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Abstract— Detecting anomalous traffic is a critical task for
advanced Internet management. Many anomaly detection algo-
rithms have been proposed recently. However, constrained by
their matrix-based traffic data model, existing algorithms often
suffer from low accuracy in anomaly detection. To fully utilize
the multi-dimensional information hidden in the traffic data,
this paper takes the initiative to investigate the potential and
methodologies of performing tensor factorization for more accu-
rate Internet anomaly detection. More specifically, we model the
traffic data as a three-way tensor and formulate the anomaly
detection problem as a robust tensor recovery problem with
the constraints on the rank of the tensor and the cardinal-
ity of the anomaly set. These constraints, however, make the
problem extremely hard to solve. Rather than resorting to the
convex relaxation at the cost of low detection performance, we
propose TensorDet to solve the problem directly and efficiently.
To improve the anomaly detection accuracy and tensor factor-
ization speed, TensorDet exploits the factorization structure with
two novel techniques, sequential tensor truncation and two-phase
anomaly detection. We have conducted extensive experiments
using Internet traffic trace data Abilene and GÈANT. Compared
with the state of art algorithms for tensor recovery and matrix-
based anomaly detection, TensorDet can achieve significantly
lower false positive rate and higher true positive rate. Partic-
ularly, benefiting from our well designed algorithm to reduce the
computation cost of tensor factorization, the tensor factorization
process in TensorDet is 5 (Abilene) and 13 (GÈANT) times faster
than that of the traditional Tucker decomposition solution.

Index Terms— Internet traffic anomaly detection, tensor
recovery, tensor completion.
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I. INTRODUCTION

AN ANOMALY in a data set is defined by Barnett and
Lewis as “an observation (or subset of observations)

which appears to be inconsistent with the remainder of that
set of data” [1]. Anomaly detection aims to identify data
that do not conform to the patterns exhibited by the data
set [2]. Traffic anomalies, such as flash crowds, denial-of-
service attacks, port scans, and the spreading of worms, can
have detrimental effects on network services. These anomalies
often lead to unusual and significant changes of network traffic
levels, and the changes can often span multiple links. Detecting
and diagnosing these anomalies are critical to both network
operators and end users.

Different from traffic characterization which has a
large body of literatures, traffic anomaly detection is a dif-
ficult problem because one must extract and interpret anom-
alous patterns from a large amount of traffic data. Recently,
many efforts [3]–[11] have been made to develop various
anomaly detection algorithms. They usually model the traffic
data as a traffic matrix and design the anomaly detection
algorithms based on the matrix data. As a matrix can only
record two-dimensional information and is not enough to
capture the comprehensive correlations hidden in the traf-
fic data, the accuracy of the anomaly detection is often
low.

Rather than being constrained by the matrix-based
approaches, we propose to model the traffic monitoring data
with a multi-way tensor, and investigate the possibility and
methodology of exploiting the correlations in a higher dimen-
sional tensor to more robustly detect the network anomaly.
Tensors are the higher-order generalization of vectors and
matrices. Tensor-based multilinear data analysis has shown
that tensor models can take full advantage of the multilinear
structures to provide better data understanding and information
precision. Tensor-based methods have proven to be good
analytical tools for dealing with the multi-dimensional data
in a variety of fields.

A popular assumption in anomaly detection is that the
normal data have close values, while outliers are far away
from the others and lie in the low-density region of the data
distribution [12], [13]. In our recent study [14], based on the
experiments of real traffic trace, we reveal that traffic data
have the features of temporal stability, spatial correlation, and
periodicity. With the structure feature and similarity, normal
traffic data will reside in a low-dimensional linear subspace
and form a low-rank tensor, while the anomalies (outliers)
will stay outside this subspace. Based on these observa-
tions, we propose a novel tensor-based anomaly detection
approach with two steps: We first decompose the noisy traffic
data into two parts, low-rank normal data and outlier data;
We then detect the anomaly by finding the outlier data.
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We term the decomposition problem as the robust tensor
recovery problem.

Current literature studies on tensor mainly focus on tensor
completion to fill in missing data [14]–[17] instead of tensor
recovery to obtain complete and normal tensor data from noisy
measurements with some corrupted by outliers. Some recent
efforts [18]–[20] are made to investigate the tensor recovery
problem. They directly extend either RPCA (Robust Principal
Component Analysis) of matrix [21] or PCA (Principal Com-
ponent Analysis) of matrix [4] to the tensor field by unfolding
a tensor into matrices, and then utilize the information of
different mode in a tensor individually. Thus these approaches
are fundamentally still matrix-based and would suffer from the
low anomaly detection performance without fully exploiting
the tensor pattern and the multilinear information inherent in
the data.

For more accurate data recovery and anomaly detection,
we directly formulate the robust tensor recovery problem
as a tensor approximation problem with constraints on the
rank of the tensor and the cardinality of the set of outliers.
Unlike [18], [19] that utilize the trace norm of matrix to relax
the low-rank tensor constraint, our problem formulation can
take advantage of the tensor pattern and correlations among
multiple modes to better recover data. Although promising,
this method is very challenging to apply for practical anomaly-
detection in Internet for several reasons:

• Directly solving the tensor recovery problem is made
extremely hard under the constraints of the tensor rank
and the cardinality of the outlier set.

• It would involve a high computation overhead thus slower
processing speed to complete tensor factorization which
is needed to approximate the noisy tensor with a low-rank
tensor.

• It is a challenge to decompose the original noisy tensor
into a low-rank normal tensor and locate the anomaly
from the noisy tensor data as the tensor decomposition is
very sensitive to outliers.

In light of the above challenges, we propose a tensor
recovery scheme, TensorDet, for accurate and fast anomaly
detection. To the best of our knowledge, this is the first
work that demonstrates the capability of applying tensor
factorization to enable robust tensor data recovery for fast and
accurate Internet anomaly detection. The main contributions
in TensorDet are as follows:

• Despite the difficulty of handling the constraints on tensor
rank and set cardinality, we propose a block coordinate
descent scheme to solve the tensor recovery problem
directly in its original form by iteratively solving two
sub problems, a tensor factorization subproblem and an
anomaly detection subproblem.

• To find the low rank normal data with much lower
computation cost for tensor factorization, we propose a
sequential tensor truncating algorithm through the finding
of best processing order and the dimension reduction in
each tensor truncation step.

• To solve the anomaly detection subproblem and locate
the anomaly, we propose a highly efficient two-phase
anomaly detection algorithm with a theoretical proof of
its ability to accurately detect the anomaly despite the
cardinality constraint of the anomaly set.

• Using traffic trace data Abilene [22] and GÈANT
[23], we compare our TensorDet with the state of art
tensor recovery algorithms and matrix-based outlier

detection algorithms. Our results demonstrate that
TensorDet can achieve significantly better accuracy
performance in terms of False Positive Rate and
True Positive Rate. Specifically, benefiting from our
sequential tensor truncating algorithm, the tensor
factorization process in TensorDet is 5 (Abilene)
and 13 (GÈANT) times faster compared with the
traditional tensor factorization methods based on Tucker
decomposition.

The rest of the paper is organized as follows. Section II
presents the related work. The preliminaries of tensor are
presented in Section III. We present our system model and
problem formulation in Section IV. We describe our sequen-
tial tensor truncating algorithm and our two phase anomaly
detection algorithm in Section V and Section VI, respectively.
Finally, we implement the proposed TensorDet and evaluate
the performance using real traffic trace data in Section VII,
and conclude the work in Section VIII.

II. RELATED WORK

We are not aware of any other work that provide accurately
anomaly detection based on tensor factorization. Following we
review some literature work.

