 2 ,…, X̂ N

X̂ W
i1
, X̂ W

i2
,…, X̂ W

ik

Time window 
[t, t+W] 

Correlation  
and fusion 

Fi Χ̂ i1

W ,…,Χ̂ ik

W( )

QC Χ̂ i1

W ,…,Χ̂ ik

W ;τ( )

QCC Χ̂1,…,Χ̂N ;τ( )

X̂ W
i1
, X̂ W

i2
,…, X̂ W

ik

Correlation 
Χ̂1
F ,…,Χ̂ l

F
Fusion 

Λ1,Λ2 ,…,Λ l ⊆ X̂ W
i1
, X̂ W

i2
,…, X̂ W

ik{ }
Λ l1

∩Λ l2
=∅; l1 ≠ l2

Global State 
Estimates 

(a) Computing and Communications 

(b) Correlation and Fusion 

Fig. 1. Decomposition of computing and communications parts

methods to utilize measurements from field system tests to
support such assessments. Our contributions are two-fold:
(a) We derive an expression for the expected value Q̄CC(τ)

of the global estimate as a function of the fixed computing
time τ and the network loss probability and latency.
This analysis shows a degree of separation between the
contributions of network and computation parameters to
Q̄CC(τ), so that they can be analyzed independently.

(b) We demonstrate that measurements of QCC(τ) from field
system tests can be used to derive robust estimates of
the probability with which the quality of the fused esti-
mate is bounded by δ for an allocated time τ , namely
P
{

QCC

(
X̂1, . . . , X̂N ; τ

)
< δ
}

.

We complement these analytical results by a series of simula-
tions with different levels of abstractions to illustrate the qual-
itative effects of (i) computing, including types of fusers and
allocated computation time, and (ii) communications, including
loss rates and transport protocols.

This paper is organized as follows: In Section II we derive
a performance bound for QCC(X̂1, . . . , X̂N , τ) as a function
of τ and parameters of the network and processing algorithms.
We describe performance bounds on estimates of QCC using
measurements from field tests in Section III. Component and
system-level simulation results are presented in Section IV, and
the conclusions are presented in Section V.

II. COMPUTING AND COMMUNICATIONS DECOMPOSITION

The computation and communication processes involved in
the generation of global state estimates are illustrated in Fig. 1.
A total of N sensors are used to generate the state estimates
X̂1, X̂2, . . . , X̂N , which are then sent to the fusion center.
However, due to the long-haul connections, these packets are
fairly susceptible to losses and significant delays so that only a
subset of the state estimates, X̂W

i1
, . . . X̂W

ik
, arrive within a time-

window [t, t + W ] at the fusion center. The received state esti-
mates are then input into the correlation and fusion algorithms.
The output of the correlation algorithm consists of groups of
correlated state estimates Λ1,Λ2, . . . ,Λl ⊆ {X̂W

i1
, . . . X̂W

ik
};

Λl1 ∩ Λl2 = ∅, for l1 6= l2, such that each Λi is hypothesized

to correspond to a single target i. Each set of correlated state
estimates is then fused to generate the global state estimates.

With the estimates X̂W
i1

, . . . , X̂W
ik

received at the fusion
center, the computation time of the correlation and fusion
algorithms is TC

(
X̂W

i1
, . . . , X̂W

ik

)
. If allocated time τ is

smaller than this quantity, the algorithms may not run to
completion, thereby affecting the quality of the output. Let
QC

(
X̂W

i1
, . . . , X̂W

ik
; τ
)

denote the performance measure of the
correlation and fusion output normalized to interval [0, 1], where
0 represents no error and 1 represents the maximum error.
By combining computing and communications, the quality of
the estimate generated by the network in response to the state
estimates X̂1, X̂2, . . . , X̂N is QCC

(
X̂1, . . . , X̂N ; τ

)
. This is a

random quantity with two types of contributors: (a) distributions
of state estimates, including those of the target, measurement
process and state estimation algorithms, and (b) network loss
and latency distributions that determine the state estimates that
arrive within the time-window [t, t + W ] at the fusion center.
The expectation of the performance measure is given by

