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Abstract—Detecting anomalous traffic is a critical task for ad-
vanced Internet management. The traditional approaches based
on Principal Component Analysis (PCA) are effective only when
the corruption is caused by small additive i.i.d. Gaussian noise.
The recent Direct Robust Matrix Factorization (DRMF) is proven
to be more robust and accurate in anomaly detection, but it
incurs a high computation cost due to its need of singular value
decomposition (SVD) for low-rank matrix approximation and the
iterative use of SVD execution to find the final solution.

To enable the anomaly detection for large traffic matrix with
the use of DRMF, we formulate the low-rank matrix approxi-
mation problem as a problem of searching for the subspace to
project the traffic matrix with the minimum error. We propose
a novel approach, LSH-subspace, for fast low-rank matrix
approximation. To facilitate the matrix partition for the quick
search of the subspace, we propose several novel techniques: a
multi-layer locality sensitive hashing (LSH) table to reorder the
OD pairs based on LSH function, a partition principle to guide
the partition to minimize the projection error, and a lightweight
algorithm to exploit the sparsity of the outlier matrix to update
the LSH table at low overhead. Our extensive simulations based
on real trace data demonstrate that our LSH-subspace is 3 times
faster than DRMF with high anomaly detection accuracy.

Index Terms—Low-Rank Matrix Approximation, Anomaly
Detection

I. INTRODUCTION

Traffic anomalies, such as flash crowds, denial-of-service
attacks, port scans, and the spreading of worms, can have
detrimental effects on network services. These anomalies often
lead to unusual and significant changes of network traffic
levels, and the changes can span multiple links. Detecting
and diagnosing these anomalies are critical to both network
operators and end users.

A popular assumption in anomaly detection is that the
normal data have close values, while outliers are far away
from the others and lie in the low-density region of the data
distribution [1], [2]. Based on the experiments of real traffic
trace, the authors in [3] further reveal that traffic data have the
features of temporal stability and spatial correlation. With the
structure feature and similarity, normal traffic data will reside
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in a low-dimensional linear subspace and form a low-rank
matrix, while the anomalies (outliers) will stay outside this
subspace. Based on these observations, the authors propose
to decompose the noisy traffic data into two parts, low-rank
normal data and outlier data, and detect the anomaly by finding
the outlier data.

Many efforts [4]–[15] have been made to develop various
anomaly detection algorithms to separate the outlier data from
the noisy traffic data. Among which, Principal Component
Analysis (PCA) [4] is perhaps the best-known statistical-
analysis technique for Internet anomaly detection. Although
effective when the corruption is caused by small additive
i.i.d. Gaussian noise, recent studies show that traditional PCA-
based approaches fail under the large corruption, even if the
corruption affects only very few of the observations [16].

To make PCA robust to large errors and outliers, Candès et.
al. [17] proposed to approach Robust PCA (RPCA) via Prin-
cipal Component Pursuit (PCP), which decomposes a given
observation (noisy) matrix X into a low-rank component X ′

and a sparse component E. However, general RPCA solutions
resort to some relaxation techniques, which may largely impact
the accuracy of anomaly detection. Work in [18] proposes
a direct robust matrix factorization (DRMF) which aims at
minimizing the L2 error of the low-rank matrix approximation
subject to the condition that the number of outliers is small
without using the relaxation techniques. DRMF is proven
to be very effective in video activity detection and USPS
anomaly detection [18]. Although promising, this method is
very challenging to apply for practical anomaly-detection in
Internet for several reasons:

• To obtain the low-rank component in the noisy traffic
data, DRMF scheme involves singular value decom-
position (SVD), which has O

(
min

{
mn2, nm2

})
time

complexity to handle a matrix of Rm×n. This renders
the exact SVD operation impractical for large traffic trace
data.

• To accurately separate the low-rank and the outlier com-
ponents, DRMF scheme needs to iteratively execute SVD,
resulting in a prohibitively high computation cost.

It is very important to efficiently detect network anomalies.
In light of the importance of DRMF and the above challenges,
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in this work, we propose a computationally efficient algorithm
to enable network anomaly detection based on DRMF. More
specifically, we formulate the low-rank matrix approximation
problem as a subspace searching problem to find a subspace
in which the projection of the traffic matrix has the minimum
error. Specifically, to exploit the traffic features such as tempo-
ral stability and spatial correlation to efficiently search for the
subspace, we propose a novel LSH-subspace scheme which
iteratively partitions the traffic matrix into sub-matrices with
each contributing a basis vector in the subspace. Our main
contributions in this paper are listed as follows.

• We propose a novel multi-layer locality sensitive hashing
(LSH) table to facilitate the matrix partition procedures.
The table can reorder and buffer origin and destination
(OD) pairs based on LSH function with various similarity
levels in different layers, which allows the sub-matrices
partitioned to hold OD pairs with higher correlations.
This helps to further find the basis vectors to better
represent the matrix.

• To speed up the subspace searching and minimize the
projection error, we propose a novel partition principle,
which further partitions the sub-matrix that is least repre-
sented by the partial-subspace found until the dimension
of the subspace reaches the desired k.

• To reduce the overall computation cost in the iterative
process for anomaly detection, we propose a lightweight
algorithm which exploits the sparsity of the outlier matrix
to reduce the overhead in updating the LSH table for the
low-rank matrix approximation in each iteration round.

• We compare LSH-subspace scheme with the state of
art anomaly detection algorithms using the real traffic
trace data. Our simulation results demonstrate that LSH-
subspace can achieve the high anomaly detection accura-
cy at much faster speed thanks to its lower computational
cost.

The rest of the paper is organized as follows. Section II
presents the related work. We present our system model, prob-
lem, and the challenges in Section III. We provide a solution
overview in Section IV. We describe our multi-layer LSH
table, adaptive subspace searching algorithm, and algorithm
for fast subspace searching in iterative execution in Section
V, Section VI, and Section VII, respectively. Finally, we
implement the proposed LSH-subspace scheme and evaluate
the performance using real traffic trace data in Section VIII,
and conclude the work in Section IX.

