
Divide And Conquer For Fast SRLG Disjoint
Routing

Kun Xie1, Member, IEEE, Heng Tao1, Xin Wang2, Member, IEEE, Gaogang Xie3, Member, IEEE,

Jigang Wen3, Jiannong Cao4, Fellow, IEEE, Zheng Qin1

1 College of Computer Science and Electronic Engineering, Hunan University, China
2 Department of Electrical and Computer Engineering, Stony Brook University, New York, USA

3 Institute of Computing Technology, Chinese Academy of Sciences, Bei Jing, China
4 Department of computing,The Hong Kong Polytechnic University,Hong Kong, China

xiekun@hnu.edu.cn, franztaoheng@gmail.com, x.wang@stonybrook.edu, xie@ict.ac.cn, wenjigang@ict.ac.cn,

csjcao@comp.polyu.edu.hk, zqin@hnu.edu.cn

Abstract—Ensuring transmission survivability is a crucial
problem for high-speed networks. Path protection is a fast and
capacity-efficient approach for increasing the availability of end-
to-end connections. The emerging SDN infrastructure makes
it feasible to provide diversity routing in a practical network.
For more robust path protection, it is desirable to provide an
alternative path that does not share any risk resource with the
active path. We consider finding the SRLG-Disjoint paths, where
a Shared Risk Link Group (SRLG) is a group of network links
that share a common physical resource whose failure will cause
the failure of all links of the group. Since the traffic is carried
on the active path most of time, it is useful that the weight of
the shorter path of the disjoint path pair is minimized, and we
call it Min-Min SRLG-Disjoint routing problem. The key issue
faced by SRLG-Disjoint routing is the trap problem, where the
SRLG-disjoint backup path (BP) can not be found after an active
path (AP) is decided. Based on the min-cut of the graph, we
design an efficient algorithm that can take advantage of existing
search results to quickly look for the SRLG-Disjoint path pair.
Our performance studies demonstrate that our algorithm can
outperform other approaches with a higher routing performance
while also at a much faster speed.

Index Terms—Shared Risk Link Groups (SRLG), SRLG-
Disjoint Routing, Max-Flow Min-Cut Theorem

I. INTRODUCTION

With the rapid increase of application data and the de-

ployment of high speed network, a failure in the network

infrastructure (e.g. a fiber cut or a router shutdown) may lead

to a vast amount of data loss. This makes it more important

to exploit diversity routing with additional paths to increase

the survivability [1] of end-to-end transmissions.

Besides the difficulty and complexity in finding the addi-

tional paths, it is also difficult to enable transmission through

the alternative paths in conventional networks. The emerg-

ing Software Defined Networking (SDN) paradigm [2], [3]

separates the data plane from the control plane, and applies

centralized control for more efficient network monitoring

and management. Compared to the decentralized routing in

conventional networks, the centralized control in SDN allows

advanced routing service such as diversity routing to be

easily implemented [4], [5], [6]. For example, some simple

extensions on OpenFlows allow nodes to autonomously react

to failures by switching to a pre-computed end-to-end backup

path [7], [8]. This makes the diversity routing a viable and

increasingly important method for network survivability.

To protect a mission-critical connection from a single link

(node) failure, a common solution for path protection [9] is to

find a link (node) disjoint pair of paths from a source (ingress)

node to a destination (egress) node. When there are no faults,

the active path (AP, also called working path or primary path)

is used to carry the traffic. When a fault occurs, the traffic

is re-routed along the other path, called backup path (or BP).

For a network to be reliable, both AP and BP paths must not

share a common risk of failure.

A Shared Risk Link Groups (SRLG) is a group of network

links that share a common physical resource (cable, conduit,

node or substructure) whose failure will cause the failure of all

links of the group. To ensure that AP and BP paths do not fail

at the same time, they should be SRLG-disjoint without links

sharing any common risks. Since the traffic is carried on AP

most of the time, it is useful that the cost of one path of the

disjoint path pair is minimized to use the path as AP. In order

to enable SRLG disjoint routing and facilitate other failure

risk management, it is important to know which links form

SRLG. Some recent studies [10], [11] propose to automatically

discover and collect the SRLG information. In this paper, we

focus on Min-Min SRLG-disjoint routing to find two SRLG-

disjoint paths such that the smaller weight of these two paths

is minimized.

The finding of backup paths that are not coupled with the

active path yet also efficient has been a big challenge and

a problem that has attracted many attentions from academia

and industries. Although several link/node-disjoint routing

algorithms are proposed so far [12], [13], [14], [15], [16], [17],

[18], [19], the number of SRLG-disjoint routing algorithms is

very limited. A link-disjoint or node-disjoint routing problem

is only a simple and specific case of SRLG-disjoint routing

problems. Among the limited studies on SRLG-disjoint rout-

ing, one type of solution is to formulate an Integer Linear

Programming (ILP) [19] problem to jointly optimize the

selection of both AP and BP, and then solve the formed ILP
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problem using the branch-and-bound [20] search techniques.

With a high time complexity, the ILP-based algorithms are not

feasible for large networks.

To reduce the complexity, several heuristic algorithms fol-

lowing active-path-first (APF) are proposed [21], [22], [23].

However, this type of methods faces a big challenge. For a

specific AP, it may not be able to find an SRLG disjoint BP

even though a pair of disjoint paths do exist. This is the

so-called ”trap” problem [24], which can exist even if the

network is highly connected [25], and becomes more severe

when the network is sparse. Although some attempts are made

to address the trap issue in a simple scenario where one link

belongs to only one SRLG, a large number of paths need to

be tested in order to find a disjoint path pair, which incurs a

high computational complexity. As a network link may belong

to several SRLGs, the problem can become intractable.

In this work, based on the graph theory, we provide the

insights for the trap problem when looking for the SRLG-

disjoint paths. Specifically, for an AP found with the trap

problem, we observe that there exists a sub-set of links on

the AP path that no AP going through all these ”problematic”

links can find an SRLG-disjoint BP. We call this set as a SRLG

Conflicting Link Set. Once encountering a trap problem,

instead of searching through all possible alternative paths, we

propose to look for the SRLG Conflicting Link Set based

on max-flow min-cut theorem [26]. We further propose a

divide-and-conquer min-min SRLG disjoint routing algorithm

to partition the original routing problem into several sub-

problems which can be executed in parallel to find the viable

AP and BP pairs. Our main contributions are summarized as

follows:

• We propose a novel scheme to construct a new flow graph

with a clever setting of the link capacity to facilitate the finding

of the SRLG Conflicting Link Set.

• We propose an algorithm to find a minimum SRLG

Conflicting Link Set, which helps to reduce the complexity

of searching for the alternative SRLG-disjoint path pair.