Q̄CC (N, τ) =
∫

X̂1,...,X̂N

QCC

(
X̂1, ..., X̂N ; τ

)
dPX̂1,...,X̂N

=

∫
X̂1,...,X̂N

∫
k≥0:X̂W

i1
,...,X̂W

ik

QC

(
X̂W

i1 , ..., X̂W
ik

; τ
)

dPX̂W
i1

,...,X̂W
ik

·P
{

k ≥ 0 : tX̂W
i1

, . . . , tX̂W
ik

∈ [t, t + W ]
}

dPX̂1,...,X̂N
,

(1)

where tX̂W
ij

, j = 1, 2, . . . , k, denotes the time at which the

state estimate X̂W
ij

arrives at the fusion center. This expression
demonstrates the contributions of randomness due to (a) state
estimates reflected in the measure QC

(
X̂W

i1
, . . . , X̂W

ik
; τ
)

and
(b) communications network parameters reflected in the proba-
bility P

{
tX̂W

i1
, . . . , tX̂W

ik

∈ [t, t + W ]
}

.
We are interested in the probability of ensuring the quality

measure of the final estimate to be below δ, when time τ
is allocated to the correlation and fusion algorithms; that is,
P
{

QCC

(
X̂1, . . . , X̂N ; τ

)
< δ
}

. We decompose this quantity
by conditioning on the state estimates as follows

P
{

QCC

(
X̂1, . . . , X̂N ; τ

)
< δ
}

= (2)∫
P
{

QCC

(
X̂1, . . . , X̂N ; τ

)
< δ|X̂1, . . . , X̂N

}
dPX̂1,...,X̂N

.

A lower bound on P
{

QCC

(
X̂1, . . . , X̂N ; τ

)
< δ|X̂1, . . . , X̂N

}
is derived as follows

P
{

QCC

(
X̂1, . . . , X̂N ; τ

)
< δ|X̂1, . . . , X̂N

}
=∫

k≥0:X̂W
i1

,...,X̂W
ik

P
{

QC

(
X̂W

i1 , . . . , X̂W
ik

; τ
)

< δ
}

dPX̂W
i1

,...,X̂W
ik

· P
{

k ≥ 0 : tX̂W
i1

, . . . , tX̂W
ik

∈ [t, t + W ]
}
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≥
N∑

k=0

1−
Ek

[
QC(X̂W

i1
, . . . , X̂W

ik
; τ)
]

δ


· P

{
k ≥ 0 : tX̂W

i1
, . . . , tX̂W

ik

∈ [t, t + W ]
}

(3)

where we have utilized Chebyshev’s inequality; namely, for
X > 0, we have P{X < δ} ≥ 1 − E[X]

δ , and the expectation
Ek[.] is taken over k received state estimates. The above
expression shows the separation between the computation and
communications parts, which can be analyzed independently.
The first term depends on the distribution of the state estimates
and the parameters of the correlation and fusion algorithms,
in particular, on the random event

{
TC

(
X̂W

i1
, . . . , X̂W

ik

)
< τ

}
and the resulting QC

(
X̂W

i1
, . . . , X̂W

ik
; τ
)

. The second term does
not depend on the state estimates and can be analyzed using the
properties of network communications, such as latency and loss
rate of the connection and time-out parameters of the transport
protocols employed.

A. Computation Time

The computation time TC

(
X̂W

i1
, . . . , X̂W

ik

)
is composed of

the execution time of both correlation and fusion algorithms
and could vary significantly depending on the underlying algo-
rithms. In general, the correlation problem is computationally
intractable [11] in that its worst-case execution time of any
algorithm could be exponential in k. The computation time of
linear fusers is O(k), whereas more complicated fusers may
have significantly longer execution time [12]. Consequently, the
quality of the output typically degrades with decreasing τ , the
time allocated for executing these algorithms. For example, the
multiple-hypothesis correlation algorithm is implemented as a
tree search [11], which is then curtailed to limit its execution
time to τ . Such search termination leads to a sub-optimal
correlation quality as reflected in the fuser output. In the special
case where it is known a priori that there is only a single target,
the correlation is much simpler since it only needs to identify
the state estimates that correspond to the target as opposed to
spurious states such as those of debris or noise.