II. RELATED WORK

Despite a large body of literature on traffic characteriza-
tion [6], [19]–[21], anomaly detection remains a challenge, and
Principal Component Analysis (PCA) [4], [22] is perhaps the
best-known statistical-analysis technique. PCA uses an orthog-
onal transformation to convert possibly correlated observed
variables into a set of linearly uncorrelated variables called
principal components, which constitutes a low-dimensional
subspace and can compactly represent the multi-dimensional
data set. Some recent papers that apply PCA to the traffic
anomaly detection have shown some promising initial results

[5]–[12]. PCA has also been combined with sketches [13],
[14] and distributed monitors [15] to provide more efficient
traffic anomaly detection.

A traditional PCA method gives the optimal estimate when
the corruption is caused by additive i.i.d. Gaussian noise whose
magnitude is small, but breaks down under a large corruption
even if it affects only very few of the observations [16].
To make PCA robust to large errors and outliers, Candès
et. al. [17] proposed to approach Robust PCA (RPCA) via
Principal Component Pursuit (PCP), which decomposes a
given observation (noisy) matrix X into a low-rank component
X ′ and a sparse outlier component E. To make the problem
solvable, the work in [23] replaces the matrix rank and the
cardinality (∥∥0) functions with their convex surrogates, the
nuclear norm ∥∥∗ (i.e., the sum of its singular values) and the
L1 norm ∥∥1, and solves the following convex optimization
problem

min
X′,E

{
∥X′∥∗ + λ∥E∥1

}
st.X ′ + E = X

(1)

where λ is a positive weighting parameter. To decompose
the data into low-rank component and sparse component,
these methods resort to some relaxation techniques which may
largely impact the accuracy of anomaly detection.

Recently, work in [18] proposes a direct robust matrix
factorization (DRMF) which aims at minimizing the L2 error
of the low-rank approximation subject to the condition that
the number of outliers is small. To solve DRMF, a block
coordinate descent method is adopted which includes a sin-
gular value decomposition (SVD) and an efficient threshold
procedure. DRMF is simple to implement and is proven
to be very effective in video activity detection and USPS
anomaly detection. However, the solution involves the iterative
execution of the SVD decomposition, which will bring very
high computation cost and is not scalable to large traffic data.

Given the importance of DRMF in anomaly detection and
its potential efficient application in Internet, this paper focuses
on the reduction of computation complexity for its low-rank
matrix approximation. Specially, we propose several novel
techniques, including a multi-layer LSH table to reorder and
buffer OD pairs based on LSH function, an iterative and
adaptive matrix partition algorithm to efficiently search the
subspace for low-rank matrix approximation, and a quick
LSH table updating algorithm which takes advantage of the
sparsity of the outlier matrix to reuse the reordered OD pairs
of the previous iteration. The simulation results on the traffic
trace data demonstrate that with these novel techniques, our
scheme can achieve significantly better performance with high
anomaly detection accuracy under much lower computation
cost compared with other state of art anomaly detection
schemes.

III. PROBLEM AND CHALLENGE

For matrix A ∈ Rm×n, we write A(i) (i.e. subscript) for
its ith row and A(j) (i.e., superscript) for its jth column. We
use Om×n to represent the subset of Rm×n whose columns
are orthonormal. Since the columns of V ∈ Om×n are an
orthonormal basis, we sometimes use ”the subspace V ” to
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refer to the subspace spanned by the columns of V . Given a
real number x, floor(x) = ⌊x⌋ is the largest integer less than
or equal to x and ceiling(x) = ⌈x⌉ is the smallest integer
greater than or equal to x.

A. System model and problem

Given a network consisting of N nodes, this paper models
the traffic data with a traffic matrix X ∈ Rm×n (m = N×N ),
where a row of X represents the time evolution of a single
OD pair and a column represents the traffic data of all OD
pairs at one time slot. n denotes the total number of time
slots captured in the matrix.

The data captured by a traffic matrix tend to be noisy and
are subject to outliers and arbitrary corruptions. As discussed
in the introduction, the traffic data have the features of
temporal stability and spatial correlation. Thus normal traffic
data will reside in a low-dimensional linear subspace and form
a low-rank matrix, while the anomalies (outliers) will stay
outside this subspace. Accordingly, we formulate the anomaly
detection problem as a constrained optimization problem:

min
L,S

∥(X − S)− L∥2F
s. t. rank (L) ≤ k
∥S∥0 ≤ e

(2)

where S is the matrix of outliers, L is the low-rank approxi-
mation of matrix X−S, k is the truncation rank, and e is the
maximal number of non-zeros entries in S that cannot be ig-
nored as outliers. We do not need the actual number of outliers,
but only use e to provide an upper limit. The formulation in (2)
aims at minimizing the L2 error of the low-rank approximation
subject to the condition that the number of outliers is small,
without any further assumptions. By excluding the outliers
from the effort of low-rank approximation, we can ensure the
reliability of the estimated low-rank structure. The anomaly
can be easily detected after obtaining outlier matrix S.

Usually, optimization problems involving the rank or the
L0-norm i.e. set cardinality are difficult to solve. Some re-
laxation techniques are proposed to solve the low-rank matrix
approximation, such as using the nuclear norm of matrix to
replace L0-norm. However, these relaxations may largely im-
pact the estimation accuracy of low-rank matrix approximation
and further impact the anomaly detection accuracy.

Rather than resorting to relaxation techniques, we directly
solve the problem (2) with the constraints of the matrix rank
and the cardinality of the outlier set for more accuracy anoma-
ly detection. Following [18], we adopt the block coordinate
descent strategy to solve the problem in (2) in an iterative
way, as shown in Algorithm 1. In each iteration, we first fix
the current estimate of the set of outliers S and exclude them
from the measurement X to get the ”clean” traffic data C, and
then fit L based on C. Next, we update the outliers S based
on the error E = X − L.

