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Abstract—Modern communication technologies are expected
to be available in the future Smart Grids to enable the control
of equipments over the whole power grid. In this paper, we
consider such networked control approach to address failures
that may occur at any location of the grid, due to attacks or unit
malfunction, and provide a wide-scale solution that prevent the
failure impacts from spreading over a large area. Different from
literature work that focuses on modifying power equations under
the standard constraints of the power system, we estimate the
impact of controlling different nodes on topological areas of the
grid based on social metrics, which are derived from the graph
capturing both the topological and electrical properties of the
power grid. We propose a failure control algorithm for topological
containment of failures in smart grid. Our algorithm also takes
careful consideration of the impact the planned control has on the
grid to avoid the possibly involuntary failure extension. We show
that social metrics can efficiently trade off between the topological
and electrical characteristics revealed by the power grid graph
representation. We evaluate the performance against networked
control strategies that only use power models to determine the
actions to be performed at power nodes. Our results show that the
proposed control scheme can effectively contain failures within
their original location range.

I. INTRODUCTION

The Smart Grid (SG) is envisioned to provide the neces-
sary technology for a substantial improvement of monitoring
and control applications of power systems. Failure control
is arguably one of the most important applications. Failures
can occur due to equipment malfunction, natural disasters,
and planned attacks to grid infrastructure or systems. Legacy
control and protection equipments often take automatic actions
based on the local information. While such actions may
address small-scale failures, the recent occurrence of large-
scale failures has demonstrated the prevailing vulnerabilities
of the grid and the need for the improvement of its control
services [1], [2], [3], [4]. The amount of power flowing through
a line plays a crucial role in the effectiveness of failure
control as it is directly affected by failures and changes in the
power grid. Following a failure or change, succeeding power
flow redistribution can cause a power line to be tripped, and
repeated failures would induce a cascading failure.

Different from substations and major equipments, it is un-
realistic to assume that every power line in the grid is directly
monitored and can provide reliable measurements. Due to
the large number of power lines, instead of being equipped
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Fig. 1: Failure control and its impact on the grid

with a dedicated monitoring device, the majority of lines are
monitored indirectly through other type of measurements such
as voltage phasors. Also, many sections of the grid are either
equipped with legacy monitoring devices that provide slow
monitoring rates or even not observable at all.

In the examples of Figure 1, we illustrate two major
problems, due to the unreliable monitoring and the use of
conventional power control model respectively. The problem
due to unreliable monitoring can be seen in Figure 1a. The
power line (D,E), marked as the bold solid red line, is
operating close to its thermal limit, beyond which the line
will be disconnected and result in a failure. The Control Center
(CC) is unaware of the critical status of (D,E), but meanwhile
identifies a failure that occurs at (A,C). The failure effect
on the power grid is marked with red dashed lines. A failure
control policy is generated at the control center and transmitted
to relevant power nodes using the communication network.
Large changes caused by the failure control are marked as
solid blue lines in Figure 1b. A failure control strategy that
uses only power constraints has no restriction on the nodes to
control and nodes/lines affected by the control. Suppose the
control strategy following the basic power model has decided
to change the loads of nodes A,D,C,E to address the failure,
with the restrictions that all line flows do not exceed their
capacity. While the failure at (A,C) has a distance from
the critical line (D,E) and may not affect it greatly, the
control action executed at nodes D,E does and a control
due to inaccurate information may cause (D,E) to exceed its
thermal limit. Hence, a new failure is induced, and the original
failure has been topologically extended. Therefore, while the
CC might have expected the communicated control actions to
affect the region (lines) near the original fault, a topologically
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unrestricted policy may arbitrarily affect any region.
In Figure 1c, we can see another limitation of a control

strategy solely based on power considerations. (D,E) now
operates safely within its capacity limit and the impact of
control shown in Figure 1d does not cause its disconnection.
The coordinated control actions taken by all blue nodes are
load shedding, and one may expect load reductions to affect
the neighborhood of the region where the original failure
is located. Although the control strategy may successfully
address the failure, the locations of load shedding nodes are
arbitrarily decided based on a power model without topological
restrictions. As the load shedding reduces the amount of load
that can be provided to the corresponding customers, from the
customer view, the effects of failure (i.e. the amount of demand
yielded) are topologically extended.