When a fixed time τ is allocated for correlation and fusion,
the expected quality with k state estimates is given by

Q̄C(k, τ) =
∫

X̂W
i1

,...,X̂W
ik

QC

(
X̂W

i1 , . . . , X̂W
ik

, τ
)

dPX̂W
i1

,...,X̂W
ik

.

(4)
Then, the overall correlation and fusion quality is

Q̄C(τ) =
N∑

k=0

PkQ̄C(k, τ), (5)

where Pk is the probability of receiving exactly k updates within
[t, t+W ] at the fusion center. In general, the quantities Q̄C(k, τ)
and Q̄C(τ) cannot be exactly computed since they depend on
the distribution of states X̂W

i1
, . . . , X̂W

ik
, which subsumes those

of state estimates and communications network, as well as the
properties of correlation and fusion algorithms. We consider that
the sensor network has been deployed so that system tests can
be conducted and the correlation and fusion algorithms can be

executed. In tests, targets with known states are provided to the
system and the corresponding outputs are measured, including
the state estimates at sensors and fusion center, and outputs of
correlation and fusion algorithms. In Section III, we describe a
method that utilizes data from field tests to estimate confidence
bounds on Q̄C(k, τ) and Q̄C(τ).

B. Communication Time
We consider a simple message loss model for TCP com-

munications where each message is lost with probability p
independently of other messages. At a high-level abstraction,
TCP sends a message – the state estimate in our case – and waits
for a time-out period TTO to receive an acknowledgment, after
which the message is re-sent if no acknowledgment is received.
Typically, TTO is several times the RTT of the connection,
and over long-haul connections it could be of the order of
seconds, the same as that of the time-window of correlation
and fusion algorithms. Let TT

EE denote the time at which a
message is received at the receiver using TCP, and TL the
latency of the connection. The probability that a message will be
delivered after exactly i losses is pi(1− p), which corresponds
to TT

EE = iTTO + TL. Then, the expected time at which the
message is received using TCP is

E
[
TT

EE

]
= TL +

∞∑
i=0

ipi(1− p)TTO = TL +
p

1− p
TTO, (6)

and the second moment is given by

E
[(

TT
EE

)2]
= T 2

L + 2TTOTL
p

1− p
+ T 2

TO

p(1 + p)
(1− p)3

. (7)

From these expressions, the probability that a message will be
successfully delivered within the time-window [TL, TL +W ] is
given by

P
{
TT

EE − TL < W
}

= 1−P
{
TT

EE − TL > W
}

≥ 1−
E
[
(TT

EE − TL)2
]

W 2

= 1− T 2
TOp(1 + p)

W 2(1− p)3
,

(8)

where we have applied the Chebyshev’s inequality of the
second order: P{X > δ} ≤ E[X2]

δ2 . For a given connection
loss probability p, this probability bound could be lower than
desired. In particular, for connections of tens of thousands of
miles, TTO is of the order of seconds, and even small loss
probabilities will lead to messages missing the time-window
by a few seconds at the fusion center. At the cost of utilizing
additional bandwidth, the message delivery probability can be
improved by replicating the state estimates and sending them
over different TCP streams. Such streams could be sent over
different paths if available and staggered across different TCP
ports, and we call such protocol the Duplicated Staggered TCP
(DSTCP).

We send three copies of each state estimate over the con-
nection, which reduces the loss rate to p3. Let TDI

EE denote the
time at which the state estimate is received using such DSTCP
method. Then we have

E
[
TDI

EE

]
= TL +

p3

1− p3
TTO, (9)
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which is smaller than E
[
TT

EE

]
for p > 0. Proceeding as above,

we have the message delivery probability given by

P
{
TDI

EE − TL < W
}
≥ 1− T 2

TOp3(1 + p3)
W 2(1− p3)3

, (10)

which is higher than in the case of TCP.
We now consider a more general scenario where message loss

is correlated. Let p1 denote the probability of losing a duplicate
state estimate given the first one is lost. For loss caused by
buffer overflows at the routers and hosts, p1 could be much
higher than p. Then for DSTCP that sends three copies of the
state estimate, let TDC