• Based on the risk sharing features of the SRLG graph, we

transform the minimum SRLG Conflicting Link Set finding

problem to a set cover problem, which allows us to apply

general algorithms to find the minimum SRLG Conflicting

Link Set under different complex SRLG scenarios (including

a link belonging to one or multiple SRLG with various SRLG

patterns).

• We propose a novel divide-and-conquer algorithm which

can partition the original min-min SRLG disjointing routing

problem into multiple sub-problems for parallel executions

upon encountering a trap problem. Compared to existing tech-

niques, such a solution searching process can take advantage

of the existing AP search results and parallel executions for

significantly faster path finding.

• We have done extensive simulations on a multi-core CPU

platform to evaluate the proposed algorithms. The simulation

results demonstrate that our algorithm can find the best solu-

tions in different network scenarios at much faster speed.

The rest of the paper is organized as follows. We introduce

the related work in Section II and background in Section III.

We introduce our problem and our basic solution to address

the trap issue in Section IV and Section V, respectively. In

Section VI and VII, we present in details our algorithms for

finding the SRLG Conflicting Link Set and the SRLG-disjoint

routing paths. Finally, we conclude our work in Section IX.

II. RELATED WORK

A shared risk link group (SRLG) is a group of links that

share a component whose failure causes the failure of all links

in the group. For path protection, although some link/node-

disjoint routing algorithms have been proposed [12], [13], [14],

[15], [16], [17], [18], [19], finding paths for SRLG-disjoint

routing is more intractable and there are very limited studies

on SRLG-disjoint routing. When the SRLG contains only one

link, the SRLG-disjoint routing problem can be reduced to

a link-disjoint routing problem, while node-disjoint routing

problem could be transformed into a link-disjoint routing

problem through node splitting [26]. Since a SRLG group

generally includes more than one link and a network link

may belong to several SRLGs, finding a pair of SRLG-disjoint

paths is much more difficult than finding a pair of link/node

disjoint paths.
To solve a SRLG-disjoint routing problem, one possible

way is to form an Integer Linear Programming (ILP) [19]

problem to optimally select both AP and BP paths through

the branch-and-bound search. This method incurs a high time

complexity, and is not feasible for large networks. To reduce

the complexity, APF-based heuristics are shown to be able

to achieve near-optimal solutions to the Min-Min SRLG-

disjoint routing problem [21], [22], [23]. In these APF-based

heuristics, an AP is found first by using the Dijkstra algorithm

(or any other shortest path algorithms) without considering the

need to find a corresponding BP, and the BP is found (again

using the Dijkstra algorithm for example) after removing the

links or nodes along the AP or share the risk with the AP.
However, as a major challenge in using the APF heuristic,

once an AP is found, a SRLG disjoint BP may not be able to

be found even though a pair of disjoint paths do exist in the

network. This is called the ”trap” problem, which can happen

even if the network is highly connected [25], and certainly

cannot be ignored in a sparsely-connected network. There are

two kinds of trap, unavoidable and avoidable trap. Unavoidable

traps are constraints forced by the topology, and cannot be

solved by any algorithm. If a network is not 2-edge connected,

then there is no algorithm that can guarantee the presence

of two SRLG disjoint pathes in the topology. On the other

hand, an avoidable trap occurs when an SRLG-disjoint path

pair exists between two nodes but cannot be found due to

the shortcomings of the routing algorithms. In this paper, we

consider the avoidable trap.
As an extension to a simple-APF, the KSP (K-shortest path)

algorithm [23] is proposed to deal with the trap problem for

node/link disjoint path. Although it is one of the most effective

algorithms to deal with the trap problem, its performance

suffers in a large network as KSP may involve multiple path-

searching-tests (K tests) until it finds the disjoint paths. After
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the current candidate AP encounters the trap problem, the next

candidate AP to be tested is selected solely based on the path

length, without considering which link (or links) along the

current candidate AP has caused the failure in finding disjoint

BP. As a result, a large number of paths often need to be tested

in order to find a disjoint path pair, which introduces a large

time complexity with a large K. Different from KSP, for an AP

encountering the trap problem, we apply the SRLG Conflicting

Link Set derived from this AP path to guide the future AP

testing. This helps to largely reduce the time complexity in

finding the alternative paths.
Other SRLG-disjoint routing algorithms, including [27],

[28], [29], [30], [31], search for the maximal SRLG disjoint

routing paths that share the minimum number of common

links. As AP and BP may share same risks, the solutions

found through this type of approaches are not reliable. Our

algorithm targets to find complete SRLG disjoint paths. The

work in [32] attempts to find the complete SRLG disjoint

paths. It cuts down the problem search space to speed up

the path searching process. However, it may return paths with

large cost as the space after cutting down may lose the optimal

solution. Instead, to largely speed up the searching process, we

exploit the conflicting link set found to partition the original

problem into multiple sub-problems which can be executed in

parallel. As a result, our algorithm can run much faster and

return the paths with very low cost.
The work in [29] transforms the SRLG disjoint routing

problem to the link-disjoint routing problem and then exploit-

s the link-disjoint routing algorithm to solve the problem.

However, only certain SRLG styles (e.g, star-style) can be

transformed to the link-disjoint, which limits the application

of this scheme. Rather than calculating the conflicting link

set, when AP encounters a trap problem, CoSE [28] tries to

find a SRLG set that no AP going through the SRLG set can

find the SRLG BP path. CoSE first looks for the SRLG set

commonly shared by APs through multiple rounds of search,

then partitions the original problem based on the SRLG set

to search for a SRLG-disjoint path pair. Without utilizing the

risk sharing feature in SRLG, this exhaustive search in CoSE

incurs very high computational overhead.
Besides the long computation time, most of current SRLG-

routing algorithms consider a single scenario that one link

belongs to only one SRLG. Different from existing studies

[28], [29], this paper tries to guide the search of alternative

AP paths by analyzing the links on the path of the AP caught

into the ”trap”. More specifically, this paper proposes a divide

and conquer algorithm to partition the original problem into

multiple sub-problems which can be executed in parallel to

largely speed up the searching process. Moreover, our SRLG-

routing algorithm does not have any constraint on the SRLG-

style and can efficiently handle complex SRLG situation that

a link belongs to multiple SRLGs.

III. PRELIMINARIES

This paper designs SRLG disjoint routing algorithm based

on the max-flow min-cut theorem. This section introduces the

preliminaries on the theorem.

Fig. 1. An example to illustrate max-flow min-cut theorem. Each link ei is
labeled by fei/cei , where fei and cei denote the flow and capacity of link
ei, respectively.

A. Maximum flow

Let G = (V,E) be a network (where V is the set of |V|
nodes and E is the set of |E| links) with s ∈ V and d ∈ V

being the source and the destination respectively.

The capacity of link ei, denoted by cei , represents the

maximum amount of flow that can pass through the link. A

flow of link, denoted by fei , should meet the following two

constraints:

1) Capacity Constraint: ∀ei ∈ E: fei ≤ cei .