Both limitations discussed and illustrated above are the con-
sequence of the lack of precise information and consideration
of the topological impact a control strategy will impose on
the grid. In this paper we address such limitations by using
social metrics inferred from both the topological and electrical
relationship of nodes in the power grid. While the graph
concept is often applied to represent the physical topology of
a network, there is little work to consider controlling the grid
based on the graph from the electrical relationship perspective.
Some recent studies have shown that social metrics can be
used to characterize power grid vulnerabilities. Rather than just
understanding the social relationship of grid nodes, we propose
to leverage the observed social impact of power nodes on the
grid to effectively control the grid failures while minimizing
its indirect and involuntary effects on the grid status.

The rest of the paper is organized as follows. Section II
reviews the related work on vulnerabilities of power grids and
the control of failures. Section III describes the models used by
our proposed algorithm. In Section IV, we analyze the social
properties useful for the failure control, and describe the design
of the control scheme proposed along with its algorithmic
description. Section V describes the simulation scenario and
the performance results. Finally, Section VI concludes the
work.

II. RELATED WORK

In recent years, power grid vulnerability analysis has drawn
a lot of research attention. This analysis is necessary as a
tool for designing more reliable power grids. Also, there is a
substantial amount of work on applications and requirements
that are feasible once modern communication systems become
available in Smart Grids [5]. Timely planned failure control
being arguably one of the most important applications.

Some recent studies represent the Smart Grid as a graph [6],
[7] and study the properties of the electrical structure of the
power grid. The goals are to identify “important” power nodes
that can cause the biggest damage in case of failure (or attacks)
through social metrics.

In [6] the authors propose to analyze an alternative graph
representation of the power grid where links are constructed
based on the strength of electrical connections in contrast to

the physical power line connections. Instead of comparing
the similarities between the topological and electrical graph
structures, in this work, we study how nodes with different
social properties impact the power grid when controlled.
Moreover, different from [6], [7], our goal is to exploit the
social properties of power nodes to determine the control
strategy upon the occurrence of a failure.

Different from the traditional trigger-based automatic con-
trol and protection, the increasing adoption of modern com-
munication technologies in power grids has provided the
possibility of controlling failures in a planned, organized and
coordinated way. Along the line of vulnerability analysis, the
control strategies in [8], [9] attempt to maintain the power
of the important nodes without shedding their load, where the
important nodes are the ones that provide power to the control
nodes. On the other hand, the recent work in [10] presents the
methodology of identifying geographically correlated failures
and evaluates the accuracy of its model using the historical
data of the San Diego Blackout. The authors also present a
standard control strategy based on the power model and its
respective restrictions. In this paper, we agree on the general
strategy of planned and coordinated control modeled by a
mathematical program. However, different from the literature
work, we make use of the graph representation of the power
grid along with its topological and electrical properties to
design the control strategy. Specifically, based on our observa-
tions of the graph’s social properties, we provide the control
program the capability of deciding control actions that prevent
the topological extension of failures by reducing the effects of
control-induced power flow redistribution on regions far away
from the original failure.

III. MODELS

In this section, we present the system model used in the
design of the control scheme. We start by introducing a
commonly used graph representation of the smart grid and the
components that are considered in the failure control process.
Using this model, we describe how topological and electrical
information can be inferred from the graph according to the
model used for its edge weights.

A. Power Grid Model

A Smart Grid system contains two different networks: a
power grid and a communication network to transmit data
for the grid monitoring and control. The power grid will be
modeled as a graph P(N , E), where the N = |N | nodes
include power generators, consumer loads and pass-through
(transmission) substations. The physical power lines in charge
of transmitting power from generation units to customer loads
are contained in the edge set E .

The communication network that provides monitoring and
control capabilities can be modeled by a graph P ′(N ′, E ′).
If each node of the power grid is under the control, we will
have an one-to-one mapping between the controllable nodes
N ′ and the grid nodes N . Although a communication network
is often established along the power lines, the topology of the
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communication network does not have to be exactly the same
as that of the grid.