Specially, a theorem proven by Eckart and Young [24]
shows that the error in approximating a matrix A by Ak can
be written: ∥A−Ak∥2F ≤ ∥A−B∥2F where B is any matrix
with rank k, Ak is the rank-k truncated SVD of matrix A.
Therefore, a straightforward solution to the low-rank matrix

Algorithm 1 Anomaly Detection Based on Matrix Factoriza-
tion
Input: X: the noisy traffic matrix

k: the maximal rank of the matrix factorizaiton
e: the maximal number of ourliers
S: the outlier matrix initialized

Output: L: the low-rank matrix, S: the outlier matrix
1: while not converged do
2: Solve the low-rank matrix approximation problem

L = argmin
L

∥C − L∥2F
s.t.C = X − S
rank(L) ≤ k

(3)

3: Solve the outlier detection problem:

S = argmin
S

∥E − S∥2F
s.t.E = X − L
∥S∥0 ≤ e

(4)

4: end while

approximation problem (3) is directly given by SVD according
to Eckart and Young’s theorem, and the solution to L is simply
the truncated SVD approximation to the ”cleaned” traffic data
C given in (3).

Moreover, following the theorem in the work of [25] to
solve the general problem of L0-norm constrained mini-
mization of the decomposable objective, the outlier detection
problem in (4) can also be solved efficiently. As solving
problem in (4) is not the focus of this paper, we apply the
theorem in the work of [25] to solve the problem.

B. Challenge on computation complexity

Algorithm 1 requires a truncated SVD approximation to
solve the problem in (3) in each iterative step. Such an
operation, however, introduces high computation cost and is
not scalable to deal with large traffic data.

Given a matrix X ∈ Rm×n, SVD decomposes the matrix
into three factors:

X = UΣVT =
∑l

i=1
σiuiv

T
i , (5)

where l = min(m,n), σ = [σ1, · · · , σl] is the vector of
singular values of X in the descending order, columns of
U = [u1, · · · , ul] ∈ Rm×l and V = [v1, · · · , vl] ∈ Rn×l

are the corresponding left and right singular vectors. We can
find a reduced rank approximation (or truncated SVD Xk with
its truncation rank k ) to X by setting all but the first k largest
singular values equal to zero and using only the first k columns
of U and V .

Although promising, the exact SVD has
O
(
min

{
mn2, nm2

})
time complexity. This is highly

unscalable, rendering the straightforward way of obtaining
truncated SVD through the exact SVD impractical for
large traffic data. Additionally, as the low-rank matrix
approximation is executed iteratively in Algorithm 1, the
accumulated computation cost will be very high. Therefore,
the following two issues become the key challenging
problems:
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• How to reduce the computation cost of the low-rank
matrix approximation?

• How to reduce the total computation cost of the whole
iteration process?

C. Subspace searching problem

The optimal rank-k matrix approximation, i.e., minimizing

the squared error
∥∥∥A− Â

∥∥∥2
F

where A, Â ∈ Rm×n and Â is a
rank-k matrix, is the rank-k truncation of the SVD:

Ak =

k∑
i=1

σiuiv
T
i = UkΣkVk

T , (6)

which projects A’s rows onto the subspace spanned by the top
k right singular vectors, i.e., Ak = AVkV

T
k . The optimality

of Ak implies that the columns of Vk span the subspace of
dimension at most k in which the squared error of A’s row-
wise projection is minimized. Therefore, to obtain the optimal
rank-k matrix approximation, we can seek to find a subspace
in which A’s projection has sufficiently low error:

min
Vk

∥A−Ak∥2F
s.t.Ak = AVkV

T
k

Vk ∈ On×k

(7)

Therefore, instead of solving the problem in (3) through the
truncated SVD, this paper intends to minimize the gap between
A and its projection matrix Ak (i.e.,∥A−Ak∥2F ) by searching
the subspace Vk with the dimension k. In this paper, we call
∥A−Ak∥2F the projection error.

As the anomaly event in a network seldom happens, the
outlier matrix S in Algorithm 1 is a sparse matrix with
none zero values at most e locations. Although the ”clear”
traffic matrix C in (3) is iteratively updated through X − S
with the change of S in each iteration, as S is a sparse
matrix, only a few entries have none zero values and thus
only a few entries change in the ”clear” traffic matrix C in
the subsequent iterative steps. Therefore, the low-rank matrix
approximation for sequent matrices (i.e., C[t], C[t+1]) in two
sequential iterations (i.e., t, t+1) must have some relationship.
This provides an opportunity for us to reuse the results and
structure of the previous step in the current step to reduce the
computation cost of the whole iterative process.

In the next section, we will present our algorithms to quickly
calculate the rank-k matrix approximation, and reuse the data
structure in iterative steps for fast Internet anomaly detection.

IV. SOLUTION OVERVIEW

The key in Algorithm 1 is to solve the problem in (3),
which can be further transformed to problem (7) to search
the subspace Vk with the dimension k to best approximate the
matrix of interest. Our algorithm exploits the structure features
and similarities hidden in the traffic data to efficiently search
the subspace Vk.

In our system model, the data of an OD pair correspond
to one row in the traffic matrix. Specially, the recent study
in [26], [27] demonstrates that network paths starting from
nearby end nodes often have overlapping path segments or

go through some common network nodes, especially in the
Internet core which has a simple topology. As a result, data
from network measurements often have correlations.

To take advantage of these correlations to efficiently search
for the subspace Vk, we propose a novel LSH-subspace scheme
which iteratively partitions the original monitoring matrix into
sub-matrices with each contributing a basis vector in the
subspace. We design a novel multi-layer LSH table to reorder
and buffer the OD pairs based on LSH function so that OD
pairs with higher correlations are stored in a sub-matrix. To
speed up the subspace searching procedure and minimize the
projection error, LSH-subspace well leverages the structure of
the traffic matrix by first partitioning the matrix that is least
represented by the partial subspace found until the dimension
of the subspace reaches k. LSH-subspace mainly includes the
following three technique components:

• A novel multi-layer LSH table, which reorders and buffer-
s OD pairs in a fast and effective way with only hash
calculations. The good property of the LSH guarantees
that similar OD pairs are grouped and packed into the
same bucket in the LSH table. We utilize well-designed
LSH function with different bucket width for different
hash table layers, therefore, the OD pairs in the different
layers are grouped with different similarity levels. The
good property provides a very efficient way to facilitate
adaptive matrix partition to search for the subspace.