2) Conservation of Flows: ∀u ∈ V − {s, d}: ∑
v∈V

f(v,u) =
∑
v∈V

f(u,v), where (v, u) and (u, v) denote the links e(v, u) and

e(u, v).

The value of flow is defined by |f | = ∑
v∈V

f(s,v), where s

is the source. It represents the amount of flow passing from s
to d.

Maximum Flow Problem: The goal is to maximize |f | by

routing as much flow as possible from s to d.

B. Minimum cut

An s-d cut Φ = (S,D) is a partition of V such that s ∈ S

and d ∈ D. The cut-set LΦ of Φ is the link set

LΦ = {(u, v) ∈ E : u ∈ S, v ∈ D}. (1)

Note that if the links in the cut-set LΦ are removed, then

|f | = 0. That is, no flow can pass from s to d. In this paper,

we try to find the SRLG Conflicting Link Set based on the

feature of the cut-set.

The capacity of an s-d cut Φ is defined by c(Φ) =
∑

ei∈LΦ

cei .

Minimum s-d Cut Φ Problem: Minimize c(Φ), that is, to

determine S and D such that the capacity (c(Φ)) of the s-d cut

Φ = (S,D) is minimal.

C. Max-flow min-cut theorem

Max-flow min-cut theorem: The maximum value of an

s−d flow is equal to the minimum capacity over all s−d cuts.

In Fig.1, max-flow f in G with its value |f | = f(s,v1)+f(s,v2).

The cut Φ(S,D) with S = {s, v1, v2, v4} and D = {v3, d}
is the min-cut with its capacity c(Φ) = c(v1,v3) + c(v4,v3) +
c(v4,d) = 12 + 7 + 4 = 23. Obviously, |f | = c(Φ), that is,

the maximum value of an s-d flow is equal to the minimum

capacity over all s-d cuts.
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IV. PROBLEM DESCRIPTION AND ANALYSIS

A. Problem description

A shared risk link group (SRLG) is a group of links that

share a component whose failure causes the failure of all links

in the group. A link can belong to multiple SRLGs.

An example of such a component is the fiber conduit [33]

in optical networks, where several optical links may be placed

side-by-side in one single conduit, as illustrated in Fig.2. Links

(1,2), (3,2) and (3,4) are placed inside a single conduit, while

links (3,2) and (3,4) also share another single conduit. If a

conduit gets cut, the corresponding links will fail. Each conduit

corresponds a SRLG. Other example applications of SRLGs

are the correlated congestion of transportation networks and

cascading failures of power grid networks [34].

(a) Physical topology with
conduit

(b) Network Graph

Fig. 2. Example of shared risk link group(SRLG)

Let R be the risk (failure) set in the network. Each risk

may correspond to a conduit cut, a fiber cut, a card failure at

a node, a software failure, or any combination of these factors.

For ri ∈ R, its SRLG is the link set associated with risk ri,
denoted as Rri , where 1 ≤ i ≤ χ and χ = |R| is the number

of risks/SRLGs. In Fig.3(a), the network includes five SRLGs

Rr1 = {e1, e9}, Rr2 = {e2, e3, e19}, Rr3 = {e2, e4, e11, e17},
Rr4 = {e5, e13}, Rr5 = {e15, e18}. In this example, link e2 is

in two SRLGs Rr2 and Rr3 .

A network is often represented as a graph G(V,E), where

V is the set of |V| nodes (which for instance represent

routers) and E is the set of |E| links (which for instance

represent optical fiber lines or radio channels). Links may be

characterized by weights representing for instance their delay,

length, or cost. For a link ei, we denote the weight of the link

as wei . The weight of a path P is denoted as wP =
∑
ei∈P

wei ,

which is the sum of the weight of each link in the path.

Let rP denote the risk set that impacts a path P , that is

rP = {r ∈ R: path P contains links in Rr}. In Fig.3(c), the

link set on the AP is AP = {e1, e2, e3, e4, e5, e6, e7, e8} with

e1 ∈ Rr1 , e2 ∈ Rr2 , e2 ∈ Rr3 , e3 ∈ Rr2 , e4 ∈ Rr3 , e5 ∈ Rr4 ,

the risk set of AP is rAP = {r1, r2, r3, r4}. ER denotes the

set of links not belonging to AP that share the common risks

with AP. In Fig.3(c), ER = {e9, e11, e17, e13, e19}.
SRLG-disjoint paths share no common risks among them-

selves, that is, the failure of a path due to a risk would not

affect other paths. Fig.3(b) shows two SRLG-disjoint paths,

denoted as AP and BP. As these two paths share no common

risk, if AP fails, BP can still work. This paper focuses on

finding two SRLG-disjoint paths for path protection, which

can be described as follows.

Min-Min SRLG-disjoint routing problem. Given a graph

G(V,E), a weight wei associated with each link ei ∈ E, a

source s and a destination d, find a pair of SRLG disjoint

paths from s to d (denoted as AP and BP ), thus that the

smallest path weight of the two disjoint paths is minimized,

that is,

minimize
AP,BP

min (wAP , wBP )

subject to rAP ∩ rBP=φ
AP ∩ BP=φ

(2)

where wAP and wBP are the path weights of AP and BP,

respectively, AP and BP are the link sets on paths AP and

BP, respectively, rAP and rBP are the risk sets that impacts

AP and BP, respectively.

V. TRAP PROBLEM AND SOLUTION OVERVIEW

In this section, we first introduce the trap problem, and then

given an overview of our solution.

A. Trap problem

As discussed earlier, APF-based heuristic algorithms may

get caught into the ”trap” problem. That is, when an AP is

found, it may not be able to find a SRLG disjoint BP path

even though a pair of disjoint paths do exist in the network.

Fig.3.(c),(d) illustrates the trap problem. The dotted

line denotes an AP with its link set AP = {e1, e2, e3
, e4, e5, e6, e7, e8}. After removing the links on AP and also

the links that share the common risks with AP, the remaining

graph shown in Fig.3.(d) is obviously disconnected, so BP can

not be found.

Although KSP is known as an effective algorithm to handle

the trap problem, it may face the problem of inefficiency.

Fig.4 shows an example to illustrate why the KSP is ex-

tremely inefficient. In this graph, suppose the link weights

of e1, e2, e3, e4 are much larger than other links. Moreover,

among e1, e2, e3, e4, the link weights of e1 and e2 are much

smaller than those of e3, e4. Then the first K smallest weight

paths from s to d found in the first K tests will always contain

the shortest path segment e1, e2 denoted by the dotted line.

The first K shortest APs will suffer from the trap problem, as

e1 and e4 share the same risk and BP can not be found as a

result. To avoid the trap problem, K have to be set as a large

value, which brings a high time complexity to KSP.