A. Traffic Anomaly Detection

Despite a large body of literature on traffic characteriza-
tion, anomaly detection remains a challenge, and Principal
Component Analysis (PCA) [3] is perhaps the best-known
statistical-analysis technique. PCA uses an orthogonal trans-
formation to convert possibly correlated observed variables
into a set of linearly uncorrelated variables called principal
components [24]. PCA is a dimensionality-reduction technique
that returns a compact representation of a multi-dimensional
dataset by reducing the data to a lower dimensional
subspace [25]. Some recent papers that apply PCA to the
traffic anomaly detection have shown some promising initial
results [4]–[6], [26]–[29]. PCA has also been combined with
sketches [7], [8] and distributed monitors [9] to provide more
efficient traffic anomaly detection.

To make PCA more robust, Candès et. al. [21] proposed
to approach Robust PCA (RPCA) via Principal Component
Pursuit (PCP), which decomposes a given observation (noisy)
matrix X into a low-rank component X′ and a sparse
component E. To make the problem solvable, the work
in [30] replaces the matrix rank and the cardinality (‖‖0)
functions with their convex surrogates, the nuclear norm and
the L1 norm, and solves the following convex optimization
problem

min
X′,E

{‖X′‖∗ + λ‖E‖1}
st. X′ + E = X (1)

where ‖‖∗ denotes the nuclear norm of a matrix (i.e., the sum
of its singular values), ‖‖1 denotes the sum of the absolute
values of matrix entries, and λ is a positive weighting
parameter. Recently, work in [31] proposes a direct robust
matrix factorization which aims at minimizing the L2 error
of the low-rank approximation subject to that the number of
ignored outliers is small.

Although promising, current anomaly detection techniques
are mainly designed based on the matrix data. As a matrix is
not enough to capture the comprehensive correlations among
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the traffic data, the accuracy of the anomaly detection is often
low.

Different from current matrix-pattern based anomaly detec-
tion which only utilize two-dimensional information, in this
work, we propose to investigate the possibility and method-
ology of exploiting the correlations in a higher dimensional
tensor to more robustly detect the network anomaly.

B. Tensor Factorization

Current literature studies on tensor mainly focus on ten-
sor completion instead of tensor recovery. Several Tensor
completion algorithms [14]–[16], [32]–[34] are proposed to
capture the global structure of data for recovering the missing
data in a tensor. Among which, our own studies [14], [16]
propose to apply the tensor completion to infer the full
Internet traffic data from partial measurements and loss. These
previous studies demonstrate that, by exploiting the inherent
relationship among higher dimensional data, tensor models can
take full advantage of the multilinear structures to provide
better data understanding and information precision.

Different from missing data inferring, the aim of tensor
recovery is to recover the low-rank tensor from noisy ten-
sor data with some entries corrupted by outliers. Recently,
some initial efforts are made [18]–[20] to investigate the
tensor recovery problem, where a multi-dimensional ten-
sor is first matricizationed into multiple unfolding matrices.
In [18] and [19], a convex relaxation is given by applying the
trace norm (the sum of singular values of the optimization
matrix) to the unfolding matrices, and finally RPCA [21] is
extended to solve the tensor recovery problem. In [20], a
PCA is applied to the unfolded matrices to solve the tensor
recovery problem. Relying on matricization and the relaxation
technique based on matrix, these methods are still matrix-
based, and the information of different modes in a tensor
is individually utilized. Thus these approaches can not fully
utilize the multidimentional information hidden in the tensor
pattern to robustly recover the tensor and accurately detect
anomaly.

Different from current tensor-based techniques, this paper
focuses on robust tensor recovery problem and proposes
TensorDet as a simple and effective way for faster low-
rank tensor factorization and more accurate outlier detection.
We start from the fundamental notion of outliers and use a
direct formulation (with constraints in the direct form of low-
rank tensor and the cardinality of outliers ) to address the
problem. Our evaluation results demonstrate that the perfor-
mance of TensorDet is significantly better than that of the
state-of the art peer algorithms based on relaxation. We also
propose some novel techniques to speed up the processes of
tensor factorization and anomaly detection.

III. PRELIMINARIES OF TENSOR

In this section, we introduce some basic concepts related
to the tensor. The notations used in this paper are described
as follows. Scalars are denoted by lowercase letters (a, b, · · ·),
vectors are written in boldface lowercase (a,b, · · ·), and matri-
ces are represented with boldface capitals (A,B, · · ·). Higher-
order tensors are written as calligraphic letters (X ,Y, · · ·). The
elements of a tensor are denoted by the symbolic name of the
tensor with indexes as subscripts. For example, the ith entry
of a vector a is denoted by ai, element (i, j) of a matrix A is

Fig. 1. Tensor slices- (a) The horizontal (Ai::), (b) lateral (A:j:) and
(c) frontal (A::k) slices of a 3-way tensor respectively.

denoted by aij , and element (i, j, k) of a third-order tensor X
is denoted by xijk .

Definition 1: A tensor is a multidimensional array, and is a
higher-order generalization of a vector (first-order tensor) and
a matrix (second-order tensor). A d-way or dth-order tensor
(denoted as A ∈ R

I1×I2×···×Id) is an element of the tensor
product of d vector spaces, where d is the order of A, also
called way or mode.

The element of A is denoted by ai1,i2,··· ,id
, in ∈

{1, 2, · · · , In} with 1 ≤ n ≤ d.
Definition 2: Slices are two-dimensional sections of a ten-

sor, and are defined by fixing all but two indexes.
A 3-way tensor A has horizontal, lateral and frontal slices

shown in Fig.1, which are denoted by Ai::, A:j: and A::k,
respectively.

Definition 3: Given a tensor A ∈ R
I1×I2×···×Id , a mode-k

vector v is defined as the vector that is obtained by fix-
ing all indices of A but varying the mode-k index:v =
Ai1,··· ,ik−1,:,ik+1,··· ,id with ij(j �= k) a fixed value. We refer to
the set of all mode-k vectors of A as the mode-k vector space.
The mode-k unfolding, or matricization [15], of A, denoted
by A(k), is an Ik ×

∏
i�=k Ii matrix whose columns are all

possible mode-k vectors.
For a dth-order tensor A ∈ R

I1×I2×···×Id , the mode-k
unfolded matrix A(k) ∈ RIk×

�
i�=k Ii contains the tensor

element ai1,i2,··· ,id
, in ∈ {1, 2, · · · , In} at the position in the

unfolding matrix with its row index ik and column index j
equal to

j = 1 +
d∑

n=1,n�=k

⎡

⎣(in − 1)
n−1∏

m=1,m �=k

Im

⎤

⎦ (2)

Fig. 2 shows an unfolding procedure of a 3rd-order tensor,
which involves the tensor dimensions I1, I2, I3 in a cyclic
way. Fig. 3 shows an example of a tensor A ∈ R

3×4×2, in
which the matrix unfolding A(2) is given.

Definition 4 (Multilinear-Rank [35]): The multilinear-rank
of a dth-order tensor A ∈ R

I1×I2×···×Id is d-tuple of the ranks
of unfolded matrices, that is,

(
rank

(
A(1)

)
, rank

(
A(2)

)
, . . . , rank

(
A(d)

))
. (3)

Definition 5: The k-mode (matrix) product of a tensor
A ∈ R

I1×I2×···×Id with a matrix U ∈ R
J×Ik is a tensor

denoted by A× kU, whose mode-k unfolded matrix is equal
to the matrix U times the mode-k unfolded matrix A(k):

B = A× kU⇔ B(k) = UA(k) (4)

The dimension of the k-mode product is I1 × · · · × Ik−1 ×
J × Ik+1 × · · · × Id, and the element is

(A× kU)i1,··· ,ik−1,j,ik+1···id

=
Ik∑

ik=1

ai1,··· ,ik−1,ik,ik+1,··· ,id
uj,ik

. (5)
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Fig. 2. Unfolding of the (I1 × I2 × I3)− tensor A to the (I1 × I2I3)−
matrix A(1) , the (I2 × I3I1)− matrix A(2) , and the (I3 × I1I2)−
matrix A(3).