Each node i ∈ N in the grid P(N , E) is associated
with a power Pi, and is a power generator if Pi > 0 or a
power consumer if Pi < 0. We consider a power grid to
be balanced when

∑
i∈N Pi = 0. The topology described

by E captures the physical connections of power lines in the
grid. Each power line ei,j ∈ E has an operational capacity
ci,j , and its associated flow fi,j should be kept below ci,j
for the normal operation. A line can be physically broken
due to natural disaster or get disconnected by its protection
equipment once it is overheated as a result of the sudden and
frequent flow variation or because it works over capacity for
an extended period of time. When there exist failures, we have∑

i∈N Pi 6= 0 and P(N , E \ {ei,j}), where the set of failed
links are excluded from the power grid graph. Failures that
cause long-term disconnections of lines can partition the grid
into several components, in which case the models presented
should be applied to each connected component.

B. Graph Weight Models

In the grid graph, the weight of an edge can correspond
to the electric parameters (i.e. admittance) associated to it or
the physical distance of the power line corridor that links two
nodes (substations). We use the topological distance to reflect
the geographical distance, and di,j to represent the shortest
distance between a pair of nodes i and j. Power flows can
also be used as weights w(ei,j) = fi,j ,∀ei,j ∈ E and a failure
location would be identified by the edge whose flow exceeds
the capacity threshold. However, power lines can operate over
the capacity for some time before being tripped. For more
effective and timely failure control, it is more informative
to identify the locations where flows are changing. A power
flow model is often applied to describe the behaviors that
govern the power grid and how flows change and traverse
the nodes and edges in P , but it does not directly reflect the
topology information. However, the admittance matrix used
in flow models can be interpreted as a weighted Laplacian
of the grid graph P , and the admittances of the lines can
be used as weights for the graph to capture both the graph
relationship and power interaction. Specifically, the elements
of the admittance matrix Y are defined as:

Yi,j =

{ ∑
k 6=i yi,k if i = j

−yj,i if i 6= j,
(1)

where yi,j ∈ C is the line admittance and it only exists if the
physical connection between i and j exists. Different from the
literature work which uses the admittance matrix to identify
vulnerable components or only refers to the admittance matrix
when describing the power flow models [11], [8], [9], [10],
we will exploit graph-based metrics that can infer topological
and electrical information from Y to contain failures in power
grids to prevent their propagations to a large area.

IV. TOPOLOGICAL CONTAINMENT OF FAILURES IN SMART
GRIDS

The aim of this work is to control grid failures while
minimizing the indirect and involuntary detrimental effects
on the grid caused by the control. We first introduce the
issues involved when performing the optimal load shedding
to control the grid failures. We then discuss two types of
centrality metrics adapted from social networks to the power
grid network, and examine the effect of using social power
nodes on controlling failures over a typical grid topology.
Finally, based on the insight gained from our observations,
we describe the design of an optimal control scheme based on
social metrics.

A. Load Shedding-based Failure Control

A power grid operating out of its normal state, e.g. due to
power imbalance and/or power-line overcapacity, can return to
its normal state by adjusting the total power in the network.
Load shedding actions can help restore the power balance and
make the power flows to be under their capacity limits. A
basic mathematical formulation of such a control involves the
optimization of a function of the controllable loads, Pi ∈ P,
in a way that the reduction from the power amount at the time
of failure, P 0

i , is minimized, subject to a tractable power flow
model and the capacity constraints:

minimize
Pi∈loads

1 · (P−P0) (2a)

subject to P = Y ·Θ , (2b)

fi,j = βf̂i,j + (1− β)f0
i,j , (2c)

fi,j ≤ ci,j , i, j ∈ N | ei,j ∈ E , (2d)

P 0
i ≤ Pi ≤ 0,∀i ∈ loads (2e)

0 ≤ Pi ≤ P 0
i ,∀i ∈ generators (2f)

The constraints (2b) and (2d) represent the power model
with the voltage vector Θ and the capacity limits for the
power lines, while (2e) and (2f) represent the load and
generation limits. Each active power Pi in (2b) correspond
to
∑

j∈N(i)fij = Pi,∀i, j ∈ N , (i, j) ∈ E and N(i) is the set
of neighbors of i. Equation (2c) estimates the evolution of the
power flow fi,j after control, where β is a tuning parameter
[10], ˆfi,j is the theoretical power flow calculated using (2b),
and f0

i,j is the flow of the power line ei,j at the moment of
failure. Thus, the model of the operating condition of a line,
fi,j , in (2c) incorporates the thermal effect of changing the
flow f0

i,j . The performance of this model depends on the timely
and reliable transmission of the value f0

i,j from its monitoring
device.