��� � ��

Fig. 4. An example to illustrate the inefficiency of KSP

When a trap problem happens and there is no SRLG-disjoint

BP can be found for a given AP, there may exist a sub-set
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Fig. 3. (a) A graph with five SRLGs: Rr1 = {e1, e9},Rr2 = {e2, e3, e19},Rr3 = {e2, e4, e11, e17},Rr4 = {e5, e13},Rr5 = {e15, e18}. (b)AP and BP
in the graph. (c) The shortest weight path AP in the graph. AP = {e1, e2, e3, e4, e5, e6, e7, e8}, ER = {e9, e11, e17, e13, e19}. (d) Graph after deleting
the links in AP and ER.

of links in the AP such that no AP going through all these

”problematic” links can find a SRLG-disjoint BP. In this paper,

we call this set as a SRLG Conflicting Link Set. Different

from KSP, when the shortest AP encounters the trap problem,

we will address the issue through two major steps. We will

first find the set of SRLG conflicting links (Section VI) like the

set {e1, e2} in the example of Fig.4, and then apply a divide

and conquer algorithm (Section V-B) to partition the original

problem into two sub-problems P(∅, {e1}) and P({e1}, {e2}).
The two sub-problems can be executed in parallel on a multi-

core CPU platform to quickly search for the SRLG disjoint

path pair.

Although together all the links along the AP form such a

SRLG Conflicting Link Set, we are interested in a set with

as few links as possible. This is because the number of sub-

problems to partition in our divide-and-conquer algorithm (in

section V-B) is determined by the size of the SRLG Conflicting

Link Set. In Section VI-C, we will present our solution to find

the minimum SRLG Conflicting Link Set.

B. Divided-and-Conquer

After we obtain the SRLG Conflicting Link Set, we de-

sign a divide-and-conquer algorithm to partition the original

Min-Min SRLG-disjoint routing problem into multiple sub-

problems which can be executed in parallel to speed up the

progress of SRLG disjoint path pair finding.

To facilitate the problem partition, we first define two

disjoint link sets I and O with I ∩ O = ∅, where I is called

the inclusion set and O is called the exclusion set. Denoted

by P(I,O) the sub-problem (of the Min-Min SRLG-disjoint

Problem) for finding a pair of AP and BP, where the AP is

the shortest among all possible APs that must use the links

in I but not use the links in O.

Originally, let I = ∅ and O = ∅, the original Min-

Min SRLG-Disjoint Routing Problem can be represented by

P(∅, ∅). Note that, for any given link, the solution to P(∅, ∅),
if it exists at all, will use an AP that either contains the

link or not. Given the SRLG Conflicting Link Set T with |T|

links denoted by e1, e2, · · · , e|T|, the original problem can be

partitioned sequentially as follows.

Step 1, P(∅, ∅) can be divided into two sub-problems

P(∅, {e1}) and P({e1}, ∅).
Step 2, similarly, P({e1}, ∅) can be further divided into two

sub-problems P({e1, e2}, ∅) and P({e1}, {e2}).
The partition process continues until in the step |T|, we

have that P({e1, e2, · · · , e|T|−1}, ∅) can be further divided

into two sub-problems P({e1, e2, · · · , e|T|−1, e|T|}, ∅)
and P({e1, e2, · · · , e|T|−1}, {e|T|}). Note that, as

the sub-problem P({e1, e2, · · · , e|T|−1, e|T|}, ∅) has

I = {e1, e2, · · · , e|T|−1, e|T|}= T and O = ∅, it has no

solution.

We will try to find an optimal solution for each sub-

problem except the sub-problem P({e1, e2, · · · , e|T|}, ∅), and

then select the best one (i.e., the path pair with the shortest

AP) to be the final (optimal) solution to the original problem

P(∅, ∅). If there is no solution to any of these sub-problems,

we can guarantee that there is no solution to the original

problem, as the way we divide the subproblems which has

included all possible disjoint path pairs.

In terms of the complexity, it should take less time to solve

each sub-problem than the original problem itself as at least

one link (which is from T) will be removed from any further

path computation for an AP, which also ensures that a different

AP will be found and tested for the existence of a SRLG-

disjoint BP.

When encountering the trap problem, our solution partitions

the original problem and tests each sub-problem to look for

the final solution. In our divide-and-conquer solution, the sub-

problem is tested based on the SRLG Conflicting Link Set

found from the AP encountering the trap problem. Compared

to existing algorithms which search for alternative AP paths

without considering the existing results and problems, our

algorithm can largely reduce the computation cost. For the

example in Fig.5, the SRLG Conflicting Link Set is T =
{e2, e5, e6}. The partition process can be shown in Fig.5.

According to the SRLG Conflicting Link Set, we should try the
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P(∅, ∅)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P({e2}, ∅)

⎧⎪⎪⎨
⎪⎪⎩

P({e2, e5}, ∅)
{ P({e2, e5, e6}, ∅)

P({e2, e5}, {e6})
P({e2}, {e5})

P(∅, {e2})
Fig. 5. Example to illustrate divide-and-conquer solution,T = {e2, e5, e6}.

total 3 marked sub-problems P({e2, e5}, {e6}), P({e2}, {e5})
and P(∅, {e2}), and among which select the best one with the

lowest AP path weight to be the final (optimal) solution to the

original problem P(∅, ∅).
Note that we do not need to solve the sub-problems

P({e2, e5}, ∅) and P({e2}, ∅), as their solutions have al-

ready been included in the sub-problems above. The so-

lution space of the first one consists of two sub-problems

P({e2, e5, e6}, ∅) and P({e2, e5}, {e6}). As the SRLG Con-

flicting Link Set is T = {e2, e5, e6}, obviously, the sub-

problem P({e2, e5, e6}, ∅) does not have a solution. Thus

the solution space of P({e2, e5}, {e6}) is equal to that of

P({e2, e5}, ∅). Similarly, the solution space of P({e2}, ∅)
includes that of P({e2}{e5}, ∅) and P({e2}, {e5}).

When a trap problem happens, the number of sub-problems

to test is |T|, which is equal to the size of the SRLG

Conflicting Link Set. To reduce the complexity, in Section

VI-C, we focus on finding the minimum SRLG Conflicting

Link Set given an AP.

VI. FIND SRLG CONFLICTING LINK SET

In this section, we describe how to find a SRLG Conflicting

Link Set for a given AP for which there is no SRLG-disjoint

BP in a network G.

A. Build a new graph G∗ with novel link capability setting
principle

As introduced in Section III, if all the links in the cut-set

LΦ are removed in a graph G, then |f | = 0. That is, no flow

can pass from s to d. In this paper, we try to find the SRLG

Conflicting Link Set based on the concept of the cut-set. If an

AP flow passes from s to d through a path that shares the risk

with all links in the cut-set, then no SRLG-disjoint BP can be

found, as no link in the cut-set can be selected for a BP path

to pass through the cut.