• An iterative and adaptive partition algorithm, which par-
titions the large traffic matrix into multiple sub-matrices
based on the multi-layer LSH table. As each sub-matrix
corresponds to one basis vector in the subspace, one time
of matrix partition corresponds to one time of subspace
expanding. We also propose a partition principle to select
the sub-matrix not well represented to further partition,
which helps expand the subspace to maximally reduce
the projection error.

• A lightweight LSH table update algorithm, which can
well exploit the sparsity of the outlier matrix to reduce the
number of items to update in the hash table in each round
thus the overall computation cost of the whole iteration
process in Algorithm 1.

With these strategies, LSH-subspace can provide quick
and highly accurate anomaly detection. In the following two
sections, we present our three key techniques: multi-layer LSH
table, matrix partition and subspace searching, quick multi-
layer LSH table update to reuse partial data from the previous
iterative step.

V. MULTI-LAYER LSH TABLE

To exploit the correlations among OD pairs for quick search
of the subspace, similar OD pairs need to be grouped together.
We propose to use a multi-layer LSH table to reorder OD pairs
based on the LSH function with various similarity levels at
different layers.

A. LSH function

To achieve the low-rank matrix approximation with a quick
and accurate search of the corresponding subspace, we reorder
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the OD pairs and make the OD pairs with higher correlations
to locate closely in the LSH table with a higher probability.
This can be realized with the help of the LSH function. An
LSH function can keep the locality of elements in a data set
by mapping close elements into the same hash bucket with a
high probability. This is achieved by choosing a hash function
from an LSH function family. The ”locality sensitive” can be
defined as follows [28]:

Definition 1: (LSH Function Family) [28]: H = {g : Υ →
U} is called (R, cR, P1, P2) - sensitive for any p, q ∈ Υ

• If ||p, q||s ≤ R then PrH[g(p) = g(q)] ≥ P1.
• If ||p, q||s ≥ cR then PrH[g(p) = g(q)] ≤ P2.

where ∥p, q∥s is the distance of elements p and q, Υ is the
domain of elements. In this paper, OD pairs are the elements
that need to be reordered according to their distances. In the
LSH, c > 1 and P1 > P2.

We use the row vector of the monitoring matrix as the OD
pair vector and apply the LSH function to reorder the OD
pairs. Given an OD pair µi ∈ Rn (1 ≤ i ≤ m) where m is the
total number of OD pairs, n is the total number of time slots
monitored. According to [28], we define the following LSH
function ha,b : Rn → U based on Euclidean distance to map
the OD pair in the hash table:

ha,b (µ) =

⌊
aTµ+ b

W

⌋
(8)

where a is a n-dimensional random vector with each compo-
nent chosen independently from a Gaussian distribution, W is
the width of a hash bucket, and b is a real number randomly
selected from the interval [0,W ).

W
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 ! !a bh p

 ! !a bh p
 ! !a bh p
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p !"##### $%#& '&%"#(!)*#' +%#& '&#,(!

Fig. 1. 3-way traffic tensor

When the hashed ad-
dresses of OD pairs are
the same, i.e., there is
a collision in hashing,
the pairs are mapped to
the same bucket. Ac-
cording to the conclu-
sion in [28], we have the
probability that two OD
pairs p and q collide for
the LSH defined in (8)
is

Pra,b [ha,b (p) = ha,b (q)] =

∫ W

0

1

d
fs

(
t

d

)(
1− t

W

)
dt (9)

where d = ∥p− q∥s is the distance between OD pairs p and
q, and fs (t) is the probability density function of s-stable
distribution. Function in (9) is an increasing function with the
bucket width W . Given two OD pairs with a distance d, when
W becomes larger, these two OD pairs can be mapped to the
same bucket with a higher probability.

The LSH function in Eq(8) has a good property, that is,
it can map similar OD pairs into the same hash bucket. The
example of Fig. 1 illustrates the geometry result of the adopted
LSH functions in a 2D space. Given vector a and the query
OD pair q , aT q is the dot product of the two, which projects q
onto the vector a. The value b in ha,b (q) is applied to further
shift the projected point over a distance b, and is kept the

same when the hash function is used to evaluate the closeness
of two vectors. The vector line is divided into multiple buckets
with the length of each being W . In such a transformation,
proximate points, e.g., q and p1, have a high probability of
being hashed into the same hash bucket.

B. Mapping OD pair to multi-layer LSH table

The OD pair groups in LSH table are utilized to facilitate
the subspace searching. Instead of directly using the row
vectors corresponding to the OD pairs of traffic, we use the
normalized row vector as the OD pair’s key to calculate its
location in the hash table. Denote the matrix C ∈ Rm×n as
the traffic matrix needs to approximate. Given an OD pair
C(i) ∈ Rn (1 ≤ i ≤ m), it can be normalized as

C∗
(i) =

C(i)√∑n
j=1 C

2
ij

(10)

where Cij is the entry (i, j) in the matrix C.
Take two OD pair vectors (r1 = [2, 3, 4] and r2 = [4, 6, 8])

as example. The values (traffic data) of the two vectors are
obviously very different, while both OD pairs have same traffic
access pattern and thus similar traffic trade. These two vectors
should be grouped into the same hash bucket to contribute one
basis vector

[
2√
29
, 3√

29
, 4√

29

]
. Obviously, this basis vector can

well represent these two vectors.
To facilitate adaptive subspace searching, instead of using

one-layer LSH table, we design a multi-layer LSH table to
reorder the OD pairs with various similarity levels (Fig. 1).
Among the multiple hash-table layers, the bucket width of
the top one is set to W , all the OD pairs are applied using

the basic hash function (i.e., h(a,b)(C∗
(i)) =

⌊
aT ·C∗

(i)+b

W

⌋
),

to map themselves in the hash table by inserting the OD
pair IDs. We denote the top layer as the basic hash table.
Other hash tables are all virtual hash tables (their hash buck-
et width being 2W, 4W, 8W, 16W, · · · ) which are virtually
built from the basic hash table rather than physically exist,
and the LSH functions for these virtual hash table will be
h(a,b)(C∗