EE denote the time at which the message
is received at the fusion center. Similar to the previous case,
we have

E
[
TDC

EE

]
= TL +

pp2
1

1− pp2
1

TTO, (11)

which is smaller than E
[
TT

EE

]
for p > 0, p1 > 0 but larger

than E
[
TDI

EE

]
when p1 > p. Similarly, we have the message

delivery probability given by

P
{
TDC

EE − TL < W
}
≥ 1− T 2

TOpp2
1(1 + pp2

1)
W 2(1− pp2

1)3
, (12)

which is higher than that in the case of TCP. In general,
the number of replicated state estimates needed to meet a
specified probability of message delivery can be estimated with
p, TTO and TL, by generalizing the above derivations. On
long connections that are not bandwidth-constrained, DSTCP
provides a practical solution to improve the quality of the
fused state estimate. Such a method can be implemented at
the application level on the end hosts.

III. FIELD TEST MEASUREMENTS

In field tests, the state estimates corresponding to known
targets are sent over the network to the fusion center, and the
algorithms are executed with a fixed execution time τ . The
collected measurements are used to measure the performance of
the fused state corresponding to (i) Q̄C(τ) for fixed execution
time τ , and (ii) Q̄C(k, τ) for k received state estimates at
the fusion center for fixed τ . The system executes l system
tests wherein the numbers of state estimates reaching the
fusion center within time-window [t, t + W ] are given as
k1, k2, . . . , kl. The corresponding measured performance esti-
mates are qk1,τ , qk2,τ , . . . , qkl,τ . We define the empirical mean

Q̂(τ) =
1
l

l∑
i=1

qki,τ , (13)

and use it as an estimate for Q̄C(τ). The closeness of this
estimate is given by the Hoeffding’s inequality [13]

P
{∣∣∣Q̄C(τ)− Q̂(τ)

∣∣∣ > ε
}

< 2e−2ε2l, (14)

which improves with the number of measurements l.
We now address the issue of extrapolating the above result

for a specified number k of the state estimates used at the fusion
center. Let r̂(k) represent the regression estimate of Q̄C(k, τ)
for fixed τ . It is assumed that r̂(k) is an non-increasing function
of k in that the overall quality of the fused state improves (at

least does not degrade) with more state updates arriving within
time-window [t, t+W ] at the fusion center. Thus r̂C(.) is chosen
from a set of bounded monotone functions of a single operand,
denoted by M1. Let r̂C minimize the empirical error

min
rC∈M1

1
l

l∑
i=1

(rC(ki)− qki,τ )2 . (15)

The prediction capability of r̂C is given by Vapnik’s finite
sample theory [13] as follows:

P
{

max
k

∣∣Q̄C(k, τ)− r̂C(k)
∣∣ > ε

}
≤ 8ele−εl/4. (16)

which also improves with the number of measurements l but
slower than Hoeffding’s bound above.

IV. SIMULATION EXAMPLES

A. Component Simulations

We now present simplified simulations of a single 3D target
to illustrate the analytical results. Here, the states are generated
uniformly within [−A,A]3 area as in Fig. 2(a), which shows
two of the three coordinates. The communication losses are
simulated by using TCP message delivery rates1 computed
based on connection loss probabilities. In this example, RTT is
1 second corresponding to about 10,000-mile connection, and
the time-window is 10 seconds.
(a) Average Fuser - Unbiased independent errors: The sensor

errors are zero-mean and statistically independent in the
range [−B,B], as shown in Fig. 2(b). For this case, the
fuser averages the state estimates that arrive within the
time-window, and provides a substantial improvement in
the state error as shown in Fig. 2(c); the Euclidean-distance
error of the fused estimate is around 8 compared to that of
the average sensor error at around 20. Thus, the fusion of
sensor estimates is a good choice in this case if there are
no network losses. As the communications loss probability
is increased, TCP losses lead to the degradation of state
estimate as shown in Fig. 2(c). When the loss rate exceeded
0.7 no messages were received within the window at the
fusion center in 20 instances we simulated.