Fig. 3. A tensor A ∈ R3×4×2 .

As an example, let A be the tensor defined in Fig.3 and

let U =
[

1 3 5 7
2 4 6 8

]

. Then, the product B = A×2U ∈
R

3×2×2 is a tensor with its mode-2 unfolding matrix being

B(2) =
[

118 134 150
140 160 180

∣
∣
∣
∣

310 326 342
380 400 420

]

(6)

The k-mode matrix product satisfies the following
properties.

A× mX× nY = A× nY × mX (m �= n) (7)

and

A× nX× nY = A× n (YX) (8)

Definition 6 (Tucker Decomposition [35]): As shown in
Fig. 4, a third-order tensor A ∈ R

I1×I2×I3 can be decomposed
into three factor matrices X ∈ R

I1×I1 , Y ∈ R
I2×I2 and

Z ∈ R
I3×I3 as well as a third order core tensor S ∈ R

I1×I2×I3

as follows

A = S × 1X× 2Y × 3Z (9)

That is

ai,j,k =
I1∑

i′=1

I2∑

j′=1

I3∑

k′=1

si′,j′,k′xi,i′yj,j′zk.k′ (10)

The Tucker decomposition can be built from several SVDs,
as follows [36], [37]:

Given a tensor A ∈ R
I1×I2×I3 , construct the mode-k

unfolding A(k).
Compute the singular value decomposition A(k) =

UkΣkVT
k , let X = U1, Y = U2, Z = U3.

The core tensor S is then the projection of A onto the
tensor basis formed by the factor matrices X,Y,Z, i.e.,
S = A× 1XT × 2YT × 3ZT .

Definition 7 (Multilinear Orthogonal Projections): An
orthogonal projector [38], [39] is a linear transformation P

Fig. 4. Tucker decomposition: A = S × 1X × 2Y × 3Z.

that projects a vector u ∈ R
n into a vector space U ⊆ R

n

such that the residual u − Pu is orthogonal to U . Such a
projector can always be represented in the matrix form as
P = UUT, assuming that the columns of U form an ortho-
normal basis for the vector space U . De Silva and Lim [40]
state that φ = (φ1, φ2, . . . , φd) is a multilinear orthogonal
projection from the tensor space V = V1 × V2 × · · · × Vd

onto the tensor subspace U = U1 × U2 × · · · × Ud ⊆ V .
In this paper, we deal with an orthogonal projector from
R

I1×· · ·×R
Ik−1×R

Ik ×R
Ik+1×· · ·×R

Id into the subspace
R

I1 × · · · ×R
Ik−1 ×Uk ×R

Ik+1 × · · · ×R
Id exclusively. This

multilinear orthogonal projection is given by

πkA = A× k

(
UkUT

k

)
(11)

with A ∈ R
I1×···×Id . In (11), the columns of Uk form an

orthonomal basis of the mode-k vector space of A. The sub-
script of the projector πk indicates that it projects orthogonally
along mode k. The projector satisfies the following properties.
Every projector πk is idempotent, πkπkA = πkA, and any
two projectors commute, πiπjA = πjπiA. The orthogonal
complement of πk can be characterized explicitly by

π⊥
k A = (1− πk)A = A× k

(
I −UkUT

k

)
(12)

where I is the identity matrix of a suitable dimension.

IV. MODELS AND PROBLEMS

In this section, we first introduce our system model, then
the problem.

A. Traffic Tensor Model
In our recent study [14], based on the experiments of real

traffic trace, we reveal that traffic data have the features of
temporal stability, spatial correlation, and periodicity. To fully
exploit these traffic features for accurate anomaly detection,
we model the traffic data as a 3-way tensor X ∈ R

I1×I2×I3 ,
where I3 corresponds to the number of OD pairs with
I3 = N × N (N is the number of nodes in the network),
and there are I1 days to consider with each day having I2

time slots. Fig.5 uses Abilene trace data [22] as an example
to illustrate this model. The traffic data are collected between
144 OD pairs in 168 days, and the measurements are made
every 5 minutes which corresponds to 288 time slots every day.
Therefore, the trace data can be modeled as a 3-way tensor
X ∈ R

I1×I2×I3 with I1 = 168, I2 = 288, and I3 = 144.

B. Problem Formulation
The data captured by a traffic tensor tend to be noisy and are

subject to outliers and arbitrary corruptions. For more accurate
detection of the outliers ad corruptions, we will exploit the
structure and correlation of traffic data in all the dimensions.
Specifically, we propose to design robust detection algorithms
by applying the PCA technique to the tensor data for more
accurate traffic anomaly detection.
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Fig. 5. Traffic tensor model.

The extension of the PCA technique to the higher dimen-
sional tensor data, however, is highly no trivial. Intuitively,
the problem in (1) can be directly extended to formulate the
PCA problem for the tensor data:

min
X ′,E

{‖X ′‖∗ + λ‖E‖1}
st. X ′ + E = X (13)

where X ′, E ,X ∈ R
I1×I2×I3 , ‖‖∗ denotes the nuclear norm

of a tensor, and ‖‖1 denotes the sum of the absolute values
of tensor entries. However, the nuclear norm of a higher
dimensional tensor is not well defined.

To achieve highly accurate anomaly detection, we propose
to solve the Robust tensor PCA problem in its direct form.
In (14), we decompose a given observation tensor X into a
low-rank component X ′ and a sparse component E by solving
the optimization problem below:

min
X ′,E

‖(X − E)−X ′‖F
s.t. rank(X ′) ≤ rank(r1, r2, r3)
‖E‖0 ≤ ε, (14)

where rank(X ′) ≤ rank(r1, r2, r3) means rank(X ′
(1)) ≤ r1,

rank(X ′
(2)) ≤ r2 and rank(X ′

(3)) ≤ r3, and E is
the tensor of outliers, whose number of non-zero entries
(i.e., anomalies) is smaller than ε. The rank(r1, r2, r3) is the
maximum rank of X ′, and can be set based on rank from the
recent recovered data, plus some extra value to increase
the accuracy of recovering X ′.

With (X − E), we exclude the outliers E from the observa-
tion tensor as long as E is sufficiently sparse with the number
of outliers limited to be not too large, and we do not need to
know the actual number of outliers.

C. Solution Overview

The problem (14) involves the tensor rank and the L0-norm
(i.e., the cardinality of the outlier set), and is very difficult
to solve. As the constraints of X ′ and E are independent, the
problem is decomposable. Taking advantage of this property,
we propose to adopt the block coordinate descent strategy,
and divide the original problem into two subproblems: a
tensor factorization subproblem (15) and an anomaly detection
subproblem (41), which can be alternately solved until the
solution converges as shown in Algorithm 1.

In the tensor factorization subproblem (Eq.(15)), we first fix
the current estimate of outliers E and exclude them from X to
obtain the “clean” data C, and then approximate C using X ′.
In the anomaly detection subproblem (Eq.(41)), we update the
outliers E based on the error B = X − X ′.

In following two Sections, we provides our key techniques
to solve these two subproblems.