(i)) =

⌊
aT ·C∗

(i)+b

2W

⌋
, h(a,b)(C∗

(i)) =

⌊
aT ·C∗

(i)+b

4W

⌋
,

h(a,b)(C∗
(i)) =

⌊
aT ·C∗

(i)+b

8W

⌋
, h(a,b)(C∗

(i)) =

⌊
aT ·C∗

(i)+b

16W

⌋
, · · · ,

correspondingly.
Fig. 2 shows an example to illustrate our multi-layer hash

table. The hash address of C(2) in the basic hash table is 4. Its
hash addresses in the following downward hash tables are 2,
1,1,1,· · · . Specially, we use F to denote the layer of the hash
table, with the bottom layer denoted as F = 1 and its next
upper layer as F = 2, etc.

Our multi-layer hash table has following two good proper-
ties.

• If we know the hash address of an OD pair in the basic
hash table, its hash address in all the downward hash
tables can be easily deduced, thus does not need physical
building when we have the basic hash table. Given an
OD pair, if it is located in the basic hash table with its
hash address l, its location in the downward hash table
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Fig. 2. Multi-layer hash table

will be ⌈l/2⌉, ⌈l/4⌉, ⌈l/8⌉, ⌈l/16⌉, · · · . In the opposite
direction, if we know an OD pair address in the hash
table is l, the hash address in its upforward hash table is
in the set {2l − 1, 2l}, i.e., 2l − 1 or 2l.

• Different layers utilize the LSH function with different
bucket widths (which exponentially increases from the
top to the down hash table: W, 2W, 4W, 8W, 16W, · · · ),
so hash tables at different layers have the OD pairs
grouped in the bucket with different similarity levels. That
is, the OD pairs grouped in the hash bucket of the top
hash table is more similar than the ones grouped in the
buckets of downward hash tables.

In the next section, we will exploit these two good proper-
ties to design adaptive-matrix-partition based quick subspace
searching algorithm.

VI. ADAPTIVE SUBSPACE SEARCHING

Given the rank k and the ”real” traffic matrix C, our goal
of rank-k matrix approximation is to search the subspace
Vk which has k orthogonal basis vectors to minimize the
projection error

∥∥C − CVkV
T
k

∥∥2
F

. With the help of multi-
layer LSH table, we propose an adaptive matrix partition
algorithm to iteratively search the subspace with each sub-
matrix contributing one basis vector in the subspace.

In each iterative step, among all the sub-matrices resulted
from the previous step, we will select a sub-matrix to partition
for further subspace searching until k basis vectors are found.
The key problem is how to select the sub-matrix to pursue
further processing.

Generally, after p − 1 times of partitions, the large ma-
trix C has been partitioned into p sub-matrices, denoted by
C1, C2, · · · , Cp with Ci ∈ Rmi×n. We denote the current
partial subspace as Vp ∈ On×p, and the projection error of the
large traffic matrix based on this subspace is

∥∥C − CVpV
T
p

∥∥2
F

.
We use row(C) to denote the row set in the matrix C.

Obviously, we have row (C) = row (C1) ∪ row (C2) · · · ∪
row (Cp) and row (Ci) ∩ row (Cj) = ϕ for i ̸= j, i, j =
1, 2, · · · , p. Therefore, we have∥∥C − CVpV T

p

∥∥2
F

=
∥∥∥( C1 C2 · · · Cp

)T −
(

C1 C2 · · · Cp
)T

VpV T
p

∥∥∥2
F

=
∥∥C1 − C1VpV T

p

∥∥2
F
+

∥∥C2 − C2VpV T
p

∥∥2
F

+ · · ·+
∥∥Cp − CpVpV T

p

∥∥2
F

(11)

As our goal is to search the subspace to minimize the projec-
tion error

∥∥C − CVpV
T
p

∥∥2
F

, according to (11), we propose a
partition principle: among all sub-matrices, we select the one
with largest projection error using current subspace to further
partition and expand the subspace. The selected sub-matrix is

Ci = argmax
Ci,i=1,2,··· ,p

∥∥∥Ci − CiVpV
T
p

∥∥∥2

F
. (12)

That is, the partition is always focused on the sub-matrix with
the maximum potential for error reduction.

Based on partition principle, we design our adaptive parti-
tion algorithm for fast subspace searching in Algorithm 2.

Algorithm 2 Adaptive Matrix Partition for Fast Subspace
Searching
Input: multi-layer LSH table:H
Output: subspace V ∈ On×k

1: Q = NULL //Q is the list of sub-matrices that contribute basis
vectors

2: Q.insert(H[1, 1]) //H[1, 1] corresponds to the whole matrix
3: v1=centroid(H[F, f ]),V1 = {normalized(v1)}, p = 1 //p

denotes how many basis vectors found
4: while p < k do
5: According to partition principle, for each hash bucket in

Q, denoting the corresponding matrix as Ci for i =
1, 2, · · · , p, identify the matrix needs to partition though
Ci = argmax

Ci,i=1,2,··· ,p

∥∥Ci − CiVpV
T
p

∥∥2

F

6: F = F (Ci) denotes the matrix’s layer ID in Multi-layer LSH
table H , f = f(Ci) denotes the matrix’s index in the F th
layer.