(b) Nonlinear Fuser - Biased errors: To illustrate the effects
of the fuser, we consider biased sensor errors as shown
in Fig. 3(a), where positive state values have a positive
bias and negative state values a negative bias. In this
case, the average fuser is no longer as effective, but a
nonlinear fuser that applies a correction based on the sign
of the coordinate and then computes an average, leads to a
much improved state estimate as shown in Fig. 3 (b). This
fuser is more complex and performs better than its linear
counterpart; nevertheless, its performance also degrades
with the connection loss probability in a qualitatively
similar manner.

(c) Linear Fuser - Unbiased errors with difference variances:
Next, we consider a case where sensor errors have zero bias

1Due to the loss recovery mechanism of TCP, the message delivery rate
is higher than one minus the connection loss probability and increases with
window-size W .
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but have different variances as shown in Fig. 3(c). In this
case, a linear fuser with coefficients inversely proportional
to the sensor error covariances performs better than the
average fuser, as illustrated in Fig. 3(d). And the effects of
communication losses are quite similar to previous cases.

As illustrated in these cases, the fusion method determines the
quality of the estimate and the execution time. Nevertheless,
in each case the fuser performance degrades in a qualitatively
similar way as the loss probability is increased under TCP. But
DSTCP achieves a better message delivery rate than TCP, and
improves the fused state estimate as will be illustrated next.

Results of 20 field test point observations for a loss rate of
40% are shown in Fig. 4. The number of state updates received
using DSTCP is higher than that of TCP, which consequently
leads to a lower average state error as shown in Fig. 4(a).
Using the Hoeffding’s inequality presented in previous section,
we computed the confidence levels for 95%–99% intervals as
shown in Fig. 4(b). For a 95% interval the confidence is close to
0.99, but it is only around 0.4 for a 98.5% interval. By varying
the connection loss probability from 0.1 to 0.8, we collected
the state errors as a function of the number of state estimates.
The k values corresponding to different loss rates are shown
in Fig. 4(c) along with the corresponding regression fits. The

confidence estimates for the regression estimation are shown
for 50%-90% intervals in Fig. 4(d), which are less tight than
those of point estimates given by Hoeffding’s formula since the
underlying regression estimation problem is more complex than
that of estimating the scalar quantity Q̄C(τ).

B. System-Level Simulation

We now consider system-level simulations using a ballistic
target model with known distributions and properties of the state
estimate errors, correlation and fusion algorithms, and network
communication parameters. The states of the coasting ballistic
targets are simulated using the following state-space model [14]:

ẋ ,

[
ṗ
v̇

]
= f

([
p
v

])
,

[
v

aG(p)

]
. (17)

The target state vector x =
[
pT vT

]T
, where p =[

x y z
]T

and v , ṗ =
[
ẋ ẏ ż

]T
are the target position

and velocity vectors, respectively. aG(p) is the gravitational
acceleration under the spherical Earth model [14]:

aG(p) = − µ

p2
up = − µ

p3
p, (18)

where p is the vector from the Earth’s center to the target,
p , ‖p‖ is its length, up , p/p is the unit vector in the
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Fig. 4. Confidence measures based on field test simulations

direction of p, and µ = 3.986012 × 105 km3/s2 is the Earth’s
gravitational constant. The algorithm used for state propagation
can be found in [15].

A state estimate X̂i from sensor i is generated by adding
random Gaussian noise to the true states:

X̂i = X + ni, (19)

where X is the true target state for a target, and ni ∼ N (0,Σ).
Σ is a diagonal matrix

Σ = diag
([

σ2
x σ2

y σ2
z σ2

ẋ σ2
ẏ σ2

ż

])
, (20)

where σ2
x, σ2

y , and σ2
z are the position error variances, and σ2

ẋ,
σ2

ẏ , and σ2
ż are the velocity error variances.

The states for two different targets are generated using the
initial states shown in Table I. Two sensors are assumed to be
tracking each target at all times (for a total of 4 sensors in these
simulations) although the correlator does not always correctly
assign the state estimates from each sensor to the correct target.
The state estimate error parameters are set as follows for both
sensors: σ2

x = σ2
y = σ2

z = 1 and σ2
ẋ = σ2

ẏ = σ2
ż = 10−4.