Algorithm 1 Robust Tensor PCA
Input: X the traffic tensor

rank(r1, r2, r3) the maximal rank of the traffic tensor
ε the maximal number of outliers E the initial outliers

Output:
1: while not converged do
2: solve the tensor factorization subproblem

X ′ = argmin
X ′

‖C − X ′‖F
s.t. C = X − E

rank(X ′) ≤ rank(r1, r2, r3) (15)

3: solve the anomaly detection subproblem

E = arg min
E

‖B − E‖F
s.t. B = X − X ′

‖E‖0 ≤ ε (16)

4: end while

Fig. 6. T-HOSVD problem: to approximate the tensor C with a tensor X ′
of rank(r1, r2, r3).

V. TENSOR FACTORIZATION

The subproblem in (15) is defined to approximate the
tensor C with a tensor X ′ of rank(r1, r2, r3), and we call
it truncating the higher-order singular value decomposition
problem (T-HOSVD), which can be explained through Fig.6.

A straight-forward way to solve T-HOSVD is to first cal-
culate the tucker decomposition (Definition 6) to obtain the
factor matrices X, Y, and Z, and then restrict tensor C’s
factor matrices X, Y, and Z to their first r1, r2, and r3

columns, and restrict the core tensor to S′ = [[sijk]]r1,r2,r3
i,j,k=1 .

An important step in the above procedure is to obtain the factor
matrices. When the size of tensor becomes large, however, the
computation cost to derive the factor matrices is huge.

In this paper, we seek a novel way to solve the T-HOSVD
problem through sequential tensor truncation thus sequential
size reduction to largely reduce the computation cost.

A. Problem Transformation

Given a tensor C and the truncation rank (r1, r2, r3), the
approximation X ′ can be obtained by an orthogonal projection
onto the tensor basis of C, represented by the truncated factor
matrices of the tensor C:

X ′ = π1π2π3C
= C × 1

(
U1UT

1

)× 2

(
U2UT

2

)× 3

(
U3UT

3

)

= S × 1U1 × 2U2 × 3U3 (17)
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where the truncated factor matrix Uk ∈ R
Ik×rk is a column

orthonormal matrix. In (17), the core tensor S is defined as

S = C × 1UT
1 × 2UT

2 × 3UT
3 (18)

where S ∈ R
r1×r2×r3 .

Based on (17), the problem (15) can be rewritten as

min
π1,π2,π3

‖C − π1π2π3C‖2F (19)

To solve the T-HOSVD problem, we need to calculate the
optimal π1, π2, and π3.

According to the properties of multilinear orthogonal pro-
jections, we know that

π1π2π3C = π1π3π2C = π2π1π3C = π2π3π1C
= π3π1π2C = π3π2π1C (20)

In this paper, we denote the order in which the modes are
processed as a sequence P , which is a permutation of {1, 2, 3}.
For example, with π1π2π3C, P = [1, 2, 3]. We have

C − π1π2π3C
= C − πP1πP2πP3C
= (C − πP1C) + (πP1C − πP2πP1C)

+ (πP2πP1C − πP3πP2πP1C)
= π⊥

P1
C + π⊥

P2
πP1
C + π⊥

P3
πP1

πP2
C (21)

Theorem 1: Applying the decomposition in (21) to any
permutation P of {1, 2, 3}, the approximation error can be
represented by

‖C − πP1πP2πP3C‖2F =
∥
∥π⊥

P1
C∥∥2

F
+

∥
∥π⊥

P2
πP1
C∥∥2

F

+
∥
∥π⊥

P3
πP1

πP2
C∥∥2

F
(22)

Proof: According to (21), we have

‖C − πP1πP2πP3C‖2F
=

∥
∥π⊥

P1
C + π⊥

P2
πP1C + π⊥

P3
πP1πP2C

∥
∥2

F
(23)

which can be further deduced as

‖C − πP1πP2πP3C‖2F
=

∥
∥π⊥

P1
C∥∥2

F
+

∥
∥π⊥

P2
πP1C

∥
∥2

F
+

∥
∥π⊥

P3
πP1πP2C

∥
∥2

F

+ 2
∥
∥π⊥

P1
Cπ⊥

P2
πP1C

∥
∥

F
+ 2

∥
∥π⊥

P1
Cπ⊥

P3
πP1πP2C

∥
∥

F

+ 2
∥
∥π⊥

P2
πP1Cπ⊥

P3
πP1πP2C

∥
∥

F
. (24)

Moreover, according to the definition of multilinear orthogonal
projection, π⊥

P1
C, π⊥

P2
πP1C, and π⊥

P3
πP1πP2C are orthogo-

nal with each other, and we have
∥
∥π⊥

P1
Cπ⊥

P2
πP1C

∥
∥

F
= 0,∥

∥π⊥
P1
Cπ⊥

P3
πP1πP2C

∥
∥

F
= 0, and

∥
∥π⊥

P2
πP1Cπ⊥

P3
πP1πP2C

∥
∥

F
=0.

With this orthogonality, the approximation error can be repre-
sented by (22).

Given a tensor C ∈ R
I1×I2×I3 , the singular value decom-

position (SVD) of mode-k unfolded matrix C(k) = UkΣkVk,
where Σk is a diagonal matrix with the diagonal elements
(i.e. the singular values) organized in the decreasing order
(i.e. Σk = diag

(
σ1, σ2, · · · , σr(k) , 0, · · · , 0)). If the trun-

cation rank (r1, r2, r3) is set to be larger than the ranks
of the corresponding unfolded matrices r(1), r(2) and r(3),
respectively, the truncated tensor using the truncation rank
(r1, r2, r3) will preserve all data variability. Thus we have
‖C − π1π2π3C‖2F = 0.

Fig. 7. Approximation error ‖C − π1π2π3C‖2
F for a third-order tensor with

P = [1, 2, 3]. Red shaded area in Figure Fig.7(a) corresponds to
�
�π⊥

1 C��2

F
,

in Fig.7(b) it corresponds to
�
�π⊥

2 π1C
�
�2

F
, and in Fig.7(c) to

�
�π⊥

3 π1π2C
�
�2

F
.

From Fig.7, we can visualize the approximation error for a
third-order tensor with P = [1, 2, 3]. The cube is partitioned
into octants.

From Eq(7), we can observe that any processing order P
may correspond to the summation of different octants, but the
resulting approximation error is clearly the same. However, as
we will analyze in Section V-C, different processing orders
may lead to big differences in the computation cost.

B. Sequentially Truncated HOSVD

From this section, we present our techniques to minimize
Eq(22) and find the optimal processing order to largely reduce
the computation cost.

According to Eq(22), the problem (19) can be further
expressed as

min
π1,π2,π3

‖C − π1π2π3C‖2F
= min

π1,π2,π3

(∥
∥π⊥

P1
C∥∥2

F
+

∥
∥π⊥

P2
πP1
C∥∥2

F
+

∥
∥π⊥

P3
πP1

πP2
C∥∥2

F

)

= min
π1

[
∥
∥π⊥

P1
C∥∥2

F
+ min

π2

[
∥
∥π⊥

P2
πP1
C∥∥2

F

+ min
π3

∥
∥π⊥

P3
πP1

πP2
C∥∥2

F

]]

(25)

According to Eq(25), we propose a sequentially truncated
HOSVD solution with the following steps:

Step 1: π∗
P1

= argmin
πP1

∥
∥π⊥

P1
C∥∥2

F
(26)

Step 2: π∗
P2

= argmin
πP2

∥
∥π⊥

P2
π∗

P1
C∥∥2

F
(27)

Step 3: π∗
P3

= argmin
πP3

∥
∥π⊥

P3
π∗

P1
π∗

P2
C∥∥2

F
(28)

The details of each step are as follows:
1) First Step: Based on the definition of multilinear orthog-

onal projection in Eq(11), the problem (26) can be transformed
into

UP1 = arg min
UP1

∥
∥C × P1

(
I −UP1U

T
P1

)∥
∥2

F
(29)

The problem (29) can be solved by a truncated SVD of the
mode-P1 unfolding of the tensor C with UP1 ∈ R

IP1×rP1

obtained from following operations.