Simply reducing the total amount of load may require nodes
all around the grid to change loads, so customers at locations
distant from the original failures may be also affected. Also,
as discussed in Section I, altering the load of a node can
cause power flow changes in lines relatively far away from
the node. In case that a critical line is affected, this will
introduce more uncertainty in control effectiveness. Moreover,
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(a) IEEE 39: High Cc control (b) IEEE 39: High Cd control (c) IEEE 39: Cc vs Cd

(d) IEEE 118: High Cc control (e) IEEE 118: High Cd control (f) IEEE 118: Cc vs Cd

Fig. 2: Using centrality to select controlled nodes: Average flow changes at different distances from the location of the control
node.

controlling loads all over the grid is more prone to loss
and delay of control packets, which can take the network to
unplanned states, temporarily or permanently. The variability
of flows at the unplanned states contribute to the overheating
of the power lines and/or the false tripping which further
extends the failure. Furthermore, while the power variables
involved in (2) are related with the graph representation of
the grid, no characteristics or information that can be extracted
from the graph is used in this control formulation. A control
strategy as the one described before could assign the amount
of load shed as a function of the distance in an effort to
geographically contain the failure expansion and the impact of
control. However, different from communication networks or
social networks where mainly the network graph is considered,
power grids are governed by physical characteristics that have
to be taken into account when defining their topology and
constraining the control extension. Next, we describe the
physical features of the grid that can be adapted from its graph
representation to design the control scheme.

B. Topological/Electrical features of the Grid
In order to constrain the failure extension to a large geo-

graphic distance, we also need to consider the tradeoff between
physical topology connections and the inherent electrical cou-
pling that governs the distribution of flows and consequently
defines the status of the grid and its stability. The admittance
matrix Y can be used to describe the electrical coupling of
nodes and lines in the grid.

An “electrical” connection represented by ri,j can be de-
fined along with the physical connection ei,j described in
P(N , E) to measure the impact on the grid after modifying the
power of a controlled node. Analogous to the length (distance)

of a power line between two nodes ei,j , the electric resistance
distance is defined as [12]:

ri,j = zi,i + zj,j − 2zi,j (3)

where zi,j ∈ Z = Y−1. The electric resistance distances in R
describe the connectivity between any pair of nodes i, j. Thus
a matrix R can be defined to capture all resistance distances in
the grid. As the power grid is known to have a sparse topology,
the matrix Y is sparse because its entry yi,j corresponds to the
admittance of the power line ei,j which physically connects i
and j. Hence, its inverse Z is a full matrix with entries zi,j
even for the case ei,j /∈ E .

To contain a failure and its effects, we need to consider both
the topological and electrical closeness between the controlled
nodes and the failure location. As the physical topology infor-
mation is embedded in Y and the electric coupling is described
with the matrix R, our control criteria will incorporate both
factors. In light of the metric from social network, we consider
building up from two centrality metrics to capture the impact
of the control of a specific node on the overall grid nodes:
closeness centrality and degree centrality.

Different from studies that asses the impact of social-node
failures/removals on the grid to identify system vulnerabilities,
we focus on investigating the impact of controlling central
nodes to define a control scheme that leverage social charac-
teristics to restrict the failure extension.

C. Closeness Centrality and its Impact on Control

In order to evaluate the impact of power flow change of a
node on other nodes, we would like to have a metric electric
closeness centrality to determine how “close” a controllable
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node is to all other nodes. This may be evaluated in terms of
the electric resistance distance as:

Cc(i) =
1∑N

j=1
ri,j
N−1

, (4)

where ri,j of the matrix R contains the electric distance
between nodes i and j in the network, and R is a full matrix.
Analogous to the social network closeness centrality, when
a node i with a high electric closeness centrality performs a
change (control), it is expected to have a great impact on the
grid.