TABLE I
INITIAL TARGET STATES

Target
Position
x, y, z (km)

Velocity
ẋ, ẏ, ż (km/s)

1 [16] 113.75, 3950, 5150 0.94, 3.33, -6.0125
2 114.25, 3945, 5140 0.92, 3.2, -6.0

1) Communications and Computing: The communication
losses are again simulated by using TCP and DSTCP message
delivery rates as described in the last subsection. For corre-
lation/data association, we consider a simple model: the state
estimate of Target i is assigned to Target j by the correlator
with probability aij :

aij =

{
1− (M − 1)p, i = j

p, i 6= j
, i, j = 1, ...,M, M ≥ 2,

(21)

where M is the number of targets, and p is the probability that
we assign a state estimate to any incorrect target. For the case
where M = 1, data association is not required since there is
only one target that the state estimate can belong to (i.e., for

M = 1, p = 0). In these simulations we will only examine the
more interesting case where M ≥ 2.

We model p here to be the following function of the number
of targets, M , and the fixed execution time, τ :

p =
1

M(1 + βτ)
, p ≤ 1

M
, (22)

where β is a scaling parameter. This function has the following
properties: (a) as the number of targets M increases, the total
probability of misassignment, (M − 1)p, increases; (b) as τ
increases, p decreases; (c) if τ = 0, there is an equal probability
of assigning a state estimate to any target; and (d) as τ →∞,
p → 0. However, of note is that p is unlikely to be zero given an
unlimited execution time for the correlator; more likely there
may be some lower bound pmin on the probability p, which
may be added to p such that if τ →∞, p → pmin.

Once the received state estimates have been assigned to a
target, a linear fuser is then employed to fuse the state estimates
assigned to each target, which is given by

X̂F
j =

(
L∑

i=1

P−1
ji

)−1 L∑
i=1

P−1
ji

X̂W
ji

, (23)

where X̂F
j is the fused estimate of target j, X̂W

ji
is a received

state estimate that has been assigned to target j and Pji is its
corresponding state error covariance matrix, and L is the total
number of estimates that have been assigned to this target.

2) Performance Bounds: The mean-squared error (MSE)
is used as the quality measure QCC

(
X̂1, ..., X̂N ; τ

)
for the

fused result to analyze the lower bound derived in Eq. (3).
The expected performance measure based on receiving k state
estimates, Q̄C(k; τ) in Eq. (4), is computed for Target j using
the following conditional expectation, conditioned on the state
estimates that are assigned to target j:

f = E

[(
Xj − X̂F

j

)2 ∣∣ X̂W
j1 , ..., X̂W

jL
∈ Λj

]
, (24)

where Λj is the group of correlated state estimates X̂W
j1

, ..., X̂W
jL

that corresponds to target j, and X̂F
j is as defined in Eq.
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(23). By taking the expected value of Eq. (24), we obtain the
following expression for Q̄C(k; τ) for target j:

Q̄
(j)
C (k, τ) =

∑
X̂W

j1
,...,X̂W

jL
∈Λj

f ·P
{

X̂W
j1 , ..., X̂W

jL
∈ Λj

}
. (25)

This summation is taken over all possible sets of received state
estimates that are assigned to target j.

The probability that k state estimates arrive within the given
time window is given by

P
{

tX̂W
i1

, ..., tX̂W
ik

∈ [t, t + W ]
}

=
(

N
k

)
pk

l (1−pl)N−k. (26)

where pl is the message delivery probability, and N is the total
number of state estimates from the sensors. The lower bound
on the quality of the overall fused estimate is then given by

P
{

QCC

(
X̂1, . . . , X̂N ; τ

)
< δ|X̂1, . . . , X̂N

}
≥

N∑
k=0

(
1− Q̄

(j)
C (k, τ)
δ

)(
N
k

)
pk

l (1− pl)N−k
(27)

3) Simulation Results: A total of 5,000 monte-carlo sim-
ulations were run for a 60-second trajectory with loss rates
of 0 and 0.5 and computing time of τ = 0.1 and 1 (which
correspond to target misassignment probabilities of 0.33 and
0.08, respectively, from Eq. (22)). Message delivery probabil-
ities were computed for the TCP and DSTCP protocols using
Eqs. (8) and (10). An equation for the theoretical lower bound
for the position MSE2 in one coordinate for these simulations
was derived using Eq. (27), and these bounds as well as the
estimated probability P̂