C(P1) =
[
UP1 ŨP1

]
[ ∑

P1 ∑̃
P1

][
VT

P1

ṼT
P1

]

(30)

After we obtain UP1 , the solution of problem (26) is π∗
P1

=
UP1U

T
P1

. Let S(1) denote the truncated core tensor of π∗
P1
C.
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We have

S(1) = C × P1U
T
P1

(31)

That is,

S(1)
(P1) = UT

P1
C(P1)

= UT
P1

[
UP1 ŨP1

]
[ ∑

P1 ∑̃
P1

][
VT

P1

ṼT
P1

]

= [ I 0 ]
[ ∑

P1 ∑̃
P1

][
VT

P1

ṼT
P1

]

=
�

P1
VT

P1
(32)

where
∑

P1
∈ R

rP1×rP1 and VT
P1
∈ R

rP1×(IP2×IP3).

Therefore, S(1)
(P1) can be obtained simply by scaling the right

singular vectors with the corresponding singular values, that is

S(1)
(P1) =

∑
P1

VT
P1

.

2) Second Step: Replace C in (27) with C = S(1)×P1UP1
,

the problem (27) can be transformed as follows.

UP2 = argmin
UP2

∥
∥
∥S(1) × P1UP1 × P2

(
I −UP2U

T
P2

)∥∥
∥

2

F
(33)

Similarly, the problem (33) can be computed by means of
truncated SVD of the mode-P2 of unfolding of S(1). After
we obtain UP2 , the solution of the original problem (27) is

π∗
P2

= UP2U
T
P2

.
Let S(2) denote the truncated core tensor of π∗

P2
π∗

P1
C.

We have

S(2) = S(1) × P2U
T
P2

= C × P1U
T
P1
× P2U

T
P2

(34)

and

C = S(2) × P1UP1
× P2UP2

(35)

3) Third Step: Replace C = S(2) × P1UP1
× P2UP2

to
Eq.(28), problem (28) can be transformed as

UP3 = arg min
UP3

×
∥
∥
∥S(2) × P1UP1

× P2UP2
× P3

(
I −UP3U

T
P3

)∥∥
∥

2

F

(36)

Similar to the problem (33), the problem (36) can be translated
to the truncated SVD of the mode-P3 with the unfolding
of S(2). Obviously, π∗

P3
= UP3U

T
P3

is the solution of
problem (28). We denote the truncated core tensor of
π∗

P3
π∗

P2
π∗

P1
C as S(3) which can be calculated by

S(3) = S(2)× P3U
T
P3

= C × P1U
T
P1
× P2U

T
P2
× P3U

T
P3

(37)

According (17), the optimal rank (r1, r2, r3) approximation
tensor of tensor C can be calculated by

X ′ = S(3) × P1UP1
× P2UP2

× P3UP3
(38)

where S(3) is the core tensor of the resulted truncated
tensor X ′.

Given a processing order P = [2, 3, 1], Fig.8 shows the core
tensor under sequential truncation. Obviously, the size of the
core tensor is reduced after each truncation.

Rather than performing the calculation in Eq (15) directly
with a tensor C of large size, the sequential truncation process

Fig. 8. A graphical illustration of the sequential truncation of a third-order
tensor, corresponding to the processing order [2, 3, 1] of the modes.

Fig. 9. The unfolding matrix of the core tensor before and after sequence
truncation. (a) Mode-P 1 truncation. (b) Mode-P 2 truncation. (c) Mode-P 3
truncation.

allows for the calculation with a tensor S of much smaller
size. This will significantly reduce the computation cost.
In the next subsection, we will analyze the computation cost
and find the methodology of further reducing the computation
cost.

C. Cost Analysis

Generally, for an m × n matrix (m ≤ n), the cost to
compute the SVD is O

(
m2n

)
. For an m×n matrix X and an

n×p matrix Y, the computation cost of matrix multiplication
(i.e., XY) is O (mnp).

In the first step, the computation cost includes the cost
on SVD of the mode-P1 unfolding matrix and the cost of
matrix multiplication S(1)

(P1)
=

∑
P1

VT
P1

. The size of mode-
P1 unfolding matrix of tensor C is IP1 × (IP2IP3), therefore,
the cost on SVD is O(I2

P1
IP2IP3). As

∑
P1
∈ R

rP1×rP1 and

VT
P1
∈ R

rP1×(IP2×IP3), the multiplication cost of
∑

P1
VT

P1

is O(r2
P1

IP2IP3). Thus, the total cost of the first step is
O1 = O(I2

P1
IP2IP3 + r2

P1
IP2IP3).

Fig.9(a) shows the mode-P1 unfolding matrix of tensor C
and the truncated core tensor S(1) after the mode-P1 trunca-
tion. It is noticed that the number of rows in the unfolding
matrix of S(1) is rP1 instead of IP1 .

In the second step, the unfolding matrix of the truncated
core tensor S(1) is IP2 × (rP1IP3), which results in the SVD
cost being O

(
I2
P2

rP1IP3

)
and the matrix multiplication cost

being O
(
r2
P2

rP1IP3

)
. Fig.9(b) further shows the mode-P2

unfolding matrix of the truncated core tensor before (i.e.,S(1))
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TABLE I

COMPUTING COMPLEXITY

and after (i.e.,S(2)) mode-P2 truncation. The total cost of
second step is O2 = O

(
I2
P2

rP1IP3 + r2
P2

rP1IP3

)
.

In the third step, the mode-P3 unfolding matrix of the
truncated core tensor S(2) is IP3 × (rP1rP2). The SVD
cost to compute the UP3 is O

(
I2
P3

rP1rP2

)
and the matrix

multiplication cost is O
(
r2
P3

rP1rP2

)
. The total cost of the

third step is O3 = O
(
I2
P3

rP1rP2 + r2
P3

rP1rP2

)
.

From Fig. 9, we can observe that for each truncation, the
shape of the tensor before truncating is larger than the tensor
after the truncating. The tensor after the truncating is the oper-
ating tensor for the next step. As the computation cost depends
on the size of the tensor shape, therefore, the computation
cost decreases with each truncating step, i.e., O1 > O2 > O3.
However, in the Tucker decomposition, every mode unfolding
matrix used to calculate the factor matrices has same the
shape size, which leads to the same large computation cost.
As the shape size of unfolding matrices sequentially reduces
in our solution, compared with the Tucker decomposition, our
solution can largely reduce the computation cost.

D. Detailed Algorithm

From the discussion in the previous section, we can see the
computational cost can be significantly reduced by translating
the calculation in Eq (15) into a sequential truncation process
with the calculation of a tensor S whose size is much smaller
than that of the tensor C. Different sequential truncation order
would lead to different cost as can be seen from the following
example.

The total computation cost of our solution includes the cost
of each step is

cost(P ) = O(I2
P1

IP2IP3 + I2
P2

rP1IP3 + I2
P3

rP1rP2 )
+ O

(
r2
P1

IP2IP3 + r2
P2

rP1IP3 + r2
P3

rP1rP2

)
(39)

where O(I2
P1

IP2IP3 + I2
P2

rP1IP3 + I2
P3

rP1rP2) and
O

(
r2
P1

IP2IP3 + r2
P2

rP1IP3 + r2
P3

rP1rP2

)
are the total

SVD cost and matrix multiplication cost, respectively.
To approximate a 3-way traffic tensor I1 × I2 × I3 by

3-way tensor with a rank (r1, r2, r3), a different processing
order may lead to the big difference in the computation cost.
Table I shows the computation cost to approximate a 3-way
tensor C ∈ R

10×11×12 with the truncation rank (7, 6, 5).
Therefore, to speed up our tensor factorization process,

we propose Algorithm 2 that will look for the sequential
truncation order with the minimum calculation cost. It first
evaluates the computation cost of different processing orders,
among which, the order with the least cost is selected, denoted
by P . According to the selected processing order P , the
original tensor C is sequentially truncated to obtain the optimal
rank(r1, r2, r3) tensor. On line 11, the truncated tensor is X ′
with its core tensor being S(3).