However, unlike a social network, power networks are also
subject to a power model to determine how flows traverse
the nodes. To verify this, we perform a preliminary study to
evaluate the closeness centrality metric of the IEEE 39 and
IEEE 118 bus systems [13]. We select the top 10 nodes with
higher closeness centrality to evaluate the percentage of the
flow change they impose on the grid when load shedding is
performed at these nodes. For illustration purpose, the amount
of load shedding is randomly selected within a range of 5%
to 20%, so the flow changes correspond to the average change
induced by different levels of load shedding.

In Figures 2a and 2d, the flow change is measured for all
power lines represented by the topological edge ek,l ∈ E , k, l ∈
N , and we show the average flow change as a function of the
topological distance from the controlled nodes.

By the analogy to the social metrics, nodes with the high
closeness centrality are expected to have a great influence
on the network. However, in Figure 2a and 2d, we can see
that large changes in the grid states such as power flows
are contained within a distance. This implies that controlling
a high Cc(i) node allows us to reduce the amount of flow
directed to it while restraining the rest of the flow changes.
This can be explained by the fact that in the power grid, the
closeness centrality of a node i describes how likely it is for
the power to flow to or through the node. However, while large
changes are contained within a distance, the flow changes may
not exhibit the desired decreasing trend as seen in the largest
peak of figure 2d.

Thus, the electrical closeness reveals some important fea-
tures of nodes in the power grid, and some of these features
can be carefully exploited to control these nodes to topo-
logically contain the failures with a decreasing effect with
distance.

D. Degree Centrality and its Impact on Control

Besides the closeness centrality, to capture the coupling of a
power node with the rest of the components of the grid (power
lines and nodes), we will investigate another measurement of
centrality, electric degree centrality:

Cd(i) =
|| Yi,i ||
N − 1

, (5)

where Yi,i is the corresponding entry of the diagonal com-
ponent of Y, the admittance matrix. This measurement of

centrality considers the total admittance of power lines ter-
minating at the node i. Different from Cc(i), it captures the
physical connections instead of all the electrical connections.

Similar to the analyses with the closeness centrality, we
select the top 10 nodes ranked with the highest degree cen-
trality, Cd(i). In Figures 2b and 2e, compared to the control of
nodes with high closeness degree, large effects of controlling
nodes with high degree centrality appear to expand to longer
topological distances from the controlled location. Thus, while
Cd alone may not provide a favorable impact on the grid, the
degree centrality of a node can provide information about the
large peaks that interrupt the decreasing trend of flow changes
from the controlled point. Hence, Cd(i) will be used in our
design with Cc(i) to quantify the effect of controlling the node
i for the failure recovery.

E. Failure Control based on Social Metrics

Our preliminary observations have shown that social cen-
trality metrics can be applied to more effectively control the
failure in the power grid. We showed that the closeness and
degree centralities contain different information that can be
leveraged for control. However, some nodes may have high
values for both types of centralities as shown in Figures 2c
and 2f. The two metrics can be used to trade off between
controlling nodes topologically close to the failure and con-
trolling nodes whose electric impact is low but may be distant
from the failure. The latter can prevent impacting power lines
from uncertain monitoring, at the cost of controlling nodes
possibly far from the original failure location. Next, we need
to determine the amount of load to shed at a controllable node
to contain failures.

The metric Cc(i) helps identify how electrically close a
node i is to the rest of the network and quantify the impact
of load change at i on the overall grid. On the other hand, the
metric Cd(i) helps identify nodes that have a high coupling
with the grid based on the physical connections and charac-
teristics of power lines. Thus, the amount of load shed at a
controllable node i should be a function of three factors: its
possible impact on the grid, its physical connections, and its
electrical characteristics.

Following our previous observations, the desired decreasing
trend of flow changes is sometimes interrupted by large peaks
when controlling nodes with Cc alone. Then, Cd(i) can be
used to address the limitation of Cc as it provides information
of the effect at longer topological distances. Therefore, we
consider the ratio 1

Cd(i)Cc(i) as a proportion factor of the
amount of load to shed. This factor considers both the im-
pact at locations close and the impact at longer topological
distances as described by the social metrics. In this centrality
factor, the contained impact described by Cc(i) is dominant
as it can be seen from (5) that the variance of Cd(i) is much
less than that of Cc(i). In this way, we use Cd(i) as a weight
for Cc(i) that will constrain shedding to not be abrupt and
contribute to a smoother decreasing trend.