{
QCC(X̂1, ..., X̂N ; τ < δ

}
from the

simulations are shown in Fig. 5. The effects of communications
can be seen for fixed τ , and the effects of computing are
shown for fixed loss rates. The theoretical bound in Eq. (27)
is the minimum guaranteed probability for the final error to
be below δ, and its estimate P̂{.} based on these simulations
is consistently better, thereby confirming that the guarantee
is indeed met. The plots in Fig. 5 confirm that when the
DSTCP protocol is used, the performance of the fused estimate
improves in all cases (in both the tightness of the bounds and
the quality measures). Overall, the bounds are fairly tight for
longer computing time and high message delivery probabilities,
but worsen as the loss rate increases and the computation time
is shortened, although the computing time appears to have a
stronger impact. This suggests that the effects of computing on
the overall quality may not be as strong as the bound indicates.

Without the knowledge of the underlying distributions, how-
ever, Q̄C(k, τ) cannot be directly computed; but the regression
r̂C(k) can be used as its approximation. Using the same 60-
second trajectory with τ = 0.1 and a loss rate of 0.5, overall
quality measurements were collected over 100 simulations to
yield 6,000 test measurements (i.e., l = 6, 000 in Eq. (16)).
Similarly to Fig. 4(c), Fig. 6 shows a plot of the final MSEs as a
function of the number of estimates received in one simulation,
along with its regression fit. Fig. 7 shows a plot of the regression
fit and the corresponding theoretical MSE.

2The MSEs are normalized so that a value of 1 represents the highest error.
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Fig. 6. State errors as a function of the number of estimates received and its
corresponding regression fit.
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Fig. 7. Regression fit and Theoretical MSE

Putting it all together, Fig. 8 shows a plot of the probability
that the final state estimate will be below some δ, the theoretical
lower bound on this probability using Q̄(k, τ), and the estimated
lower bounds generated using the regression function r̂C(k)
which was computed 1,000 times over different simulations.
This plot also shows the upper and lower bounds of the
confidence interval (computed using Eq. (16) for a confidence
level of 0.9), demonstrating that a majority of the bounds
computed using the regression estimates fall within this interval,
with 8.1% of the estimates outside of the confidence interval in
this particular example.

V. CONCLUSIONS

We presented an analytical model to assess the performance
of state fusion over a long-haul sensor network wherein the
state estimates are correlated and fused at the fusion center
to generate global state estimates. In particular, we analyzed
the performance measure QCC(τ) of the global state estimate
computed within the allocated time τ under varying degrees of
network loss and latency. Its performance bound enabled us to
separate the contributions of computing and communications,
and we illustrated their individual qualitative effects on the
fused state estimates using simulations. We also showed that
the measurements of QCC(τ) based on field tests can be used
to derive its confidence level.

We consider this work to be an initial step in assessing
the effects of computing and communications on the state
estimation over long-haul networks, as demonstrated in the
simulations. While the simulations are somewhat simplified,
they illustrate the potential of this method to provide qualitative
insights into the system performance. More detailed analysis
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(b) TCP: loss rate: 0.5, τ = 0.1
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(c) DSTCP: loss rate: 0.5, τ = 0.1
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(d) loss rate: 0, τ = 1
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(f) DSTCP: loss rate: 0.5, τ = 1

Fig. 5. Plots of the probability that the overall MSE is less than δ for different values of τ and loss rates using the TCP and DSTCP protocol. The lower bound
for this probability given in Eq. (3).
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Fig. 8. Plot of the probability that the overall MSE is less than δ for τ = 0.1
and a loss rate of 0.5, and the theoretical and estimated lower bounds generated
using the regression estimates. Also shown is the corresponding confidence
interval bounds for r̂C(k) for a confidence level of 0.9.

of the correlation and fusion algorithms would be of future
interest. Also, more extensive system-level simulations and
measurements from deployed systems would provide better
insights into the practical system performance.
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