Algorithm 2 Tensor Truncation

Input: Traffic tensor C ∈ R
I1×I2×I3 and truncation rank

(r1, r2, r3)
Output: Truncated traffic tensor X ′ with rank(r1, r2, r3).
1: For all the permutations of {1, 2, 3}, according to (39), cal-

culate the cost of each processing sequence (each sequence
corresponding to one permutation of {1, 2, 3}).

2: Select the one with least cost as the optimal processing
order, denoted as P .

3: S(0) = C
4: i = 0
5: for k ← P1, P2, P3 do
6: i = i + 1
7: Compute the compact singular value decomposition of

S(i−1)
(k)

S(i−1)
(k) =

[
Ū1 Ū2

]
[ ∑̄

1 ∑̄
2

][
V̄T

1

V̄T
2

]

(40)

8: Uk ← Ū1

9: S(i)
(k) ←

∑̄
1V̄

T
1

10: end for
11: X ′ = S(3) × P3UP3 × P2UP2 × P1UP1

VI. ANOMALY DETECTION

For a given sparse tensor approximationX ′, we can estimate
the outliers E based on the difference B = X − X ′ as

min
E
‖B − E‖F

s.t. B = X − X ′

‖E‖0 ≤ ε (41)

This problem, however, is generously hard to solve with its
use of L0-norm to get the set cardinality. To make the problem
trackable, we propose to investigate a solution consisting of
two phases:

• Phase 1
We relax the l0 constraint and solve the following prob-
lem to identify the candidate entry values of E :

min
E
‖B − E‖F

s.t. B = X − X ′ (42)

Given B, the solution to problem in (42) is E∗ = B with
each entry e∗ijk = bijk . With the l0 constraint ‖E‖0 ≤ ε,
the total number of non-zero entries in tensor E is
restricted to be less than ε. Thus for the original problem,
each entry eijk can have only two candidate values,
bijk (the solution of the relaxed problem) or 0.

• Phase 2
To solve the original anomaly detection problem in (41),
we need to restrict the number of non-zero items to be
less than ε while setting the remaining items to be 0.

As ‖B − E‖F =
√∑

k

∑

j

∑

i

(bijk − eijk)2, to solve the

problem, we can define the function fijk : R → R as
fijk(eijk) = (bijk − eijk)2.
Obviously, we have fijk(0) > fijk(bijk). When setting
an item eijk found in the relaxed problem (42) to 0, it
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Fig. 10. Two phase anomaly detection algorithm.

will increase the total summation
∑

k

∑

j

∑

i

(bijk − eijk)2

with Δijk = fijk (0) − fijk (bijk), which is against the
objective of minimizing ‖B − E‖F . To find the approxi-
mate E while minimizing the total increase of summation
due to the enforcement of the l0 constraint, we will sort
the items Δijk in the descending order. We select the first
ε entries to be bijk and set the remaining items to 0 to
better meet the problem objective after involving the l0
constraint.

Fig.10 presents an example to illustrate our two-phase
anomaly detection algorithm. We further provide a theoret-
ical proof for our two-phase anomaly detection algorithm
(Theorem 2).

Theorem 2: Let A ∈ R
I×J×K and φijk : R→ R. Suppose

that ε is a positive integer and 0 ∈ A. Consider the following
minimization problem:

min

⎧
⎨

⎩
φ(a) =

I,J,K∑

i=1,j=1,k=1

φijk(aijk)

⎫
⎬

⎭
: ‖A‖0 ≤ ε, aijk ∈ A

(43)

Let ã∗
ijk ∈ argmin {φijk(aijk) : aijk ∈ A} and M∗ ⊆

{ijk|i = 1, · · · , I, j = 1, · · · , J, andk = 1, · · · , K}
be the index set corresponding to ε largest values of
{x∗

ijk}I,J,K
i=1,j=1,k=1, where x∗

ijk = φijk(0) − φijk(ã∗
ijk) for

i = 1, · · · , I, j = 1, · · · , J , and k = 1, · · · , K . Then
a∗

ijk is an optimal solution of problem (43) where a∗
ijk is

defined as follows:

a∗
ijk =

{
ã∗

ijk if ijk ∈M∗

0 otherwise
(44)

Proof: By the assumption 0 ∈ A and the definitions
of a∗

ijk , ã∗
ijk and M∗, we easily obtain that ‖A∗‖0 ≤ ε,

hence, A∗ is a feasible solution of (43). It remains to show
that φijk(A) ≥ φijk(A∗) for any feasible solution A of (43).
Indeed, let A be arbitrarily chosen such that ‖A‖0 ≤ ε, and
let N = {ijk|aijk �= 0}. Clearly, |N | ≤ ε = |M∗|. Let M̄∗
and N̄ denote the complement of M∗ and N , respectively.
It then follows that

∣
∣N̄ ∩M∗∣∣ = |M∗| − |M∗ ∩N | ≥ |N | − |M∗ ∩N |

=
∣
∣N ∩ M̄∗∣∣ (45)

Because
∣
∣N̄ ∩M∗∣∣+|M∗ ∩N |+∣

∣M̄∗ ∩ N̄
∣
∣+

∣
∣N ∩ M̄∗∣∣ =

U (Universal Set), we have

φ(a) − φ(a∗)

=

⎧
⎪⎪⎨

⎪⎪⎩

∑
ijk∈N̄∩M∗(φijk(aijk)− φijk(a∗

ijk))
+

∑
ijk∈M∗∩N (φijk(aijk)− φijk(a∗

ijk))
+

∑
ijk∈M̄∗∩N̄ (φijk(aijk)− φijk(a∗

ijk))
+

∑
ijk∈M̄∗∩N (φijk(aijk)− φijk(a∗

ijk))

⎫
⎪⎪⎬

⎪⎪⎭

(46)

As U ≥ ∣
∣N̄ ∩M∗∣∣ +

∣
∣N ∩ M̄∗∣∣, we further have

φ(a)− φ(a∗)

≥
{∑

ijk∈M∗∩N̄(φijk(0)− φijk(a∗
ijk))

+
∑

ijk∈M̄∗∩N (φijk(a∗
ijk)− φijk(0))

}

=
{∑

ijk∈M∗∩N̄(φijk(0)− φijk(a∗
ijk))

−∑
ijk∈M̄∗∩N (φijk(0)− φijk(a∗

ijk))

}

(47)

As
∣
∣N̄ ∩M∗∣∣ ≥ ∣

∣N ∩ M̄∗∣∣ (according to (45)) and
φijk(0) − φijk(a∗

ijk) ≥ 0, we have φ(a) − φ(a∗) ≥ 0 for
any feasible point a of (43), which implies that the conclusion
holds.

VII. PERFORMANCE EVALUATIONS

Before we present the experiment results, we first present
the setting of our experiment.

A. Generation of Corrupted Synthesized Data

Although datasets such as 1999 DARPA IDS (named
KDD99) contain some anomalous data, these datasets are
not suitable for the study of end-to-end network connections
which we focus on. Therefore, we synthetically generate
anomalies by adding data outliers into the public traffic
traces Abilene [22] and GÈANT [23]. As the two traces
record the volume of traffic flows between all source and
destination pairs, they allow us to form a network-wide traffic
tensor. Abilene and GÈANT collect the monitoring data every
5 minutes and 15 minutes respectively, so they have different
lengths for the time slot.