Moreover, failures can occur anywhere in the network, and
it is desirable to constrain the impact on loads to nodes close to
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the failure locations. Controlling nodes based solely on their
centrality factor can restrict the impact of load changes to
nodes near the controlled node, but these changes may not be
restricted to be close to the failed node if a node with small

1
Cd(i)Cc(i) rank is far from the failure location. We will further
consider the impact due to both the electric and topology
distances from the controllable node i to the failure. For a
single-line failure located at ej,k, we can define an electrical-
topological distance to each controllable node as:

r̄i,ej,k =

(
1−

ri,ej,k∑
i∈N ri,ej,k

)
di,ej,k (6)

where, di,ej,k is the topological distance from node i to line
ej,k which can be defined analogously to the electrical distance
to an edge. Then each node i ∈ N can use the aforementioned
metrics to determine the amount of load to be shed by defining:

α(i) =
1

Cd(i)Cc(i)

r̄i,ej,k∑
i∈N r̄i,ej,k

(7)

In (7), we model a mixed metric of social centralities and
topological/electrical distances. The centrality factor provides
the information of i’s impact when controlled. A node with
a large 1

Cd(i)Cc(i) is more likely to impact largely the grid
and should have less load shedding when controlled. The
normalized factor r̄ helps balance the topological and electrical
distances to the failure location. The metric in (7) can be
used to provide a weighted version of equation (2), which
determines the amount of load shedding at each node.

Finally, to further minimize the direct effect of load shed-
ding on the power delivered to customers, a regularization term
can be added to the objective function of Eq. (2). With the
regularization term, the sparsity of the solution of the control
problem can be controlled. In this way, the regularization
term contributes to the minimization of the number of (large)
control actions required to address a failure. Moreover, as
the proposed scheme corresponds to networked control, it is
desirable to have fewer control message transmissions, in order
to reduce the chance of delaying or missing control packets
thus the possible compromise of the reliability of the control
scheme. The objective in Eq. (2) can be modified as:

α · (P−P0) + λ || P−P0 || (8)

where λ is the regularization parameter that induces the control
algorithm to require large shedding to the least number of
nodes as possible. Thus, the number of nodes that can have
great impact is reduced. Algorithm 1 summarizes the proposed
control approach. Step 7 details that the control algorithm will
optimize (8) which in turn makes controlled nodes perform
power changes proportionally to αs. When there are multi-
line failures, we can apply the proposed control by adapting
(6) and (7) to use the topological-electrical distance from
the controllable node i to the closest failed line ej,k ∈ F0,
where F0 is the set of failed lines. Furthermore, calculating
the different metrics involved in (7) requires the matrix Y, its
(pseudo)-inverse and simple arithmetical computations, which

are known a priori by the control center and can be calculated
offline. After identifying failures, the control center can update
Y,Z. For very large networks, as well as common real life
implementations, a distributed version of Algorithm 1 can be
implemented to improve the scalability of the control, where
the proposed metric (7) does not increase the complexity of
such a task.

Algorithm 1 Social Based Control
INPUT: Power Grid graph P(N , E), set of initial line failures
F0 ⊂ E

1: Calculate R
2: for all ej,k ∈ F0 do
3: Obtain candidate nodes Nej,k ⊂ N
4: for all i ∈ Nej,k do
5: Compute load shedding contributions α(i) ∈ α:

α(i) = 1
Cd(i)Cc(i)

r̄i,ej,k∑
i∈Nh

r̄i,ej,k
6: end for
7: Compute eq. (2) with objective: α · (P − P0) + λ ||

P−P0 ||, using α(i) to determine the load sheddings.
8: end for
9: Transmit control actions to all nodes i ∈ Nej,k ,∀ej,k ∈ F0

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
control scheme and its capability of restraining failures and
their effects when restoring the power grid status back to its
normal operation. Here, the topological extension of a failure
is measured by the effect that control actions have on power
flow changes in all the lines of the grid.

We compare the performance of the proposed control (Al-
gorithm 1) with a topologically unrestricted load shedding
control strategy proposed in [10], based on (2) and refer to
it as standard control. Standard control only makes use of the
power flow equations that govern the behavior of the power
grid, and the restrictions imposed on its equipments e.g. power
flow capacities.

A. Simulation Scenario

We evaluate two different scenarios, which are differenti-
ated by the location of the failure that triggers the control
process: targeted attacks and random failures. In the targeted
attack scenario, there is a disconnection of a node with high
centrality. That is, there is an attack against the power lines of
the targeted node. As discussed in Section IV-D, Cd is a local
metric directly related to the number of lines associated to
node i. Thus, it is more likely that an attacker could estimate
such centrality nodes without requiring complete information
of the power grid. Hence, the metric used to select the failure
location (faulted node) is the degree centrality as defined in
(5). We also evaluate the scenario where the failure of a power
node occurs at a random location in the power grid.

The test cases used for evaluation correspond to IEEE bus
systems of different sizes. Such cases are based on portions of

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

2515



(a) IEEE 39 (b) IEEE 57 (c) IEEE 118

Fig. 3: Targeted Failures: Average flow changes due to failure control at different distances from the location of failure.

(a) IEEE 39 (b) IEEE 57 (c) IEEE 118

Fig. 4: Targeted Failures: Maximum flow changes due to failure control at different distances from the location of failure.

the American Electric Power System, e.g. New England IEEE
39 bus system. Besides having a variety of sizes, different
IEEE test cases also present different topologies, which in turn
impact the social metrics. Thus, the 39, 57, and 118 test cases
allow us to evaluate the scalability of the proposed solution.

B. Impact of Control on Power flows

The execution of a failure control strategy causes an amount
of flow change in all power lines of the grid. Figure 3 shows
the average amount of power flow change, due to control, at
different distances from the original failure location.

The x-axis indicates the topological distance (in number of
hops) from the power line to the failure location. The goal
of our control strategy is to restrain such great changes to
occur in locations as close as possible to the original failure
locations and provide a monotonically decreasing trend for
such changes.

When a failure occurs at a high centrality node, the proposed
scheme properly assigns different levels of load shedding in
a way that the shedding on power flows decreases with the
distance from the failure location. Figure 3 shows a clear
monotonically decreasing trend of power flow changes with
distance. Moreover, such a trend is present regardless of the
power grid evaluated, which demonstrates the scalability of
our solution.

On the other hand, the standard control is driven only by
the power flow equations, and thus can perform relatively large

control (shedding) away from the failure. Thus, the standard
control can include more nodes that are of higher centrality
rather than the ones close to the failure. Furthermore, without
restriction on the controlled nodes, the standard control can
choose to perform load shedding at high centrality nodes
without considering the effect of such actions on the grid.

As discussed before, controlling high degree centrality
nodes can have a relatively large effect on the grid even
at locations far away from the controlled node. Such effect
results in the occurrence of peaks of flow change at power
lines far away from the failure location as shown in Figure
3b, where the decreasing trend achieved by the proposed
control is slightly interrupted at the hop 4 with a small peak.
This is a consequence of controlling nodes that have high
values for both types of centralities. In this case, the centrality
factor in (7) will result in large shedding for such nodes and
farther away flows are impacted as with the standard control.
Fortunately, the distance factor in Equation (7) takes effect
to properly restrain peaks at far away nodes to be as small
as possible. Figure 4 helps to visualize such effects, where
the maximum flow change recorded for the targeted failures
scenario is presented. Note the maximum flow change of a
line does not imply that the line exceeds its capacity, but
only indicates how much change it experiences in order to
control the failure while working within its line capacity limit.
The figure shows that the peaks of flow change can reach
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(a) IEEE 39 (b) IEEE 57 (c) IEEE 118

Fig. 5: Random Failures: Average flow changes.