7: Q.remove(H[F, f ]) //remove the hash bucket corresponding
to Ci from Q

8: Remove Ci’s contributed basis vector from Vp

9: Partition matrix Ci, the two sub-matrices ID in the Multi-
layer LSH table H are: table layer F = F + 1, indexes in
this layer ID = SET{2f − 1, 2f}

10: for f ∈ ID //using newly partition sub-matrices to update Q
and the subspace Vp do

11: Q.insert(H[F, f ])
12: Vp = [Vp GS(Vp, H[F, f ].centroid)] //GS=Gram-

Schmidt orth-normalization
13: end for
14: Vp+1 = Vp

15: p = p+ 1
16: end while
17: return Vp

In Algorithm 2, Q is used to record the list of sub-matrices
that contribute basis vectors. Vp is the subspace found after
p−1 times of partitions. As shown in line 1-3, starting with the
lowest layer hash table, which contains all rows in the traffic
matrix, we take its centroid as a representative to include in
the subspace span and initialize Q by inserting bucket ID (i.e.,
H[1, 1]) corresponding to the whole traffic matrix.

The iterative subspace searching will continue until the
whole matrix has been partitioned k − 1 times and thus k
basis vectors are found. According to partition principle, on
line 5, each iterative step will select the sub-matrix that has
the maximum projection error with the current subspace to
partition. We use Ci to denote the sub-matrix that needs to
partition. We use F = F (Ci) to denote the layer index of the
matrix Ci’s table, and f = f(Ci) to denote the matrix Ci’s
index on the F layer.
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Before being further partitioned, we should first remove
H[F, f ] from Q, remove Ci’s contributed basis vector from Vp.
With the help of our multi-layer hash table, the matrix Ci can
be further partitioned into two sub-matrices which correspond
to the hash buckets H[F +1, 2f − 1] and H[F +1, 2f ]. With
the good property held by the multi-layer hash table, these
two sub-matrices have more similar OD pairs and the union
set of OD pairs in both sub-matrices is equal to the OD pair
set in the large matrix partitioned before. Line 9 is to locate
the hash buckets of these two newly partitioned sub-matrices.
On lines 10-13, the subspace is updated and expanded using
the newly partitioned sub-matrices.
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Fig. 3. An example to illustrate the partition based subspace search

Designed based on multi-layer LSH table, our subspace
searching algorithm has following good characteristics:

• Facilitated by multi-layer LSH table, matrix partition can
be easily achieved using the hash table from downward
layer to the upward layer.

• As hash tables of different layers represent different sim-
ilarity levels, matrix partition makes the OD pairs in the
sub-matrices are more similar than the large matrix before
the partitioning. Therefore, the basis vectors generated by
these sub-matrices can be more representative than the
basis vectors generated with a large matrix directly.

These good characteristics ensure the efficiency and effective-
ness of our subspace searching algorithm.

We use Fig.3 to illustrate the proposed subspace search
algorithm through adaptive matrix partition. To find the rank-4
approximation of the traffic matrix, in Fig.3(a), we take the
centroid of the whole traffic matrix as the initialized subspace
and insert the hash bucket (i.e., H[1, 1]) which corresponds to
the whole traffic matrix into the list Q. In Fig.3(b), facilitated
by the multi-layer LSH table, the whole matrix is partitioned
into two sub-matrices with each consisting of more similar
rows and contributing one basis vector. After this partition, the
list Q is updated to include two hash buckets (i.e., H[2, 1],
H[2, 2]) corresponding to these two sub-matrices. As the
searched subspace only has two basis vectors, further partition
is needed.

We assume the projection error of H[2, 2] is larger than
that of H[2, 1], so the sub-matrix corresponding to H[2, 2]
needs to be further partitioned, and the list Q includes three
hash buckets H[2, 1], H[3, 3], H[3, 4] after this partition as

shown in Fig.3(c). As we need to search for a subspace with
the dimension 4, we should further select one sub-matrix in
Fig.3(c) to partition. Assume among the three sub-matrices
(corresponding to H[2, 1], H[3, 3], H[3, 4]), the sub-matrix
H[3, 4] has the largest projection error. Facilitated by the
multi-layer LSH table, the sub-matrix of H[3, 4] is easily
partitioned into two sub-matrices (i.e., H[4, 7], H[4, 8]). The
final subspace found includes the centroid vectors of H[2, 1],
H[3, 3], H[4, 7], and H[4, 8].

As each sub-matrix contributes one basis vector, to let the
subspace found in each iterative step to well represent the
traffic matrix, the rows in all the sub-matrices in all iterative
steps should cover all the rows in the traffic matrix. As shown
in Fig.3, our matrix partition procedure satisfies the above
requirement in each iterative step. In each iterative step (shown
in Fig.3(a)-(d)), the green ones always cover the whole matrix.

VII. FAST SUBSPACE SEARCHING FOR ITERATIVE
EXECUTION

As shown in Algorithm 1, the low-rank matrix approxima-
tion problem (3) and the outlier detection problem (4) are
alternately solved in each iterative step in the whole anomaly
detection algorithm.

As the outlier matrix S is updated in each iterative step, C =
X −S also changes. To search for the rank-k matrix that can
approximate C in each step, the straight-forward way is to first
build a new multi-layer LSH table to hold the newly updated
matrix C, then apply Algorithm 2 to search the subspace. The
computation cost is still high.

The outlier matrix S is usually sparse with all entries being
zero except at most e entries. If we compare two outlier
matrices obtained in two sequential steps, the large number
of rows in the matrix should remain unchanged except only
a few rows (at most 2e rows). To well utilize this feature,
we propose Algorithm 3 to reuse the multi-layer LSH table
built in the previous step in the current iterative step by only
updating a few rows.

Algorithm 3 Reuse the Multi-layer LSH Table for Fast
Subspace Searching in Two Sequential Iterative Steps
Input: outlier matrices S[t], S[t+ 1] of two sequential steps t and

t+ 1, the multi-layer LSH table built for C[t] = X − S[t]
The measurement traffic data: X

Output: the subspace of C[t+ 1]=X − S[t+ 1]
1: Scan S[t] and S[t+1], use the sets R[t] and R[t+1] to record

the row index in S[t] and S[t + 1] that have entry values not
zero, respectively.