We denote the raw trace data as M ∈ RI1×I2×I3 . For
more efficient data processing, data normalization [41] is often
applied in the data preprocessing step to scale the variables or
features of data, and the normalized values are often within the
range [0,1]. In this paper, given mi,j,k, we adopt the following
equation to normalize the data:

mi,j,k =
mi,j,k − min

u,v,w
{mu,v,w}

max
u,v,w

{mu,v,w} − min
u,v,w

{mu,v,w} (48)

where max
u,v,w

{mu,v,w} and min
u,v,w

{mu,v,w} are the maximum

value and minimum value of all the traffic data, respectively.
Following [4], [42]–[44], we inject the outliers to the

normalized traffic data to generate the synthesized corrupted
data with the following steps:

1) A outlier tensor E is generated as

ei,j,k =
{

ei,j,k (i, j, k) ∈ Ω
0 otherwise

(49)

where eijk is the generated outlier, and Ω is the outlier location
set.
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2) The synthesized data X is the sum of the outlier data
E and the raw data M, that is xi,j,k = mi,j,k + ei,j,k for
all (i, j, k).

From [45], the intensity and locations of anomalies may
have impact on the accuracy of anomaly detection. To make
the injected outliers more close to real ones, we generate the
outliers as follows.

We adopt two strategies to generate the location set Ω.
1) Random anomalies. To simulate anomalies that do not
have fixed locations, we randomly select γ × (I1 × I2 × I3)
locations as the outlier locations with |Ω| = γ×(I1 × I2 × I3),
where γ is the the outlier ratio. We set γ = 0.1 as the default
one. 2) Week long anomalies. Under some special cases, such
as week long attacks [42], [46], anomalous data have specific
location patterns. Therefore, besides injecting the outlier data
at random locations, we also generate the outlier location
according to week long attack. Specially, for each week, we
randomly select 10 OD flows in Abilene and 30 OD flows in
GÈANT be the ones under attack. The locations corresponding
to these OD pairs form the outlier location set Ω.

Following the [42], [47], we adopt two data distributions
to generate the outlier data values. 1) Gaussian distribution:
eijk ∈ Ω is generated following N (

μ, σ2
)

with the mean
μ and the variance σ2 2) Exponential distribution: eijk ∈
Ω is generated following the Exponential distribution E

(
1
μ

)

with the mean μ. In this paper, we set μ = 0, σ = 1 as the
default values. To investigate how anomaly intensity impacts
the detection performance, we vary σ2 and mean μ of the
injected outliers in Section VII-D. For each experiment setting,
we run the experiments ten times with the random seeds and
get the average of the results.

B. Performance Metric

Our TensorDet aims to decompose the noisy traffic data
into the low-rank normal traffic data and the sparse outlier
data. We denote the decomposed low-rank traffic data as X̂ ,
and the decomposed outlier data as Ê . The outlier is further
detected based on Ê . We use following four metrics to evaluate
the performance of the proposed TensorDet.

False Positive Rate (FPR): It measures the proportion of
non-outliers that are wrongly identified as outliers.

True Positive Rate (TPR): It measures the proportion of
outliers that are correctly identified.

Speedup: Given the computation time under two different
algorithms (alg1 and alg2), denote as T1 and T2. The speedup
in computation time of the alg2 with respect to the alg1:
S1−2 = T1/T2.

Smaller False Positive Rate and higher True Positive Rate
mean better detection performance. To evaluate the perfor-
mance of the proposed TensorDet, we implement six schemes
for performance comparison.

Three tensor-based anomaly detection schemes: Based on
our traffic tensor model, three tensor-based anomaly detection
schemes are implemented. The first is our proposed TensorDet,
in which the tensor factorization subproblem and the anom-
aly detection subproblem are iteratively solved as shown in
Algorithm 1. The second one is TensorRPCA proposed in [18]
which has three steps: 1) the multi-way tensor is matriciza-
tioned into multiple unfolding matrices, 2) the RPCA with
Trace norm relaxation is utilized on the unfolding matrices to
detect the anomaly, and 3) folding the result of each unfolding
matrix to obtain the final result. The third one is RTD proposed

Fig. 11. Impact of different truncation rank. (a) Abilene. (b) GÈANT.

in [48] which decomposes a tensor into low rank and sparse
components through CP decomposition.

Three matrix-based anomaly detection schemes: Current
traffic data analysis is usually based on a traffic matrix model
with its row representing the origin and destination (OD)
pair and the column representing the time interval. Follow-
ing the traffic matrix, other 3 anomaly detection schemes
are implemented. The first is MatrixDR where direct robust
matrix factorization is applied for anomaly detection [31]. The
second is MatrixPCA which applies a PCA-based anomaly
detection algorithm [4] to identify the anomaly. The third is
MatrixRPCA in which the robust PCA [21] is applied to the
traffic matrix to detect the anomaly.

All these anomaly detection algorithms can decompose the
noisy traffic data into the normal traffic data and the candidate
outlier data. To fairly compare these algorithms, we adopt the
same anomaly detection principle: among all the candidate
outlier data, return the α data points with the largest α absolute
values where α is the number of outliers injected.

In Section VII-D, we will show that TensorDet achieves
significantly higher accuracy for anomaly detection compared
with other peer algorithms. With a higher dimensional struc-
ture, tensor data processing involves a higher computational
cost. As shown in Algorithm 1, the main computation com-
plexity comes from the tensor factorization. In Section VII-E,
we show the gain in computation cost reduction by comparing
our sequential tensor truncating algorithm with other tensor
factorization schemes.

C. Impact of the Parameters

Our TensorDet includes two parameters: truncation rank
(r1, r2, r3) and ε. The outlier number ε does not need to match
the actual number of outliers, but is only used to prevent that
too many data are regarded as outliers. Consequently, we set
ε to equal 10% of the whole data.

We focus on detecting the anomalous data after the traffic
data are collected. As we don’t know the number and locations
of anomalous data items thus the normal data pattern, it is
important to appropriately set the truncation rank for anom-
alous data detection.

According to [49] and [50], the truncation rank (r1, r2, r3)
can be set to preserve certain amount of the tensor data
variability to capture the main features of the normal data.
In addition, we can use the ranks of past data as a reference
to set up the current data rank, and vary the rank setting when
the data are periodically collected. The study of rank variation
is outside the scope of this work.

To investigate how the truncation rank (r1, r2, r3) setting
impacts the outlier detection performance, we let the rank to
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Fig. 12. Gaussian distribution (different variance σ2). (a) Abilene: random anomaly. (b) GÈANT: random anomaly. (c) Abilene: week long anomaly.
(d) GÈANT: week long anomaly.

Fig. 13. Gaussian distribution (different mean value μ). (a) Abilene: random anomaly. (b) GÈANT: random anomaly. (c) Abilene: week long anomaly.
(d) GÈANT: week long anomaly.

preserve different amount of the tensor data variability. Spe-
cially, we let each truncation rank rk of the mode determined

with
k∑

i=1

σ2
i /

r∑

i=1

σ2
i ≥ θ by varying θ, where θ is the ratio of

data variability preservation and σi is the singular value of the
corresponding unfolded matrix).

With outliers injected at random locations and the data
values following the Gaussian distribution, we show the perfor-
mance in Fig.11. When the outliers have a larger mean value μ,
the detection performance becomes more accurate with lower
False Positive Rate and high True Positive Rate. When the
truncation rank is set too small with a small θ, the model
cannot capture the normal variability of the data, leading to a
worse detection performance. Even when the mean value μ is
small, we find that setting the truncation rank (r1, r2, r3) to
preserve 99% of the data variability of the traffic tensor can
achieve higher detection performance.