(a) IEEE 39 (b) IEEE 57 (c) IEEE 118

Fig. 6: Random Failures: Maximum flow changes.

considerably large values. For example, Figures 3c and 4c
reveal that while on average both control schemes show similar
monotonic behavior, there exist cases where the flow change
caused by the standard control can be more than double that
by the control based on the social metrics. Similarly, in Figure
4b, our proposed control shows a few considerable large peaks
of flow changes that resemble those of the standard control.
However, Figure 3b shows that on average the control based
on social metrics can restrict the propagation of effects several
times smaller than that from the standard control. Moreover,
using the recorded maximum flow change, a power operator
can track and identify the node whose disconnection results in
this behavior and provide preventive measures to address the
vulnerability of such particular grid.

Figures 5 and 6 show results when the failure location is
randomly selected without considering the centrality of the
affected node. It can be inferred that failures that involve
high centrality nodes dominate the performance of control,
as our control scheme again effectively applies the electrical-
topological distance along with the centrality information
metric to capture the possible effect of controlling every node
in the grid when taking shedding actions. Thus, the similarity
of the trends in both scenarios suggests that social metrics
can be used to identify the nodes that would cause the most
damage to the grid, as also reported in related power grid
vulnerability studies.

As discussed in Section I, restraining the propagation of
control effects close to the original failure location is extremely
important in case power lines are unknowingly operating
near their capacity limit. The standard control relies on the
assumption that the capacity constraint accurately describes
the line status and the monitoring of the status of all power
lines in the grid is timely and reliable. In contrast, we have
seen that our social scheme, without relying on the monitoring
information, provides a “decaying with distance” control effect
that will become benefitial in presence of critical lines.

C. Impact of Measurement Reliability

Now we evaluate the effect of monitoring conditions on
the efficiency of a failure control strategy. In the previous
evaluations, we have considered that all edges are working
within their capacity limits at the moment of failure, and their
states are timely known when the control strategy is calculated.
Now we randomly select 10% of the grid edges to be operating
at full capacity, where a power flow increase will cause the
line to be tripped. At the same time, we generate failures that
trigger the control process, and evaluate the 3 locations of
interest as done before.

In the following evaluations we vary the reliability to
describe the amount of information the control center has
about the sensitive edges. The impact of the reliability on the
control efficiency is presented in terms of the system yield,
i.e. the ratio of total demand supplied at the stable state after
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the failure to the total demand supplied before the failure. The
yield is affected proportionally to the amount of load shedding
decided by the control strategy. In the case of 100% reliability,
a control strategy should be able to stop the failure and take the
network back to the stability. In the case of 0% reliability, none
of the sensitive lines could inform its condition to the control
center. However there exist some power lines that are affected
significantly while being far away from the failure, which
compromises its performance. When the reliability decreases,
a control strategy may not be able to bring the grid back to
the stability due to new failures. Then, a new control strategy
needs to be communicated to the grid until it reaches the
stability. We show these results in Figure 7.

If part of the states of the sensitive lines are known, the
standard control can prevent only this portion from failure. As
its strategy is not restricted by locations, its impact can still
affect the sensitive lines not reliably monitored. On the other
hand, the proposed control topologically restricts failures and
controls its impact along with the information from part of the
sensitive lines, and can obtain about 30% more yield than the
standard control for the monitoring unreliability cases. This
can be seen in the case that failures are randomly located
across the grid in Figure 7b.

When failures occur near high Cc nodes, it is more likely
for control actions to be performed close to the failure lo-
cations. However, the standard control can still affect varied
locations across the grid away from failures. Then, when the
reliability decreases, the performance of the standard control is
significantly compromised due to the lack of consideration of
the topological extent of its control actions. In Figure 7a, we
can see that our control maintains its smooth increasing trend,
providing almost 28% more yield than the standard control
when the reliability decreases.

VI. CONCLUSION

The load control of grid nodes without considering the topo-
logical information may result in the involuntary disconnection
of power lines unknowingly operating at their capacity limits,
which leads to the extension of power grid failures. We show
that social metrics derived from the graph representation of
the grid can be used to infer the impact of failure control
and the possible topological extension of the problem. We
propose a networked control scheme based on the social
metrics along with a metric that balances the topological and
electrical closeness of controllable nodes. Compared to the
conventional schemes, our performance results demonstrate
that control based on social metrics can effectively restrain the
failure and the impact of control to be close to the original
failure locations. Moreover, even when the states of sensitive
power lines are unknown, the impact of the proposed control
on those lines is still considerably reduced.
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