2: R = R [t] ∪R [t+ 1]
3: for each r ∈ R do
4: Delete row C[t](r) from the multi-layer LSH table
5: Insert row C[t+ 1](r) into the multi-layer LSH table
6: end for
7: Apply Algorithm 2 to find the subspace for C[t + 1], denoted

by V , and return V .

On lines 1-2, we scan the outlier matrices obtained in two
sequential steps to identify all possible rows changed from
matrix C[t] to C[t+1]. On lines 3-6, we update the mapping
of these possible rows in the multi-layer LSH table. After that,
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the subspace for the new matrix C[t+ 1] can be obtained by
applying Algorithm 2.

VIII. PERFORMANCE EVALUATIONS

We use the public traffic trace data Abilene [29] to evaluate
the performance of our proposed LSH-subspace. Before we
present the simulation results, we first present the setting of
our simulation.

For more efficient data processing, data normalization is
often applied to scale the variables or features of data. We nor-

malize the raw traffic data through li,j =
li,j−min

u,v
{lu,v}

max
u,v

{lu,v}−min
u,v

{lu,v}

to make their values to be within the range [0,1] where
max
u,v

{lu,v} and min
u,v

{lu,v} are the maximum and minimum

values of all the traffic data, respectively.
To generate the corrupted synthesized data X ∈ Rm×n from

the raw trace data L ∈ Rm×n, we first generate the outlier ma-
trix S ∈ Rm×n by randomly selecting γ×(m× n) locations as
the outlier locations where γ denotes the outlier ratio. Instead
of following the Gaussian distribution, to evaluate how robust
the proposed anomaly detection algorithm is in the presence of
large errors, the outlier value is randomly generated between
[0,10]. The synthesized data X is the sum of the outlier data
S and the raw data L, that is xi,j = li,j + si,j for all (i, j).

The following performance metrics are utilized to evaluate
our proposed LSH-subspace:

• False Positive Rate: the proportion of non-outliers that
are wrongly identified as outliers.

• False Negative Rate: the proportion of outliers that are
not identified.

• Correct Detection Rate: the proportion of entries that
are correctly identified as outlier or non-outlier.

• RMSE On Outlier: RMSE (root mean square error) is
the standard deviation of the differences between outlier
values detected and the raw outlier values.

• Computation time: the average number of seconds taken
to detect anomalies.

• Speedup: Given the computation time under two differ-
ent algorithms (alg1 and alg2), denoted as T1 and T2, the
speedup in the computation time of the alg2 with respect
to the alg1: S1−2 = T1/T2.

All simulations are run on a common PC, which is equipped
with one Intel (R) I5-4590 CPU (3.3GHz) (4 Cores) and
16.00GB RAM. To measure the computation time, we insert
a timer to all the implemented approaches.

To evaluate the performance of the proposed LSH-subspace,
we implement five schemes for performance comparison. We
first implement DRMF [18] with the truncated SVD + error
thresholding iteratively executed to detect the anomalies. The
second is our LSH-subspace, which iteratively partitions the
traffic matrix into sub-matrices to search for the subspace
following Algorithm 2. The truncated SVD for traffic matrix
is calculated based on the subspace. Moreover, to reuse the
reordered OD pairs of the previous iteration, LSH-subspace
also includes an algorithm to quickly update the LSH table
to hold the newly updated C. Different from LSH-subspace,
in the third scheme (denoted as Subspace-NoReuse), a new

LSH table is built to hold the newly update matrix C. Besides
above three schemes, we also implement RPCA [17] and PCA
to detect the anomaly in the traffic matrix.

In Fig.4, PCA achieves the worst performance with its false
positive rate almost 1 and correct detection rate 0 although its
false negative rate is low. As we generate the outlier value
randomly in a large range, PCA is not robust to these outliers
and fails to separate these corruption from normal data, which
confirms the observation of [18]. Compared to DRMF, LSH-
subspace and Subspace-NoReuse, the false positive rate and
correct detection rate under RPCA is much worse. It uses
the trace norm to relax the low-rank feature of traffic matrix,
which largely impacts the detection performance. Higher false
positive rate would result in false anomaly alarms, which may
largely increase the network maintenance cost.
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Fig. 4. Performance comparison.
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Fig. 5. Speed comparison.

DRMF, LSH-subspace, and Subspace-NoReuse all use the
matrix rank and set cardinality as the direct constraints in the
anomaly detection procedure. They achieve similar good per-
formance in terms of false positive rate, correct detection rate,
and RMSE. Both our LSH-subspace and Subspace-NoReuse
follow the Algorithm 1 and use our subspace searching (in
Algorithm 2) to obtain the approximate low-rank matrix. As
a result, they achieve the same accurate performance. Their
false negative rates are slightly lower than that of DRMF as
they obtain the truncated matrix not through an exact SVD.
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As DRMF, LSH-subspace, and Subspace-NoReuse achieve
similar good performance, in Fig. 5, we further compare
their computation speeds. Specially, to calculate the speedup
metric, we use DRMF as the baseline algorithm and set
alg1 = DRMF . With the OD pairs grouping through the
LSH function and the search of the subspace through iterative
matrix partition, our LSH-subspace and Subspace-NoReuse
are up to 3 and 2.5 times faster compared with DRMF.
Compared with Subspace-NoReuse, our LSH-subspace runs
even faster to detect the anomalies as it reuses part of the
LSH table in the previous iteration in the current iteration to
further reduce the computation time.

All the simulation results show that the techniques proposed
in LSH-subspace are very efficient and effective to quickly and
accurately detect the traffic anomalies.

IX. CONCLUSION

To facilitate quick low-rank matrix approximation for fast
anomaly detection, we propose LSH-subspace to quickly
search for the subspace to represent the traffic matrix. LSH-
subspace iteratively partitions the traffic matrix into sub-
matrices with each contributing a basis vector in the subspace.
To facilitate the matrix partition for fast subspace searching,
we propose a novel multi-layer LSH table which can reorder
and buffer origin and destination (OD) pairs based on locality
sensitive hashing (LSH), with OD pairs regrouped with various
similarity levels in different layers. To speed up the subspace
searching and minimize the projection error, the sub-matrix
least represented by the partial-subspace found is selected for
further partition. Finally, to reduce the overall computation
cost in the iterative process for anomaly detection, we further
propose a lightweight algorithm which exploits the sparsity of
the outlier matrix to reduce the overhead in updating the LSH
table in each iteration round. The simulation results based on
the real trace data demonstrate the effectiveness and efficiency
of LSH-subspace.