For more accurate detection or when the ranks of the data
are not known in advance, the operator can set the rank to
be more conservatively with a higher value at the cost of
higher computation overhead. According to the results, we
set the truncation rank (r1, r2, r3) to preserve 99% of the
data variability of the traffic tensor with θ = 99%. In other
outlier injected scenarios (week long attacker and Exponential
distribution), similar results can be obtained. Due to the
space limitation, we do not show simulation results of other
scenarios.

D. The Accuracy Comparison

1) Gaussian Distribution: To compare the performance of
different anomaly detection algorithms, with other parameters
fixed, we vary the variance σ2, the average value μ, and the
outlier ratio γ of the outliers.

From Fig.12, Fig.13, and Fig.14, among all the algorithms
compared, our TensorDet achieves the best performance.

Fig. 14. Gaussian distribution (different outlier ratio γ). (a) Abilene: random
anomaly. (b) GÈANT: random anomaly.

It achieves the lowest False Positive Rate and Highest True
Positive Rate, under all the simulation scenarios using different
traffic traces (Abilene and GÈANT) with different anomaly
strategies (random anomaly and week long anomaly). These
results also demonstrate that TensorDet is a robust anom-
aly detection technique that can fully utilize the tensor’s
multi-dimensional information to more accurately detect the
anomaly.

Compared with the tensor-based anomaly detection algo-
rithms TensorRPCA and RTD, our TensorDet achieves much
better overall performance. Designed based on unfolding
matrices and using the trace norm to relax the low-rank feature
of the unfolding matrices, TensorRPCA is fundamentally a
matrix-based approach and cannot fully exploit the tensor
pattern with the multilinear information to better detect the
anomaly. As a result, compared with MatrixDR, the detection
performance under TensorRPCA is even worse, as MatrixDR
can model and solve the anomaly detection problem directly
using low rank feature instead of using trace norm to relax the
low rank feature like TensorRPCA.
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Fig. 15. Exponential distribution (different mean value μ). (a) Abilene: random anomaly. (b) GÈANT: random anomaly. (c) Abilene: week long anomaly.
(d) GÈANT: week long anomaly.

Compared with RTD, our TensorDet achieves better per-
formance with higher True Positive Rate and lower False
Positive Rate. They are designed based on different tensor
decomposition methods. RTD is based on CP decomposition
and TensorDet is based on Tucker decomposition. Tucker
method decomposes a tensor into a core tensor multiplied
(or transformed) by matrices each along a mode with the
entries in the core tensor showing the level of interaction
between components along different modes. CP decomposition
can be viewed as a special case of Tucker where the core
tensor is super-diagonal. The Tucker decomposition captures
more hidden information in the tensor, thus our TensorDet
achieves a better detection performance.

As shown in Fig.12 and Fig.13, with the increase of
variance σ2 and mean μ of the outliers, the True Positive
Rate increases while the False Positive Rate decreases for
all algorithms implemented. Obviously, when the variance
and mean of outliers are smaller, synthesized outlier data
have closer and smaller values, and are more difficult to be
differentiated from the normal data. As shown in Fig.12(a),
even when variance σ2 is a small value with σ = 0.01,
our TensorDet achieves the highest True Positive Rate 0.75,
while the True Positive Rates under MatrixDR, MatrixRPCA,
MatrixPCA, TensorRPCA, and RTD are 0.6, 0.3, 0.1, 0.3,
and 0.5, respectively; our TensorDet achieves the lowest False
Positive Rate 0.0025, while the False Positive Rates under
MatrixDR, MatrixRPCA, MatrixPCA, TensorRPCA, and RTD
are 0.004, 0.0075, 0.01, 0.007, and 0.006, respectively.

In the week long attack, we fix the number of ODs
to be attacked, and therefore, in Fig.14, we only draw
the simulation results under different outlier ratio when the
outlier locations are randomly generated. Fig.14 shows the
detection performance by varying the outlier ratio γ from
0.01 to 0.10. Even with a large outlier ratio at γ = 0.1, our
TensorDet still achieves very large True Positive Rate and low
False Positive Rate. The performance of other matrix-based
detection algorithms such as MatrixPCA changes largely with
the variation of γ, while TensorDet can capture the multi-
dimensional information hidden in the 3-way tensor to more
robustly detect the anomaly. The detection performance of
TensorDet is much more stable compared to peer matrix-based
detection algorithms and TensorRPCA algorithm.

2) Exponential Distribution: With the synthesized data
generated following the exponential distribution, we vary
the average value of the outlier μ (Fig.15) and the outlier
ratio γ (Fig.16) to evaluate the performance of different
anomaly detection algorithms.

Similar to the simulation results with the synthesized data
generated following the Gaussian distribution, among all the

Fig. 16. Exponential distribution ( different outlier ratio γ). (a) Abilene:
random anomaly. (b) GÈANT: random anomaly.

detection schemes implemented, TensorDet achieves signifi-
cantly better performance in terms of the False Positive Rate
and True Positive Rate, and thus can provide more accurate
and stable detection.

E. The Speed Comparison With Other Tensor Factorization

A core technique used in TensorDet is to apply tensor
factorization to obtain the approximation rank (r1, r2, r3)
tensor. In this paper, we propose a sequential truncation
method which seeks the optimal processing order to obtain the
approximated tensor as well as to minimize the computation
cost. To evaluate the computation cost, besides our sequential
truncation method, we implement another truncating tensor
algorithm based on tucker decomposition. In this comparison
experiment, we first implement tucker decomposition (denoted
as Tucker), and then obtain the approximation tensor based
on the method mentioned at the beginning of Section V.
Moreover, besides the optimal processing order adopted in our
algorithm, we also plot all other 5 processing order with our
sequence truncating for comparisons.

We use speedup to compare the speed of different algo-
rithms. We use Tucker to denote the Tucker decomposi-
tion based tensor approximation algorithm. To calculate the
speedup metric, we use Tucker as the baseline algorithm and
set alg1 = Tucker.

Fig.17 shows the speedup of all the peer tensor factorization
executions. Benefiting from our sequential tensor truncating
algorithm with the good processing order in the sequential
execution, the tensor factorization process in TensorDet is 5
(Abilene) and 13 (GÈANT) times faster compared with the tra-
ditional Tucker decomposition solution. Moreover, compared
with other processing orders, although all these executions
also follow the sequential truncation in this paper with the
dimension reduction in each sequential truncation steps, the
best order selected in our algorithm also brings significantly
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Fig. 17. Speed up comparison with other tensor factorization. (a) Abilene.
(b) GÈANT.

better performance. These results also confirm that different
processing orders may result in significantly different com-
putation cost, which is our basic design principle applied to
reduce the cost.

VIII. CONCLUSION

We present TensorDet, a tensor based algorithm for accurate
and fast Internet anomaly detection. We formulate the anomaly
detection problem as a tensor recovery problem which is
further formulated as a tensor approximation problem with
constraints on the rank of the tensor and the cardinality
of the anomaly set. Although such a problem formulation
can take advantage of the tensor pattern and correlations
among multiple modes to better detect the anomaly, the two
constraints bring a significant challenge to find the solution.
Unlike existing methods which resorts to convex relaxation
and consequently compromises the detection performance,
TensorDet solves the problem efficiently with the support of
two proposed techniques, sequential tensor truncation and
two-phase anomaly detection. We have conducted extensive
experiments using Internet traffic trace data to compare the
proposed TensorDet with the state of art tensor recovery
algorithms and matrix-based anomaly detection algorithms.
Our results demonstrate the effectiveness and efficiency of
TensorDet.
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