To facilitate finding the SRLG Conflicting Link Set based

on the cut-set, we construct a new graph G∗ as follows.

1) G∗ uses the same V and E of G.

2) The link weight wei associated with each link ei ∈ E is

the same as the corresponding link weight of graph G.

3) We adopt the following principle to set the capacity cei
associated with each link ei ∈ E:

cei =

⎧⎨
⎩

1 ei ∈ AP

|AP|+ 1 ei ∈ ER

|AP|+ (|AP|+ 1)× |ER|+ 1 otherwise
(3)

where AP denotes the set of links forming the smallest weight

path AP in the graph G, and ER denotes the set of links not

belonging to AP that share the common risks with AP.
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Fig. 6. New Graph G∗

In Fig.3(c), the link set of AP is AP = {e1, e2, e3, e4
, e5, e6, e7, e8}, ER = {e9, e11, e17, e13, e19}. We have

|AP| = 8, |ER| = 5, |AP| + 1 = 9 and

|AP|+ (|AP|+ 1)× |ER|+ 1 = 54. We generate a new graph

G∗ in Fig.6, with the capacity of the links set in the graph G∗

according to the principle in Equ.(3).

In Section VI-B, we will demonstrate that when an AP

encounters the trap problem, such principles make the min

cut-set in the new graph belonging either to AP or ER,

which further provides the possibility of obtaining the SRLG

Conflicting Link Set with the links on the AP.

B. Properties on the min-cut in the new graph G∗

The max-flow min-cut theorem states that in a network the

maximum amount of flow passing from the source s to the

destination d is equal to the total capacity of the links in the

minimum cut, i.e. the smallest total capacity of the links which

if removed would disconnect the destination d from the source

s. Our algorithm will find the minimum SRLG Conflicting

Link Set based on the min-cut of the graph.

We will first show that some good properties of our rebuilt

graph G∗ can serve as a base to find the minimum SRLG

Conflicting Link Set.

Let Φ=(S,D) be a min-cut of G∗ and LΦ represen-

t the cut-set. Fig.7 shows the min-cut Φ=(S,D) with

S = {s, 1, 2, 3, 4, 5, 9}, D = {6, 7, 8, d}, and LΦ =
{e11, e13, e19, e6}.
Lemma 1. Any path from s to d in G∗ must pass through at
least one link in AP or ER.

Proof. We prove the lemma by the way of contradiction.

Assume that for the AP, there exists another path from s to

d in G∗ that does not share the risks with AP, that is, the

path does not pass through the links in AP or ER. We can

easily conclude that this path is the SRLG-disjoint BP for the

AP, which contradicts with the claim that there is no SRLG-

disjoint BP for the AP in the network.

Lemma 2. The value of any max flow from s to d in G∗ is at
most |AP|+ (|AP|+ 1)× |ER|.
Proof. Assume the value of a max flow f of G∗ is |f | = k.

f can be partitioned into k 1-unit-flows from s to d in G∗.
According to Lemma.1, each of these 1-unit-flows must pass

through at least one link in AP or ER. Note that the capacity

of the links in AP or ER are in 1 and |AP|+1, respectively.
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According to the capacity set for the links in AP and ER, a

link in AP can carry only one unit-flow traffic, while the link

in ER can be shared by at most |AP|+1 unit-flows. Therefore,

there can be at most |AP|+(|AP|+1)×|ER| such unit-flows

from s to d.

Lemma 3. All links in the cut-set LΦ of the min-cut Φ of G∗

belong to AP or ER.

Proof. According to the max-flow min-cut theorem, the ca-

pacity of the min-cut Φ, denoted by c(Φ), should be equal to

the max-flow value, which is at most |AP|+ |ER|×(|AP|+1)
according to lemma.2. According to the capacity setting prin-

ciple defined in Eq.(3), for the links that are neither in AP

nor in ER (that is ei /∈ AP and ei /∈ ER), their capacity is

cei = |AP| + (|AP|+ 1) × |ER| + 1, which is larger than

|AP|+(|AP|+1)×|ER|. Thus, none of them can be a link in

the cut-set LΦ. So all the links in the cut-set LΦ must belong

to AP or ER.

In the network with SRLG, if a link is selected by an AP

or shares the same risk with the links selected in the AP, this

link can not be selected as the SRLG-disjoint BP of the AP.

We call this link ”blocked” by the AP.

Theorem 1. If a path of a unit-flow of G blocks all the links
in cut-set LΦ, then no more flow can pass through the cut of
the graph.

Proof. If a path of a unit-flow blocks all the links in cut-set
LΦ, then no flow can use the links in LΦ and thus no more

flow can pass the cut Φ.

Theorem 1 provides us the possibility to find the SRLG

Conflicting Link Set. That is, when an AP encounters a trap

problem, we can find the sub-set of the AP that can block

all the links in cut-set LΦ, and this sub-set of links can form

the SRLG Conflicting Link Set. When any a path contains all

links in the SRLG Conflicting Link Set, no more flow can

pass the cut Φ, thus no SRLG-disjoint BP can be found.

C. Set cover problem for SRLG Conflicting Link Set

Although together all links on the AP path form a SRLG

Conflicting Link Set, we are interested in a set that has as few

links as possible, as the size of the SRLG Conflicting Link Set

determines the number of sub-problems partitioned according

to Section V-B.

According to theorem 1, the minimum SRLG Conflicting
Link Set finding problem can be described as: find the

minimum subset of links on AP that can block all the links in

the cut-set LΦ.

For any link ei, let SRei denote the link set that shares risks

with ei. Obviously, SRei covers ei itself and all the links in

the SRLG that includes ei. For example in Fig.7, as e2 is

in two SRLGs Rr2 = {e2, e3, e19}, Rr3 = {e2, e4, e11, e17},
therefore, SRe2 = {e2, e3, e19, e4, e11, e17}.

For each link ei on AP, we define its cut-block-link set as

Bei = SRei ∩LΦ, which is the sub-set of cut-set LΦ that can

be blocked by ei.

Therefore, the minimum SRLG Conflicting Link Set finding

problem can be formulated as a Set Cover Problem: given

AP (the link set of path links of AP ), the cut-set LΦ, and a

collection of the cut-block-link sets Be1 ,Be2 , · · · ,Be|AP| , we

want to find the fewest sets whose union is LΦ, that is, the

smallest T ⊆ {ei|ei ∈ AP} such that ∪ei∈TBei = LΦ.

The Set Cover Problem is usually an NP-hard problem with

its complexity depending on the size of the elements (denoted

by n). In our minimum SRLG Conflicting Link Set finding

problem, n = |LΦ|, that is, the edge number of cut set LΦ.

As this paper’s focus is not to improve the solution of the

set cover problem, we apply the algorithm proposed in [35]

with the complexity O(log(|LΦ|)) to find the minimum SRLG

Conflicting Link Set.

The number of subproblems to partition in our divide-and-

conquer algorithm is determined by the size of the SRLG

Conflicting Link Set, which is at most the hop number of the

AP. The random graph of Erdös, and Rényi [36] is one of the

best studied models of real-world networks such as Internet,

social networks or biological networks. According to random

graph theorem, the average distances (hops) between any two

nodes in a random network are proportional to log(|V|) (not

a large number).

Usually, even for a large scale network, the AP with the

shortest path does not have a large number of n = |LΦ|. There-

fore, the cost to calculate the minimum SRLG Conflicting Link

Set through the set cover is not large.

To illustrate how to find the minimum SRLG Conflicting

Link Set, we show an example in Fig.7. For the min-cut

Φ(S,D), S = {s, 1, 2, 3, 4, 5, 9} and D = {d, 6, 7, 8}, the cut-
set is LΦ = {e11, e13, e19, e6}. For links in AP, cut-block-

link sets are: Be1 = ∅, Be2 = {e11, e19}, Be3 = {e19},
Be4 = {e11}, Be5 = {e13}, Be6 = {e6}, Be7 = ∅ and

Be8 = ∅. To cover LΦ, the fewest cut-block-link sets are {Be2 ,

Be5 , Be6}. Therefore, the minimum SRLG Conflicting Link

Set is T = {e2, e5, e6}.
In the example of Fig.7, although |LΦ| = 4, the size of the

minimum SRLG Conflicting Link Set |T| = |{e2, e5, e6}| = 3
is even smaller than |LΦ| = 4. This is because e2 belongs to

SRLGs Rr2 and Rr3 , and can block two links in e11 and e19
in the cut-set LΦ.

According to the graph style of SRLG, there are two

categories [29]: star-style and none star-style. For star-style

SRLG, all the links start from the same node or ends at the

same node. For example, in Fig.7, e1 and e9 start from the

the same node s, Rr1 is a star-style SRLG. For none star-

style SRLG, not all links in the SRLG starting from the same

node or ending at the same node. In Fig.7, Rr2 , Rr3 , Rr4

and Rr5 are none star-style SRLGs. Moreover, even though

Fig.7 includes both star-style SRLG and none star-style SRLG,

our algorithm works efficiently and effectively to find the

conflicting set through the solving of the set cover problem.

Therefore, different from some existing studies [29] which

can only handle a single SRLG style or a simple scenario such

as one link belonging to only one SRLG, our algorithm works

effectively in a more general scenario that a link can belong
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Fig. 7. Min cut of the network graph, SRe1 = {e1, e9}, SRe2 = {e2, e3, e4, e11, e17, e19}, SRe3 = {e2, e3, e19}, SRe4 = {e2, e4, e11, e17}, SRe5 =
{e5, e13}, SRe6 = {e6}, SRe7 = {e7} and SRe8 = {e8}. LΦ = {e11, e13, e19, e6}. Be1 = ∅,Be2 = {e11, e19},Be3 = {e19},Be4 = {e11},Be5 =
{e13},Be6 = {e6},Be7 = ∅ and Be8 = ∅.

to one or multiple SRLGs with more diverse SRLG styles.

VII. THE COMPLETE MIN-MIN SRLG DISJOINT ROUTING

ALGORITHM

In this section, we first present our complete solution, then

analyze its complexity.

A. Complete solution

Algorithm 1 shows the complete min-min SRLG disjoint

routing Algorithm. The input parameter in the algorithm

includes the network graph (G), the source (s), the destination

(d), the inclusion link set should be included in AP (I), and

the exclusion link set should not be included in AP (O).

The output of the algorithm is the SRLG disjoint path pair

(AP,BP ).
To look for the SRLG disjoint paths, the smallest

weight AP in the network is searched first through

FIND AP(G, s, d, I,O) in step 2 with I = φ,O = φ,

and then BP is searched through FIND SRLG Disjoint BP

(G, s, d, AP ) in step 4. Specially, the AP path can be

found through the Dijkstra algorithm. To calculate BP,

FIND SRLG Disjoint BP (G, s, d, AP ) includes two steps.

First, for all the links on the AP, remove the links that share a

common risk with these links. Second, the Dijkstra’s algorithm

runs over the remaining links of the network again to compute

the second shortest path BP from s to d.

If we can find a SRLG-Disjoint BP, the Min-Min SRLG

disjoint routing problem is solved and the path pair found

is returned as shown in step 6. Otherwise, a trap problem

happens. To handle the trap problem, step 8 first finds the

SRLG Conflicting Link Set T, step 10 further divides the

original Min-Min SRLG disjoint routing problem into |T| sub-

problems based on the conflict set T. All the sub-problems can

be executed in parallel. Step 11 utilizes the set F to store the

feasible solutions satisfying that both APi 	= φ and BPi 	= φ.

Among all the feasible solutions in the F, the path pair with the

lowest AP path weight will be selected as the optimal solution

for the original Min-Min SRLG disjoint routing problem.

We take the graph in Fig.3 as an example to illustrate our

Algorithm 1. According to step 2, our algorithm first searches

for a path AP = {e1, e2, e3, e4, e5, e6, e7, e8} with the smallest

weight through the dijkstra algorithm, with the path shown as

the dotted line in Fig.3(c). After removing the links on AP

and also the links that share the common risks with AP, we

have the graph in Fig.3(d), which is a disconnected graph and

no BP can be found. However, as shown in Fig.3(b), there

exists a SRLG-disjoint path pair in the topology. Therefore, a

trap problem happens. After finding the SRLG conflict link

set {e2, e5, e6} in step 8, we apply divide and conquer to

divide the original problem P(∅, ∅) into three sub-problems,

P(∅, {e2}), P({e2}, {e5}) and P({e2, e5}, {e6}) according to

step 10. After executing these sub-problems in parallel, the

path pair with the minimum AP weight is returned.

B. Complexity analysis

To find a SRLG disjoint path pair when an AP encounters

a trap problem, our algorithm first calculates the SRLG

Conflicting Link Set, and then solves the original problem by

partitioning it into |T| sub-problems. As introduced in Section

VI-C, the edge number of cut set LΦ is usually not large,

therefore, finding the SRLG Conflicting Link Set in our paper

does not introduce much cost. Therefore, we focus on the

computation cost on the path finding process.

Generally, for a network with |E| links and |V| nodes,

the complexity of finding the least weight path is (|E| +
|V|) × log(|V|). To solve the trap problem, our path finding

problem is a little bit different from the original least weight

path finding problem. We introduce some constraints for path

finding, for example, an AP path must pass through a link

set or cannot pass a link set. As these link sets are usually

not large, the constraints bring little difference in the cost

calculation. As different sub-problems have different link sets

thus different complexity, to make the description simple and
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Algorithm 1 Min-Min

Require: G: the network graph
s: the source node
d: the destination node
I: the inclusion link set should be included in AP
O: the exclusion link set should not be included in AP

Ensure: AP: the active path
BP: the backup path

1: AP = ∅, BP = ∅, I = ∅,O = ∅
2: AP ← FIND AP(G, s, d, I,O)
3: if AP �= ∅ then
4: return BP ← FIND SRLG Disjoint BP(G, s, d,AP )
5: if BP �= ∅ then
6: return path pair (AP,BP )
7: else
8: find SRLG Conflicting Link Set T
9: T ← T− (I ∪O)

10: divide and conquer for execution in parallel⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(AP1, BP1) = Min − Min (G, s, d, I, O ∪ {t1}) ,
(AP2, BP2) = Min − Min (G, s, d, I ∪ {t1}, O ∪ {t2}) ,
(AP3, BP3) = Min − Min (G, s, d, I ∪ {t1, t2}, O ∪ {t3}) ,
· · ·(
AP|T|, BP|T|

)
= Min − Min

(
G, s, d, I ∪ {t1, t2, · · · , t|T|−1}, O ∪ {t|T|}

)

11: F ← FIND FEASIBLE((AP1, BP1)), · · · , (AP|T|, BP|T|)
12: if F �= ∅, ∅ then
13: return path pair (AP,BP ) satisfying that AP =

argmin
AP

{F}
14: end if
15: end if
16: end if

clear, we still use (|E| + |V|) × log(|V|) as one time of

path searching. As our algorithm divides the original problem

into |T| sub-problems, the complexity of our algorithm is

|T| × (|E|+ |V|)× log(|V|).
For complexity comparison, we also show the complexity

of path finding process in CoSE [28] and KSP [23].

CoSE tries to find a conflicting SRLG set instead of a

Conflicting Link Set as we do. Although their search for

conflicting SRLG set is exhaustive with a high cost, in this

paper, we focus on the cost analysis of path finding process

and do not take into account this cost in the comparison.

As our SRLG Conflicting Link Set is derived from min-

cut and the set cover problem, the |T| is the minimum

size of SRLG Conflicting Link Set. Therefore, the output of

the conflicting SRLG set in CoSE is at least |T|, and we

denote the SRLG set as
{
SRLG1, SRLG2, · · · , SRLG|T|

}
.

As each SRLG path includes multiple links, the sub-problems

to be partitioned should be much larger than ours. In the

process of the problem partition for an SRLG including

|SRLG| links, the inclusion or exclusion of an SRLG link

in an AP would create |SRLG| sub-problems. Thus a S-

RLG set
{
SRLG1, SRLG2, · · · , SRLG|T|

}
will introduce

|T |∏
i=1

|SRLGi| sub-problems in CoSE, as a link combination

(with each link extracted from a SRLG to get it out of the

trap) corresponds a sub-problem. Therefore, the complexity

of CoSE is
|T|∏
i=1

|SRLGi| × (|E| + |V|) × log(|V|), which is

much larger than ours.

For KSP [23], the path finding complexity is K × ((|E| +

|V|) × log(|V|)), where K is the number of first K shortest

paths that should be tested before finding the SRLG disjoint

pair. However, as KSP does not borrow any information from

the previous path searching process, in the worst case, KSP

should try all the paths from the source s to the destination

d. Therefore, the worst K would be 2|E|, which brings very

large computation cost.

Therefore, compared with CoSE [28] and KSP [23], our

algorithm exploits the min-cut theory to reduce the number of

paths searched thus having the smallest computation cost. In

Section VIII-B3, we will further provide extensive simulations

to demonstrate that our algorithm can achieve very high

computation speed to find the SRLG disjoint paths using the

topology trace data.

VIII. PERFORMANCE EVALUATION

We first describe the simulation setup, then present the

simulation results.

A. Simulation setup

As we could not find any topology trace data that contain

SRLG, we generate a synthesized data set by injecting SRLG

into a topology trace published. topology trace has 7 different

topologies with various number of nodes, links, link weights

(represent link’s delay or other parameter). Two kinds of

SRLG are generated in our simulation, the star-style and the

non-star-style. In Optical Networks, SRLG is star-style, while

in other networks such as an overlay network, SRLG can be

non-star-style. Each SRLG group is generated by randomly

selecting 2-5 links. Table I shows the basic network setting

(number of nodes, links) in these 7 topologies. Based on the

topology trace, we randomly generate SRLG groups, with the

number of SRLG graphs injected and the SRLG edge ratio

(defined as No.SRLG edges
Total No.edges ) shown on the 3rd and 4th rows of

the table.

For performance comparisons, besides our scheme (named

by SCLS), we also implemented other four SRLG-disjoint

routing algorithms as follows:

1) ILP: The work in [19] aims to find SRLG-disjoint paths

through an ILP formulation such that the total weight

of the two paths is minimized. We are not aware that

other studies look for the Min-Min SRLG-disjoint paths

through ILP formulation. Therefore, following [19], we

formulate our Min-Min SRLG-disjoint routing problem

by changing the objective function.

2) IQCP: As any 0 − 1 integer linear program where all

variables are either 0 or 1, ILP can be formulated as

a quadratically constrained program. Different from ILP,

we also model Min-Min SRLG-disjoint routing prob-

lem through the Integer Quadratic Constraints Program

(IQCP) [19].

3) KSP [23]: It finds the first K shortest paths between the

source and the destination as candidate APs, and then

tests them one by one in the increasing order of their

costs to see if it has a corresponding (SRLG-disjoint)

BP, until such a BP is found.
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TABLE I
7 DIFFERENT TOPOLOGIES.

Topology 1 2 3 4 5 6 7

Node 527 521 521 2023 451 521 449
Edge 4158 4052 4152 4142 2780 4052 2778

No.SRLG 132 86 89 207 210 128 88
SRLG edge ratio 9.66% 6.16% 6.18% 14.94% 22.55% 9.65% 9.53%

4) CoSE [28]: When an AP encounters a trap problem,

CoSE tries a simple and exhaustive search to find a SRLG

set that no AP going through the SRLG set can find

the SRLG-disjoint BP path. Based on the SRLG set, it

partitions the original problem and designs an algorithm

to search for the SRLG disjoint path pair.

The first two (ILP and IQCP) are based on integer program

models. In our implementation, the tool GUROBI 7.0 [37] is

employed to resolve these two integer program problems. Five

performance metrics are applied to evaluate the performance

of different SRLG-disjoint routing algorithms:

Path weight: is the sum of the link weight in the path.

Path hop: the number of hops in the path.

Runtime: the average number of milliseconds taken for

SRLG-disjoint path finding.

Algorithm speedup: Given the computation time under two

different algorithms (alg1 and alg2), denoted as T1 and T2, the

algorithm speedup in the computation time of the alg2 with

respect to the alg1: S1−2 = T1/T2.

Core speedup: The core speedup [38] of a parallel program

is typically defined as SP = T1

Tp
, where p is the number of

processor cores and T1 and Tp denote the running time on 1

core and p cores, respectively.

All simulations are run on a linux server, which is equipped

with Intel(R) Xeon(R) CPU E5-2620 0 2.00GHz (24 Cores)

and 32.00GB RAM. To measure the computation time, we

insert a timer to all the implemented algorithms.

All algorithms are implemented using 7 topologies, we take

the average results of each topology as the final simulation

results. For more detailed simulation setup and simulation

result, the source codes of our algorithms and the synthesized

topology trace sets can be downloaded from the github website

[39].

B. Performance comparison

Among the five SRLG disjoint routing algorithms, only

CoSE and our SCLS are parallel algorithms. Although ILP,

IQCP and KSP are not parallel algorithms, we still implement

them as we want to present the speed gain obtained by our

design. From the analysis in Section VII-B, under KSP, the

computation complexity to find the first K shortest paths is

K × ((|E| + |V|) × log(|V|)) , which would be large with

the worst K = 2|E|. Consistent with the analysis, when we

run KSP using the 7 topologies, no simulation results can be

returned within 1 hour, while others can return results within

11 seconds. Long computation time makes KSP difficult to

use in practice. Therefore, we do not provide the simulation

results under KSP.

Fig. 8. Path weight

1) Path Weight: Fig.8 shows the weight of AP, BP, and

the sum of both AP and BP. Obviously, all implemented

algorithms SCLS, CoSE, ILP and IQCP achieve the same AP

weight, but different BP weights thus different sum weights

of AP and BP. As all the algorithms solve the same Min-Min

SRLG-disjoint routing program, although they find different

SRLG-disjoint path pairs, they can all achieve the goal of

finding the AP with the same least weight. As SCLS, CoSE

find the BP based on a shortest path algorithm (such as

Dijkstra), they also find the BP path with the same weight.

However, the two ILP-based algorithms, ILP and IQCP, focus

on minimizing the weight of AP but find any BP that is

SRLG-disjoint with AP, the BP paths searched by these two

algorithms are different.

2) Path Hop: Fig.9 shows the path hop of AP, BP, and the

sum of both AP and BP. As all algorithms target to minimize

the least path weight of the SRLG-disjoint path pair instead

of the number of path hops, they have the same AP weight

(Fig.8) even though they have different AP path hops (Fig.9).

Although the AP weights under all algorithms are smaller than

the BP weights in Fig.8, in Fig.9, the AP hops may not always

be fewer than the BP hops.

3) Runtime: Fig.10 shows the run time under different

algorithms by varying the number of CPU cores utilized. As

the runtime under CoSE is significantly larger than that under

other algorithms, to more clearly show the results of other

algorithms, we further plot the runtime results in Fig.11 by

excluding CoSE. As ILP, and IQCP are not parallel algorithms,

the runtime of these algorithms under different number of

cores is approximately equal. The runtime of our SCLS and

CoSE decreases with the increase of the number of processor

cores because these two algorithms can partition the original

problem into multiple sub-problems to execute in parallel and

take advantage of the parallelism of the multi-core CPU to
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Fig. 9. Path hop Fig. 10. Runtime Fig. 11. Runtime without CoSE

Fig. 12. Core speedup Fig. 13. Algorithm speedup Fig. 14. Algorithm speedup without SCLS

speed up the path searching process. Although CoSE is a

parallel algorithm, the computation time is even larger than

ILP and IQCP. Some possible reasons include 1) the search

process to find the conflicting SRLG set in CoSE is not

efficient; 2) As one SRLG usually includes multiple links,

the partitioning of problem based on conflicting SRLG will

introduce a large number of sub-problems to solve, which also

results in a large computation cost.

Different from CoSE, our SCLS looks for the set of con-

flicting links on an AP caught into the trap problem based on

the min-cut theory in graph, and achieves the lowest time in

Fig.10. This demonstrates that our conflicting link set finding

algorithm is efficient, and moreover our divide-and-conquer

algorithm and intelligent AP searching process based on SRLG

Conflicting Link Set can largely reduce the computation cost.

4) Algorithm speedup: In Fig.13, we further compare their

computation speeds. Specially, to find out how much speedup

is gained when using different algorithms to find the required

paths, we use CoSE as the baseline algorithm and set alg1
=CoSE. Similar to the results in the Fig.10, the speed of SCLS

is more than 600 times that of CoSE in Fig.13. Similar to

Fig.10, as the running speed of CoSE is significantly smaller

than others and can hardly be observed in Fig.13, we further

plot the algorithm speedup results in Fig.14 by excluding the

largest one SCLS.

5) Core speedup: Rather than using the algorithm speedup

to compare the overall running speeds of all algorithms, the

metric ”core speedup” is utilized to evaluate how the number

of cores in the CPU impacts the running speed of a given

algorithm. Fig.12 plots the core speedup under all algorithms

implemented. Core speedup under algorithms ILP and IQCP is

approximately equal to 1 under any core number because they

are not parallel algorithms. The core speedup of our SCLS

increases with increase of core number when it is less than

4, beyond which the core speedup of SCLS remains stable,

which demonstrates that 4 core is sufficient for SCLS. This

result is consistent with Amdahl’s law [40] that the theoretical

core speedup is limited to a upper bound determined by the

problem size. However, the core speed under CoSE continues

to increases even though the core number is equal to 8 which

doubles the number 4. This result demonstrates that even 8-

core CPU can not satisfy the parallelism requirement in CoSE.

This is because the conflicting SRLG set found by CoSE

includes a large number of links, which further results in a

large number of sub-problems and thus large problem size

and computation cost.
All the simulation results demonstrate that our SCLS can

outperform other approaches with higher routing performance

while at a much higher search speed, because the conflicting

link set found can facilitate efficient problem partition for

parallel algorithm execution with low computation cost.

IX. CONCLUSION

In this paper, we propose an efficient algorithm to solve the

Min-Min SRLG-Disjoint routing problem in the presence of

the trap problem. To reduce the complexity of searching for the

alternative pair, we propose a divide-and-conquer solution to

partition the original Min-Min SRLG-Disjoint routing problem

into multiple sub-problems based on a SRLG conflicting link

set derived from the AP path encountering the trap problem.

Our algorithm takes advantage of existing AP search results
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and parallel executions for significantly faster path finding. We

have conducted extensive simulations using the topology trace

on a multi-core CPU platform. The simulation results demon-

strate that our algorithm can outperform other approaches with

higher routing performance while at a much higher search

speed.
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