REFERENCES

[1] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in ACM sigmod record, vol. 29, pp. 93–
104, ACM, 2000.

[2] M. Zhao and V. Saligrama, “Anomaly detection with score functions
based on nearest neighbor graphs,” in Advances in Neural Information
Processing Systems, pp. 2250–2258, 2009.

[3] K. Xie, L. Wang, X. Wang, G. Xie, J. Wen, and G. Zhang, “Accurate
recovery of internet traffic data: A tensor completion approach,” in IEEE
INFOCOM, pp. 1–9, IEEE, 2016.

[4] H. Hotelling, “Analysis of a complex of statistical variables into principal
components.,” Journal of educational psychology, vol. 24, no. 6, p. 417,
1933.

[5] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk,
and N. Taft, Structural analysis of network traffic flows, vol. 32. ACM,
2004.

[6] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic
anomalies,” in ACM SIGCOMM Computer Communication Review,
vol. 34, pp. 219–230, ACM, 2004.

[7] A. Lakhina, M. Crovella, and C. Diot, “Characterization of network-wide
anomalies in traffic flows,” in Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, pp. 201–206, ACM, 2004.

[8] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic
feature distributions,” in ACM SIGCOMM Computer Communication
Review, vol. 35, pp. 217–228, ACM, 2005.

[9] L. Huang, X. Nguyen, M. Garofalakis, M. I. Jordan, A. Joseph, and
N. Taft, “In-network pca and anomaly detection,” in Advances in Neural
Information Processing Systems, pp. 617–624, 2006.

[10] L. Huang, X. Nguyen, M. Garofalakis, J. M. Hellerstein, M. Jordan,
A. D. Joseph, N. Taft, et al., “Communication-efficient online detection
of network-wide anomalies,” in INFOCOM 2007. 26th IEEE Interna-
tional Conference on Computer Communications. IEEE, pp. 134–142,
IEEE, 2007.

[11] D. Brauckhoff, K. Salamatian, and M. May, “Applying pca for traffic
anomaly detection: Problems and solutions,” in INFOCOM 2009, IEEE,
pp. 2866–2870, IEEE, 2009.

[12] C. Callegari, L. Gazzarrini, S. Giordano, M. Pagano, and T. Pepe, “A
novel pca-based network anomaly detection,” in Communications (ICC),
2011 IEEE International Conference on, pp. 1–5, IEEE, 2011.

[13] X. Li, F. Bian, M. Crovella, C. Diot, R. Govindan, G. Iannaccone,
and A. Lakhina, “Detection and identification of network anomalies
using sketch subspaces,” in Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, pp. 147–152, ACM, 2006.

[14] Y. Liu, L. Zhang, and Y. Guan, “Sketch-based streaming pca algorithm
for network-wide traffic anomaly detection,” in Distributed Comput-
ing Systems (ICDCS), 2010 IEEE 30th International Conference on,
pp. 807–816, IEEE, 2010.

[15] X. Li, F. Bian, H. Zhang, C. Diot, R. Govindan, W. Hong, and
G. Iannaccone, “Mind: A distributed multi-dimensional indexing system
for network diagnosis.,” in INFOCOM, Citeseer, 2006.

[16] Z. Lin, M. Chen, and Y. Ma, “The augmented lagrange multiplier method
for exact recovery of corrupted low-rank matrices,” arXiv preprint
arXiv:1009.5055, 2010.

[17] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?,” Journal of the ACM (JACM), vol. 58, no. 3, p. 11, 2011.

[18] L. Xiong, X. Chen, and J. Schneider, “Direct robust matrix factorizatoin
for anomaly detection,” in Data Mining (ICDM), 2011 IEEE 11th
International Conference on, pp. 844–853, IEEE, 2011.

[19] M. Thottan and C. Ji, “Anomaly detection in ip networks,” Signal
Processing, IEEE Transactions on, vol. 51, no. 8, pp. 2191–2204, 2003.

[20] A. O. Hero, “Geometric entropy minimization (gem) for anomaly de-
tection and localization,” in Advances in Neural Information Processing
Systems, pp. 585–592, 2006.

[21] T. Ahmed, M. Coates, and A. Lakhina, “Multivariate online anomaly
detection using kernel recursive least squares,” in INFOCOM 2007. 26th
IEEE International Conference on Computer Communications. IEEE,
pp. 625–633, IEEE, 2007.

[22] K. Xie, X. Ning, X. Wang, D. Xie, J. Cao, G. Xie, and J. Wen, “Recover
corrupted data in sensor networks: a matrix completion solution,” IEEE
Transactions on Mobile Computing, DOI:10.1109/TMC.2016.2595569,
2016.

[23] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210–227, 2009.

[24] C. Eckart and G. Young, “The approximation of one matrix by another
of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, 1936.

[25] Z. Lu and Y. Zhang, “Penalty decomposition methods for l0-norm
minimization,” preprint, 2010.

[26] K. Xie, L. Wang, X. Wang, G. Xie, G. Zhang, D. Xie, and J. Wen,
“Sequential and adaptive sampling for matrix completion in network
monitoring systems,” in IEEE INFOCOM, pp. 2443–2451, IEEE, 2015.

[27] K. Xie, C. Peng, X. Wang, G. Xie, and J. Wen, “Accurate recovery of
internet traffic data under dynamic measurements,” in IEEE INFOCOM,
2017.

[28] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proceedings of the
twentieth annual symposium on Computational geometry, pp. 253–262,
ACM, 2004.

[29] “The abilene observatory data collections. http://abilene. internet2.edu
/observatory/data-collections.html.,”

9

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications


